
Bucket and Mini-Bucket Schemes for M Best Solutions
over Graphical Models

Natalia Flerova1, Emma Rollon2 and Rina Dechter1

1 University of California Irvine
2 Universitat Politecnica de Catalunya

Abstract. The paper focuses on the task of generating the first m best solutions
for a combinatorial optimization problem defined over a graphical model (e.g.,
them most probable explanations for a Bayesian network). We showthat the m-
best task can be expressed within the unifying framework of semirings making
known inference algorithms defined and their correctness and completeness for
the m-best task immediately implied. We subsequently describe elim-m-opt, a
new bucket elimination algorithm for solving them-best task, provide algorithms
for its defining combination and marginalization operatorsand analyze its worst-
case performance. An extension of the algorithm to the mini-bucket framework
provides bounds for each of the m-best solutions. Empiricaldemonstrations of
the algorithms with emphasis on their potential for approximations are provided.

1 Introduction

The aim in combinatorial optimization is to find an optimal solution, minimum or max-
imum, of an objective function. In many applications, however, it is desirable to obtain
not just a single optimal solution, but a set of the firstm best solutions for some integer
m. Such a set can be useful, for example, in assessing the sensitivity of the optimal
solution to variation of the problem’s parameters, a task that arises, for instance, in bio-
logical sequence alignment. Sometimes a set of diverse assignments with approximately
the same cost is needed, as in reliable communication network design and genetic link-
age analysis (haplotyping). In some areas, such as in procurement auction problems,
certain constraints of the problem might be too vague or too complicated to formalize.
In such cases it may be more practical to first find several goodsolutions to a relaxed
problem and then pick the one that satisfies all the additional constraints.

One of the earliest and most influential work on finding the m best solutions was
developed by Lawler [18]. He provided a general scheme that extends any optimization
algorithm to the m-best task. The idea is to compute the next best solution successively
by finding a single optimal solution for a slightly differentreformulation of the original
problem that excludes the solutions generated so far. This approach has been extended
and improved over the years and is still one of the primary strategies for finding the m
best solutions. Other approaches are more direct, trying toavoid the repeated computa-
tion inherent to Lawler’s scheme.

Our goal is to develop a direct extension of general optimization schemes, such as
dynamic programming or search, to the m-best task. Our focusis on high dimensional

discrete spaces and on objective functions that can be factorized using a collection of
low dimensional functions. These formulations normally appear in the context of graph-
ical models such as Bayesian networks, Markov networks and constraint networks.

Graphical models [20] are widely used knowledge representation schemes that give
rise to probabilistic and deterministic combinatorial optimization tasks, such as finding
the most likely configuration of a Bayesian network (called MAP or MPE) or finding a
solution that violates the least number of constraints in the CSP (called max-CSP). In
these models knowledge is represented by a collection of local functions, each defined
on a small subset of variables, whose interaction can be captured by a graph. The task is
to optimize a global objective function expressed as a combination (sum or product) of
the local functions. Various graph-exploiting algorithmsfor solving these optimization
tasks were developed in the past few decades. Such algorithms are often characterized
as being either ofinferencetype (e.g., message-passing schemes, variable elimination)
or of searchtype (e.g., AND/OR search or recursive-conditioning). We limit our treat-
ment here to the class of inference schemes as represented bythe Bucket Elimination
algorithm (BE) [8].

We will show that Bucket Elimination can be extended to compute the m best so-
lutions by representing functions as vector functions and modifying of the algorithm’s
underlying combination and marginalization operators to vector functions. The exten-
sion is accomplished by formalizing the m-best task within the framework of semirings
[22, 1, 17, 3]. This unifying formulation ensures the soundness and completeness of any
algorithm applied to any problem that fits into the frameworkand in particular it implies
thatelim-m-optsolves the m-best optimization task.

Since the bucket elimination scheme can be approximated by the relaxation and
bounding scheme of mini-bucket elimination (MBE) [11], we can extendelim-m-opt
straightforwardly to a mini-bucket schemembe-m-opt, which computes a bound on each
of the m best solutions. More significantly, we also show thatthem bounds computed
by mbe-m-optcan be used to tighten the bound on the first best solution since both are
generated from the same relaxed problem. In particular, it can facilitate a scheme for
tightening any heuristic generation scheme.

After providing some background in Section 2, we formulate the m-best task in the
context of semirings in Section 3. Sections 4 and 5 describe algorithmselim-m-optand
mbe-m-optrespectively. We show the results of the empirical evaluation in Section 6 and
compare our schemes with related work in Section 7. Section 8provides a summary and
discusses future work.

2 Background

We consider problems expressed as graphical models. The graphical model framework
provides a common formalism to model a broad spectrum of problems, and a collec-
tion of general algorithms to efficiently solve them. Examples of graphical models are
Markov and Bayesian networks [20], constraint networks andinfluence diagrams. We
next follow definitions as in [16].

Let X = (X1, . . . , Xn) be an ordered set of variables andD = (D1, . . . ,Dn) an
ordered set of domains. DomainDi is a finite set of potential values forXi. The as-

signment of variableXi with a ∈ Di is noted (Xi = a). A tuple is an ordered set of
assignments to different variables(Xi1 = ai1 , . . . , Xik = aik). A complete assignment
to all the variables inX is called asolution. Let t ands be two tuples having the same
instantiations to the common variables. Their join, notedt · s, is a new tuple which
contains the assignments of botht ands (this notation is also used for multiplication, so
we assume the meaning will be clear from the context). Ift is a tuple over a setT ⊆ X
andS is a set of variables, thent[S] is a relational projection oft onS.

2.1 Valuation Structure and Functions

Let A be a set whose elements are calledvaluations(e.g., the naturals, the reals or the
booleans). The set of valuationsA admits two binary operations:⊗ : A×A → A called
combinationand⊕ : A × A → A calledaddition. Both operators are associative and
commutative. Typical combination operators are sum and product over numbers, and
logical AND (i.e.,∧) over booleans. Typical addition operators are min, max andsum
over numbers and logical OR (i.e.,∨) over booleans.

The properties of a valuation structure can be described by means of an algebraic
structure. In this paper we focus on an algebraic structure calledsemiring.

Definition 1 (semiring). A commutative semiringis a triplet (A,⊗,⊕) such that:

– ⊗ and⊕ are associative and commutative
– ⊗ distributes over⊕, that is,(a⊗ b)⊕ (a⊗ c) = a⊗ (b ⊕ c)

A commutative semiring defines an ordering among its elements as follows. For any
a, b ∈ A, a > b holds (i.e.,a is betterthanb), if there existsc ∈ A such thata = b⊕ c.

We denote byDY the set of tuples over a subset of variablesY, also called the
domainof Y. Functions are defined on subsets of variables ofX, called scopes, and
their range is a set of valuationsA. If f : DY → A is a function, the scope off , denoted
var(f), is Y. In the following, we will useDf as a shorthand forDvar(f).

Definition 2 (combination operator). Let f : Df → A andg : Dg → A be two func-
tions. Theircombination, notedf

⊗

g is a new function with scopevar(f) ∪ var(g),
s.t.

∀t ∈ Dvar(f)∪var(g), (f
⊗

g)(t) = f(t)⊗ g(t)

Definition 3 (marginalization operator). Let f : Df → A be a function andW ⊆ X
be a set of variables. Themarginalizationof f overW, noted⇓W f , is a function whose
scope isvar(f)− W, s.t.

∀t ∈ Dvar(f)−W, (⇓W f)(t) = ⊕t′∈DW
(t · t′)

Example 1.Consider three variablesX1, X2 andX3 with domainsD1 = D2 = D3 =
{1, 2, 3}. Let f(X1, X2) = X1X2 andg(X2, X3) = 2X2 + X3 be two functions.
If the combination operator is product (i.e.,×), then(f ⊗ g)(X1, X2, X3) = (f ×
g)(X1, X2, X3) = X1X2 × (2X2 + X3). If the marginalization operator ismax,
then (f ⇓X1

)(X2) = max{f(X1 = 1, X2), f(X1 = 2, X2), f(X1 = 3, X2)} =
max {1X2, 2X2, 3X2} = 3X2.

2.2 Graphical Model

Definition 4 (graphical model).A graphical modelis a tupleM = (X,D,A,F,
⊗

),
where: X = {X1, . . . , Xn} is a set of variables;D = {D1, . . . ,Dn} is the set of
their finite domains of values;A is a set of valuations(A,⊗,⊕); F = {f1, . . . , fr}
is a set of discrete functions, wherevar(fj) ⊆ X and fj : Dfj → A; and

⊗

is
the combination operator over functions (see Definition 2).The graphical modelM
represents the functionC(X) =

⊗

f∈F f .

Definition 5 (reasoning task).A reasoning taskis a tupleP = (X,D,A,F,
⊗

,⇓),
where(X,D,A,F,

⊗

) is a graphical model and⇓ is a marginalization operator (see
Definition 3). The reasoning task is to compute⇓X C(X).

For a reasoning taskM = (X,D,A,F,
⊗

,⇓) the choice of(A,⊗,⊕) determines
the combination

⊗

and marginalization⇓ operators over functions, and thus the nature
of the graphical model and its reasoning task. For example, if A is the set of non-
negative reals and

⊗

is product, the graphical model is a Markov network or a Bayesian
network. If ⇓ is max, the task is to compute the Most Probable Explanation (MPE),
while if ⇓ is sum, the task is to compute the Probability of the Evidence.

The correctness of the algorithmic techniques for computing a given reasoning task
relies on the properties of its valuation structure. In thispaper we consider reasoning
tasksP = (X,D,A,F,

⊗

,⇓) such that their valuation structure(A,⊗,⊕) is a semiring.
Several works [22, 1, 17] showed that the correctness of inference algorithms over a
reasoning taskP is ensured wheneverP is defined over a semiring.

Example 2.MPE task is defined over semiringK = (R,×,max), a CSP is defined
over semiringK = ({0, 1},∧,∨), and a Weighted CSP is defined over semiringK =
(N ∪ {∞},+,min). The task of computing the Probability of the Evidence is defined
over semiringK = (R,×,+).

2.3 Bucket and Mini-Bucket Elimination

Bucket Elimination (BE) [8] (see Algorithm 1) is a well-known inference algorithm
that generalizes dynamic programming for many reasoning tasks. The input of BE is a
reasoning taskP = (X,D,A,F,

⊗

,⇓) and an orderingo = (X1, X2, . . . , Xn), dictat-
ing an elimination order for BE, from last to first. Each function fromF is placed in the
bucket of its latest variable ino. The algorithm processes the buckets fromXn to X1,
computing for each bucketXi, notedBi, ⇓Xi

⊗n

j=1 λj , whereλj ’s are the functions in
theBi, some of which are originalfi’s and some are earlier computed messages. The
result of the computation is a new function, also calledmessage, that is placed in the
bucket of its latest variable in the orderingo.

Depending on the particular instantiation of the combination and marginalization
operators BE solves a particular reasoning task. For example, algorithmelim-opt, which
solves the optimization task, is obtained by substitution of the operators⇓X f =
maxS−X f and

⊗

j =
∏

j .
The message passing between buckets follows a bucket-tree structure.

Algorithm 1 Bucket elimination

Input: A reasoning taskP = (X,D,A,F,
⊗

,⇓); An ordering of variableso = {X1, . . . , Xn};
Output: A zero-arity functionλ1 : ∅ → A containing the solution of the reasoning task.
1: Initialize: Generate an ordered partition of functions in bucketsB1, . . . ,Bn, whereBi con-

tains all the functions whose highest variable in their scope isXi.
2: Backward:
3: for i← n down to 1do
4: Generateλi = (

⊗

f∈Bi
f) ⇓Xi

5: Placeλi in the bucketBj wherej is the largest-index variable invar(λi)
6: end for
7: Return: λ1

Definition 6 (bucket tree).Bucket Elimination defines abucket tree, where a node of
the bucket is associated with its bucket variable and the bucket of eachXi is linked to
the destination bucket of its message (called the parent bucket).

The complexity of Bucket Elimination can be bounded using the graph parameter
of induced width.

Definition 7 (induced graph, induced width).Theinduced graphof a graphical model
relative to orderingo is an undirected graph that has variables as its vertices. The edges
of the graph are added by: 1) connecting all variables that are in the scope of the same
function, 2) processing nodes from last to first ino, recursively connecting preceding
neighbors of each node. Theinduced widthw(o) relative to orderingo is the maximum
number of preceding neighbors across all variables in the induced graph. Theinduced
width of the graphical modelw∗ is the minimum induced width of all orderings. It is
also known as thetreewidthof the graph.

Theorem 1 (BE correctness and complexity).[8] Given a reasoning taskP defined
over a semiring(A,⊗,⊕), BE is sound and complete. Given an orderingo, the time
andspace complexityofBE(P) is exponential in the induced width of the ordering.

Mini-bucket Elimination (MBE) [11] (see Algorithm 2) is an approximation de-
signed to avoid the space and time complexity of BE. Considera bucketBi and an
integer bounding parameterz. MBE creates az-partitionQ = {Q1, ..., Qp} of Bi,
where each setQj ∈ Q, calledmini-bucket, includes no more thanz variables. Then,
each mini-bucket is processed separately, thus computing aset of messages{λij}

p
j=1,

whereλij =⇓Xi
(
⊗

f∈Qj
f). In general, greater values ofz increase the quality of the

bound.

Theorem 2. [11] Given a reasoning taskP , MBE computes a bound onP . Given an
integer control parameterz, the time and space complexity of MBE is exponential inz.

3 M-best Optimization Task

In this section we formally define the problem of finding a set of best solutions over
an optimization task. We consider optimization tasks defined over a set of totally or-

Algorithm 2 Mini-Bucket elimination

Input: A reasoning taskP = (X,D,A,F,
⊗

,⇓); An integer parameterz; An ordering of vari-
ableso = {X1, . . . , Xn};

Output: A bound on the solution of the reasoning task.
1: Initialize: Generate an ordered partition of functions in bucketsB1, . . . ,Bn, whereBi con-

tains all the functions whose highest variable in their scope isXi.
2: Backward:
3: for i← n down to 1do
4: {Q1, . . . , Qp} ← Partition(Bi,z)
5: for k ← 1 up top do
6: λi,k ← (

⊗

f∈Qk
f) ⇓Xi

7: Placeλi,k in the bucketBj wherej is the largest-index variable invar(λi,k)
8: end for
9: end for

10: Return: λ1

dered valuations. In other words, we consider reasoning tasks where the marginaliza-
tion operator⇓ is min ormax. Without loss of generality, in the following we assume
maximization tasks (i.e.,⇓ ismax).

Definition 8 (optimization task). Given a graphical modelM, its optimization task
is P = (M,max). The goal is to find a complete assignmentt such that∀t′ ∈
DX, C(t) ≥ C(t′). C(t) is called the optimal solution.

Definition 9 (m-best optimization task).Given a graphical modelM, itsm-best op-
timization task is to findm complete assignmentsT = {t1, . . . , tm} such thatC(t1) >
, · · · , > C(tm) and∀t′ ∈ DX\T, ∃1≤j≤mtj C(t′) = C(tj) ∨ C(tm) > C(t′). The
solution is the set of valuations{C(t1), . . . , C(tm)}, called m-best solutions.

3.1 M-best Valuation Structure

One of the main goals of this paper is to phrase the m-best optimization task as a rea-
soning task over a semiring, so that well known algorithms can be immediately applied
to solve this task. Namely, given an optimization taskP over a graphical modelM, we
need to define a reasoning taskPm that corresponds to the set of m best solutions of
M. We introduce the set of ordered m-best elements of a subsetS ⊆ A.

Definition 10 (set of ordered m-best elements).Let S be a subset of a set of valua-
tionsA. The set of ordered m-best elements ofS is Sortedm{S} = {s1, . . . , sj}, such
that s1 > s2 > . . . > sj wherej = m if |S| ≥ m and j = |S| otherwise, and
∀s′ 6∈ Sortedm{S}, sj > s′.

Definition 11 (m-space).Let A be a set of valuations. The m-space ofA, notedAm, is
the set of subsets ofA that are sets of ordered m-best elements. Formally,Am = {S ⊆
A | Sortedm{S} = S}.

The combination and addition operators over the m-spaceAm, noted⊗m andsortm

respectively, are defined as follows.

Definition 12 (combination and addition over the m-space).Let A be a set of valu-
ations, and⊗ andmax be its combination and marginalization operators, respectively.
Let S, T ∈ Am. Their combination, notedS ⊗m T , is the setSortedm{a ⊗ b | a ∈
S, b ∈ T }, while theiraddition, notedsortm{S, T }, is the setSortedm{S ∪ T }.

Proposition 1. Whenm = 1, the valuation structure(Am,⊗m, sortm) is equivalent
to (A,⊗,max).

Theorem 3. The valuation structure(Am,⊗m, sortm) is a semiring.

The theorem is proved in the Appendix A.
It is worthwhile to see the ordering defined by the semiring(Am,⊗m, sortm), be-

cause it would be important in the extension of Mini-Bucket Elimination (Section 5).
Recall that by definition, given two elementsS, T ∈ Am, S > T if S = Sortedm{T ∪
W}, whereW ∈ Am. We callS anm-best boundof T .

Definition 13 (m-best bound).Let T, S,W be three sets of ordered m-best elements.
S is anm-best boundof T iff S = Sortedm{T ∪W}.

Let us illustrate the previous definition by the following example. LetT = {10, 6, 4},
S = {10, 7, 4}, andR = {10, 3} be three sets of ordered3-best elements.S is not a3-
best bound ofT because there is no setW such thatS = Sortedm{T ∪W}. Note that
one possible setW isS \T = {7} but,Sortedm{{10, 6, 4}∪{7}}= {10, 7, 6}, which
is different toS. However,S is a 3-best bound ofR becauseS = Sortedm{{10, 3} ∪
{7, 4}}.

3.2 Vector Functions

We will refer to functions over the m-spaceAm f : Df → Am asvector functions.
Abusing notation, we extend the⊗m andsortm operators to operate over vector func-
tions similar to how operators⊗ and⊕ were extended to operate over scalar functions
in Definition 2.

Definition 14 (combination and marginalization over vector functions). Let f :
Df → Am and g : Dg → Am be two vector functions. Their combination, noted
f
⊗

g, is a new function with scopevar(f) ∪ var(g), s.t.

∀t ∈ Dvar(f)∪var(g), (f
⊗

g)(t) = f(t)⊗m g(t)

Let W ⊆ X be a set of variables. The marginalization off overW, notedsort
W

m{f}, is

a new function whose scope isvar(f)− W, s.t.

∀t ∈ Dvar(f)−W, sort
W

m{f}(t) = sortmt′∈DW
{f(t · t′)}

Example 3.Figure 1 shows the combination and marginalization over twovector func-
tionsh1 andh2 for m = 2 and⊗ = ×.

h1: X1 X2 h2: X2 h1 ⊗
m h2: X1 X2 sortmX2

{h1}: X1

a a {4,2} a {3,1} a a {12,6} a {4, 3}
a b {3,1} b {1} a b {3,1} b {5, 2}
b a {5} b a {15,5}
b b {2} b b {2}

Fig. 1: Combination and marginalization over vector functions form = 2 and⊗ = ×.
For each pair of values of(X1, X2) the result ofh1 ⊗

m h2 is an ordered set of size 2
obtained by choosing the 2 larger elements out of the result of pair-wise multiplication
of the corresponding elements ofh1 andh2. The result ofsortmX2

{h1} is an ordered set
containing the two larger values of functionh1 for each value ofX1.

3.3 M-best Optimization as a Graphical Model

The m-best extension of an optimization problemP is a new reasoning taskPm that
expresses them-best task overP .

Definition 15 (m-best extension).Let P = (X,D,A,F,
⊗

,⇓) be an optimization
problem defined over a semiring(A,⊗,max). Its m-best extensionis a new reasoning
taskPm = (X,D,Am,Fm,

⊗

, sortm) over semiring(Am,⊗m, sortm). Each function
f : Df → A in F is trivially transformed into a new vector functionf ′ : Df → Am de-
fined asf ′(t) = {f(t)}. In words, function outcomes off are transformed to singleton
sets inf ′. Then, the setFm contains the newf ′ vector functions.

The following theorem shows that the optimum ofPm corresponds to the set of
m-best valuations ofP .

Theorem 4. Let P = (X,D,A,F,
⊗

,⇓) be an optimization problem defined over
semiring(A,⊗,max) and let{C(t1), . . . , C(tm)} be its m best solutions. LetPm be
the m-best extension ofP . Then, the optimization taskPm computes the set of m-best
solutions ofP . Formally,

sortX
m{

⊗

f∈Fm
f} = {C(t1), . . . , C(tm)}

The theorem is proved in the Appendix B
It is easy to see how the same extension applies to minimization tasks. The only

difference is the set of valuations selected by operatorsortm.

4 Bucket Elimination for the m-best Task

In this section we provide a formal description of the extension of Bucket Elimina-
tion algorithm for m best solutions based on the operators over the m-space defined in
the previous section. We also provide algorithmic details for the operators and show
through an example how the algorithm can be derived from firstprinciples.

Algorithm 3 elim-m-opt algorithm

Input: An optimization taskP = (X,D,A,F,
⊗

, max); An ordering of variableso =
{X1, . . . , Xn};

Output: A zero-arity functionλ1 : ∅ → Am containing the solution of them-best optimization
task.

1: Initialize: Transform each functionf ∈ F into a singleton vector functionh(t) = {f(t)};
Generate an ordered partition of vector functionsh in bucketsB1, . . . ,Bn, whereBi contains
all the functions whose highest variable in their scope isXi.

2: Backward:
3: for i← n down to 1do
4: Generateλi = sortmXi

(
⊗

f∈Bi
f)

5: Generate assignmentxi = argsortmXi
(
⊗

f∈Bi
), concatenate with relevant elements of

the previously generated assignment messages.
6: Placeλi and corresponding assignments in the bucket of the largest-index variable in

var(λi)
7: end for
8: Return: λ1

4.1 The Algorithm Definition

Consider an optimization taskP = (X,D,A,F,
⊗

,max). Algorithm elim-m-opt(see
Algorithm 3) is the extension of BE to solvePm (i.e., the m-best extension ofP). First,
the algorithm transforms scalar functions inF to their equivalent vector functions as
described in Definition 15. Then it processes the buckets from last to first as usual, us-
ing the two new combination and marginalization operators

⊗

andsortm, respectively.
Roughly, the elimination of variableXi from a vector function will produce a new vec-
tor functionλi, such thatλi(t) will contain the m-best extensions oft to the eliminated
variablesXi+1, . . . , Xn with respect to the subproblem below the bucket variable in the
bucket tree. Once all variables have been eliminated, the resulting zero-arity function
λ1 contains the m-best cost extensions to all variables in the problem. In other words,
λ1 is the solution of the problem.

The correctness of the algorithm follows from the formulation of the m-best opti-
mization task as a reasoning task over a semiring.

Theorem 5 (elim-m-opt correctness).Algorithm elim-m-opt is sound and complete
for finding the m best solutions over an optimization taskP .

There could be several ways to generate the set of m-best assignments, one of which
is presented next and it uses theargsortm operator.

Definition 16. OperatorargsortmXi
f returns a vector functionxi(t) such that∀t ∈

Dvar(f)\Xi
, where〈f(t · xi

1), . . . , f(t · xi
m)〉, are them-best valuations extendingt

toXi and wherexi
j denotes thejth element ofxi(t).

In words,xi(t) is the vector of assignments toXi that yields the m-best extensions tot.

4.2 Illustrating the Algorithm’s Derivation through an Exa mple

We have in mind the MPE (most probable explanation) task in probabilistic networks.
Consider a graphical model with four variables{X,Y, Z, T } having the following func-
tions (for simplicity we use un-normalizes functions). Letm = 3.

x z f1(z, x) y z f2(z, y) z t f3(t, z)
0 0 2 0 0 6 0 01
0 1 2 0 1 7 0 12
1 0 5 1 0 2 1 04
1 1 1 1 1 4 1 13
2 0 4 2 0 8
2 1 3 2 1 2

Finding the m best solutions toP (t, z, x, y) = f3(t, z) · f1(z, x) · f2(z, y) can be
expressed as findingSol, defined by:

Sol = sort
t,x,z,y

m

(

f3(t, z) · f1(z, x) · f2(z, y)

)

(1)

Since operatorsortm is an extension of operatormax, it inherits its distributive proper-
ties over multiplication. Due to this distributivity, we can apply symbolic manipulation
and migrate each of the functions to the left of thesortm operator over variables that
are not in its scope. In our example we rewrite as:

Sol = sort
t

m
sort

z

m

(

f3(t, z)
(

sort
x

m
f1(z, x)

)

(

sort
y

m
f2(z, y)

))

(2)

The output ofsortm is a set, so in order to make (2) well defined, we replace the
multipication operator by the combination over vector functions as in Definition 14.

Sol = sort
m

t
sort

m

z
(f3(t, z)

⊗

(sortm
x

f1(z, x))
⊗

(sortm
y

f2(z, y))) (3)

BE computes (3) from right to left, which corresponds to the elimination ordering
o = {T, Z,X, Y }. We assume that the original input functions extend to vector func-
tions, e.g.,fi is extended asf i(t) = {fi(t)}. Figure 2 shows the messages passed
between buckets and the bucket tree undero.

BucketBY containing functionf2(z, y) is processed first. The algorithm applies
operatorsortm

y
to f2(z, y), generating amessage, which is a vector function denoted

byλY (z), that is placed inBZ . Note that this message associates eachz with the vector
of m-best valuations off2(z, y). Namely,

sortm
y

f2(z, y) = (λ1
Y (z), . . . , λ

j
Y (z), . . . , λ

m
Y (z)) = λY (z) (4)

where forz eachλj
Y (z) is thejth best value off2(z, y). Similar computation is carried

in BX yieldingλX(z) which is also placed inBZ .

z λX(z) x λY (z) y

0 {5,4,2} { 1, 2, 0} {8,6,2} {2, 0, 1}
1 {3,2,1} { 2, 0, 1} {7,4,2} {0, 1, 2}

Bucket Y :

Bucket X :

Bucket Z :

Bucket T :

f2(z, y)
︸ ︷︷ ︸

f1(z, x)
︸ ︷︷ ︸

λZ(t)

f3(t, z) λX(z) λY (z)
︸ ︷︷ ︸

(a) Messages passed between buckets

T

Z

X Y

λX(z) λY (z)

λZ(t)

f3(t, z)

f1(z, x) f2(z, y)

(b) Bucket-tree

Fig. 2: Example of applyingelim-m-opt

When processingBZ , we compute (see Eq. 3):

λZ(t) = sortmz [f3(t, z)
⊗

λX(z)
⊗

λY (z)]

The result is a new vector function that hasm2 elements for each tuple(t, z) as shown
below.

t z f3(t, z)
⊗

λX(z)
⊗

λY (z)
0 0 {40, 32, 30, 16, 24, 12, 10, 8, 4}
0 1 {84, 56, 48, 32, 28, 24, 16, 16, 8}
1 0 {80, 64, 60, 48, 32, 24, 20, 16, 8}
1 1 {63, 42, 36, 24, 21, 18, 12, 12, 6}

Applying sortmz to the resulting combination generates the m-best elementsout of
thosem2 yielding messageλZ(t) along with its variable assignments:

t λZ(t) 〈x, y, z〉
0 {84,56,48} {〈2, 0, 1〉, 〈0, 0, 1〉, 〈2, 1, 1〉}
1 {80,64,63} {〈1, 2, 0〉, 〈2, 2, 0〉, 〈2, 0, 1〉}

In Sect. 4.3 we show that it is possible to apply a more efficient procedure that would
calculate at most2m elements per tuple(t, z) instead.

Finally, processing the last bucket yields the vector of m best solution costs for
the entire problem and the corresponding assignments:Sol = λT = sort

t

mλZ(t) (see

Fig. 2a).

λZ(t) 〈x, y, z, t〉
{84,80,64} {〈2, 0, 1, 0〉, 〈1, 2, 0, 1〉, 〈2, 2, 0, 1〉}

4.3 Processing a Bucket and the Complexity ofelim-m-opt

We will next show that the messages computed in a bucket can beobtained more ef-
ficiently than through a brute-force application of

⊗

followed by sortm. Consider

e
〈1,1〉
Z=0

e
〈1,2〉
Z=0

e
〈2,1〉
Z=0

e
〈1,1〉
Z=1

e
〈2,1〉
Z=1

e
〈1,2〉
Z=1

c = 80

c = 64c = 60

c = 63

c = 36 c = 42

Fig. 3: The explored search space forT = 0 andm = 3. The resulting message is
λZ(1) = {80, 64, 63}.

processingBZ (see Fig. 2a). A brute-force computation of

λZ(t) = sortm
z

(f3(z, t)
⊗

λY (z)
⊗

λX(z))

for eacht combinesf3(z, t), λY (z) andλX(z) for ∀z ∈ DZ first. This results in a
vector function with scope{T, Z} havingm2 elements that we callcandidate elements
and denote byE(t, z). The second step is to applysortm

z
E(t, z) yielding the desired

m best elementsλZ(t).
However, sinceλY (z) andλX(z) can be kept sorted, we can generate only a small

subset of thesem2 candidates as follows. We denote bye
〈i,j〉
z (t) the candidate element

obtained by the product of the scalar function valuef3(t, z) with the ith element of

λY (z) and jth element ofλX(z), having costc〈i,j〉z (t) = f3(t, z) · λ
i
Y (z) · λ

j
X(z).

We would like to generate the candidatese
〈i,j〉
z in decreasing order of their costs while

taking their respective indicesi andj into account.
Thechild elementsof e〈i,j〉z (t), children(e〈i,j〉z (t)) are obtained by replacing in the

product either an elementλi
Y (z) with λi+1

Y (z), orλj
X(z) with λ

j+1
X (z), but not both.

This leads to a forest-like search graph whose nodes are the candidate elements,
where each search subspace corresponds to a different valueof z denoted byGZ=z and
rooted ine〈1,1〉Z=z (t). Clearly, the cost along any path from a node to its descendants is
non-increasing. It is easy to see that the m best elementsλZ(t) can then be generated
using a greedy best-first search across the forest search spaceGZ=0 ∪GZ=1. It is easy
to show that we do not need to keep more thanm nodes on the OPEN list (the fringe
of the search) at the same time. The general algorithm is described in Algorithm 4. The
trace of the search for the elements of cost messageλZ(t = 1) for our running example
is shown in Figure 3.

Proposition 2 (complexity of bucket processing).Given a bucket of a variableX
over scopeS havingj functions{λ1, ..., λj} of dimensionm, wherem is the number of
best solutions sought andk bounds the domain size, the complexity of bucket processing
isO(k|S| ·m · j logm), where|S| is the scope size ofS.

Proof. To generate each of them solutions, the bucket processing routine removes the
current best element from OPEN (in constant time), generates its j children and puts
them on OPEN, while keeping the list sorted, which takesO(log(m ·j)) per node, since
the maximum length of OPEN isO(m · j). This yields time complexity ofO((m · j) ·

Algorithm 4 Bucket processing

Input: B X of variable X containing a set of orderedm-vector functions
{λ1(S1, X), · · · , λd(Sd, X)}

Output: m-vector functionλX(S), whereS = ∪d
i=1Si −X.

1: for all t ∈ DS do
2: for all x ∈ DX do
3: OPEN ← e

〈1,...,1〉
X=x (t); Sort OPEN;

4: end for
5: while j ≤ m, by +1do
6: n← first elemente〈i1,··· ,id〉X=x (t) in OPEN. Removen from OPEN;
7: λ

j

X(s)← n; {thejth element is selected}

8: C ← children(n) ={e〈i1,··· ,ir+1,··· ,id〉
X=x (t)|r = 1..d};

9: Insert eachc ∈ C into OPEN maintaining order based on its computed value. Check
for duplicates; Retain them best nodes in OPEN, discard the rest.

10: end while
11: end for

log(m ·j)) for all m solutions. The process needs to be repeated for each of theO(k|S|)
tuples, leading to overall complexityO(k|S| ·m · j log(m · j)). ⊓⊔

Theorem 6 (complexity ofelim-m-opt). Given a graphical model(X,D,F,
⊗

) hav-
ing n variables, whose domain size is bounded byk, an orderingo with induced-width
w∗ and an operator⇓= max, the time complexity ofelim-m-optis O(nkw

∗

m logm)
and its space complexity isO(mnkw

∗

).

Proof. Let degi be the degree of the node corresponding to the variableXi in the
bucket-tree. Each bucketBi containsdegi functions and at mostw∗ different variables
with largest domain sizek. We can express the time complexity of computing a mes-
sage between two buckets asO(kw

∗

m · degi logm) (Proposition 2), yielding the total
time complexity ofelim-m-optof O(

∑n

i=1 k
w∗

m · degi logm). Assumingdegi ≤ deg

and since
∑n

i=1 degi ≤ 2n, we get the total time complexity ofO(nmkw
∗

logm).
The space complexity is dominated by the size of the messagesbetween buckets,

each containingm costs-to-go for each ofO(kw
∗

) tuples. Having at mostn such mes-
sages yields the total space complexity ofO(mnkw

∗

). ⊓⊔

5 Mini-Bucket Elimination for m-best Task

We next extend theelim-m-optto the mini-bucket scheme. We prove that the new algo-
rithm computes an m-best bound on the set of m-best solutionsof the original problem,
and describe how the m-best bound can be used to tighten the bound on the best solution
of an optimization task.

5.1 The Algorithm Definition

Algorithm mbe-m-opt(Algorithm 5) is a straightforward extension of MBE to solve
the m-best reasoning task, where the combination and marginalization operators are the

Algorithm 5 mbe-m-opt algorithm

Input: An optimization taskP = (X,D,A,F,
⊗

, max); An ordering of variableso =
{X1, . . . , Xn}; parameterz.

Output: bounds on each of the m-best solution costs and the corresponding assignments for the
expanded set of variables (i.e., node duplication).

1: Initialize: Generate an ordered partition of functionsf(t) = {f(t)} into buckets
B1, . . . ,Bn, whereBi contains all the functions whose highest variable in their scope is
Xi alongo.

2: Backward:
3: for i← n down to 1 (Processing bucketBi) do
4: Partition functions in bucketBi into {Qi1 , ..., Qil}, where eachQij has no more thanz

variables.
5: Generate cost messagesλij = sortmXi

(
⊗

f∈Qij

f)

6: Generate assignment using duplicate variables for each mini-bucket: xij =

argsortmXi
(
⊗

f∈Qij

f), concatenate with relevant elements of the previously generated

assignment messages
7: Place eachλij andxij in the largest index variable invar(Qij)
8: end for
9: Return: The set of all buckets, and the vector of m-best costs bounds in the first bucket.

ones defined over vector functions. The input of the algorithm is an optimization task
P , and its output is a collection of bounds (i.e., an m-best bound (see Definition 13)) on
the m best solutions ofP .

Theorem 7 (mbe-m-opt bound). Given a maximization taskP , mbe-m-optcomputes
an m-best upper bound on the m-best optimization taskPm.

The theorem is proved in the Appendix C

Theorem 8 (mbe-m-opt complexity). Given a maximization taskP and an integer
control parameterz, the time and space complexity ofmbe-m-optis O(mnkz log(m))
andO(mnkz), respectively, wherek is the maximum domain size andn is the number
of variables.

The theorem is proved in the Appendix D

5.2 Using the m-best Bound to Tighten the First-best Bound

Here is a simple, but quite fundamental observation: whenever upper or lower bounds
are generated by solving a relaxed version of a problem, the relaxed problem’s solution
set contains all the solutions to the original problem. We next discuss the ramification
of this observation.

Proposition 3. LetP be an optimization problem, and let̃C = {p̃1 ≥ p̃2 ≥, ...,≥ p̃m}
be the m best solutions ofP generated bymbe-m-opt. Letpopt be the optimal value of
P , and letj0 be the first index such that̃pj = popt, or else we assignj0 = m+1. Then,
if j0 > m, p̃m is an upper bound onpopt, which is as tight or tighter than all other
p̃1, ...p̃m−1. In particular p̃m is tighter than the bound̃p1.

Proof. Let C̃ = {p̃1 ≥ p̃2 ≥, ...,≥ p̃N1
} be the ordered set of valuations of all tuples

over the relaxed problem (with duplicate variables). By thenature of any relaxation,
C̃ must also contain all the probability values associated with solutions of the original
problemP denoted byC = {p1 ≥ · · · ≥ pN2

}. Therefore, ifj0 is the first index such
that p̃j0 coincides withpopt, then clearly for alli < j0, popt ≤ p̃i with p̃j−1 being the
tightest upper bound. Also, whenj0 > m we havep̃m ≥ popt. ⊓⊔

In other words, ifj ≤ m, we already have the optimal value, otherwise we can
usep̃m as our better upper bound. Such tighter bounds would be useful during search
algorithm such as A*. It is essential therefore to decide efficiently whether a bound
coincides with the exact optimal cost. Luckily, the nature of the MBE relaxation sup-
plies us with an efficient decision scheme, since, as mentioned above, it is known that
an assignment in which duplicates of variables take on identical values yields an exact
solution.

Proposition 4. Given a set of bounds produced bymbe-m-optp̃1 ≥ p̃2 ≥, ... ≥ p̃m,
deciding ifp̃j = popt can be done in polynomial time, more specifically inO(nm) steps.

Proof. mbe-m-optprovides both the bounds on the m-best costs and, for each bound, a
corresponding tuple maintaining assignments to duplicated variables. The first assign-
ment from these m-best bounds (going from largest to smallest) corresponding to a
tuple whose duplicate variables are assigned identical values is optimal. And if no such
tuple is observed, the optimal value is smaller thanp̃m. Since the above tests require
justO(nm) steps applied to m-best assignments already obtained in polytime, the claim
follows. ⊓⊔

6 Empirical Demonstrations

We evaluated the performance ofmbe-m-opton four sets of instances taken from UAI
2008 competition [7] and compared our algorithm with the BMMF scheme [23].

6.1 Weighted Constraint Satisfaction Problems

The first part of our empirical evaluation assumed solving the Weighted CSP task, i.e,
summation-minimization problem. We ranmbe-m-opton 20 WCSP instances using z-
bound equal to 10 and number of solutionsm equal to 10. Table 1 shows for each
instance the time in seconds it tookmbe-m-optto solve the 10-best problem and the
values of the lower bounds on each of the first ten best solutions. For each problem
instance we also show the number of variablesn, the largest domain sizek and the
induced widthw∗. Note that 9 of the instances have induced width less than thez-
bound=10 and thus are solved exactly. We see that as the indexnumber of solution goes
up, the value of the corresponding lower bound increases, getting closer to the exact
best solution. This demonstrates that there is a potential of improving the bound on the
optimal assignment using the m-best bounds as discussed in Sect 5.2. Figure 4 illustrates
this observation in graphical form, showing the dependencyof the lower bounds on the
solution index number for selected instances.

Instance) n k w∗ time Solution index number
(sec) 1 2 3 4 5 6 7 8 9 10

1502.uai 209 4 6 0.11 228.955109 228.9552 228.955292228.955414229.053192229.053284229.053406229.053497229.141693229.141785
29.uai 82 4 14 55.17 147.556778147.557236147.924484147.924942148.188965148.189423148.556671148.557129148.924393 148.92485
404.uai 100 4 19 3.96 147.056229148.001511148.056122149.001404149.056015 149.05603 150.001297150.001312150.055923151.001205
408.uai 200 4 35 80.27 436.551117 437.17923 437.549042437.550018437.550995438.177155438.178131438.179108438.547943438.549896
42.uai 190 4 26 61.16 219.98053 219.980713220.014938220.015106220.048157220.048325 220.08255 220.082733220.912811220.912827
503.uai 143 4 9 3.58 225.038483225.039368225.039398225.040283226.037476226.037918226.037933226.038361226.038376226.038391

GEOM30a3.uai 30 3 6 0.03 0.008100 1.008000 2.007898 2.007899 2.007899 3.007798 3.007798 3.007798 3.007799 4.007700
GEOM30a4.uai 30 4 6 0.19 0.008100 1.008000 2.007899 2.007899 3.007799 3.007799 4.007701 4.007701 4.007702 5.007601
GEOM30a5.uai 30 5 6 0.84 0.008100 1.008000 2.007898 2.007899 2.007899 3.007798 3.007798 3.007798 3.007799 4.007700
GEOM402.uai 40 2 5 0 0.007800 2.007599 2.007599 2.007600 3.007499 3.007499 3.007500 4.007398 4.007399 4.007400
GEOM403.uai 40 3 5 0.01 0.007800 2.007599 2.007599 2.007600 3.007500 4.007399 4.007399 4.0074 4.007400 4.007401
GEOM404.uai 40 4 5 0.11 0.007800 2.007598 2.007599 2.007599 2.007599 2.007599 3.007499 3.007499 3.007500 4.007400
GEOM405.uai 40 5 5 0.16 0.007800 2.007599 2.007600 2.007600 3.007500 4.007399 4.007400 4.007400 4.007401 4.007401
le450 5a 2.uai 450 2 293 6.06 0.571400 1.571300 1.571300 1.571300 1.571300 1.571300 1.571300 2.571198 2.571199 20.569397
myciel5g 3.uai 47 3 19 6.39 0.023600 1.023500 1.023500 2.023399 3.023299 4.023202 10.022601 11.022501 11.022502 11.022503
myciel5g 4.uai 47 4 19 129.54 0.023600 1.023500 1.023500 2.023397 2.023398 2.023398 2.023398 2.023399 3.023297 3.023298
queen55 3.uai 25 3 18 5.53 0.01600 1.015900 1.015901 2.015797 2.015797 2.015798 3.015694 3.015696 3.015697 3.015697
queen55 4.uai 25 4 18 122.26 0.01600 1.015900 1.015900 1.015901 1.015901 2.015796 2.015797 2.015797 2.015797 2.015790

Table 1: The lower bounds on the 10 best solutions found bymbe-m-optran with z-
bound=10 andm = 10. We also report the runtime in seconds, number of variablesn,
induced widthw∗ and largest domain sizek.

6.2 Most Probable Explanation Problems

For the second part of the evaluation thembe-m-optwas solving the MPE problem,
i.e. max-product task on three sets of instances: pedigrees, grids and mastermind. We
search form ∈ [1, 5, 10, 20, 50, 100, 200] solutions with z-bound equal to 10.
Pedigrees.The set of pedigrees contains 15 instances with several hundred variables
and induced width from 15 to 30. Table 2 contains the runtimesin seconds for each of
the number of solutionsm along with the parameters of the problems. Figure 5 presents
the runtime in seconds against the number of solutionsm for chosen pedigrees. Fig-
ure 6 demonstrates the difference between the way the runtime would scale according
to the theoretical worst case peformance analysis and the empirical runtimes obtained
for various values ofm. For three chosen instances we plot the experimental runtimes
in seconds against the number of solutionsm and the theoretical curve obtained by
multiplying the value of empirical runtime form = 1 by the factor ofm logm for m
equal to 5, 10, 50, 100 and 200. We see that the empirical curvelays much lower than
theoretical for all instances.

Figure 7 illustrates the potential usefulness of the upper bounds on m best solu-
tions as an approximation of the best solution. We plot in logarithmic scale the values
of upper bounds on the 100 best solutions found bymbe-m-optfor the z-bounds rang-
ing from 10 to 15. When using MBE as an approximation scheme, the common rule
of thumb is to run the algorithm with the highest z-bound possible. In general, higher
z-bound indeed corresponds to better accuracy, however increasing the parameter by a
small amount (one or two) does not provably produce better results, as we can see in
our example, wherembe-m-optwith z-bound=10 achieves better accuracy then the ones
with z-bound=11 and z-bound=12. Such behaviour can be explained by the differences
in partitioning of the buckets into mini-buckets due to the changing of the control pa-
rameterz, which greatly influences the accuracy of MBE results. On theother hand, the
upper bound on each next solution is always at least as good asthe previous one, thus
increase inm never leads to a worse bound and possibly will produce a better one.

!"#

$#

%#

&$#

&%#

$$#

&# $# "# '# (#)# %# *# +# &,#

!
"
#$
%
"
&
'(
"
)*
'

!"#$%"&'+&,-.'&$/0-1''

2")*'"3'*4-'5*4')"#$%"&'6)'6'3$&(%"&'"3')"#$%"&'+&,-.'5'

-.'(,/(0/$1203#456'(,7#86$7#9:6$+";# <=>3.-(?/"1203#456'%7#86"7#9:6&+;#

<=>3.-(?/'1203#456'%7#86'7#9:6&+;# @2..5(/(/"1203#456$(7#86"7#9:6&*;#

@2..5(/(/'1203#456$(7#86'7#9:6&*;#

Fig. 4: The change in the cost of thejth solution asj increases for chosen WCSP
instances. Results are obtained bymbe-m-optwith z-bound=10.

However, we acknowledge that the power ofmbe-m-optwith largerm for improving
the upper bound on the1st best solution is quite weak compared with using higher
z-bound. Although theory suggests that the time and memory complexity of mbe-m-
opt is exponential in the parameterz, while only depending as a factor ofm logm
on the number of solutions, our experiments show that in order to obtain a substantial
improvement of the bound it might be necessary to use high values ofm. For example,
for a problem with binary variablesmbe-m-optwith m = 1 and a certain z-boundz is
equivalent in terms of complexity tombe-m-optwith m = 3 and z-bound(z − 1). We
observed that the costs of the first and third solutions are quite close for the instances we
considered. In order to characterize when the use ofmbe-m-optwith higherm would
add power over increasing the z-bound the study of additional classes of instances is
required.

Grids. The set of grids contains 30 instances with 100 to 2500 binaryvariables and
tree-width from 12 to 50. The parameters of each instance canbe seen in Table 3 that
contains the runtimes in seconds for each value of number of solutionsm. Theory sug-
gests that the runtimes form = 1 andm = 100 should differ by at least two orders of
magnitude, however, we can see that in practicembe-m-optscales much better. Figure 8
shows graphically the dependency of the runtime in seconds on the number of solutions
m for 10 selected instances.

Mastermind. The mastermind set contains 15 instances with several thousand binary
variables and tree-width ranging from 19 to 37. The instances parameters can be seen in
Table 4, that shows how the run time changes with various numbers of best solutionsm.
We refrain from reporting and discussing the values of the upper bounds found, since
mastermind instances in question typically have a large setof solutions with the same
costs, making the values of the bounds not particular informative.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" '" #!" $!" '!" #!!" $!!"

!
"
#
$%
&#
'%

()"*#+%,-%&,.)!,(&%

/#012+##&3%+)(4!"#%5&%5%-)('!,(%,-%()"*#+%

,-%&,.)!,(&%"%

()*+,-))#"./0%%&1"20&1"340#'5" ()*+,-))#%"./0#!661"20%1"340%!5"

()*+,-))$!"./0&%61"20'1"340$!5" ()*+,-))$%"./0&!$1"20'1"340$!5"

()*+,-))%6"./0#!%$1"20'1"340$!5" ()*+,-))%7"./06$&1"20'1"340#85"

()*+,-))%9"./0#$6$1"20'1"340$!5" ()*+,-))&#"./0#!8$1"20$1"340$75"

Fig. 5: The run time (sec) for pedigree instances as a function of number of solutions
m. mbe-m-optran with the z-bound=10.

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

$" #" $!" %!" #!" $!!" %!!"

!
"
#
$%
&#
'%

()"*#+%,-%&,.)!,(&%"%

/0#%#"12+2'3.%3(4%50#,+#!'3.%&'3.2(6%,-%+)(!"#%7&#'8%

9250%()"*#+%,-%&,.)!,(&%"%-,+%1#426+##&%

'()*+,((&-"./0$!&%1"20#1"340%!5" '()*+,((&-"67(8,(9:;<",=/9>(":=,?("

'()*+,((@$"./0$!A%1"20%1"340%B5" '()*+,((@$"67(8,(9:;<",=/9>(":=,?("

'()*+,(($C"./0-C&1"20#1"340%!5" '()*+,(($C"67(8,(9:;<",=/9>(":=,?("

Fig. 6: The empirical and theoretical runtime scaling with number of solutionsm for
chosen pedigree instances. The theoretical curve is obtained by multiplying the exper-
imental runtime in seconds obtained form = 1 by the factor ofm logm for values
m = 5, 10, 20, 50, 100, 200.

!"#$%&'

!"##%('

!"##%&'

!"#&%('

!"#&%&'

"')' *' "#' "(' &"' &)' &*' ##' #(' $"' $)' $*')#')(' +"' +)' +*' (#' ((' ,"' ,)' ,*' *#' *('

!"
#$
%
&
'(
)

*"!+,"-).-/01)-+2304)

560)/070-/0-89)":);60)<=!+0)":)+7704)3"+-/)"-);60)>"!+,"-)

.-/01)-+2304)":)<=4."+>)?@3"+-/>A)70/.#400BC)

-!./0123"4' -!./0123""' -!./0123"&' -!./0123"#' -!./0123"$' -!./0123")'

Fig. 7: The upper bounds on the 100 best solutions (in log scale) found bymbe-m-opt
ran with z-bounds∈ [10, 11, 12, 13, 14, 15] for pedigree30 instance. The parameters of
the problem:n=1289,k=5,w∗=20.

0

10

20

30

40

50

60

70

80

1 5 10 20 50 100 200

!
"
#
$%
&#
'
%

()"*#+%,-%&,.)!,(&%

/+01&2%+)(3!"#%4&%4%-)('!,(%,-%()"*#+%,-%

&,.)!,(&%"%

!"#$$#%&'()*+*,&-.)/"0& !"#$*#%&'()%12,&-.)//0& !"#$%#%&'()2$%,&-.)/*0&

!"#$2#%&'()212,&-.)/20& !"#/"#%&'()!"",&-.)*$0& !"#/*#%&'()33%2,&-.)*+0&

!"#/+#%&'()3***,&-.)%%0& !"#*$#%&'()312*,&-.)2"0& !"#*2#%&'()$332,&-.)2+0&

Fig. 8: Selected binary grid instances:mbe-m-optrun time (sec) as a function of number
of solutionsm. The z-bound=10.

Instances n k w∗ Runtime (sec)
m=1 m=5 m=10 m=20 m=50 m=100 m=200

pedigree1 334 4 15 0.22 0.57 1.01 1.46 3.35 6.87 25.46
pedigree131077 3 30 0.64 1.06 1.32 1.65 2.77 5.06 23.80
pedigree19793 3 21 1.84 4.67 7.65 10.17 24.12 44.17 194.79
pedigree20437 5 20 0.54 1.22 1.83 2.34 5.00 9.43 50.36
pedigree23402 5 20 0.92 2.09 2.89 3.58 7.51 14.63 87.22
pedigree301289 5 20 0.38 0.66 1.00 1.26 2.48 4.58 19.53
pedigree311183 5 28 0.83 1.82 2.68 3.60 7.65 13.16 57.35
pedigree33798 4 24 0.38 0.76 1.11 1.23 2.60 4.72 27.81
pedigree371032 5 20 1.64 3.27 4.56 6.25 14.15 26.43 158.74
pedigree38724 5 16 4.52 11.77 19.63 28.87 73.21 127.65 552.30
pedigree391272 5 20 0.33 0.63 0.89 1.25 2.42 4.64 18.31
pedigree411062 5 28 1.45 3.33 4.43 5.56 11.67 20.59 120.79
pedigree51871 5 39 0.76 1.24 1.65 2.16 3.98 6.97 33.95
pedigree7 867 4 32 0.66 1.17 1.61 2.15 4.45 8.01 39.26
pedigree9 935 7 27 0.85 1.48 2.12 2.77 5.70 9.49 50.58

Table 2: Runtime (sec) ofmbe-m-opton pedigree instances searching for the following
number of solutions:m =∈ [1, 5, 10, 20, 50, 100, 200]with the z-bound=10. We report
the number of variablesn, largest domain sizek and induced widthw∗.

Instances n w∗ Runtime (sec)
m=1 m=5 m=10 m=20 m=50 m=100 m=200

50-15-5 144 15 0.07 0.15 0.22 0.30 0.68 1.27 5.68
50-16-5 256 21 0.07 0.17 0.25 0.33 0.68 1.34 6.30
50-17-5 289 22 0.11 0.24 0.33 0.45 1.00 1.87 8.70
50-18-5 324 24 0.14 0.29 0.35 0.52 1.05 2.04 9.13
50-19-5 361 25 0.13 0.29 0.41 0.54 1.15 2.24 9.87
50-20-5 400 27 0.18 0.33 0.44 0.59 1.20 2.28 10.65
75-16-5 256 21 0.08 0.17 0.21 0.27 0.56 1.09 5.92
75-17-5 289 22 0.10 0.21 0.27 0.36 0.75 1.46 7.83
75-18-5 324 24 0.12 0.23 0.30 0.40 0.79 1.58 8.34
75-19-5 361 25 0.14 0.26 0.34 0.47 0.94 1.86 9.22
75-20-5 400 27 0.18 0.30 0.38 0.52 0.97 1.80 9.78
75-21-5 441 28 0.20 0.36 0.44 0.60 1.07 2.03 10.91
75-22-5 484 30 0.25 0.40 0.53 0.68 1.28 2.49 12.40
75-23-5 529 31 0.29 0.47 0.56 0.71 1.36 2.44 13.11
75-24-5 576 32 0.34 0.51 0.65 0.81 1.49 2.87 14.58
75-25-5 625 34 0.41 0.62 0.74 0.93 1.71 3.18 16.08
75-26-5 676 36 0.49 0.73 0.90 1.17 2.06 3.86 19.06
90-20-5 400 27 0.17 0.27 0.35 0.44 0.81 1.57 9.26
90-21-5 441 28 0.02 0.35 0.41 0.52 0.97 1.91 10.72
90-22-5 484 30 0.25 0.41 0.47 0.61 1.10 2.08 11.85
90-23-5 529 31 0.29 0.46 0.55 0.66 1.17 2.27 12.63
90-24-5 576 33 0.34 0.49 0.60 0.74 1.36 2.61 13.98
90-25-5 625 34 0.42 0.58 0.70 0.83 1.50 2.80 15.26
90-26-5 676 36 0.49 0.71 0.85 1.01 1.87 3.42 18.36
90-30-5 900 42 0.93 1.25 1.40 1.59 2.60 4.62 24.26
90-34-5 1156 48 1.69 2.07 2.29 2.60 4.15 6.77 32.93
90-38-5 1444 55 2.86 3.26 3.57 3.98 5.72 9.27 41.33
90-42-5 1764 60 4.57 5.10 5.49 5.88 8.32 12.31 50.70
90-46-5 2116 68 6.81 7.42 7.97 8.33 11.09 16.06 64.88
90-50-5 2500 74 11.3 12.07 12.51 13.2 16.25 22.09 78.70

Table 3: Binary grid instances: runtime (sec) ofmbe-m-optfor the number of required
solutionsm ∈ [1, 5, 10, 20, 50, 100, 200] with the z-bound=10. We report the number
of variablesn and induced widthw∗.

6.3 Comparison with BMMF.

BMMF [23] is a Belief Propagation based algorithm which is exact when ran on junc-
tion trees and approximate if the problem graph has loops. Wecompared the perfor-
mance ofmbe-m-optand BMMF on randomly generated 10 by 10 binary grids. The al-
gorithms differ in the nature of the outputs: BMMF provides approximate solutions with

Instances n k w∗ Runtime (sec)
m=1 m=5 m=10 m=20 m=50 m=100 m=200

mastermind03 08 03-00061220 2 19 0.44 0.57 0.64 0.72 1.03 2.68 13.11
mastermind03 08 03-00071220 2 18 0.25 0.33 0.35 0.40 0.67 1.81 8.90
mastermind03 08 03-00141220 2 20 0.68 0.84 0.92 0.98 1.51 3.76 17.77
mastermind03 08 04-00042288 2 30 1.98 2.25 2.28 2.49 3.42 7.11 32.12
mastermind03 08 04-00052288 2 30 1.92 2.20 2.35 2.50 3.44 7.16 32.08
mastermind03 08 04-00102288 2 29 2.53 2.82 2.97 3.09 4.17 8.25 34.89
mastermind03 08 04-00112288 2 29 3.55 3.85 4.00 4.16 5.40 9.90 38.48
mastermind03 08 05-00013692 2 37 6.33 6.73 7.02 7.24 9.10 15.83 59.03
mastermind03 08 05-00053692 2 37 6.33 6.85 7.04 7.29 9.08 15.6 58.77
mastermind03 08 05-00093692 2 37 3.44 3.72 3.81 3.97 5.18 9.59 38.62
mastermind03 08 05-00103692 2 37 6.23 6.57 6.90 7.10 8.80 14.87 56.43
mastermind04 08 03-00001418 2 24 1.12 1.30 1.41 1.49 2.16 4.51 20.33
mastermind04 08 03-00131418 2 23 1.12 1.33 1.43 1.51 2.19 4.60 20.73
mastermind05 08 03-00041616 2 27 1.22 1.43 1.47 1.57 2.22 4.60 20.39
mastermind05 08 03-00061616 2 27 0.21 0.23 0.25 0.26 0.37 0.82 3.84

Table 4: The runtime (sec) ofmbe-m-optfor the mastermind instances. Number of re-
quired solutionsm ∈ [1, 5, 10, 20, 50, 100, 200], z-bound=10. We report the number of
variablesn, induced widthw∗, domain sizek.

no guarantees whilembe-m-optgenerates bounds on all the m-best solutions. Moreover,
the runtimes of the algorithms are not comparable since our algorithm is implemented in
C and BMMF in Matlab, which is inherently slower. For most instances thatmbe-m-opt
can solve exactly in under a second, BMMF takes more than 5 minutes.

Still, some information can be learned from viewing the two algorithms side by side
as is demonstrated by typical results in Figure 10. For two chosen instances we plot the
values of the 10-best bounds outputted by both algorithms inlogarithmic scale as a
function of the solution index. We also show the exact solutions found by the algorithm
elim-m-opt. We can see thatmbe-m-optwith the z-bound equal to 10 can produce upper
bounds that are considerably closer to the exact solutions than the results outputted by
BMMF. Admittedly, these experiments are quite preliminaryand not conclusive.

7 Related Work: the m-best Algorithms

The previous works on finding the m best solutions describe either exact or approximate
schemes. The exact algorithms can be characterized as inference based or search based,
as we elaborate next.

Earlier exact inference schemes.As mentioned above, one of the most influential
works among the algorithms solving the m-best combinatorial optimization problems is
the widely applicable iterative scheme developed by Lawler[18]. Given a problem with
n variables, the main idea of Lawler’s approach is to find the best solution first and then
to formulaten new problems that exclude the best solution found, but include all others.
Each one of the new problems is solved optimally yieldingn candidate solutions, the
best among which becomes the overall second best solution. The procedure is repeated
untilm best solutions are found. The complexity of the algorithm isO(nmT (n)), where
T (n) is the complexity of finding a single best solution.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

$" #" $!" %!" #!" $!!" %!!"

!
"
#
$%
&#
'%

()"*#+%,-%&,.)!,(&%"%

/0&1#+"2(3%2(&10('#&4%+)(5!"#%6&#'7%0&%0%-)('!,(%,-%

()"*#+%,-%&,.)!,(&%"%

()*+,-(./01!&1!21!&3!!!4"5/6$%%!7"896$:;" ()*+,-(./01!&1!21!&3!!!<"5/6$%%!7"896$2;"

()*+,-(./01!&1!21!&3!!$'"5/6$%%!7"896%!;" ()*+,-(./01!&1!21!'3!!!'"5/6%%227"896&!;"

()*+,-(./01!&1!21!'3!!!#"5/6%%227"896&!;" ()*+,-(./01!&1!21!'3!!$!"5/6%%227"896%:;"

()*+,-(./01!&1!21!'3!!$$"5/6%%227"896%:;"

Fig. 9:mbe-m-optrun time (sec) as a function of number of solutionsm for the master-
mind instances. The z-bound=10.

!"#$

!%&$

!%"$

!%'$

!%($

!%#$

!'&$

!'"$

!''$

!'($

!$ "$ %$ '$)$ ($ *$ #$ +$!&$

!"
#
$%

&
'
()

*"!+,"-).-/01)-+2304)

5%%6)78)230929":;)

!&,!&-!&$./01.1234$562789:!&$!&,!&-!&$6;;<$!&,!&-*$./01.1234$562789:!&$

!&,!&-*$6;;<$!&,!&-!&$23=.>?$@2?7=28$!&,!&-*$23=.>?$@2?7=28$

Fig. 10: Comparison ofmbe-m-optwith z-bounds 10 and BMMF on random 10x10
grids. The exact solutions obtained byelim-m-opt. The mbe-m-optprovides upper
bounds on the solutions, BMMF gives no guarantees whether itoutputs an upper or
a lower bound. In this particular example BMMF outputs lowerbounds on the exact
solutions.

Hamacher and Queyranne [15] built upon Lawler’s work and presented a method
that assumes the ability to directly find both the best and second best solutions to a
problem. After finding the two best solutions, a new problem is formulated, so that the
second best solution to the original problem is the best solution to the new one. The sec-
ond best solution for the new problem is found, to become the overall third best solution
and the procedure is repeated until allm solutions are found. The time complexity of
the algorithm isO(m ·T2(n)), whereT2(n) is the complexity of finding the second best
solution to the problem. The complexity of this method is always bounded from above
by that of Lawler, seeing as Lawler’s scheme can be used as an algorithm for finding
the second best task.

Lawler’s approach was applied by Nilsson to a join-tree [19]. Unlike Lawler or
Hamacher and Queyranne, who are solvingn problems from scratch in each iteration of
the algorithm, Nilsson is able to utilize the results of previous computations for solving
newly formulated problems. The worst case complexity of thealgorithm isO(m·T (n)),
whereT (n) is the complexity of finding a single solution by the max-flow algorithm. If
applied to a bucket-tree, Nilsson’s algorithm has run time of O(nkw

∗

+mn log(mn)+
mnk).

More recently Yanover and Weiss [23] extended Nilsson’s idea for the max-product
Belief Propagation algorithm, yielding a belief propagation approximation scheme for
loopy graphs, called BMMF, which also finds solutions iteratively and which we com-
pared against. At each iteration BMMF uses loopy Belief Propagation to solve two
new problems obtained by restricting the values of certain variables. When applied to
junction tree, it can function as an exact algorithm with complexityO(mnkw

∗

).

Two algorithms based on dynamic programming, similar to elim-m-opt, were de-
veloped by Serrousi and Golmard [21] and Elliot [12]. Unlikethe previously mentioned
works, Seroussi and Golmard don’t find solutions iteratively from 1st down tomth, but
extracts them solutions directly, by propagating them best partial solutions along a
junction tree that is pre-compiled. Given a junction tree with p cliques, each having at
mostdeg children, the complexity of the algorithm isO(m2p·kw

∗

deg). Nilsson showed
that for most problem configurations his algorithm is superior to the one by Seroussi
and Golmard.

Elliot [12] explored the representation of Valued And-Or Acyclic Graph, i.e., smooth
deterministic decomposable negation normal form (sd-DNNF) [6]. He propagates the
m best partial assignments to the problem variables along theDNNF structure which is
pre-compiled as well. The complexity of Elliot’s algorithmisO(nkw

∗

m log(m · deg)),
excluding the cost of constructing the sd-DNNF.

Earlier search schemes.The task of finding m best solutions is closely related to the
problem ofk shortest paths (KSP) which usually is solved using search. It is known
that many optimization problems can be transformed into problems of finding a path
in a graph. For example, the task of finding the lowest cost solution to a weighted
constraint satisfaction problem can be represented as a search for a shortest path in
a graph, whose vertices correspond to assignments of the original problem variables
and the lengths of edges are chosen according to the cost functions of the constraint
problem. A good survey of differentk shortest path algorithms can be found in [5]

and [13]. The majority of the algorithms developed for solving KSP assume that the
entire search graph is available as an input and thus are not directly applicable to the
tasks formulated over graphical models, since for most of them storing the search graph
explicitely is infeasible. One very recent exception is thework by Aljazzar and Leue
[2]. Their method, calledK∗, finds thek shortest paths while generating the search
graph ”on-the-fly” and thus can be potentially useful for solving problems defined over
graphical models. Assuming application to an AND/OR searchgraph [10] and given
a consistent heuristic,K∗ yields asymptotic worst-case time and space complexity of
O(n · kw

∗

·w∗ log(nk)+m), thus displaying the best scaling with the required number
of solutionsm compared to all schemes mentioned here.

¡¡¡¡¡¡¡ .mine In recent paper [9] we proposed two new algorithms,m-A* and m-
B&B, that extend best first and branch and bound search respectively to finding the
m best solutions, and their modifications for graphical models: m-AOBF andm-
AOBB. We showed thatm-A∗ is optimally efficient compared to any other algorithm
that searches the same search space using the same heuristicfunction. The theoretical
worse case time complexity form-AOBF is O(n · m · kw

∗

) and form-AOBB is
O(n · deg · m logmkw

∗

). However, we showed that the worst case analysis does not
provide an accurate picture of algorithms’ performance andin practice in most cases
they are considerably more efficient. ======= In a recent paper [9] we proposed two
new algorithms,m-A* andm-B&B, that extend best first and branch and bound search
respectively to finding the m-best solutions, and their modifications for graphical mod-
els:m-AOBF andm-AOBB. We showed thatm-A∗ is optimally efficient compared
to any other algorithm that searches the same search space using the same heuristic
function. The theoretical worse case time complexity form-AOBF is O(n ·m · kw

∗

)
and form-AOBB is O(n · deg · m logmkw

∗

). However, we showed that the worst
case analysis does not provide an accurate picture of algorithms’ performance and in
practice in most cases they are considerably more efficient.¿¿¿¿¿¿¿ .r231

We also presentedBE-Greedy-m-BF, a hybrid of variable elimination and best first
search scheme. The idea behind the method is to use Bucket Elimination algorithm to
calculate the costs of the best path from any node to the goal and use this information as
an exact heuristic for A* search.BE-Greedy-m-BFhas the time and space complexity
of O(nkw

∗

+nm) and, unlikeK∗, our scheme does not require complex data structures
or precomputed heuristics.

Earlier approximation schemes.In addition to BMMF, another extension of Nilsson’s
and Lawler’s idea that yields an approximation scheme is an algorithm called STRIPES
by [14]. They focus onm-MAP problem over binary Markov networks, solving each
new subproblem by an LP relaxation. The algorithm solves thetask exactly if the so-
lutions to all LP relaxations are integral, and provides an upper bound of each m MAP
assignments otherwise. In contrast, our algorithmmbe-m-optcan compute bounds over
any graphical model (not only binary) and over a variety of m-best optimization tasks.

Other related works. Very recently, [4] studied the computational complexity ofcom-
puting the next solution in some graphical models such as constraint and preference-
based networks. They showed that the complexity of this taskdepends on the structure

of the graphical model and on the strict order imposed over its solutions. It is easy to see
that our m-best task can be solved by iteratively finding the next solution untilm solu-
tions with different valuation have been found. However, since our m-best task defines
a partial order over solutions and it only considers solutions with different valuation,
further study is needed to determine if the tractability of our problem is the same as that
of the problem of finding the next solution.

8 Conclusions

We presented a formulation of the m-best reasoning task within a framework of semir-
ing, thus making all existing inference and search algorithms immediately applicable
for the task via the definition of the combination and elimination operators. We then
focused on inference algorithms and provided a bucket elimination algorithm,elim-m-
opt, for the task. Analysis of the algorithm’s performance and relation with earlier work
is provided.

We emphasize that the practical significance of the algorithm is primarily for ap-
proximation through the mini-bucket scheme, since other exact schemes have better
worst-case performance.

Furthermore, it could also lead to loopy propagation message-passing schemes that
are highly popular for approximations in graphical models.For example,elim-m-opt
can be extended into a loopy max-prod for the m-best task, which would differ from
the scheme approach by Yanover and Weiss that uses loopy max-prod for solving a
sequence of optimization problems in the style of Lawler’s approach.

Our empirical analysis demonstrates thatmbe-m-optscales as a function ofm bet-
ter than worst-case analysis predict. Comparison with other exact and approximation
algorithms is left for future work.

AcknowledgmentsThis work was partially supported by NSF grants IIS-0713118and
IIS-1065618, NIH grant 5R01HG004175-03, and Spanish CECyTproject TIN2009-
13591-C02-0.

A Proof of Theorem 3

LetS, T ,R be arbitrary elements ofAm. We prove one by one the required conditions.

– commutativity of⊗m. By definition,S ⊗m T = Sortedm{a⊗ b | a ∈ S, b ∈ T }.
Since⊗ is commutative, the previous expression is equal toSortedm{b⊗ a | b ∈
T, a ∈ S} = T ⊗m S.

– associativity of⊗m. We have to prove that(S ⊗m T)⊗m R = S ⊗m (T ⊗m R).
Suppose that the previous equality does not hold. Then, it would imply that:

i. there may exist an elementa ∈ (S ⊗m T)⊗m R, s.t.a 6∈ S⊗m (T ⊗m R); or,
ii. there may exist an elementa ∈ S ⊗m (T ⊗m R), s.t.a 6∈ (S ⊗m T)⊗m R.

We show that both cases are impossible.
Consider the first case. Let{a1, . . . , am} = S ⊗m (T ⊗m R) where∀1≤i<m, ai >

am. Sincea 6∈ S ⊗m (T ⊗m R), it means thatam > a. Elementa comes from the

combination of three elementsa = (s ⊗ t) ⊗ r. Each elementai comes from the
combination of three elementsai = sai

⊗ (tai
⊗ rai

). By associativity of operator
⊗, ai = (sai

⊗ tai
)⊗ rai

. Then,

• If ∀1≤i≤m, sai
⊗ tai

∈ S ⊗m T , then(sai
⊗ tai

) ⊗ rai
> (s ⊗ t) ⊗ r for all

1 ≤ i ≤ m, anda 6∈ (S ⊗m T)⊗m R, which contradicts the hypothesis.
• If ∃1≤j≤m, saj

⊗taj
6∈ S⊗mT , then there exists an elements′⊗t′ > saj

⊗taj
.

By monotonicity of>, (s′ ⊗ t′)⊗ raj
> (saj

⊗ taj
)⊗ raj

. As a consequence
(sam

⊗tam
)⊗ram

6∈ (S⊗mT)⊗mR. Sinceam > a, thena 6∈ (S⊗mT)⊗mR,
which contradicts the hypothesis.

The proof for the second case is the same as above, but interchanging the role ofa
and{a1, . . . , am}, andS andR.

– commutativity ofsortm. By definition,sortm{S, T } = Sortedm{S ∪ T }. Since
set union is commutative,Sortedm{S ∪ T } = Sortedm{T ∪ S} which is by
definitionsortm{T, S}.

– associativity ofsortm. By definition,sortm{sortm{S, T }, R} = Sortedm{Sortedm{S∪
T } ∪ R}, and sortm{S, sortm{T,R}} = Sortedm{S ∪ Sortedm{T ∪ R}}.
Clearly, the two expressions are equivalent toSortedm{S ∪ T ∪R}.

– ⊗m distributes oversortm. Let us proceed by induction:
1. Base case. Whenm = 1, by Proposition 1, the valuation structure(Am,⊗m, sortm)

is a semiring and, as a consequence,⊗m distributes oversortm.
2. Inductive step. Up tom, operator⊗m distributes oversortm, and let{a1, . . . , am}

be its result. We have to prove thatS⊗m+1(sortm+1{T,R}) = sortm+1{S⊗m+1

T, S⊗m+1R}. By definition of the operators, the result is the same ordered set
of elements{a1, . . . , am} plus one elementam+1. Suppose that⊗m+1 does
not distribute oversortm+1. Then, it would imply that:

i. Elementam+1 ∈ S⊗m+1(sortm+1{T,R}), butam+1 6∈ sortm+1{S⊗m+1

T, S ⊗m+1 R}; or,
ii. Elementam+1 6∈ S⊗m+1(sortm+1{T,R}), butam+1 ∈ sortm+1{S⊗m+1

T, S ⊗m+1 R}

We show that both cases are impossible.
Consider the first case. Sinceam+1 6∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R}, it
means that∃a′ ∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R} such thata′ > am+1.
Elementa′ comes from the combination of two elementsa′ = s′ ⊗ u′, where
s′ ∈ S andu′ ∈ T or u′ ∈ R. Then:
• If u′ ∈ sortm+1{T,R}, then sincea′ > am+1, by definition of⊗m+1,
am+1 6∈ S ⊗m+1 (sortm+1{T,R}), which contradicts the hypothesis.

• If u′ 6∈ sortm+1{T,R}, then∃u′′ ∈ sortm+1{T,R} such thatu′′ > u′.
By monotonicity of the order,u′′ ⊗ s′ > u′ ⊗ s′ and, by transitivity,u′′ ⊗
s′ > am+1. By definition of⊗m+1, am+1 6∈ S ⊗m+1 (sortm+1{T,R}),
which contradicts the hypothesis.

Consider now the second case. Sinceam+1 6∈ S ⊗m+1 (sortm+1{T,R}), it
means that∃a′ ∈ S ⊗m+1 (sortm+1{T,R}) such thata′ > am+1. Elementa′

comes from the combination of two elementsa′ = s′ ⊗ u′, wheres′ ∈ S and
u′ ∈ T or u′ ∈ R. Then:
• If u′ ∈ T :

∗ anda′ ∈ S ⊗m+1 T . If a ∈ S ⊗m+1 T , sincea′ > am+1 and by
definition of⊗m+1, am+1 6∈ sortm+1{S⊗m+1T, S⊗m+1R}, which
contradicts the hypothesis. Ifa 6∈ S ⊗m+1 T , sincea′ > am+1 and
by definition ofsortm+1, am+1 6∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R},
which contradicts the hypothesis.

∗ anda′ 6∈ S ⊗m+1 T . Then,∃a′′ ∈ S ⊗m+1 T such thata′′ > a′.
By transitivity of the order,a′′ > am+1. Then, either by definition
of ⊗m+1 or by definition ofsortm+1, am+1 6∈ sortm+1{S ⊗m+1

T, S ⊗m+1 R}, which contradicts the hypothesis.
• If u′ ∈ R. The reasoning is the same as above, but interchanging the role

of T andR.
⊓⊔

B Proof of Theorem 4

By definition ofsortm,

sortX
m{

⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

(
⊗

f∈Fm
f(t))}

By definition ofFm,

sortX
m{

⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

(
⊗

f∈F
{f(t)})}

Since all{f(t)} are singletons, then{f(t)} ⊗m {g(t)} = {f(t)⊗ g(t)}. Then,

sortX
m{

⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

{
⊗

f∈F

f(t)}}

By definition ofC,

sortX
m{

⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

{C(t)}}

By definition of the set union,

sortX
m{

⊗

f∈Fm
f} = Sortedm{{C(t) | t ∈ DX}}

By definition of the set of ordered m-best elements,

sortX
m{

⊗

f∈Fm
f} = {C(t1), . . . , C(tm)}

⊓⊔

C Proof of Theorem 7

Let Cm = {C(t1), . . . , C(tm)} be the m-best solutions ofP . Let P̃ be the relaxed
version ofP solved bymbe-m-opt, and letC̃m = {C̃(t′1), . . . , C̃(t′m)} be its m-best
solutions. We have to prove that (i)̃Cm is an m-best upper bound ofCm; and (ii) mbe-
m-opt(P) computesC̃m.

i. It is clear thatC̃m = Sortedm{Cm∪W}, whereW is the set of solutions for which
duplicated variables are assigned different domain values. Therefore, by definition,
C̃m is an m-best bound ofCm.

ii. As shown in Theorem 5, elim-m-opt(̃P) computesC̃m, and by definition of mini-
bucket elimination, elim-m-opt(̃P) = mbe-m-opt(P).Therefore, mbe-m-opt(P) com-
putesC̃m.

⊓⊔

D Proof of Theorem 8

Given a control parameterz, each mini-bucket contains at mostz variables. Letdegi be
the number of functions in the bucketBi of variableXi, i.e., the degree of the node in the
original bucket tree. Letli be the number of mini-buckets created fromBi and let mini-
bucketQij containdegij functions, where

∑li
j=1 degij = degi. The time compexity of

computing a message between two mini-buckets is bounded byO(kzm · degij logm)
(Proposition 2) and the complexity of computing all messages in mini-buckets cre-
ated out ofBi is O(

∑li
j=1 k

zm · degij logm) = O(kzm · degi logm). Taking into
account that

∑n

i=1 degi ≤ 2n, we obtain the total runtime complexity ofmbe-m-optof
∑n

i=1 k
zm · degi logm) = O(nmkz logm). ⊓⊔

Acknowledgement

This work was supported by NSF grant IIS-1065618.

References

1. S.M. Aji and R.J. McEliece. The generalized distributivelaw. IEEE Transactions on Infor-
mation Theory, 46(2):325–343, 2000.

2. H. Aljazzar and S. Leue. K : A heuristic search algorithm for finding the k shortest paths.
Artificial Intelligence, 175:21292154, 2011.

3. S. Bistarelli, H. Faxgier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based
CSPs and valued CSPs: Basic properties and comparison.Over-Constrained Systems, pages
111–150, 1996.

4. R. I. Brafman, E. Pilotto, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. The next
best solution. InProceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, 2011.

5. A.W. Brander and M.C. Sinclair. A comparative study of k-shortest path algorithms. In
Proceedings 11th UK Performance Engineering Workshop for Computer and Telecommuni-
cations Systems, pages 370–379, 1995.

6. A. Darwiche. Decomposable negation normal form.Journal of the ACM (JACM), 48(4):608–
647, 2001.

7. A. Darwiche, R. Dechter, A. Choi, V. Gogate, and L. Otten. Re-
sults from the probablistic inference evaluation of UAI08,a web-report in
http://graphmod.ics.uci.edu/uai08/Evaluation/Report. In: UAI applications workshop,
2008.

8. R. Dechter. Bucket elimination: A unifying framework forreasoning.Artificial Intelligence,
113(1):41–85, 1999.

9. R. Dechter and N. Flerova. Heuristic search for m best solutions with applications to graph-
ical models. In11th Workshop on Preferences and Soft Constraints, page 46, 2011.

10. R. Dechter and R. Mateescu. And/or search spaces for graphical models.Artificial Intelli-
gence, 171(2-3):73–106, 2007.

11. R. Dechter and I. Rish. Mini-buckets: A general scheme for bounded inference.Journal of
the ACM (JACM), 50(2):107–153, 2003.

12. P.H. Elliott. Extracting the K Best Solutions from a Valued And-Or Acyclic Graph. Master’s
thesis, Massachusetts Institute of Technology, 2007.

13. D. Eppstein. Finding the k shortest paths. InProceedings 35th Symposium on the Founda-
tions of Computer Science, pages 154–165. IEEE Comput. Soc. Press, 1994.

14. M. Fromer and A. Globerson. An LP View of the M-best MAP problem.Advances in Neural
Information Processing Systems, 22:567–575, 2009.

15. H.W. Hamacher and M. Queyranne. K best solutions to combinatorial optimization prob-
lems.Annals of Operations Research, 4(1):123–143, 1985.

16. K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifyingcluster-tree decompositions for
automated reasoning.Artificial Intelligence Journal, 2005.

17. J. Kohlas and N. Wilson. Semiring induced valuation algebras: Exact and approximate local
computation algorithms.Artif. Intell., 172(11):1360–1399, 2008.

18. E.L. Lawler. A procedure for computing the k best solutions to discrete optimization prob-
lems and its application to the shortest path problem.Management Science, 18(7):401–405,
1972.

19. D. Nilsson. An efficient algorithm for finding the M most probable configurations in proba-
bilistic expert systems.Statistics and Computing, 8(2):159–173, 1998.

20. J. Pearl.Probabilistic reasoning in intelligent systems: networksof plausible inference. Mor-
gan Kaufmann, 1988.

21. B. Seroussi and J.L. Golmard. An algorithm directly finding the K most probable configu-
rations in Bayesian networks.International Journal of Approximate Reasoning, 11(3):205–
233, 1994.

22. G. R. Shafer and P.P. Shenoy. Probability propagation.Anals of Mathematics and Artificial
Intelligence, 2:327–352, 1990.

23. C. Yanover and Y. Weiss. Finding the M Most Probable Configurations Using Loopy Belief
Propagation. InAdvances in Neural Information Processing Systems 16. The MIT Press,
2004.

