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Abstract. The paper focuses on finding the m best solutions to a com-
binatorial optimization problems using Best-First or Branch-and-Bound
search. We are interested in graphical model optimization tasks (e.g.,
Weighted CSP), which can be formulated as finding the m-best solution-
paths in a weighted search graph. Specifically, we present m-A*, extend-
ing the well-known A* to the m-best problem, and prove that all A*’s
properties are maintained, including soundness and completeness of m-
A* dominance with respect to improved heuristics and most significantly
optimal efficiency compared with any other search algorithm that use the
same heuristic function. We also present and analyse m-B& B, an exten-
sion of a Depth First Branch and Bound algorithm to the task of finding
the m best solutions. Finally, for graphical models, a hybrid of A* and
a variable-elimination scheme yields an algorithm which has the best
complexity bound compared with earlier known m-best algorithms.

1 Introduction

Depth-First Branch and Bound (B&B) and Best-First Search (BFS) are the
most widely used search schemes for finding optimal solutions. In this paper we
explore the extension of such search algorithms to finding the m-best optimal
solutions. We apply such algorithms to optimization tasks over graphical models,
such as weighted CSPs and most probable explanation (MPE) over probabilistic
networks, arising in many applications, e.g, in procurement auction problems,
biological sequence alignment and finding m most likely haplotype configura-
tions.

Most of the paper’s analysis focuses on Best-First Search whose behavior for
the task of finding a single optimal solution is well understood. The algorithm
is known to be sound and complete when guided by an admissible (i.e., lower
bound for minimization task) heuristic evaluation function. Most significantly,
it is efficiently optimal: any node it expands must be expanded by any other
exact search algorithm having the same heuristic function, if both use the same
tie breaking rule [4]. Best-First Search, and its most famous variant A*, are also
known to require significant memory. The most popular alternative to BFS is
Depth-First Branch and Bound, whose most attractive feature compared with
BFS is that it can be executed with linear memory. Yet, when the search space



is a graph, it can exploit memory to improve its performance, by flexibly trading
space and time.

Highly efficient B&B and BFS algorithms for finding an optimal solution
over graphical models were developed recently. These algorithms explore the
AND/OR search-tree or the context-minimal AND/OR search graph of the
graphical model [3], they use heuristic evaluation functions generated either by
the mini-bucket scheme or through soft arc-consistency schemes [9,12] and they
proved to be most effective as demonstrated in recent evaluations [2]. Clearly, an
extension of a BFS or B& B to the m-best task over a general search space graph
for optimal path-finding tasks is applicable to graphical models when searching
its AND/OR search space [3].

The main contribution of this paper (Section 3) is in presenting m-A*, an
extension of the A* for finding the m-best solutions, and in showing that all its
properties extend to the m-best case. In particular we prove that m-A* is sound
and complete and is efficiently optimal. In Section 4 we discuss extensions of
Branch and Bound to the m-best task. Subsequently, in Section 5, we discuss an-
choring the algorithms for searching graphical models’” AND/OR search spaces.
We show that a hybrid of A* and a variable-elimination scheme, denoted BE-
Greedy-m-BF, yields a best complexity algorithm compared with earlier work on
graphical models. Preliminary empirical evaluation shed light on the algorithm’s
performance. We assume without loss of generality that the optimization task
at hand is minimization.

2 Background

Let A be a general search algorithm for finding an optimal solution path over a
search space defined implicitly by a set of states (the nodes in the graph), op-
erators that map states to states having costs or weights (the directed weighted
arcs), a starting state ng and a set of goal states. The task is to find the least
cost solution path from the start node to a goal [10] where the cost of a solution
path is the sum of the weights or the product of the weights on its arcs. The two
primary search strategies for finding an optimal solution are Best-First Search
(BF'S), (e.g., A*) and Depth-First Branch-and-Bound search (B&B). In this
paper we explore extensions of both schemes for finding the m-best solutions for
any integer m. Best-first search (BFS) seems to be the most suitable algorithm
to be extended to m-best task. It explores the search space using a heuristic
evaluation function f(n) which for every node n estimates the best cost solution
path passing through n. The algorithm maintains a list of nodes that are can-
didates for expansions (often called ”OPEN”, or ”frontier”). At each iteration
a node in the frontier having a minimal f is selected for expansion, moved to
another list (called ”CLOSED?”, or ”explored set”) and its child nodes are places
in OPEN, each associated with its own evaluation function. When a goal node is
selected for expansion the algorithm terminates and outputs the solution found.

It is known that when f(n) is a lower bound on the optimal cost path that
goes through n the algorithm terminates with an optimal solution. The algo-



rithm’s properties were extensively studied [10,11]. In particular, (up to some
tie breaking rule) the algorithm is efficiently optimal. Namely, any node ex-
panded by BF'S is expanded by any other search algorithm guaranteed to find
an optimal solution [4]. If provided with a consistent (also called monotonic)
heuristic, the algorithm expands nodes in frontiers of monotonically increasing
evaluation function and it expands every node just once [10]. This later property
is of utmost importance because it frees the algorithm from the need to check
for duplicates when the search space is a graph.

We focus on the well-known BF'S variant called A*, where the heuristic
evaluation function is expressed as the sum f(n) = g(n) + h(n) in which for
any node n g(n) is minimal cost from the root ng to n along the current path,
and h(n) underestimates h*(n), the optimal cost from n to a goal node. The
implicit directed search space graph is G = (N, E). We denote by g(n) the
cost from the root to n along path 7 and by c¢;(n1,n2) the cost from n; to
no along . The heuristic function h is consistent iff V n’ successor of n in G,
h(n) < c(n,n') + h(n’').

3 Best-first Search For the Best m Solutions

As was noted in [1], the extension of BFS algorithms, including A*, to the m-best
problem seems simple: rather then terminate with the first solution found, the
algorithm continues searching until it generates m solutions. As we will show,
these solutions are the m best ones. Specifically, the second solution found is
the second optimal solution, the third is the third optimal one and so on. In
the following subsections we present an extension of A* to finding the m-best
solutions and show that most of A*’s nice properties are maintained in m-A*.

3.1 Algorithm m-A¥*

Figure 1 provides a high level description of a tree-search variant which we call
m-A*. The algorithm expands nodes in order of increasing value of f in the usual
A* manner. For simplicity we specify the algorithm under the assumption that
h is consistent. The algorithm maintains separate paths to each copy of a node
in the explored search tree, denoted by Tr. As we will show, this redundancy is
not wasteful when the heuristic function is consistent.

We denote by Cf the i*" best solution cost, by f/(n) the cost of the i
best solution going through node n, by f;(n) the evaluation function estimating
f#(n) and by g;(n) and h;(n) the estimates of the i'" best costs from ngy to n
and from n to a goal, respectively. If the heuristic function is not consistent, step
7 should be revised to account for the possibility that new paths to n’ may be
encountered and expanded in a non-monotone cost order. We therefore should
revise as follows:
7a. for any node n’ that appears already more than m times in the union of
OPEN or CLOSED, if g(n') is strictly smaller than g,,(n’), the current m-best
path to n/, keep n’ with a pointer to n and discard the earlier pointer.



Algorithm m-A*

Input: An implicit directed search graph G = (N, E), with a start node no and a set
of goal nodes Goals. A consistent heuristic evaluation function h(n), parameter m,
OPEN=0. A tree T'r which is initially empty.

Output: the m-best solutions.

i =1 (i counts the current solution being searched for).

Put the start node no in OPEN, f(no) = h(no). Make ng the root of T'r.

If OPEN is empty, exit and return the solutions found so far.

Remove a node, denoted n, in OPEN having a minimum f (break ties arbitrarily,

but in favor of goal nodes and deeper nodes) and put it in CLOSED.

5. If n is a goal node, output the current solution obtained by tracing back pointers
from n to no (pointers are assigned in the following step). Denote this solution as
Sol;. If i = m exit. else i < i + 1, and go to step 3.

6. Otherwise expand n, generating all its child nodes Ch. Compute g(n') = g(n) +
c(n,n') and f(n') = g(n') + h(n'), ¥n' € Ch.

7. If n’ appears in OPEN or CLOSED m times, discard node n’, otherwise attach
from each n’ in Ch a pointer back to m in Tr. Insert n’ into the right place in
OPEN based on its f(n').

8. Go to step 3.

o =

Fig. 1: Algorithm m-A*

Example 1. Consider example in Figure 2. We assume the task of finding the two
shortest paths from node A to node G. Assuming the following heuristic values:
h(A)=5, h(B)=4, h(C)=3, h(D)=2, h(E)=1, h(F)=1, h(G)=0, the cost of the
best solution path {A, C, D, F, G} is cost 6, the cost of the second best solution
{A, B, D, F,G} is cost 9. On the trace of the search tree (right) orange nodes were
expanded and put on CLOSED, blue nodes remain on OPEN, magenta nodes
are the goals. Nodes D, F', E and G are expanded twice and two duplicates of
each of these nodes are retained.

Based on the known properties of A* [10] we will establish the following
corresponding properties of m-A*:

1. Soundness and completeness: m-A* terminates with the m-best solutions
generated in order of their costs.

2. Optimal efficiency: m-A* is optimally efficient in terms of node expansions,
compared with any other search algorithm that is guaranteed to find the
m-best solutions. Namely, any node that is surely expanded by m-A * must
be expanded by any other sound and complete algorithm.

3. Optimal efficiency for consistent heuristics: m-A* is optimally efficient in
terms of number of node expansions when the heuristic function is consistent.
In this case, m-A* expands each node at most m times.

4. Dominance: Given two heuristic functions hy and he, s.t. for every n hi(n) <
ha(n), m-A* will expand every node surely expanded by m-A%*, when
m-A* is using heuristic h;.



Fig.2: The search graph of the problem (left) and the trace of the m-A* for
m=2. Node A is the start node, node G is the goal node. Orange represents the
nodes that were expanded and put on CLOSED, blue nodes were generated, but
never expanded (remain on OPEN list), magenta nodes are the goal nodes.

3.2 m-A%* is Sound and Complete

We know, that, if provided with an admissible heuristic, A* will surely expand
any node n, whose evaluation function f; along a given path 7 from ng to n
is strictly lower than the cost of the optimal solution, C*. Namely, it surely
expands every node n’, such that n’ € m,, , and f(n') < C*. We next show
that this property can be extended straightforwardly to the m-best case.

Let’s denote by SS; the set of nodes expanded by m-A* just before a goal
node of the i**-best solution was selected for expansion. By definition 5§57 C
S8y,...C 88;,..C S8, and CF < C3,... < C},.

Since we maintain at most m live copies of a node in OPEN or CLOSED
we must be sure that we never discard any of the viable m-best solution paths.
Bounding the number of copies of a node is important for complexity reasons.

Proposition 1. At any point before the algorithm generates the it"-best solution
there is always a node in OPEN along each of the j'-best solution path for
Jj € [i,...,m].

From the above proposition it follows that,

Proposition 2. At any time before m-A* expands a goal node of the it" best
solution path, there is a node n' in OPEN satisfying f(n') < CF.

Proof. Assume that the search graph G has at least m solutions. Let’s assume
that all the ¢ — 1 best solutions were already generated. Namely, the goal nodes
of the first ¢ — 1 solution paths were selected for expansion. At any time after
that, there is a node n in OPEN that resides on an i*" best path ;, because the
ith-best path is not discarded (Proposition 1). Let n’ be the first OPEN node on
m;. Its evaluation function is, by definition, f(n') = gr,(n’) + h(n'). Since m; is
an i*" best path, g.,(n') + cx, (n',t) = CF, when ¢ is the goal for path ;. Since
by definition h(n') < ¢ (n',t), we get that n’ is in OPEN and f(n') < C}.

We can conclude:



Theorem 1 (sound and completeness). Algorithm m-A* generates the m-
best solutions in order, namely, the i'" solution generated is the i'" best solution.

Proof. By induction. We know that the first solution generated is the optimal
one and, assuming that the first ¢ — 1 solutions generated are ¢ — 1 best in
sequence, we will prove that the i*” one generated is the i*" best. If not, the
ith generated solution path, denoted by 7’ has a cost ¢ and ¢ > C;. However,
when the algorithm selected the goal ¢’ along 7', its evaluation function was
f(t") = g (t') = ¢, while there was a node in OPEN whose evaluation function
is C or smaller that should have been selected. Contradiction.

3.3 m-A* is Optimally Efficient

Algorithm A* is known to be optimally efficient [4]. Namely, any other algorithm
that extends search paths from the root and uses the same heuristic information
will expand every node that is surely expanded by A*, i.e., V n, such that f(n) <
C*. This property can be extended to our m-A* as follows:

Theorem 2 (m-optimal efficiency). Any search algorithm which is guaran-
teed to find the m-best solutions, and which explores the same search graph as
m-A* will have to expand any node that is surely expanded by m-A*, if it uses the
same heuristic function. Formally, it will have to expand every node n that lies
on a path wg. n, that is dominated by C*,, namely s.t., f(n') < Ck Vn' € 7o n.

Similarly to [4] we can show that any algorithm that does not expand a node
n lying on a path mg_,, whose evaluation function is dominated by C,, (namely
Vn' f(n') < C¥), can miss one of the m-best solutions when applied to a slightly
different problem, and therefore contradicts completeness.

Proof. Consider a problem having the search graph G and consistent heuristic
h. Assume that node n is surely expanded by m-A* namely for some j < m
node n lies on a path 7 dominated by C7. Let B be an algorithm that uses the
same heuristic h and is guaranteed to find the m best solutions. Assume that
B does not expand n. We can create a new problem graph G’ (Figure 3) by
adding a new goal node ¢ with h(t) = 0, connecting it to n by an edge having
cost ¢ = h(n) + d, where § = 0.5(C} — D), in where D = maxf(n’), E; is the
n'€E;

set of nodes surely expanded by m-A* before finding the j** solution.

It is possible to show that the heuristic h is also admissible for the graph
G’ [4]. Since § = 0.5(C} — D), Cx = D — 24. By construction, the evaluation
function of the new goal node is f(t) = g(t)+h(t) = g(n)+c=g(n)+h(n)+06 =
f(n)+6 < D+6=C;—0<C;. Since m-A* will surely expand all nodes with
f(n') < C7 before finding the 4" solution, it will expand node t and discover
the solution whose cost is bounded by C — 4. On the other hand, algorithm B,
that does not expand node n in the original problem, will be unable to reach
node ¢ and will only discover the solution with cost C7, thus not returning the
true set of m best solutions to the modified problem. Contradiction.



Fig. 3: The graph G’ represents a new problem instance constructed by append-
ing to node n a branch leading to a new goal node ¢.

3.4 m-A* for Consistent Heuristics

If the heuristic function is consistent, whenever a node n is selected for expansion
(for the first time) by A* the algorithm had already found the shortest path to
that node. We can extend this property as follows:

Theorem 3. Given a consistent h, when m-A* selects a node n for expansion
for the ith time, then g(n) = gf(n), namely it has found the i*" best solution
from s to n.

Proof. By induction. For ¢ = 1 the theorem holds [10]. Assume that it also holds
for i = (j — 1). Let us consider the j*" expansion of n. Since we have already
expanded n (j — 1) times and since by the induction hypothesis we have already
found the (j—1) distinct best paths to the node n, there can be two cases: either
the cost of the j* path to n is equal to the j'* best, i.e., g(n) = gf(n), or it is
greater i.e., g(n) = g5 (n), k > i. If we assume the latter, then there exists some
other path 7 from ng to n with cost gr(n) = g;(n) < gr(n) that has not been
traversed yet. Since fr(n) = gr(n) + h(n) and f(n) = g(n) + h(n), it follows
that fr(n) < f(n). Let n’ be the latest node on # on OPEN, i.e., a node already
generated but not yet expanded. It is known, that if the heuristic function is
consistent, the values of f along any given path are non-decreasing and therefore
Vn' onm, fr(n') < fr(n) < f(n) and n’ should have been expanded before node
n leading to contradiction.

We can conclude that when h is consistent any node n will be expanded at
most m times.

Corollary 1. Given m-A* with a consistent h

— The mazimum number of copies of the same node in OPEN or CLOSED
can be bounded by m.

— The set {n|f(n) < C*} will surely be expanded (no need of dominance along
the path).



3.5 The Impact of m on the Expanded Search Space

The relation between the sizes of search space explored by m-A* for different
levels of m is obviously monotonically increasing with m. We can provide the
following characterization for the respective search spaces.

Proposition 3. Given a search graph,

1. Any node expanded by i-A* is expanded by j-A* if i < j and if both use the
same tie-breaking rule.

2. The set S(i, j) of nodes defined by S(i,j) = {n|C; < f(n) < C;} will surely
be expanded by j-A* and surely not expanded by i-A*.

3. If C; = CF, the number of nodes expanded is determined by the tie-breaking
rule.

As a result, the larger the discrepancy between the respective costs C} —
C7 is, the larger would be the potential difference in the search spaces they
explore. This, however, also depends on the granularity with which the values of
a sequence of observed evaluation functions increase, which is related to the arc
costs (or weights) of the search graph. If Cf = C; = C, then the search space
explored by i-A* and j-A* will be different only in the frontier of f(n) = C.

3.6 The Case of h = h* for m-A*

Like A*, m-A* improves its performance if it has access to more accurate heuris-
tics. In particular, when hy is strictly larger (and therefore more accurate) than
ha, every node surely expanded by m-A* with hy before the j** solution is
uncovered will also be expanded by m-A* with h; before the j** solution is
uncovered. The proof idea is identical to the A* case and is omitted. The case
of the exact heuristic deserves a special notice. It is easy to show that,

Theorem 4. If h = h* is the ezact heuristic, then m-A* generates solutions on
j-optimal paths 1 < 5 < m, only.

Proof. Since the heuristic function is exact the f values in OPEN are expanded
in sequence Cf < C5 < ... < Cr... < CF,. All the nodes generated having f = C}
are by definition on optimal paths (since h = h*), all those generated who have
f = C3 must be on paths that can be second best and so on. (Notice that the
best cost may differ only at some indices.)

When h = h* m-A* is clearly linear in the number of nodes having f* < C},
value. However, when the cost function has only a small range of values, there
may be exponential number of solution paths having cost C},. To avoid this
exponential frontier we chose the tie-breaking rule of expanding deeper nodes
first. This will result in a number of nodes expansions that is bounded by mn
when n bounds the solution length.

In summary,

Theorem 5. When m-A* has access to h = h*, then, if it uses a tie breaking
rule in favor of deeper nodes, it will expand at most #N nodes, where #N =
> #N; and #N; is the length of the i-optimal solution path. Clearly #N < mn.



4 Branch and Bound for m-best Solutions

Straightforwardly extending the well-known B& B scheme, algorithm m-Branch-
and-Bound (m-B&B) finds the m best solutions by exploring the search space
in a depth first manner.

The algorithm maintains an ordered list of the m best solutions found so
far. It prunes nodes whose evaluation function (a lower bound on the optimal
solution passing through the node) is greater than U,,, current upper bound on
the m'" best solution (U,,, = co until initial m solutions are found). At time of
completion, m-B& B outputs an ordered list of the m best solutions.

In analyzing the complexity of m-B& B we assume that the underlying search
space is a graph (as opposed to a search tree). The three main sources of com-
plexity, compared with finding a single best solution, are: the expansion of the
search space, the node processing overhead due to m best problem and the
impact of the cost function on pruning the explored search space. We defer the
analysis of the first two factors till Section 5.3, where we discuss the application
of m-B&B to graphical models.

Similar to m-A*, the number of nodes expanded by m-B& B greatly depends
on the values of the evaluation function and costs of the solutions. Since, as we
have already shown, m-A* is superior to any exact search algorithm for m-best
solutions, m-B& B must expand all the nodes that are surely expanded by m-A*,
which, assuming consistent heuristic, is the set of nodes E¥ = {n|f(n) < C! }.

The order in which m-B& B uncovers solutions is problem-specific and has
a big impact on the total number of node expantions. Let {U},,...,UJ } be the
sequence of upper bounds on the m'" best solution, at the time when m-B&B
uncovered j solutions, ordered from the earliest bound obtained to the latest.
These upper-bounds, that influence the node pruning, are decreasing until they
coincide with C},.

Proposition 4. Given a consistent heuristic

1. m-B&B will expand all nodes such as E, = {n|f(n) < C},}.

2. Initially, and until m-B&B encounters the true mt"-best solution, it will
expand also nodes F}, = {n|f(n) > C},}. Subsequently, like m-A* it will only
expand nodes for which f(n) < Cf,.

5 Applying m-A* and m-B& B to Graphical Models.

In this section we apply m-A* and m-B& B to combinatorial optimization tasks
(COP) defined over graphical models. We focus more on the application of m-
B& B, since it is more practical then m-A* due to flexible memory requirements.

5.1 Background on graphical models.

Consider a weighted constraint problem expressed as a graphical model M =
(X,D,F,>"), where F = {f1,..., f.} is a set of discrete functions, called costs,



over real-valued variables X = { Xy, ..., X,,} with discrete domains D = {D1,..., Dy, }.
We aim to minimize the sum of all costs minx Zi fi- Closely related combinato-

rial optimization problem is Most Probable Explanation (MPE), where the task

is to compute maxx [ [, fi;, where the sum is replaced by a product. The set of
function scopes implies a primal graph and, given an ordering of the variables,

an induced graph (where, from last to first, each node’s earlier neighbors are
connected) with a certain induced width w*.

Ezample 2. Figure 4a depicts the primal graph of a problem with six variables.
Figure 4b shows its induced graph along the ordering d = A,B,C,D,E, F,

w* = 2.

AND/OR search space of a graphical model exploits the problem decomposi-
tion captured in the structure of the graph (see [3] for more details). The search
space is defined using a pseudo tree of the graphical model. A pseudo tree of
an undirected graph G = (X, F) is a directed, rooted tree T = (X, E’) , such
that every arc of G not included in E’ is a back-arc in 7, namely it connects a
node in T to an ancestor in 7. The arcs in E' may not all be included in E.

AND/OR Search Trees. Given a graphical model M = (X,D,F, ") and
a pseudo tree T, the AND/OR search tree guided by T consists of alternating
levels of OR and AND nodes. Figure 4d shows the AND/OR search tree for
our running example, guided by the pseudo-tree in Figure 4c.

It was shown that, for a problem with N variables with domain size k and a
pseudo tree T of height h, the size of the corresponding AND/OR, search tree is
O(Nk™M). Alternatively the size can be bounded by O(Nk® °6N) where w* is
the induced width of the problem graph along a depth-first traversal of T [3].

AND/OR Search Graphs. Identical subproblems, identified by their con-
text (the partial instantiation that separates the subproblem from the rest of the
network), can be merged, yielding the context-minimal AND/OR search graph,
at the expense of using additional memory during search. Merging nodes of the
AND/OR tree in Figure 4d yields the context-minimal AND/OR search graph
in Figure 4e. The context-minimal AND/OR search graph has size O(Nk® +1)
(see [3] for details).

An optimization problem can be solved by searching the corresponding weighted
AND/OR search graph, namely an AND/OR search graph, in which each edge
from OR node to AND node has a weight derived from the set of cost func-
tions F' [3]. As a heuristic evaluation function these search algorithms use the
mini-bucket heuristic that is known to be admissible and consistent, yielding
algorithms AOBB (AND/OR Branch and Bound) and AOBF (AND/OR Best-
First), described and extensively studied in [7,9]. The solution to the problem
is a subtree of the weighted AND/OR search graph.

5.2 Algorithm m-AOBF for graphical models.

As noted, AOBF (AND/OR Best First) is version of algorithm A* that searches
the weighted AND/OR context minimal graph in a best-first manner. It can be
guided by any admissible heuristic. Extending AOBF to the m-best task as
suggested by the general m-A* yields an algorithm which we call m-AOBF. All



Fig.4: Example primal graph with six variables (a), its induced graph along
ordering d = A, B,C, D, E, F (b), a corresponding pseudo tree (c), the resulting
AND/OR search tree (d), and the context-minimal AND/OR, search graph (e).

the properties of m-A* extends to AND/OR search graphs. The algorithm may
require duplicating some nodes at most m times (if there are m paths leading
to them).

The complexity of m-best algorithms for graphical models can be analyzed by
first characterizing the underlying search space that is being explored using graph
parameters, as is common in graphical models. Subsequently, we can characterize
the portion of the search space that is explored using the evaluation function, as
we did earlier. So, since m-AOBF' explores the AND/OR context-minimal graph
(denoted CM@G), and since we may duplicate some nodes at most m times we
get:

Theorem 6. The search space size explored by m-AOBF is bounded by O(N -
m - kW*), where w* is the induced-width along the pseudo-tree ordering.

Obviously this bound is loose since it does not consider the pruning power
of the evaluation function.

Theorem 7. Given an evaluation function f(n) that underestimates the least
cost solution tree that passes through the node n in the AND/OR context-minimal
graph, algorithm m-AOBF surely expands the set of nodes {n € CMG|f(n) <
C».}, where Cf, is the cost of the m'™ best solution, and a subset of nodes for
which {n € CMG|f(n) = C},}, depending on the tie-breaking rule.



5.3 Algorithm m-AOBB for Graphical models

Extending AOBB to m-AOBB is straightforward, mimicking the m-B& B while
searching the AND/OR search space. The main difference between m-AOBB
and m-B& B arises from the presence of AND nodes: at each AND node the m
best solutions to the subproblems rooted in its children need to be combined
and the best m out of the combination results need to be chosen. We distin-
guish between m-AOBB searching the AND/OR tree and the context minimal
AND/OR graph. These two versions of m-AOBB differ in the size of underlying
search space and the computational overhead per node.

The size of the AND/OR search tree is bounded by O(Nk"), where h is the
height of the pseudo-tree. The primary overhead is due to the combination of the
solutions to the children’s subproblems of AND nodes which is O(deg - mlogm)
time per AND node. Consequently, if the algorithm that searches the underlying
AND/OR tree (with no caching) the run-time complexity is bounded by O(m -
NE" - deglogm).

If the algorithm searches the context minimal AND/OR graph, (where iden-
tical subproblems are identified based on their context ) m-AOBB need to cache
the m best solutions rooted in some OR nodes, which requires additional mem-
ory, similar to graph-based AOBB [9]. Such caching introduces time overhead of
O(mlog m) per OR node. Since the size of an AND/OR search graph is bounded
by O(Nk™*) nodes and considering the AND node-related overhead, we can con-
clude that

Theorem 8. The time complezity of m-AOBB which searches the underlying
AND/OR search tree is bounded by O(m - Nk" - deglogm). The time complexity
of m-AOBB which searches the context-minimal graph is O(N -deg-mlog mkw*)
and the space complexity is O(N - mlog mkw*), where w* is the induced-width
of the ordering along the pseudo-tree that guides the search and h is its height.

The above analysis considers only the impact of the m-best exploration on
the size of the underlying search space and the overhead computation per node,
but ignore the pruning power caused by the evaluation function that guides the
search. Clearly the complexity analysis can be further refined by taking into
consideration cost function, directly extending the results of Proposition 4 to
m-AOBB.

5.4 Algorithm BE-Greedy-m-BF

Since an exact heuristic for graphical models can be generated by the bucket-
elimination (BE) algorithm [7], we can use the idea suggested in Section 3.6,
yielding algorithm which we call BE-Greedy-m-BF. The algorithm first generates
the exact heuristics along an ordering using BE and subsequently applies m-
AOBPF using these exact heuristics. It turns out that the worst-case complexity
of both algorithms when applied in sequence coincides with the best of the
known m-best algorithms for graphical models. This is because the number of
nodes expanded by m-A* when it uses the exact heuristic is bounded by N - m,
when N is the number of variables.



Theorem 9. Let B = (X, D, F) be a general graphical model. The complexity
of BE-Greedy-m-BF (i.e., bucket-elimination followed by m-AOBF with exact
heuristic) is O(Nk™* + N - m) when N is the number of variables.

6 Earlier work on finding the m-best solutions.

The most influential work on finding the m-best solution was written by Lawler
[8]. In the folowing years a great number of related methods were developed,
which we do not describe here for lack of space. Particular areas of interest
include the problem of finding k shortest paths, extensive references for which
can be found in [5]. An overview of algorithms focused on graphical model is
presented in [6].

7 Empirical demostrations

Runtime (sec) as a function of number of solutions m for pedigree instances

sa000

28000
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pedigreel | 298 415 |59 1 32| 464| 1751 Sa000
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pedigree3s | 581 |5 16 [52] 2700] 8890] 24894 ©/o 28000
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pedigreeb0 | 478 |6]16 |54] 685 2835] 21903 t/o 12000 /
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(a) Run-time of m-AOBB in seconds.

Fig. 5: The run-time of m-AOBB in seconds as a function of number of solutions
m

Due to our interest in extremely memory-intensive problems (e.g. genetic
linkage analysis), we deem Branch and Bound-based methods with their flexible
memory requirements the more promising in practice. In the following prelim-
inary experiments we focused on evaluating how m-AOBB scales with number
of solutions m.

Our implementation of m-AOBB is exploring an AND/OR search tree and
not a graph. By making such design choice not only we achieve better space



complexity, it also allows us to avoid the time overhead due to caching. On
the other hand, the search space we are exploring is inheritently larger (see
Section 5.3).

We evaluated the algorithm on maximum probability explanations (MPE)
problems using 3 sets of instances taken from 2008 UAI evaluation: pedigrees,
grids and mastermind instances. The parameters of the problems and run time
results in seconds are presented in Table 5a.

We evaluated the algorithm for m = [1, 10, 50, 100] solutions. The timeout
was set to 12 hours. The memory limit for pedigree instances is 4 Gb, for grids
and mastermind instances it is 10 Gb. In Figures 5b, 6a and 6b we see the
dependence of the runtime on number of solutions m for a number of chosen
instances from each set.

The theory states that the run-time of m-AOBB should scale with the num-
ber of solutions m as (mlog, m). In practice, we see that it is not always the
case and there exists a large discrepancy between the results. For some instances
(e.g. grid 50-12-5, mm-03-001) the scaling of runtime with m is significantly bet-
ter than what theory suggests, which can be attributed to sucessful pruning of
a large part of the search space. However, for some instances (e.g. pedigree3s,
mm-04-0015) the runtime scales considerably worse. We explain the large scaling
factor by the suboptimality of our current implementation, which might intro-
duce overhead unaccounted for by theoretical analysis.

Runtime (sec) as a function of number of solutions m for grid instances 14000 Runtime (sec) as a function of number of solutions m for mastermind

25000 instances
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~o-grid 50-12-5  egrid 50-145  ~igrid 50-15-5  Hegrid 75-16-5  Hegrid 75-18-5 ~o-mastermind_03_08_03.0011~+ma:

ind_03_08_03-0005
ind_03_08_03-0014

(a) Grids instances. (b) Mastermind instances.

Fig. 6: The run-time of m-AOBB in seconds as a function of number of solutions
m for grid and mastermind instances.

8 Conclusion

The paper shows how Best First search algorithm for finding one optimal so-
lution can be extended for finding the m-best solutions. We provide theoretical
analysis of soundness and completeness and show that m-A* is optimally effi-
cient compared with any other algorithm that searches the same search space
using the same heuristic function.



We then extend our analysis to Depth First Branch and Bound and apply the
algorithms to graphical models optimization tasks, provide worst-case bounds on
the search space explored by the m-best algorithms and characterize the added
pruning power associated with the heuristic evaluation function. Preliminary
empirical evaluation of m-AQOB B shows that the algorithm often scales with the
number of solutions m significantly better than the theory suggests.

We also present BE-Greedy-m-BF, a hybrid of variable-elimination and Best
First Search scheme, that, interestingly, has the best time complexity amongst
m-best algorithms known to us.
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