Bucket and Mini-Bucket Schemes for M Best Solutions
over Graphical Models

Natalia Flerovd, Emma Rollod and Rina Dechtér

1 University of California Irvine
2 Universitat Politecnica de Catalunya

Abstract. The paper focuses on the task of generating the first m begisw
for a combinatorial optimization problem defined over a giegl model (e.g.,
them most probable explanations for a Bayesian network). We ghaitthe m-
best task can be expressed within the unifying frameworleofisngs making
known inference algorithms defined and their correctnedscampleteness for
the m-best task immediately implied. We subsequently desealim-m-opt a
new bucket elimination algorithm for solving the-best task, provide algorithms
for its defining combination and marginalization operatmd analyze its worst-
case performance. An extension of the algorithm to the imigket framework
provides bounds for each of the m-best solutions. Empideahonstrations of
the algorithms with emphasis on their potential for apprations are provided.

1 Introduction

The aim in combinatorial optimization is to find an optimalgimn, minimum or max-
imum, of an objective function. In many applications, hoaevt is desirable to obtain
not just a single optimal solution, but a set of the firsbest solutions for some integer
m. Such a set can be useful, for example, in assessing thdigignsif the optimal
solution to variation of the problem’s parameters, a task @nises, for instance, in bio-
logical sequence alignment. Sometimes a set of diversgramsnts with approximately
the same cost is needed, as in reliable communication netfesign and genetic link-
age analysis (haplotyping). In some areas, such as in gro®nt auction problems,
certain constraints of the problem might be too vague or tooplicated to formalize.
In such cases it may be more practical to first find several goagdions to a relaxed
problem and then pick the one that satisfies all the additimorsstraints.

One of the earliest and most influential work on finding the rstls®lutions was
developed by Lawler [18]. He provided a general scheme tttahes any optimization
algorithm to the m-best task. The idea is to compute the resttdolution successively
by finding a single optimal solution for a slightly differemtformulation of the original
problem that excludes the solutions generated so far. Ppisoach has been extended
and improved over the years and is still one of the primataties for finding the m
best solutions. Other approaches are more direct, tryiagda the repeated computa-
tion inherent to Lawler’s scheme.

Our goal is to develop a direct extension of general optitiomeschemes, such as
dynamic programming or search, to the m-best task. Our fiscos high dimensional

discrete spaces and on objective functions that can beriaetibusing a collection of
low dimensional functions. These formulations normallp@gr in the context of graph-
ical models such as Bayesian networks, Markov networks andtraint networks.

Graphical models [20] are widely used knowledge representachemes that give
rise to probabilistic and deterministic combinatorialiopzation tasks, such as finding
the most likely configuration of a Bayesian network (called®lor MPE) or finding a
solution that violates the least number of constraints @@$P (called max-CSP). In
these models knowledge is represented by a collection af faactions, each defined
on a small subset of variables, whose interaction can beiagpby a graph. The task is
to optimize a global objective function expressed as a coatlin (sum or product) of
the local functions. Various graph-exploiting algorithfossolving these optimization
tasks were developed in the past few decades. Such algsréteroften characterized
as being either ohferencetype (e.g., message-passing schemes, variable elimijatio
or of searchtype (e.g., AND/OR search or recursive-conditioning). Watl our treat-
ment here to the class of inference schemes as represented Bycket Elimination
algorithm (BE) [8].

We will show that Bucket Elimination can be extended to cotaghe m best so-
lutions by representing functions as vector functions andifging of the algorithm’s
underlying combination and marginalization operatorseoter functions. The exten-
sion is accomplished by formalizing the m-best task withimframework of semirings
[22,1, 17, 3]. This unifying formulation ensures the souesiand completeness of any
algorithm applied to any problem that fits into the frameweankl in particular it implies
thatelim-m-optsolves the m-best optimization task.

Since the bucket elimination scheme can be approximatethdyelaxation and
bounding scheme of mini-bucket elimination (MBE) [11], wancextendelim-m-opt
straightforwardly to a mini-bucket schemme-m-optwhich computes a bound on each
of the m best solutions. More significantly, we also show thatn bounds computed
by mbe-m-optan be used to tighten the bound on the first best solutioe &iath are
generated from the same relaxed problem. In particulagntfacilitate a scheme for
tightening any heuristic generation scheme.

After providing some background in Section 2, we formulagi-best task in the
context of semirings in Section 3. Sections 4 and 5 descigmithmselim-m-optand
mbe-m-optespectively. We show the results of the empirical evatudti Section 6 and
compare our schemes with related work in Section 7. Sectmoddes a summary and
discusses future work.

2 Background

We consider problems expressed as graphical models. Thieigahmodel framework
provides a common formalism to model a broad spectrum oflpnaf, and a collec-
tion of general algorithms to efficiently solve them. Exaegpbf graphical models are
Markov and Bayesian networks [20], constraint networksiafidence diagrams. We
next follow definitions as in [16].

Let X = (Xy,...,X,) be an ordered set of variables abd= (D,...,D,) an
ordered set of domains. Domalh is a finite set of potential values fo¥Y,. The as-

signment of variableX; with a € D; is noted X; = a). A tuple is an ordered set of
assignments to different variable¥;, = a;,,..., X;, = a;,). A complete assignment
to all the variables irX is called asolution Let ¢ ands be two tuples having the same
instantiations to the common variables. Their join, noted;, is a new tuple which
contains the assignments of bathnds (this notation is also used for multiplication, so
we assume the meaning will be clear from the context)idfa tuple over a sét C X
andSis a set of variables, thefy is a relational projection ofon S.

2.1 Valuation Structure and Functions

Let A be a set whose elements are callatbations(e.g., the naturals, the reals or the
booleans). The set of valuatioAsadmits two binary operations: : A x A — A called
combinationand® : A x A — A calledaddition Both operators are associative and
commutative. Typical combination operators are sum andywbover numbers, and
logical AND (i.e.,A) over booleans. Typical addition operators are min, maxsamd
over numbers and logical OR (i.&/) over booleans.

The properties of a valuation structure can be described édgnsof an algebraic
structure. In this paper we focus on an algebraic structaitedsemiring

Definition 1 (semiring). Acommutative semiring a triplet (A, ®, ®) such that:

— ® and@® are associative and commutative
— @ distributes overp, thatis,(a ®b) B (a®c) =a® (b)

A commutative semiring defines an ordering among its elesentollows. For any
a,b € A, a > bholds (i.e.a is betterthand), if there exists: € A such thats = b & c.

We denote byDy the set of tuples over a subset of variab¥esalso called the
domainof Y. Functions are defined on subsets of variableX ofalled scopes, and
their range is a set of valuatioAs If f : Dy — A is a function, the scope gf, denoted
var(f), isY. In the following, we will useD; as a shorthand fdD,, ().

Definition 2 (combination operator).Let f : Dy — Aandg : D, — A be two func-
tions. Theircombination notedf) g is a new function with scopeur(f) U var(g),
S.t.

Vt € Dvar(f)Uvar(g)’ (f®g)(t) = f(t) ® g(t)

Definition 3 (marginalization operator). Let f : Dy — A be a function andV C X
be a set of variables. Thraarginalizatiorof f overW, noted|}y f, is a function whose
scope ivar(f) — W, s.t.

vt € Dvar(f)—Wa (‘UW f)(t) = 6925’€DW (t ! t/)

Example 1.Consider three variable¥;, X> and X3 with domainsD; = Dy = D3 =

{1,2,3}. Let f(X1,X2) = X1Xs andg(Xa, X3) = 2X, + X3 be two functions.
If the combination operator is product (i.e<), then(f ® ¢)(X1, X2, X3) = (f x

9)(X1, X2, X3) = X1 X2 x (2X2 + X3). If the marginalization operator imax

then (f qu)(XQ) = Inax{f(Xl = 1,X2),f(X1 = 2,X2),f(X1 = 3,X2)} =

Inax{lXQ, 2X2, 3X2} = 3X2

2.2 Graphical Model

Definition 4 (graphical model). A graphical modeis a tupleM = (X,D,A,F,),
where: X = {X;,...,X,} is a set of variablesD = {D,,...,D,} is the set of
their finite domains of valued is a set of valuationsA, ®,®); F = {f1,..., fr}
is a set of discrete functions, whever(f;) C X and f; : Dy, — A;and Q) is
the combination operator over functions (see DefinitionT2)e graphical modeM
represents the functiofi(X) = @ ;. /-

Definition 5 (reasoning task).A reasoning tasks a tupleP = (X,D,A/F, &,),
where(X,D, A, F, &) is a graphical model and is a marginalization operator (see
Definition 3). The reasoning task is to compiteC(X).

For a reasoning taskt = (X,D,A,F, &), {}) the choice of A, ®, ¢) determines
the combinatiorfk) and marginalizatiorj operators over functions, and thus the nature
of the graphical model and its reasoning task. For exampla, is the set of non-
negative reals an@ is product, the graphical model is a Markov network or a Bayres
network. If | is max, the task is to compute the Most Probable Explanation (MPE),
while if |} is sum, the task is to compute the Probability of the Evidence

The correctness of the algorithmic techniques for comgudigiven reasoning task
relies on the properties of its valuation structure. In fhager we consider reasoning
tasksP = (X, D, A, F, @,) such that their valuation structufd, , &) is a semiring.
Several works [22,1, 17] showed that the correctness ofénfee algorithms over a
reasoning tasl is ensured whenevé? is defined over a semiring.

Example 2.MPE task is defined over semirinrg = (R, x, max), a CSP is defined
over semiringk = ({0,1}, A, V), and a Weighted CSP is defined over semitihg-
(N U {oo}, +,min). The task of computing the Probability of the Evidence isrdi
over semiringk = (R, x, +).

2.3 Bucket and Mini-Bucket Elimination

Bucket Elimination (BE) [8] (see Algorithm 1) is a well-knominference algorithm
that generalizes dynamic programming for many reasonsigtal he input of BE is a
reasoning tasl® = (X,D,A,F, &, |}) and an ordering = (X1, Xo, ..., X,,), dictat-
ing an elimination order for BE, from last to first. Each fuocatfromF is placed in the
bucket of its latest variable in. The algorithm processes the buckets fram to X,
computing for each buckeX;, notedB;, | x, ®?:1 Aj, where);’s are the functions in
the B;, some of which are origingf;’s and some are earlier computed messages. The
result of the computation is a new function, also caleelssagethat is placed in the
bucket of its latest variable in the ordering

Depending on the particular instantiation of the comboratind marginalization
operators BE solves a particular reasoning task. For exa@ralglorithmelim-opt which
solves the optimization task, is obtained by substitutibihe operators)x f =
maxgs_x f and®j = Hj'

The message passing between buckets follows a bucketitnetuse.

Algorithm 1 Bucket elimination

Input: A reasoning tasl® = (X,D,A,F,), {}); An ordering of variables = {X1,..., X»};
Output: A zero-arity function\; :) — A containing the solution of the reasoning task.
1: Initialize: Generate an ordered partition of functions in buclgts. . . , B,,, whereB; con-
tains all the functions whose highest variable in their scgp;.

2: Backward:

3: for i <~ n down to 1do

4: Generate\; = (Q g, f) Ix,

5. Place); in the bucketB; wherej is the largest-index variable imur(\;)
6: end for

7: Return: \;

Definition 6 (bucket tree). Bucket Elimination defineslaucket treewhere a node of
the bucket is associated with its bucket variable and thé&étuaf eachX; is linked to
the destination bucket of its message (called the parerkdilic

The complexity of Bucket Elimination can be bounded usirg ghaph parameter
of induced width

Definition 7 (induced graph, induced width).Theinduced graplof a graphical model
relative to ordering is an undirected graph that has variables as its verticeg @tiges
of the graph are added by: 1) connecting all variables that imrthe scope of the same
function, 2) processing nodes from last to firstoinrecursively connecting preceding
neighbors of each node. Theduced widthw(o) relative to ordering is the maximum
number of preceding neighbors across all variables in trtuged graph. Theaduced
width of the graphical modeb* is the minimum induced width of all orderings. It is
also known as th&reewidthof the graph.

Theorem 1 (BE correctness and complexity)[8] Given a reasoning tas defined
over a semiringA, ®, @), BE is sound and complete. Given an orderinghetime
andspace complexitef BE(P) is exponential in the induced width of the ordering.

Mini-bucket Elimination (MBE) [11] (see Algorithm 2) is arpproximation de-
signed to avoid the space and time complexity of BE. ConsadbucketB; and an
integer bounding parameter MBE creates &-partitonQ = {Q1,...,Q,} of B,
where each sap; € @, calledmini-bucketincludes no more than variables. Then,
each mini-bucket is processed separately, thus computiet f messages\;; }le,
where);; =l x, (®fer f)- In general, greater values oincrease the quality of the
bound.

Theorem 2. [11] Given a reasoning taslP, MBE computes a bound dP. Given an
integer control parametet, the time and space complexity of MBE is exponential in

3 M-best Optimization Task

In this section we formally define the problem of finding a sebest solutions over
an optimization task. We consider optimization tasks defioeer a set of totally or-

Algorithm 2 Mini-Bucket elimination

Input: A reasoning task® = (X,D,A,F,), |); An integer parameter; An ordering of vari-
ableso = {X1,..., X, };
Output: A bound on the solution of the reasoning task.
1: Initialize: Generate an ordered partition of functions in buclgts. . . , B,,, whereB, con-
tains all the functions whose highest variable in their scgpX;.
: Backward:
for ¢ «+ n down to 1do
{Q1,...,Qp} « Partition@;,z)
for k < luptopdo
ik (®fer fix,
Place); . in the bucketB; wherej is the largest-index variable ur(A;)
end for
end for
: Return: Ay

©CNIAR®N

[EEY
o

dered valuations. In other words, we consider reasonifg takiere the marginaliza-
tion operatou) is min or max. Without loss of generality, in the following we assume
maximization tasks (i.el} is max).

Definition 8 (optimization task). Given a graphical modeM, its optimization task
is P = (M,max). The goal is to find a complete assignmerguch thatvt’ <
Dyx,C(t) > C(t'). C(t) is called the optimal solution.

Definition 9 (m-best optimization task).Given a graphical modeM, its m-best op-

timization task is to finadn complete assignments= {¢y,...,t,} such thatC(¢;) >
s, > C(tm) andVvt' ¢ DX\T,Elgjgmtj C(t/) = C(tj) V C(tm) > C(t/). The
solution is the set of valuatioqs”(¢1), ..., C(¢m) }, called m-best solutions.

3.1 M-best Valuation Structure

One of the main goals of this paper is to phrase the m-beshigattion task as a rea-
soning task over a semiring, so that well known algorithnrstoaimmediately applied

to solve this task. Namely, given an optimization téskver a graphical model1, we
need to define a reasoning taBK® that corresponds to the set of m best solutions of
M. We introduce the set of ordered m-best elements of a sisbSeA.

Definition 10 (set of ordered m-best elements)l.et S be a subset of a set of valua-
tionsA. The set of ordered m-best element$'a§ Sorted™{S} = {s1,...,s;}, such
thats; > so > ... > s; wherej = m if |S| > m andj = |S| otherwise, and
Vs' & Sorted™{S},s; > s.

Definition 11 (m-space)LetA be a set of valuations. The m-spacéohotedA™, is
the set of subsets éfthat are sets of ordered m-best elements. Formally,= {S C
A | Sorted™{S} = S}.

The combination and addition operators over the m-spdtenoted™ andsort™
respectively, are defined as follows.

Definition 12 (combination and addition over the m-space)Let A be a set of valu-
ations, andr andmax be its combination and marginalization operators, respety.
LetS,T € A™. Their combination notedS ®™ T, is the setSorted™{a ® b | a €
S,b € T}, while theiraddition notedsort™{S, T}, is the setSorted™{S U T'}.

Proposition 1. Whenm = 1, the valuation structur¢ A™, @™, sort™) is equivalent
to (A, ®, max).

Theorem 3. The valuation structur€A™, @™, sort™) is a semiring.

The theorem is proved in the Appendix A.

It is worthwhile to see the ordering defined by the semiiAg’, ™, sort™), be-
cause it would be important in the extension of Mini-Buckétriihation (Section 5).
Recall that by definition, given two elemerfisT” € A™, S > T if S = Sorted™{T U
W}, wherelV € A™. We callS anm-best bounaf T

Definition 13 (m-best bound).LetT’, S, W be three sets of ordered m-best elements.
S is anm-best bounaf T iff S = Sorted™{T U W}.

Let us illustrate the previous definition by the followingagmple. LetT’ = {10, 6,4},

S ={10,7,4}, andR = {10, 3} be three sets of order&dbest elementsS is not a3-

best bound of” because there is no géf such thatS = Sorted™{T U W}. Note that
one possible sél is S\ T = {7} but, Sorted™{{10,6,4}U{7}} = {10, 7,6}, which

is different toS. However,S is a 3-best bound aR becauses = Sorted™{{10,3} U

{7,4}}.

3.2 Vector Functions

We will refer to functions over the m-spa¢e™ f : Dy — A™ asvector functions
Abusing notation, we extend the™ andsort™ operators to operate over vector func-
tions similar to how operators and® were extended to operate over scalar functions
in Definition 2.

Definition 14 (combination and marginalization over vector functions). Let f :
Dy - A™andg : D, — A™ be two vector functions. Their combination, noted
f&g, is a new function with scopewr(f) Uwvar(g), s.t.

vt € Dvar(f)Uvar(g)a (f@g)(t) = f(t) Q™ g(t)

LetW C X be a set of variables. The marginalizationfobverW, noteds%tm{f}, is
a new function whose scopeuisr(f) — W, s.t.

vt € Dvar(f)—Wa S%tm{f}(t) = Sort?’lEDW {f(t ! t/)}

Example 3.Figure 1 shows the combination and marginalization oventeaior func-
tionsh, andhsy form = 2 and® = x.

hi: X1 X2| ha: X2| h1 @™ ha: X1 Xo 807“25%2{}”}: X1
a al{4,2 a|{3,1} a al{12,6 a[{4,3}
b|{3.1} b {1} b|{3,1} b [{5,2}

a |{5} a [{15,5
b {2} b {2}

T T o
T T o

Fig. 1: Combination and marginalization over vector fuoet form = 2 and® = x.
For each pair of values dfX, X») the result ofh; ®™ hy is an ordered set of size 2
obtained by choosing the 2 larger elements out of the refphio-wise multiplication
of the corresponding elements/of andh,. The result okort’y, {h1} is an ordered set
containing the two larger values of functién for each value ofX;.

3.3 M-best Optimization as a Graphical Model

The m-best extension of an optimization probléhis a new reasoning task™ that
expresses thei-best task oveP.

Definition 15 (m-best extension)Let P = (X,D,A,F,®,{) be an optimization
problem defined over a semirir{g\, ®, max). Its m-best extensiois a new reasoning
taskP™ = (X,D,A™ F™), sort™) over semiring A™, ™, sort™). Each function
f Dy — Ain F is trivially transformed into a new vector functigfi: Dy — A™ de-
fined asf’(¢t) = {f(¢)}. In words, function outcomes ¢fare transformed to singleton
sets inf’. Then, the seE™ contains the nevy’ vector functions.

The following theorem shows that the optimum Bf* corresponds to the set of
m-best valuations oP.

Theorem4. Let P = (X,D,A,F, &), |l) be an optimization problem defined over
semiring(4, ®, max) and let{C(¢1),...,C(t»)} be its m best solutions. L&™ be
the m-best extension &f. Then, the optimization task™ computes the set of m-best
solutions ofP. Formally,

sortxm{®f€me} —(C(t1),...,C(tm)}

The theorem is proved in the Appendix B
It is easy to see how the same extension applies to miniraizaédisks. The only
difference is the set of valuations selected by operaiotr™.

4 Bucket Elimination for the m-best Task

In this section we provide a formal description of the extemof Bucket Elimina-
tion algorithm for m best solutions based on the operatoes the m-space defined in
the previous section. We also provide algorithmic detalsthe operators and show
through an example how the algorithm can be derived fromghigtiples.

Algorithm 3 elim-m-opt algorithm

Input: An optimization taskP = (X,D,A,F,®,max); An ordering of variableso =
{,X'l7 PN Xn},
Output: A zero-arity function\; :) — A™ containing the solution of the:-best optimization
task.
1: Initialize: Transform each functiorfi € F into a singleton vector functioh(t) = {f(¢)};
Generate an ordered partition of vector functiéne bucketsB,, .. ., B,,, whereB, contains
all the functions whose highest variable in their scop&ijs
: Backward:
: for ¢ «+ n down to 1do
Generate\; = sort%, (Q ¢, f)
Generate assignment = argsort’, (@feBi), concatenate with relevant elements of
the previously generated assignment messages.
6: Place); and corresponding assignments in the bucket of the laigdsk variable in
var(\;)
7: end for
8: Return: X\,

4.1 The Algorithm Definition

Consider an optimization tasR = (X, D, A, F, %), max). Algorithm elim-m-opt(see
Algorithm 3) is the extension of BE to sol&™ (i.e., the m-best extension &f). First,
the algorithm transforms scalar functionsknto their equivalent vector functions as
described in Definition 15. Then it processes the buckets fest to first as usual, us-
ing the two new combination and marginalization opera@randsort™, respectively.
Roughly, the elimination of variabl&; from a vector function will produce a new vec-
tor function)\;, such that\; (¢) will contain the m-best extensions bfo the eliminated
variablesX; 1, ..., X,, with respect to the subproblem below the bucket variablieén t
bucket tree. Once all variables have been eliminated, thdtineg zero-arity function
A1 contains the m-best cost extensions to all variables in tbbl@m. In other words,
A1 is the solution of the problem.

The correctness of the algorithm follows from the formwatbf the m-best opti-
mization task as a reasoning task over a semiring.

Theorem 5 (elim-m-opt correctness)Algorithm elim-m-optis sound and complete
for finding the m best solutions over an optimization t&sk

There could be several ways to generate the set of m-beghassits, one of which
is presented next and it uses theysort™ operator.

Definition 16. Operatorargsort’y. f returns a vector functior¥;(¢) such thatvt ¢
Doyar(s)\x,» Where(f(t - x;b), ..., f(t-z;™)), are them-best valuations extending

to X; and wherer;7 denotes thg!" element ofz; ().

In words,z;(t) is the vector of assignments 16, that yields the m-best extensiongto

4.2 lllustrating the Algorithm’s Derivation through an Exa mple

We have in mind the MPE (most probable explanation) task ababilistic networks.
Consider a graphical model with four variable¥, Y, Z, T'} having the following func-
tions (for simplicity we use un-normalizes functions). bet= 3.

x z|fi(z,z) y z|f z t|f3
002 006 001
012 017 012
105 102 104
111 114 113
2 0|4 208

213 212

Finding the m best solutions t8(¢, z,z,y) = f5(t,2) - fi(z,2) - fa(z,y) can be
expressed as findingol, defined by:

t,x,2,y

Sol = SO’I’tm<f3(t,Z)'fl(Z7x)'f?(zay)) 1)

Since operatosort™ is an extension of operatetax, it inherits its distributive proper-
ties over multiplication. Due to this distributivity, we mapply symbolic manipulation
and migrate each of the functions to the left of teet™ operator over variables that
are not in its scope. In our example we rewrite as:

Sol = sot*rtmso*rtm <f3 (t, 2) (sortmfl (z,x)) (807‘tmf2 (2, y))) 2

The output ofsort™ is a set, so in order to make (2) well defined, we replace the
multipication operator by the combination over vector fiimts as in Definition 14.

Sol = SO?’t’thOT’tm(f:; (¢, z)®(so7;tmf1 (=, x))®(sortmf2 (z,9))) (3)

BE computes (3) from right to left, which corresponds to thmimation ordering
o={T,Z, X,Y}. We assume that the original input functions extend to vefciac-

tions, e.g..f; is extended ag,(t) = {fi(t)}. Figure 2 shows the messages passed
between buckets and the bucket tree under

BucketBy containing functionfa(z, y) is processed first. The algorithm applies
operatorsort™ to f2(z,y), generating anessage, which is a vector function denoted
Yy

by \y (z), that is placed ifB 7. Note that this message associates eagtth the vector
of m-best valuations of>(z, y). Namely,

sort™ fo(z,y) = Ay (2),- - N (2), AP () = Av (2) 4)
where forz each), () is the;*" best value offz(z, y). Similar computation is carried
in By yielding Ax (z) which is also placed iB .

ECINE;
0/[{5.4, 2 , 2,
1//{3,2,13/{ 2,0, 1

Bucket v : J2(%:9)

Bucket X : Ni(z,2)

Bucket 7 : f3(t,2) Ax(2) Ay (2)

Bucket T: - Az(t) filz) f2(2,9)
(a) Messages passed between buckets (b) Bucket-tree

Fig. 2: Example of applyinglim-m-opt

When processinB 2, we compute (see Eg. 3):

32 (1) = sort? [Tt) Qx () Qv (2)]

The result is a new vector function that has elements for each tuplg,) as shown
below.

t|2]|f3(t, 2) @Ax (2) @Ay (2)
0[0[[140, 32, 30, 16, 24, 12, 10, 84
0(1/|{84, 56, 48, 32, 28, 24, 16, 16} 8
1/0||{80, 64, 60, 48, 32, 24, 20, 16} 8
1|1||{63, 42, 36, 24, 21, 18, 12, 12} 6

Applying sort”" to the resulting combination generates the m-best elenoenisf
thosem? yielding message #(t) along with its variable assignments:

t| Az(t) [(,7.2)
0[{84,56,48|1(2, 0, 1
1‘{80,64,6:} {(1,2

:1),(0,0,1), (2,1, 1)}
,0),(2,2,0),(2,0,1)}

In Sect. 4.3 we show that it is possible to apply a more effigieacedure that would

calculate at mostm elements per tuplg, z) instead.
Finally, processing the last bucket yields the vector of ratl®lution costs for

the entire problem and the corresponding assignméifs= \; = sotrtmE(t) (see
Fig. 2a).

Mz () @77t
{84,80,64| ,

4.3 Processing a Bucket and the Complexity aflim-m-opt

We will next show that the messages computed in a bucket cahtaned more ef-
ficiently than through a brute-force application @ followed by sort™. Consider

Fig. 3: The explored search space for= 0 andm = 3. The resulting message is
Az(1) = {80, 64,63}.

processin@z (see Fig. 2a). A brute-force computation of
Xz(t) = sort™ (f3(z,) Ay (2) QAx (2))

for eacht combinesfs(z,t), Ay (z) and \x (z) for Vz € Dy first. This results in a
vector function with scop€T’, Z} havingm? elements that we catlandidate elements
and denote bye (¢, z). The second step is to applyrt™ E(t, z) yielding the desired

m best elementa 4 (). o
However, since\y (z) and\x (z) can be kept sorted, we can generate only a small

subset of these? candidates as follows. We denoteelif/j> (t) the candidate element
obtained by the product of the scalar function vaiyét, z) with the i** element of
Xy (z) andj*" element ofXx (z), having costed™” (£) = fa(t, z) - i (2) - Ny (2).
We would like to generate the candidatés’” in decreasing order of their costs while
taking their respective indicésand; into account.

Thechild elementsf e£"7 (¢), children(e!"?’ (t)) are obtained by replacing in the
product either an element, () with ALH (2), or X (2) with M (2), but not both.

This leads to a forest-like search graph whose nodes areatididate elements,
where each search subspace corresponds to a differenbfalukenoted by z— . and
rooted ine<Zl":1>(t). Clearly, the cost along any path from a node to its desceadsn

z
non-increasing. It is easy to see that the m best elements can then be generated
using a greedy best-first search across the forest searchGpa, U Gz—;. Itis easy
to show that we do not need to keep more thamodes on the OPEN list (the fringe
of the search) at the same time. The general algorithm igibesidn Algorithm 4. The
trace of the search for the elements of cost mesaage= 1) for our running example

is shown in Figure 3.

Proposition 2 (complexity of bucket processing)Given a bucket of a variabl&

over scopés havingj functions{\, ..., \; } of dimensionn, wherem is the number of
best solutions sought arkdbounds the domain size, the complexity of bucket processing
is O(k!SI - m - jlogm), where|S| is the scope size &f.

Proof. To generate each of the solutions, the bucket processing routine removes the
current best element from OPEN (in constant time), gengiitdg children and puts
them on OPEN, while keeping the list sorted, which tal¥¢®g(m - j)) per node, since
the maximum length of OPEN 8(m - j). This yields time complexity o®((m - j) -

Algorithm 4 Bucket processing

Input: B x of variable X containing a set of orderedm-vector functions
{A(S1,X), -, Aa(Sq, X)}
Output: m-vector function\x (S), whereS = U%_, S, — X.
1: forall ¢t € Ds do
forall x € Dx do

2

3

4 end for

5: while j < m, by +1do

6: n < first elementeﬁ?z"li' a) (t) in OPEN. Remove, from OPEN;

7 M (s) < n; {thej*" element is selectéd

8 C « children(n) ={e{{ bt () |p = 1..dY;

9 Insert eaclt € C into OPEN maintaining order based on its computed valueclChe
for duplicates; Retain the: best nodes in OPEN, discard the rest.

10: end while

11: end for

log(m-j)) for all m solutions. The process needs to be repeated for each 6f thel)
tuples, leading to overall complexity(k!S! - m - jlog(m - j)). o

Theorem 6 (complexity ofelim-m-opt). Given a graphical modelX, D, F,) hav-
ing n variables, whose domain size is bounded:bgn orderingo with induced-width
w* and an operatot}= maz, the time complexity oélim-m-optis O(nk® mlogm)
and its space complexity @(mnk®").

Proof. Let deg; be the degree of the node corresponding to the variahlén the
bucket-tree. Each buckBt containsdeg; functions and at most* different variables
with largest domain sizé. We can express the time complexity of computing a mes-
sage between two buckets @$k™ m - deg; log m) (Proposition 2), yielding the total
time complexity ofelim-m-optof O(3"7"_| k" m - deg; log m). Assumingdeg; < deg
and since>_"_, deg; < 2n, we get the total time complexity @ (nmk™" logm).

The space complexity is dominated by the size of the mesdafe®en buckets,
each containingn costs-to-go for each aP(k*") tuples. Having at most such mes-
sages yields the total space complexityXinnk®"). a

5 Mini-Bucket Elimination for m-best Task

We next extend thelim-m-optto the mini-bucket scheme. We prove that the new algo-
rithm computes an m-best bound on the set of m-best solutithe original problem,
and describe how the m-best bound can be used to tighten timellom the best solution
of an optimization task.

5.1 The Algorithm Definition

Algorithm mbe-m-opt(Algorithm 5) is a straightforward extension of MBE to solve
the m-best reasoning task, where the combination and nadization operators are the

Algorithm 5 mbe-m-opt algorithm

Input: An optimization taskP = (X,D,A,F,®,max); An ordering of variableso =
{X1,...,X,}; parametee.

Output: bounds on each of the m-best solution costs and the corrésgpassignments for the
expanded set of variables (i.e., node duplication).

1: Initialize: Generate an ordered partition of functioff§t) = {f(¢)} into buckets
Bi,...,Bx, whereB; contains all the functions whose highest variable in theaps is
X, alongo.

2: Backward:

3: for ¢ + n down to 1 (Processing bucké&;) do

4: Partition functions in buckeB; into {Q;,, ..., Qi, }, where eacl);, has no more than
variables. L
5: Generate cost messages = sort¥, (@ ;cq, f)

J
6: Generate assignment using duplicate variables for eadhi-bucket: z;; =
argsortg'gi(@fm f), concatenate with relevant elements of the previously rgeee
'3

assignment messages
7. Place each;; andz;, in the largest index variable imur(Q;;)
. end for
9: Return: The set of all buckets, and the vector of m-best costs boumtfeifirst bucket.

[e¢]

ones defined over vector functions. The input of the algorith an optimization task
P, and its output is a collection of bounds (i.e., an m-bestiddsee Definition 13)) on
the m best solutions af.

Theorem 7 (mbe-m-opt bound). Given a maximization task, mbe-m-opttomputes
an m-best upper bound on the m-best optimization 8k

The theorem is proved in the Appendix C

Theorem 8 (mbe-m-opt complexity). Given a maximization task and an integer
control parameter, the time and space complexityrmbe-m-opis O(mnk? log(m))
andO(mnk?), respectively, wherg is the maximum domain size ands the number
of variables.

The theorem is proved in the Appendix D

5.2 Using the m-best Bound to Tighten the First-best Bound

Here is a simple, but quite fundamental observation: whemnepper or lower bounds
are generated by solving a relaxed version of a problemgaged problem’s solution
set contains all the solutions to the original problem. Wet diiscuss the ramification
of this observation.

Proposition 3. Let P be an optimization problem, and IEt= {P1>p2>,.0,> D}
be the m best solutions &f generated bynbe-m-optLet p°P* be the optimal value of
P, and letj, be the first index such that = p°?*, or else we assigiy = m + 1. Then,
if jo > m, P, iS an upper bound op°P?, which is as tight or tighter than all other
P1, ---Pm—1- In particular p,, is tighter than the boung, .

Proof. Let C = {p1 > p2 >,...,> pn, } be the ordered set of valuations of all tuples
over the relaxed problem (with duplicate variables). By tla¢ure of any relaxation,
C must also contain all the probability values associatetl wdtutions of the original
problemP denoted byC' = {p; > --- > pn, }. Therefore, ifjy is the first index such
thatp;, coincides withp°??, then clearly for ali < jo, p°?* < p; with p,_; being the
tightest upper bound. Also, whep > m we havep,, > p°P. a

In other words, ifj < m, we already have the optimal value, otherwise we can
usep,, as our better upper bound. Such tighter bounds would be ludefing search
algorithm such as A*. It is essential therefore to decidecigffitly whether a bound
coincides with the exact optimal cost. Luckily, the natuféh@ MBE relaxation sup-
plies us with an efficient decision scheme, since, as meadi@tove, it is known that
an assignment in which duplicates of variables take on idaintalues yields an exact
solution.

Proposition 4. Given a set of bounds produced impe-m-optp; > P2 >, ... > pm,
deciding ifp; = p°?* can be done in polynomial time, more specificallginm) steps.

Proof. mbe-m-opprovides both the bounds on the m-best costs and, for eaatdbau
corresponding tuple maintaining assignments to duplitesgiables. The first assign-
ment from these m-best bounds (going from largest to sntpkbesresponding to a
tuple whose duplicate variables are assigned identicakgds optimal. And if no such
tuple is observed, the optimal value is smaller tlign Since the above tests require
justO(nm) steps applied to m-best assignments already obtainedytimpel the claim
follows. O

6 Empirical Demonstrations

We evaluated the performancerabe-m-opbn four sets of instances taken from UAI
2008 competition [7] and compared our algorithm with the BMstheme [23].

6.1 Weighted Constraint Satisfaction Problems

The first part of our empirical evaluation assumed solvirg\Weighted CSP task, i.e,
summation-minimization problem. We rambe-m-opbn 20 WCSP instances using z-
bound equal to 10 and number of solutionsequal to 10. Table 1 shows for each
instance the time in seconds it toakbe-m-opto solve the 10-best problem and the
values of the lower bounds on each of the first ten best solsitiBor each problem
instance we also show the number of variabteshe largest domain size and the
induced widthw*. Note that 9 of the instances have induced width less thaz-the
bound=10 and thus are solved exactly. We see that as themuaeer of solution goes
up, the value of the corresponding lower bound increasdsngeloser to the exact
best solution. This demonstrates that there is a poteritialproving the bound on the
optimal assignment using the m-best bounds as discussegib 2. Figure 4 illustrates
this observation in graphical form, showing the dependerfitiye lower bounds on the
solution index number for selected instances.

Instance) n k] w* time Solution index number |
(sec) 1 2 3 4 5 6 7 8 9 10 _J;
1502.uai 209/4(6 [0.11 [228.955109 228.9552 (228.955292228.955414229.053192229.053284229.05340$229.053497229.141698229.14178!
29.uai 82|4| 14 | 55.17(147.55677$147.557236147.924484147.924942148.18896$148.189425148.556671148.557129148.924398 148.92485
404.uai 100{4| 19 | 3.96 |147.056229148.001511148.056122149.001404149.05601% 149.05603/150.001297150.001312150.055923151.00120!
408.uai 200|4| 35 [80.27(436.551117 437.17923|437.549042437.550018437.55099%$438.17715$438.17813]438.179108438.547948438.54989
42.uai 190|4| 26 | 61.16(219.98053/219.980713220.0149: 0.01510$220.048157220.04832% 220.08255| 220.082733220.912811220.9128;
503.uai 143|4| 9 | 3.58 |225.038488225.03936$225.03939$225.040285226.037476226.03791$226.037933226.038361226.03837$226.03839
GEOM30a3.uaif 30 |3 6 | 0.03 [0.008100| 1.008000| 2.007898| 2.007899| 2.007899(3.007798| 3.007798| 3.007798(3.007799(4.007700
GEOM30a4.uaif 30 |4 6 | 0.19 | 0.008100| 1.008000| 2.007899| 2.007899| 3.007799(3.007799| 4.007701| 4.007701(4.007702(5.007601
GEOM30a5.uaif 30 |5 6 | 0.84 | 0.008100| 1.008000| 2.007898| 2.007899(2.007899(3.007798| 3.007798| 3.007798(3.007799(4.007700
GEOM4Q2.uai| 40 (2| 5 0 0.007800| 2.007599| 2.007599| 2.007600(3.007499(3.007499| 3.007500| 4.007398 | 4.007399(4.007400
GEOM4Q3.uai| 40(3| 5 | 0.01 | 0.007800| 2.007599| 2.007599| 2.007600| 3.007500| 4.007399| 4.007399| 4.0074 | 4.007400| 4.007401
GEOM4Q4.uai| 40{4| 5 | 0.11 | 0.007800| 2.007598| 2.007599| 2.007599| 2.007599| 2.007599| 3.007499| 3.007499| 3.007500| 4.007400
GEOM4Q5.uai| 40(5| 5 | 0.16 | 0.007800| 2.007599| 2.007600| 2.007600| 3.007500| 4.007399| 4.007400| 4.007400| 4.007401| 4.007401
le4505a.2.uai (450|2(293 6.06 [0.571400| 1.571300| 1.571300(1.571300(1.571300(1.571300| 1.571300(2.571198(2.571199(20.569397
myciel5g3.uai [47 |3| 19 | 6.39 [0.023600| 1.023500| 1.023500| 2.023399(3.023299(4.023202| 10.022601| 11.022501f 11.022502 11.022503
myciel5g4.uai [47 |4 19 |129.54 0.023600| 1.023500| 1.023500| 2.023397(2.023398(2.023398| 2.023398| 2.023399(3.023297(3.023298
queenS55_3.uai [25|3(18 | 5.53 | 0.01600 | 1.015900| 1.015901| 2.015797(2.015797(2.015798| 3.015694| 3.015696 3.015697(3.015697
queenS55.4.uai [25 4| 18 |122.24 0.01600 | 1.015900| 1.015900| 1.015901| 1.015901 2.015796| 2.015797| 2.015797| 2.015797(2.015790

Table 1: The lower bounds on the 10 best solutions foundhbg-m-optan with z-
bound=10 andn = 10. We also report the runtime in seconds, number of variables
induced widthw* and largest domain size

6.2 Most Probable Explanation Problems

For the second part of the evaluation tide-m-optwvas solving the MPE problem,
i.e. max-product task on three sets of instances: pediggeiels and mastermind. We
search form € [1, 5, 10, 20, 50, 100, 200] solutions with z-bound equal to 10.
Pedigrees.The set of pedigrees contains 15 instances with severalrednariables
and induced width from 15 to 30. Table 2 contains the runtimegconds for each of
the number of solutions: along with the parameters of the problems. Figure 5 presents
the runtime in seconds against the number of solutienf®r chosen pedigrees. Fig-
ure 6 demonstrates the difference between the way the rentionld scale according
to the theoretical worst case peformance analysis and tip&iead runtimes obtained
for various values ofn. For three chosen instances we plot the experimental restim
in seconds against the number of solutiensand the theoretical curve obtained by
multiplying the value of empirical runtime fon = 1 by the factor ofm logm for m
equal to 5, 10, 50, 100 and 200. We see that the empirical daygemuch lower than
theoretical for all instances.

Figure 7 illustrates the potential usefulness of the upmemds on m best solu-
tions as an approximation of the best solution. We plot iratdgmic scale the values
of upper bounds on the 100 best solutions foundrie-m-opfor the z-bounds rang-
ing from 10 to 15. When using MBE as an approximation schetreecommon rule
of thumb is to run the algorithm with the highest z-bound gales In general, higher
z-bound indeed corresponds to better accuracy, howeverasing the parameter by a
small amount (one or two) does not provably produce bet®rlt® as we can see in
our example, whermbe-m-optvith z-bound=10 achieves better accuracy then the ones
with z-bound=11 and z-bound=12. Such behaviour can be iequldy the differences
in partitioning of the buckets into mini-buckets due to theeging of the control pa-
rameterz, which greatly influences the accuracy of MBE results. Orother hand, the
upper bound on each next solution is always at least as gotha: ggevious one, thus
increase inm never leads to a worse bound and possibly will produce armte

Cost of the jt" solution as a function of solution index j

I = N
~ J [N)

Solution cost

~

)

1 2 3 4 5 6 7 8 9 10
Solution index number

&

=#=1e450_5a_2.uai (n=450, k=2, w*=293)<B=myciel5g_3.uai (n=47, k=3, w*=19)
myciel5g_4.uai (n=47, k=4, w*=19) =*=queen5_5_3.uai (n=25, k=3, w*=18)

=¥=queen5_5_4.uai (n=25, k=4, w*=18)

Fig.4: The change in the cost of th¢" solution as; increases for chosen WCSP
instances. Results are obtainedrblge-m-opwith z-bound=10.

However, we acknowledge that the powendfe-m-optvith largerm for improving
the upper bound on th&® best solution is quite weak compared with using higher
z-bound. Although theory suggests that the time and memamyptexity of mbe-m-
opt is exponential in the parameter while only depending as a factor af logm
on the number of solutions, our experiments show that inraebtain a substantial
improvement of the bound it might be necessary to use higregabfm. For example,
for a problem with binary variablasbe-m-optvith m = 1 and a certain z-boundis
equivalent in terms of complexity tmbe-m-optvith m = 3 and z-boundz — 1). We
observed that the costs of the first and third solutions aite glose for the instances we
considered. In order to characterize when the usaloé-m-optvith higherm would
add power over increasing the z-bound the study of additiclagases of instances is
required.

Grids. The set of grids contains 30 instances with 100 to 2500 bimariables and
tree-width from 12 to 50. The parameters of each instancéeaseen in Table 3 that
contains the runtimes in seconds for each value of numbexofisnsm. Theory sug-
gests that the runtimes fat = 1 andm = 100 should differ by at least two orders of
magnitude, however, we can see that in practibe-m-opscales much better. Figure 8
shows graphically the dependency of the runtime in secondsenumber of solutions
m for 10 selected instances.

Mastermind. The mastermind set contains 15 instances with several @molusinary
variables and tree-width ranging from 19 to 37. The instaparameters can be seenin
Table 4, that shows how the run time changes with various reusf best solutions:.
We refrain from reporting and discussing the values of theenfpounds found, since
mastermind instances in question typically have a largefssblutions with the same
costs, making the values of the bounds not particular in&bira.

Pedigrees: run-time as a function of number
of solutions m

:

o
['4
Q!
(4]
[
L

1 5 10 20 50 100 200
number of solutions

=4-pedigreel (n=334, k=4, w*=15) <B=pedigreel3 (n=1077, k=3, w*=30)

=#=pedigree20 (n=437, k=5, w*¥=20) =*pedigree23 (n=402, k=5, w*=20)

=¥pedigree37 (n=1032, k=5, w*=20)-®=pedigree38 (n=724, k=5, w*=16)
pedigree39 (n=1272, k=5, w*=20)=pedigree41 (n=1062, k=2, w*=28)

Fig.5: The run time (sec) for pedigree instances as a fumaticmmumber of solutions
m. mbe-m-optan with the z-bound=10.

3000 -
The empirical and theoretical scaling of runtime (sec)
2500 with number of solutions m for pedigrees
2000
g
o 1500
£
£
1000
500
0 i) [.
1 5 10 20 50 100 200
number of solutions m
=#=pedigree37 (n=1032, k=5, w*=20) =E=pedigree37 theoretical runtime curve
=#=pedigreed4l (n=1062, k=2, w*=28) =*=pedigree41 theoretical runtime curve
=*¥=pedigreel9 (n=793, k=5, w*=20) “@-pedigreel9 theoretical runtime curve

Fig. 6: The empirical and theoretical runtime scaling withmber of solutionsn for
chosen pedigree instances. The theoretical curve is @otdip multiplying the exper-
imental runtime in seconds obtained for = 1 by the factor ofm log m for values
m = 5,10, 20,50, 100, 200.

The dependency of the value of upper bound on the solution
index number of various z-bounds: pedigree30
-132,2 | —
H
= \—

-132,7
o
g
2
F-1332

-133,7

-134,2 index number

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97
=—2z-bound=10 ==z-bound=11 ==z-bound=12 ==z-bound=13 ==z-bound=14 ==z-bound=15

Fig. 7: The upper bounds on the 100 best solutions (in logey¢atind bymbe-m-opt
ran with z-bounds [10, 11, 12, 13, 14, 15] for pedigree30 instance. The parameters of
the problemn=1289,k=5, w*=20.

80 7 . . .
Grids: run-time as a function of number of
70 1 .
solutions m
60 1
© 50 1
b
o 40 1
£
30 1
20 1
10 A — o
0+ —1* e =
1 5 10 20 50 100 200
number of solutions
~-90-22-5 (n=484, w*=30) =*=90-24-5 (=576, w*=33) =<90-25-5 (n=625, w*=34)
2690-26-5 (N=676, w*=36) -@=90-30-5 (n=900, w*=42) ——90-34-5 (n=1156, w*=48)
90-38-5 (n=1444, w*=55) 90-42-5 (n=1764, w*=60) 90-46-5 (n=2116, w*=68)

Fig. 8: Selected binary grid instancasbe-m-optun time (sec) as a function of number
of solutionsm. The z-bound=10.

R Runtime (sec)
Instances N |K|w” g s =T m=20/m=50m=100m=200
pedigreeq] 334]4] 15]0.22 0.57] 1.01] 1.46| 3.35] 6.87 | 25.46
pedigree11077/3| 30|0.64 1.06| 1.32| 1.65| 2.77| 5.06 | 23.80
pedigree19793|3| 21|1.84 4.67| 7.65(10.1724.12 44.17|194.79
pedigree20437(5| 20|0.54) 1.22| 1.83| 2.34 5.00| 9.43 | 50.36
pedigree2402|5| 20|0.92 2.00| 2.89| 3.58| 7.51| 14.63| 87.22
pedigree3(1289 5| 20|0.38 0.66| 1.00| 1.26 | 2.48| 4.58 | 19.53
pedigree3]11835| 28|0.83 1.82| 2.68| 3.60| 7.65| 13.16| 57.35
pedigree33798|4| 240.38 0.76| 1.11| 1.23| 2.60| 4.72 | 27.81
pedigree3f10325| 20|1.64 3.27| 4.56| 6.25 |14.15 26.43|158.74
pedigree38724|5| 16 |4.52/11.7719.63 28.8773.21] 127.69 552.3(
pedigree3$12725| 200.33 0.63| 0.89| 1.25| 2.42| 4.64 | 18.31
pedigree4]1062 5| 28 |1.45 3.33| 4.43| 5.56 |11.67 20.59(120.79
pedigree51871(5| 39|0.76| 1.24| 1.65| 2.16| 3.98| 6.97 | 33.95
pedigree7] 867|4| 32[0.66) 1.17| 1.61| 2.15| 4.45| 8.01 | 39.26
pedigreed 935|7| 27 |0.85 1.48| 2.12| 2.77| 5.70| 9.49 | 50.58

Table 2: Runtime (sec) ahbe-m-opbn pedigree instances searching for the following
number of solutionsm =€ [1, 5, 10, 20, 50, 100, 200] with the z-bound=10. We report
the number of variables, largest domain sizk and induced widthv*.

* Runtime (sec)

m=1] m=5[m=10[m=20] m=50] m=100][m=200]
50-15-5| 144| 15 (0.07| 0.15] 0.22| 0.30| 0.68 | 1.27 | 5.68
50-16-5| 256 | 21 (0.07| 0.17| 0.25| 0.33| 0.68 | 1.34 | 6.30
50-17-5| 289| 22 (0.11| 0.24| 0.33| 0.45| 1.00(1.87 | 8.70
50-18-5| 324| 24 (0.14/ 0.29| 0.35]| 0.52| 1.05(2.04 | 9.13
50-19-5(361 | 25 |0.13 0.29| 0.41(0.54| 1.15| 2.24 | 9.87
50-20-5(400 (27 |0.18[0.33| 0.44(0.59| 1.20| 2.28 | 10.65
75-16-5| 256 | 21 [0.08| 0.17| 0.21| 0.27 | 0.56| 1.09 | 5.92
75-17-5| 289| 22 (0.10| 0.21| 0.27| 0.36| 0.75(1.46 | 7.83
75-18-5| 324| 24 (0.12| 0.23| 0.30| 0.40| 0.79(1.58 | 8.34
75-19-5| 361 | 25 [(0.14| 0.26| 0.34| 0.47(0.94| 1.86 | 9.22
75-20-5| 400| 27 (0.18/ 0.30| 0.38| 0.52| 0.97 1.80 | 9.78
75-21-5| 441| 28 (0.20| 0.36| 0.44| 0.60 [1.07 | 2.03 | 10.91
75-22-5| 484 | 30 (0.25| 0.40| 0.53| 0.68 | 1.28 | 2.49 | 12.40
75-23-5| 529| 31 [(0.29| 0.47| 0.56| 0.71(1.36| 2.44 | 13.11
75-24-5| 576| 32 [0.34| 0.51| 0.65| 0.81 | 1.49| 2.87 | 14.58
75-25-5| 625| 34 [0.41] 0.62| 0.74| 0.93(1.71| 3.18 | 16.08
75-26-5| 676 | 36 [0.49| 0.73| 0.90| 1.17 | 2.06 | 3.86 | 19.06
90-20-5(400 27 |0.17 0.27| 0.35(0.44| 0.81| 1.57 | 9.26
90-21-5(441 28 |0.02 0.35| 0.41(0.52| 0.97| 1.91 | 10.72
90-22-5(484 30 |0.25[0.41| 0.47(0.61| 1.10| 2.08 | 11.85
90-23-5(529 31 |0.29(0.46| 0.55(0.66| 1.17| 2.27 | 12.63
90-24-5(576 | 33 |0.34| 0.49| 0.60 | 0.74| 1.36| 2.61 | 13.98
90-25-5(625 34 |0.42(0.58| 0.70(0.83| 1.50| 2.80 | 15.26
90-26-5(676 [36 |0.49(0.71| 0.85(1.01| 1.87| 3.42 | 18.36
90-30-5[900 (42 |0.93(1.25| 1.40(1.59| 2.60| 4.62 | 24.26
90-34-5(1156(48 |1.69(2.07| 2.29(2.60| 4.15| 6.77 | 32.93
90-38-5(1444f 55 |2.86(3.26| 3.57 3.98| 5.72| 9.27 | 41.33
90-42-5(1764f 60 |4.57(5.10| 549 5.88| 8.32| 12.31| 50.70
90-46-5(2116 68 |6.81| 7.42| 7.97 8.33|11.09| 16.06 | 64.88
90-50-5(2500 74 |11.3[12.07/12.51| 13.2|16.25| 22.09| 78.70

Instance$ n |w

Table 3: Binary grid instances: runtime (sec)nlbe-m-opfor the number of required
solutionsm € [1, 5, 10, 20, 50, 100, 200] with the z-bound=10. We report the number
of variables: and induced widtho*.

6.3 Comparison with BMMF.

BMMF [23] is a Belief Propagation based algorithm which isexwhen ran on junc-
tion trees and approximate if the problem graph has loopsctvepared the perfor-
mance ofmbe-m-opaind BMMF on randomly generated 10 by 10 binary grids. The al-
gorithms differ in the nature of the outputs: BMMF provid@peoximate solutions with

R Runtime (sec

m=1|m=5|m=10 m=20/m=50m=100 m=20(
19[0.44]0.57] 0.64] 0.72| 1.03] 2.68 | 13.11
18(0.25(0.33| 0.35(0.40| 0.67| 1.81 | 8.90
20(0.68|0.84| 0.92| 0.98| 1.51| 3.76 | 17.77
30(1.98/2.25 2.28| 2.49| 3.42| 7.11 | 32.12
30(1.92|2.20| 2.35| 2.50| 3.44| 7.16 | 32.08
29|2.53/2.82 2.97| 3.09| 4.17| 8.25 | 34.89
29(3.55|3.85| 4.00| 4.16| 5.40| 9.90 | 38.48
.33|6.73| 7.02| 7.24| 9.10| 15.83| 59.03
37|6.33/6.85 7.04| 7.29| 9.08| 15.6 | 58.77
37|3.44|3.72 3.81| 3.97| 5.18| 9.59 | 38.62
37|6.23/6.57| 6.90| 7.10| 8.80| 14.87| 56.43
24(1.12|1.30] 1.41| 1.49| 2.16| 4.51 | 20.33
23(1.12|1.33 1.43| 1.51| 2.19| 4.60 | 20.73
27)1.22|1.43 1.47| 1.57| 2.22| 4.60 | 20.39
27]0.21/0.23| 0.25| 0.26| 0.37| 0.82 | 3.84

Instances n

mastermindd3.08_.03-000§ 1220
mastermindd3.08.03-00071220)
mastermindd3.08.03-00141220)
mastermind03.08.04-0004 2288
mastermind03.08.04-00052288
mastermind03.08.04-00102288
mastermindd3.08.04-00112288
mastermindd3.08.05-0001 3692
mastermind03.08_.05-00053692
mastermind03.08_.05-0009 3692
mastermind03.08.05-0010 3692
mastermindd4.08.03-00001418
mastermindd4.08.03-00131418
mastermind05.08.03-0004 1616
mastermind05.08_.03-0006§1616|

NMRNNNNNRNNNNNNNNN X
w
~
o
w
W

Table 4: The runtime (sec) ofibe-m-opfor the mastermind instances. Number of re-
quired solutionsn., € [1, 5, 10, 20, 50, 100, 200], z-bound=10. We report the number of
variablesn, induced widthw*, domain sizek.

no guarantees whilmbe-m-opgenerates bounds on all the m-best solutions. Moreover,
the runtimes of the algorithms are not comparable sincelgarithm is implemented in
C and BMMF in Matlab, which is inherently slower. For mosttarsces thambe-m-opt
can solve exactly in under a second, BMMF takes more than bitesn

Still, some information can be learned from viewing the twgnathms side by side
as is demonstrated by typical results in Figure 10. For twaseh instances we plot the
values of the 10-best bounds outputted by both algorithmegarithmic scale as a
function of the solution index. We also show the exact sohgifound by the algorithm
elim-m-opt We can see thahbe-m-optvith the z-bound equal to 10 can produce upper
bounds that are considerably closer to the exact solutlmrsthe results outputted by
BMMF. Admittedly, these experiments are quite preliminang not conclusive.

7 Related Work: the m-best Algorithms

The previous works on finding the m best solutions descritbeeéxact or approximate
schemes. The exact algorithms can be characterized asnefebased or search based,
as we elaborate next.

Earlier exact inference schemesAs mentioned above, one of the most influential
works among the algorithms solving the m-best combindtoptimization problems is
the widely applicable iterative scheme developed by Lgd&jr Given a problem with

n variables, the main idea of Lawler’s approach is to find thet belution first and then
to formulaten new problems that exclude the best solution found, but tfrechll others.
Each one of the new problems is solved optimally yieldingandidate solutions, the
best among which becomes the overall second best soluti@pocedure is repeated
until m best solutions are found. The complexity of the algorith@{smT'(n)), where
T'(n) is the complexity of finding a single best solution.

45
Mastermind instances: run-time (sec) as a function of
40 o
number of solutions m
35
30
"
525
Q
£ 20 -
B
15
10
5 |
o == <~ e
1 5 10 20

number of solutions m

=#=mastermind_03_08_03-0006 (n=1220, w*=19)=M=mastermind_03_08_03-0007 (n=1220, w*=18)

=#=mastermind_03_08_03-0014 (n=1220, w*=20)=>*mastermind_03_08_04-0004 (n=2288, w*=30)

=¥e=mastermind_03_08_04-0005 (n=2288, w*=30)=®=mastermind_03_08_04-0010 (n=2288, w*=29)
‘mastermind_03_08_04-0011 (n=2288, w*=29)

Fig. 9:mbe-m-optun time (sec) as a function of number of solutiengor the master-
mind instances. The z-bound=10.

BMMF vs mbe-m-opt

144 7

142 1

140 1

log(MPE)
&
(o)) oo

134 4

132 4
130 §
128 T T T T T T T T T |

1 2 3 4 5 6 7 8 9 10
Solution index number

~4-10x10_10 mbe-m-opt zBound=10-#-10x10_10 BMMF ~#=10x10_7 mbe-m-opt zBound=10

=*-10x10_7 BMMF ~%#-10x10_10 optimal solution ~®-10x10_7 optimal solution

Fig.10: Comparison ofmbe-m-optwith z-bounds 10 and BMMF on random 10x10
grids. The exact solutions obtained kjim-m-opt The mbe-m-optprovides upper
bounds on the solutions, BMMF gives no guarantees whethmrtfiuts an upper or
a lower bound. In this particular example BMMF outputs loweunds on the exact
solutions.

Hamacher and Queyranne [15] built upon Lawler's work and@néed a method
that assumes the ability to directly find both the best andrs@dest solutions to a
problem. After finding the two best solutions, a new problsrformulated, so that the
second best solution to the original problem is the bestisnltio the new one. The sec-
ond best solution for the new problem is found, to become tieeadl third best solution
and the procedure is repeated until:allsolutions are found. The time complexity of
the algorithmisO(m -T2 (n)), whereTs(n) is the complexity of finding the second best
solution to the problem. The complexity of this method isapa bounded from above
by that of Lawler, seeing as Lawler's scheme can be used akgaritm for finding
the second best task.

Lawler's approach was applied by Nilsson to a join-tree [19jlike Lawler or
Hamacher and Queyranne, who are solvimqgroblems from scratch in each iteration of
the algorithm, Nilsson is able to utilize the results of poes computations for solving
newly formulated problems. The worst case complexity oflgerithm isO(m-T'(n)),
whereT'(n) is the complexity of finding a single solution by the max-flogaithm. If
applied to a bucket-tree, Nilsson’s algorithm has run tim@ k"~ + mn log(mn) +

More recently Yanover and Weiss [23] extended Nilsson'sife the max-product
Belief Propagation algorithm, yielding a belief propagatapproximation scheme for
loopy graphs, called BMMF, which also finds solutions iteellyy and which we com-
pared against. At each iteration BMMF uses loopy Belief Rgation to solve two
new problems obtained by restricting the values of certaimables. When applied to
junction tree, it can function as an exact algorithm with pterity O(mnk®").

Two algorithms based on dynamic programming, similar tmefi-opt, were de-
veloped by Serrousi and Golmard [21] and Elliot [12]. Unlike previously mentioned
works, Seroussi and Golmard don't find solutions iterayivedm 15* down tom!", but
extracts then solutions directly, by propagating the best partial solutions along a
junction tree that is pre-compiled. Given a junction treéhwi cliques, each having at
mostdeg children, the complexity of the algorithm@(m?p-k*” deg). Nilsson showed
that for most problem configurations his algorithm is supetd the one by Seroussi
and Golmard.

Elliot [12] explored the representation of Valued And-Ow&lic Graph, i.e., smooth
deterministic decomposable negation normal form (sd-DNISFE He propagates the
m best partial assignments to the problem variables alon@keF structure which is
pre-compiled as well. The complexity of Elliot’s algoritie0 (nk™ m log(m - deg)),
excluding the cost of constructing the sd-DNNF.

Earlier search schemesThe task of finding m best solutions is closely related to the
problem ofk shortest paths (KSP) which usually is solved using seatdb.dnown
that many optimization problems can be transformed intdlgras of finding a path

in a graph. For example, the task of finding the lowest cositgsl to a weighted
constraint satisfaction problem can be represented asrehsa a shortest path in

a graph, whose vertices correspond to assignments of tgmalriproblem variables
and the lengths of edges are chosen according to the cogidiusiof the constraint
problem. A good survey of differerit shortest path algorithms can be found in [5]

and [13]. The majority of the algorithms developed for sofyKSP assume that the
entire search graph is available as an input and thus areineatlg applicable to the
tasks formulated over graphical models, since for mosteftktoring the search graph
explicitely is infeasible. One very recent exception is Wk by Aljazzar and Leue
[2]. Their method, called<*, finds thek shortest paths while generating the search
graph "on-the-fly” and thus can be potentially useful fovéad problems defined over
graphical models. Assuming application to an AND/OR seagmeph [10] and given

a consistent heuristidg* yields asymptotic worst-case time and space complexity of
O(n- k¥ -w*log(nk) +m), thus displaying the best scaling with the required number
of solutionsm compared to all schemes mentioned here.

B& B, that extend best first and branch and bound search resggdtivfinding the

m best solutions, and their modifications for graphical ni@de-AOBF and m-
AOBB. We showed thatn-A* is optimally efficient compared to any other algorithm
that searches the same search space using the same héumisiicn. The theoretical
worse case time complexity fon-AOBF is O(n - m - k*") and form-AOBB is

O(n - deg - mlogmk™"). However, we showed that the worst case analysis does not
provide an accurate picture of algorithms’ performance iangractice in most cases
they are considerably more efficient. =======In a recenep§®] we proposed two
new algorithmsin-A* and m- B& B, that extend best first and branch and bound search
respectively to finding the m-best solutions, and their rfications for graphical mod-
els:m-AOBF andm-AOBB. We showed that:-A* is optimally efficient compared

to any other algorithm that searches the same search spiacgethis same heuristic
function. The theoretical worse case time complexityfetdOBF is O(n - m - k")

and form-AOBB is O(n - deg - mlogmk™"). However, we showed that the worst
case analysis does not provide an accurate picture of #igmsi performance and in
practice in most cases they are considerably more efficigrié,é.¢.¢ .r231

We also presenteBE-Greedy-m-BFa hybrid of variable elimination and best first
search scheme. The idea behind the method is to use Buck&nhBtion algorithm to
calculate the costs of the best path from any node to the gdalse this information as
an exact heuristic for A* searcBE-Greedy-m-Bfhas the time and space complexity
of O(nk™" +nm) and, unlikeK *, our scheme does not require complex data structures
or precomputed heuristics.

Earlier approximation schemes.In addition to BMMF, another extension of Nilsson'’s
and Lawler’s idea that yields an approximation scheme idgorighm called STRIPES
by [14]. They focus onm-MAP problem over binary Markov networks, solving each
new subproblem by an LP relaxation. The algorithm solveddkk exactly if the so-
lutions to all LP relaxations are integral, and provides ppar bound of each m MAP
assignments otherwise. In contrast, our algorithbe-m-optan compute bounds over
any graphical model (not only binary) and over a variety obest optimization tasks.

Other related works. Very recently, [4] studied the computational complexiticofm-
puting the next solution in some graphical models such asteaint and preference-
based networks. They showed that the complexity of thisdaeglends on the structure

of the graphical model and on the strict order imposed oseatutions. It is easy to see
that our m-best task can be solved by iteratively finding twet solution untibn solu-
tions with different valuation have been found. Howevearcsiour m-best task defines
a partial order over solutions and it only considers sohgiwith different valuation,
further study is needed to determine if the tractability @f problem is the same as that
of the problem of finding the next solution.

8 Conclusions

We presented a formulation of the m-best reasoning taskmétiframework of semir-
ing, thus making all existing inference and search algorghimmediately applicable
for the task via the definition of the combination and elintio@ operators. We then
focused on inference algorithms and provided a bucket eéition algorithmelim-m-
opt, for the task. Analysis of the algorithm'’s performance agldtion with earlier work
is provided.

We emphasize that the practical significance of the algorighprimarily for ap-
proximation through the mini-bucket scheme, since oth@ceschemes have better
worst-case performance.

Furthermore, it could also lead to loopy propagation mesgsgsing schemes that
are highly popular for approximations in graphical modéist exampleglim-m-opt
can be extended into a loopy max-prod for the m-best task;hwivould differ from
the scheme approach by Yanover and Weiss that uses loopyprodxXor solving a
sequence of optimization problems in the style of Lawleppraach.

Our empirical analysis demonstrates thrdie-m-opscales as a function of. bet-
ter than worst-case analysis predict. Comparison withratikact and approximation
algorithms is left for future work.

AcknowledgmentsThis work was partially supported by NSF grants [1S-0713448
11S-1065618, NIH grant 5SR01HG004175-03, and Spanish CE@xglect TIN2009-
13591-C02-0.

A Proof of Theorem 3

LetS, T, R be arbitrary elements &"". We prove one by one the required conditions.

— commutativity of®™. By definition,S ™ T' = Sorted™{a®b|a € S,b € T}.
Since® is commutative, the previous expression is equaéldeted™{b®a | b €
T,aeS}=T™S.

— associativity of™. We have to prove thdtS @™ T) ™ R = S @™ (T @™ R).
Suppose that the previous equality does not hold. Then,utdhionply that:

i. there may exist an elemeate (S ®™ T)®@™ R, s.t.a € S®@™ (T ®™ R); or,
ii. there may exist an elemeate S ®@™ (T ®™ R),s.t.a ¢ (S®™ T) @™ R.
We show that both cases are impossible.
Consider the first case. Lt1, ..., an} = S Q™ (T'®™ R) whereVi<;«m, a; >
am- Sincea € S @™ (T ®™ R), it means that,,, > a. Elementa comes from the

combination of three elements= (s ® t) ® r. Each element; comes from the
combination of three elemenis = s,, ® (t,, ® 74,). By associativity of operator
®, a; = (8q; @ tq,) @ Tq,. Then,

o If Vicicm, Sa; ®ta, € SQ™ T, then(sy, ®ty,) @1q, > (s®t) @ forall
1<i<m,anda ¢ (S®™T)®™ R, which contradicts the hypothesis.

o If Jicjcm, 8q, ®ta; € S®™T, then there exists an element’ > s,, Xty .
By monotonicity of>, (s’ @ ') ® 74, > (84, ® ta;) ® r4,. AS @ cONSEQUENCE
(San, ®ta,,)RTq,, € (S@™T)®™R. Sincea,, > a,thena ¢ (S®™T)™R,
which contradicts the hypothesis.

The proof for the second case is the same as above, but iategicly the role of:
and{as,...,a,}, andS andR.

— commutativity ofsort™. By definition,sort™{S,T} = Sorted™{S U T}. Since
set union is commutative§orted™{S U T} = Sorted™{T U S} which is by
definitionsort™{T, S}.

— associativity okort™. By definition,sort™ {sort™{S, T}, R} = Sorted™{Sorted™{SU
T} U R}, and sort™{S, sort™{T, R}} = Sorted™{S U Sorted™{T U R}}.
Clearly, the two expressions are equivalenftoted™{S UT U R}.

— @™ distributes ovesort™. Let us proceed by induction:

1. Base case. When = 1, by Proposition 1, the valuation structy/&™, @™, sort™)
is a semiring and, as a consequere®, distributes ovesort™.

2. Inductive step. Up te, operatorn™ distributes ovegort™, andlet{a, . .., a; }
be its result. We have to prove thg® ™ (sort™ 1 {T, R}) = sort™*1{Sgm+!
T, S@™*! R}. By definition of the operators, the result is the same oxtise¢
of elements{a, ..., a,,} plus one element,, ;. Suppose thak™** does
not distribute ovesort™*t. Then, it would imply that:

i. Elementa,,1 € S@™ Y (sort™ T, R}), buta,+1 & sort™T{Sgmt1
T,S @™t R}; or,
ii. Elementa,, 1 &€ S@™(sort™T{T, R}),buta,, 1 € sort™+t1{Sxm+!
T,S @™t R}
We show that both cases are impossible.
Consider the first case. Sineg, ;1 ¢ sort™1{S @™+ T S @™+l R}, it
means thaBa’ € sort™™{S @™ T S @™t R} such thata’ > a,,y1.
Elementa’ comes from the combination of two elements= s’ ® v/, where
s’ € Sandu’ € Toru’ € R. Then:
o If u' € sort™*{T, R}, then sinced’ > a,,.1, by definition of@™*1,
amt1 € S @M (sort™1{T, R}), which contradicts the hypothesis.
o If u/ & sort™ 1 {T, R}, thendu" € sort™{T, R} such that,” > u/'.
By monotonicity of the orden,” @ s’ > v’ ® s’ and, by transitivityy” ®
s' > ayy1. By definition of @™, a,,1 1 & S @™ (sort™ T, R}),
which contradicts the hypothesis.
Consider now the second case. Siage,; ¢ S @™ (sort™TH{T, R}), it
means thalla’ € S @™ (sort™ ™ {T, R}) such that’ > a,,+1. Elementa’
comes from the combination of two elements= s’ @ v/, wheres’ € S and
v € Toru' € R. Then:
o Ifu €T

x anda’ € S™ T.If a € S ®™T! T, sincea’ > a1 and by
definition of @™, a,, 11 & sort™ T {S@™H T S@m*tt R}, which
contradicts the hypothesis.df ¢ S ®™*! T, sincea’ > a,,41 and
by definition ofsort™*1, a,, 41 & sort™t1{S @™ T, S @™+t R},
which contradicts the hypothesis.

x anda’ ¢ S @™t T. Then,3a” € S @™+ T such thata” > a'.
By transitivity of the ordera” > a,,+1. Then, either by definition
of @™+ or by definition ofsort™*, a,, .1 & sortmt1{S @m*!
T, S @™*! R}, which contradicts the hypothesis.

e If v/ € R. The reasoning is the same as above, but interchanginglthe ro
of T'andR.

O

B Proof of Theorem 4

By definition of sort™,

sorty™{@), .. I+ = Sorted™{ | J (), .. F(E)}

teDx

By definition of F™™,

sort™{(@), .. I+ = Sorted™{ | J (@), _LFO)})}

teDx

Since all{ f(¢)} are singletons, thefif (t)} @™ {g(t)} = {f(t) ® g(¢)}. Then,

SOTtXm{@feme} = Sorted™{ U {® f@O)}}

teDx feF

By definition of C,

sortxm{®f€Fm £} = Sorted™{ | J {C(1)}}

teDyx

By definition of the set union,

sortxm{gfelmf} = Sorted™{{C(t) | t € Dx}}

By definition of the set of ordered m-best elements,

somxm{®f€mf} —(C(t),...,C(tm)}

C Proof of Theorem 7

LetC™ = {C(t1),...,C(tm)} be the m-best solutions d?. Let P be the relaxed
version of P solved bymbe-m-optand letC™ = {C(t,),...,C(t,,)} be its m-best
solutions. We have to prove that (i)™ is an m-best upper bound 6f; and (ii) mbe-
m-opt(P) computes."™.

i. ItisclearthalC™ = Sorted™{C™UW }, wherelV is the set of solutions for which
duplicated variables are assigned different domain valltesrefore, by definition,
C™ is an m-best bound af".

i. As shown in Theorem 5, elim-m-op®) computesC"™, and by definition of mini-
bucket elimination, elim-m-op#f) = mbe-m-optf). Therefore, mbe-m-opk) com-
putesC'™.

O

D Proof of Theorem 8

Given a control parametet each mini-bucket contains at mastariables. Letleg; be
the number of functions in the buck®f of variableX;, i.e., the degree of the node in the
original bucket tree. Ldf; be the number of mini-buckets created fr&nand let mini-
bucketQ;; containdeg;, functions, whe@:éf:l deg;, = deg;. The time compexity of
computing a message between two mini-buckets is boundé&d bym - deg;, logm)
(Proposition 2) and the complexity of computing all messagemini-buckets cre-
ated out ofB; is 0(2?;1 k*m - deg;; logm) = O(k*m - deg;logm). Taking into
accountthad""" | deg; < 2n, we obtain the total runtime complexity nfbe-m-opbf
Sor k*m - deg;logm) = O(nmk* logm). O

Acknowledgement

This work was supported by NSF grant 11S-1065618.

References

1. S.M. Aji and R.J. McEliece. The generalized distributae. IEEE Transactions on Infor-
mation Theory46(2):325-343, 2000.

2. H. Aljazzar and S. Leue. K : A heuristic search algorithmffoding the k shortest paths.
Artificial Intelligence 175:21292154, 2011.

3. S.Bistarelli, H. Faxgier, U. Montanari, F. Rossi, T. Sohiand G. Verfaillie. Semiring-based
CSPs and valued CSPs: Basic properties and compa®ar-Constrained Systenmsages
111-150, 1996.

4. R. |. Brafman, E. Pilotto, F. Rossi, D. Salvagnin, K. B. sbte, and T. Walsh. The next
best solution. IfProceedings of the Twenty-Fifth AAAI Conference on Ardfilcitelligence,
AAAI 2011, San Francisco, California, US2011.

5. A.W. Brander and M.C. Sinclair. A comparative study ofHodest path algorithms. In
Proceedings 11th UK Performance Engineering Workshop fam@uter and Telecommuni-
cations Systemgages 370-379, 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. A. Darwiche. Decomposable negation normal fodournal of the ACM (JACMY8(4):608—
647, 2001.

A. Darwiche, R. Dechter, A. Choi, V. Gogate, and L. Otten. e-R
sults from the probablistic inference evaluation of UAIO& web-report in
http://graphmod.ics.uci.edu/uai08/Evaluation/Reportin: UAI applications workshop
2008.

R. Dechter. Bucket elimination: A unifying framework f@asoningArtificial Intelligence
113(1):41-85, 1999.

R. Dechter and N. Flerova. Heuristic search for m bestiswoisi with applications to graph-
ical models. InLl1th Workshop on Preferences and Soft Constrapdage 46, 2011.

R. Dechter and R. Mateescu. And/or search spaces fohigehpnodels. Artificial Intelli-
gence 171(2-3):73-106, 2007.

R. Dechter and I. Rish. Mini-buckets: A general schemdéunded inferencelournal of
the ACM (JACM)50(2):107-153, 2003.

P.H. Elliott. Extracting the K Best Solutions from a laLAnd-Or Acyclic Graph. Master's
thesis, Massachusetts Institute of Technology, 2007.

D. Eppstein. Finding the k shortest paths Phoceedings 35th Symposium on the Founda-
tions of Computer Sciencpages 154—165. IEEE Comput. Soc. Press, 1994.

M. Fromer and A. Globerson. An LP View of the M-best MAPldeam. Advances in Neural
Information Processing Systen22:567-575, 2009.

H.W. Hamacher and M. Queyranne. K best solutions to coatbiial optimization prob-
lems. Annals of Operations Research(1):123—-143, 1985.

K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifyehgster-tree decompositions for
automated reasonindurtificial Intelligence Journal 2005.

J. Kohlas and N. Wilson. Semiring induced valuation laigs: Exact and approximate local
computation algorithmsArtif. Intell., 172(11):1360-1399, 2008.

E.L. Lawler. A procedure for computing the k best soli®o discrete optimization prob-
lems and its application to the shortest path probl&anagement Scienc&8(7):401-405,
1972.

D. Nilsson. An efficient algorithm for finding the M mosiiable configurations in proba-
bilistic expert systemsStatistics and Computin@(2):159-173, 1998.

J. PearlProbabilistic reasoning in intelligent systems: netwookglausible inferenceMor-
gan Kaufmann, 1988.

B. Seroussi and J.L. Golmard. An algorithm directly firgdthe K most probable configu-
rations in Bayesian networksnternational Journal of Approximate Reasonjrid.(3):205—
233, 1994.

G. R. Shafer and P.P. Shenoy. Probability propagatiorals of Mathematics and Artificial
Intelligence 2:327-352, 1990.

C. Yanover and Y. Weiss. Finding the M Most Probable Caméitions Using Loopy Belief
Propagation. InrAdvances in Neural Information Processing SystemsThe MIT Press,
2004.

