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Abstract

The paper focuses on developing effective importance sampling algorithms for mixed
probabilistic and deterministic graphical models. The use of importance sampling in
such graphical models is problematic because it generates many useless zero weight
samples which are rejected yielding an inefficient sampling process. To address this
rejection problem, we propose the SampleSearch scheme that augments sampling with
systematic constraint-based backtracking search. We characterize the bias introduced
by the combination of search with sampling, and derive a weighting scheme which yields
an unbiased estimate of the desired statistics (e.g. probability of evidence). When com-
puting the weights exactly is too complex, we propose an approximation which has a
weaker guarantee of asymptotic unbiasedness. We present results of an extensive empir-
ical evaluation demonstrating that SampleSearch outperforms other schemes in presence
of significant amount of determinism.

1. Introduction

The paper investigates importance sampling algorithms for answering weighted count-
ing and marginal queries over mixed probabilistic and deterministic networks (Dechter
and Larkin, 2001; Larkin and Dechter, 2003; Dechter and Mateescu, 2004; Mateescu and
Dechter, 2009). The mixed networks framework treats probabilistic graphical models
such as Bayesian and Markov networks (Pearl, 1988), and deterministic graphical mod-
els such as constraint networks (Dechter, 2003) as a single graphical model. Weighted
counts express the probability of evidence of a Bayesian network, the partition function
of a Markov network and the number of solutions of a constraint network. Marginals
seek the marginal distribution of each variable, also called as belief updating or posterior
estimation in a Bayesian or Markov network.
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It is straightforward to design importance sampling algorithms (Marshall, 1956;
Rubinstein, 1981; Geweke, 1989) for approximately answering counting and marginal
queries because both are variants of summation problems for which importance sam-
pling was designed. Weighted counts is the sum of a function over some domain while
a marginal is a ratio between two sums. The main idea is to transform a summation
into an expectation using a special distribution called the proposal (or importance) dis-
tribution from which it would be easy to sample. Importance sampling then generates
samples from the proposal distribution and approximates the expectation (also called
the true average or the true mean) by a weighted average over the samples (also called
the sample average or the sample mean). The sample mean can be shown to be an
unbiased estimate of the original summation, and therefore importance sampling yields
an unbiased estimate of the weighted counts. For marginals, importance sampling has to
compute a ratio of two unbiased estimates yielding an asymptotically unbiased estimate
only.

In presence of hard constraints or zero probabilities, however, importance sampling
may suffer from the rejection problem. The rejection problem occurs when the proposal
distribution does not faithfully capture the constraints in the mixed network. Conse-
quently, many samples generated from the proposal distribution may have zero weight
and would not contribute to the sample mean. In extreme cases, the probability of
generating a rejected sample can be arbitrarily close to one yielding completely wrong
estimates of both weighted counts and marginals in practice.

In this paper, we propose a sampling scheme called SampleSearch to remedy the rejec-
tion problem. SampleSearch combines systematic backtracking search with Monte Carlo
sampling. In this scheme, when a sample is supposed to be rejected, the algorithm con-
tinues instead with randomized backtracking search until a sample with non-zero weight
is found. This problem of generating a non-zero weight sample is equivalent to the prob-
lem of finding a solution to a satisfiability (SAT) or a constraint satisfaction problem
(CSP). SAT and CSPs are NP-Complete problems and therefore the idea of generating
just one sample by solving an NP-Complete problem may seem inefficient. However,
recently SAT/CSP solvers have achieved unprecedented success and are able to solve
some large industrial problems having as many as a million variables within a few sec-
onds2. Therefore, solving a constant number of NP-complete problems to approximate
a #P-complete problem such as weighted counting is no longer unreasonable.

We show that SampleSearch generates samples from a modification of the proposal
distribution which is backtrack-free. The backtrack-free distribution can be obtained
by removing all partial assignments which lead to a zero weight sample. Namely, the
backtrack-free distribution is zero whenever the target distribution from which we wish
to sample is zero. We propose two schemes to compute the backtrack-free probability
of the generated samples which is required for computing the sample weights. The
first is a computationally intensive method which involves invoking a CSP or a SAT
solver O(n× d) times where n is the number of variables and d is the maximum domain
size. The second scheme approximates the backtrack-free probability by consulting

2See results of SAT competitions available at http://www.satcompetition.org/.
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information gathered during SampleSearch’s operation. This latter scheme has several
desirable properties: (i) it runs in linear time, (ii) it yields an asymptotically unbiased
estimate and (iii) it can provide upper and lower bounds on the exact backtrack-free
probability.

Finally, we present empirical evaluation demonstrating the power of SampleSearch.
We implemented SampleSearch on top of IJGP-wc-IS (Gogate and Dechter, 2005), a
powerful importance sampling technique which uses a generalized belief propagation
algorithm (Yedidia, Freeman, and Weiss, 2004) called Iterative Join Graph propagation
(IJGP) (Dechter, Kask, and Mateescu, 2002; Mateescu, Kask, Gogate, and Dechter,
2009) to construct a proposal distribution and w-cutset (Rao-Blackwellised) sampling
(Bidyuk and Dechter, 2007) to reduce the variance. The search was implemented using
the minisat SAT solver (Sorensson and Een, 2005). We conducted experiments on three
tasks: (a) counting models of a SAT formula (b) computing the probability of evidence in
a Bayesian network and the partition function of a Markov network, and (c) computing
posterior marginals in Bayesian and Markov networks.

For model counting, we compared against three approximate algorithms: Approx-
Count (Wei, Erenrich, and Selman, 2004), SampleCount (Gomes, Hoffmann, Sabharwal,
and Selman, 2007) and Relsat (Roberto J. Bayardo and Pehoushek, 2000) as well as with
IJGP-wc-IS, our vanilla importance sampling scheme on three classes of benchmark in-
stances. Our experiments show that on most instances, given the same time bound
SampleSearch yields solution counts which are closer to the true counts by a few orders
of magnitude compared with the other schemes. It is clearly better than IJGP-wc-
IS which failed on all benchmark SAT instances and was unable to generate a single
non-zero weight sample in ten hours of CPU time.

For the problem of computing the probability of evidence in a Bayesian network, we
compared SampleSearch with Variable Elimination and Conditioning (VEC) (Dechter,
1999), an advanced generalized belief propagation scheme called Edge Deletion Belief
Propagation (EDBP) (Choi and Darwiche, 2006) as well as with IJGP-wc-IS on linkage
analysis (Fishelson and Geiger, 2003) and relational (Chavira, Darwiche, and Jaeger,
2006) benchmarks. Our experiments show that on most instances the estimates output
by SampleSearch are more accurate than those output by EDBP and IJGP-wc-IS. VEC
solved some instances exactly, however on the remaining instances it was substantially
inferior.

For the posterior marginal task, we experimented with linkage analysis benchmarks,
with partially deterministic grid benchmarks, with relational benchmarks and with lo-
gistics planning benchmarks. Here, we compared the accuracy of SampleSearch against
three other schemes: the two generalized belief propagation schemes of Iterative Join
Graph Propagation (Dechter et al., 2002; Mateescu et al., 2009) and Edge Deletion Belief
Propagation (Choi and Darwiche, 2006) and an adaptive importance sampling scheme
called Evidence Pre-propagated Importance Sampling (EPIS) (Yuan and Druzdzel, 2006).
Again, we found that except for the grid instances, SampleSearch consistently yields es-
timates having smaller error than the other schemes.

Based on this large scale experimental evaluation, we conclude that SampleSearch
consistently yields very good approximations. In particular, on large instances which
have a substantial amount of determinism, SampleSearch yields an order of magnitude

3



improvement over state-of-the-art schemes.
The paper is based on earlier conference papers (Gogate and Dechter, 2007a,b). The

present article contains more detailed and general analysis, full proofs, new bounding
approximations (described in Section 4.2.1), as well as new experimental results.

The rest of the paper is organized as follows. In Section 2, we present notation and
preliminaries on graphical models and importance sampling. In Section 3, we present
the rejection problem and show how to overcome it using the backtrack-free distribution.
Section 4 describes the SampleSearch scheme and various improvements. In Section 5,
we present experimental results and we conclude in Section 6.

2. Preliminaries and Background

We denote variables by upper case letters (e.g. X, Y, . . .) and values of variables by
lower case letters (e.g. x, y, . . .). Sets of variables are denoted by bold upper case letters,
(e.g. X = {X1, . . . , Xn}) while sets of values are denoted by bold lower case letters (e.g.
x = {x1, . . . , xn}). X = x denotes an assignment of value to a variable while X = x
denotes an assignment of values to all variables in the set. We denote by Di the set of
possible values of Xi (also called as the domain of Xi). We denote the projection of an
assignment x to a set S ⊆ X by xS.∑

x∈X denotes the sum over the possible values of variables in X, namely,
∑

x1∈X1

× ∑
x2∈X2

× . . . × ∑
xn∈Xn

. The expected value EQ[X ] of a random variable X with
respect to a distribution Q is defined as: EQ[X ] =

∑
x∈X xQ(x). The variance VQ[X ] of

X is defined as: VQ[X ] =
∑

x∈X(x− EQ[X ])2.
We denote functions by upper case letters (e.g. F , C etc.), and the scope (set of

arguments) of a function F by scope(F ). Frequently, given an assignment y to a superset
Y of scope(F ), we will abuse notation and write F (yscope(F )) as F (y).

2.1. Markov, Bayesian and Constraint Networks

Definition 1 (Graphical Models and Markov networks). A discrete graphical
model, denoted by G (or a Markov network, denoted by T ) is a 3-tuple 〈X,D,F〉 where
X = {X1, . . . , Xn} is a finite set of variables, D = {D1, . . . ,Dn} is a finite set of
domains where Di is the domain of variable Xi and F = {F1, . . . , Fm} is a finite set
of discrete-valued functions (or potentials). Each function Fi is defined over a subset
Si ⊆ X of variables. A graphical model G represents a joint distribution PG over the
variables X, given by:

PG(x) =
1

Z

m∏

i=1

Fi(x) where Z =
∑

x∈X

m∏

i=1

Fi(x)

where Z is the normalization constant and is often referred to as the partition function.

The primary queries over Markov networks are computing the posterior distribution
(marginals) over all variables Xi ∈ X and finding the partition function. Each graphical
model is associated with a primal graph which captures the dependencies present in the
model.
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Definition 2 (Primal Graph). The primal graph of a graphical model G = 〈X,D,F〉
is an undirected graph G(X,E) which has variables of G as its vertices and an edge
between two variables that appear in the scope of a function F ∈ F.

Definition 3 (Bayesian or Belief Networks). A Bayesian network is a graphical
model B = 〈X,D,G,P〉 where G = (X,E) is a directed acyclic graph over the set of
variables X. The functions P = {P1, . . . , Pn} are conditional probability tables Pi =
P (Xi|pai), where pai = scope(Pi) \ {Xi} is the set of parents of Xi in G. The primal
graph of a Bayesian network is also called the moral graph. When the entries of the
CPTs are 0 and 1 only, they are called deterministic or functional CPTs. An evidence
E = e is an instantiated subset of variables.

A Bayesian network represents the joint probability distribution given by PB(X) =∏n

i=1 P (Xi|pai) and therefore can be used to answer any query defined over the joint
distribution. In this paper, we consider two queries: (a) computing the probability of
evidence P (E = e) and (b) computing the posterior marginal distribution P (Xi|E = e)
for each variable Xi ∈ X \ E.

Definition 4 (Constraint Networks). A constraint network is a graphical model R =
〈X,D,C〉 where C = {C1, . . . , Cm} is a set of constraints. Each constraint Ci is a 0/1
function defined over a subset of variables Si, called its scope. Given an assignment
Si = si, a constraint is satisfied if Ci(si) = 1. A constraint can also be expressed by a
pair 〈Ri,Si〉 where Ri is a relation defined over the variables Si and contains all tuples
Si = si for which Ci(si) = 1. The primal graph of a constraint network is called the
constraint graph.

The primary query over a constraint network is to decide whether it has a solution
i.e. to find an assignment X = x to all variables such that all constraints are satisfied or
to prove that no such assignment exists. Another important query is that of counting
the number of solutions of the constraint network. A constraint network represents a
uniform distribution over its solutions.

Propositional Satisfiability

A special case of a constraint network is the propositional satisfiability problem (SAT).
A propositional formula F is an expression defined over variables having binary domains:
{False, T rue} or {0, 1}. Every Boolean formula can be converted into an equivalent
formula in conjunctive normal form (CNF). A CNF formula F is a conjunction (denoted
by ∧) of clauses Cl1 ∧ . . . ∧ Clt (denoted as a set {Cl1, . . . , Clt}) where a clause is a
disjunction (denoted by ∨) of literals (literals are variables or their negations). For
example, Cl = (P ∨ ¬Q ∨ ¬R) is a clause over three variables P , Q and R, and P , ¬Q
and ¬R are literals. A clause is said to be satisfied if one of its literals is assigned the
value True or 1. A solution or a model of a formula F is an assignment of values to
all variables such that all clauses are satisfied. Common queries in SAT are satisfiability
i.e. finding a model or proving that none exists, and model counting i.e. counting the
number of models or solutions.
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2.2. Mixed Networks

Throughout the paper, we will use the framework of mixed networks defined in
(Dechter and Mateescu, 2004; Mateescu and Dechter, 2009). Mixed networks represent
all the deterministic information explicitly in the form of constraints facilitating the
use of constraint processing techniques developed over the past three decades for effi-
cient probabilistic inference. This framework includes Bayesian, Markov and constraint
networks as a special case. Therefore, many inference tasks become equivalent when
we consider a mixed network view, allowing a unifying treatment of all these problems
within a single framework. For example, problems such as computing the probability of
evidence in a Bayesian network, the partition function in a Markov network and count-
ing solutions of a constraint network can be expressed as weighted counting over mixed
networks.

Definition 5 (Mixed Network). A mixed network is a four-tuple M = 〈 X, D, F,
C〉 where X = {X1, . . . , Xn} is a set of random variables, D = {D1, . . . ,Dn} is a set of
domains where Di is the domain of Xi, F = {F1, , . . . , Fm} is a set of non-negative real
valued functions where each Fi is defined over a subset of variables Si ⊆ X (its scope)
and C = {C1, . . . , Cp} is a set of constraints (or 0/1 functions). A mixed network
represents a joint distribution over X given by:

PM(x) =

{
1
Z

∏m
i=1 Fi(x) if x ∈ sol(C)

0 otherwise

where sol(C) is the set of solutions of C and Z =
∑

x∈sol(C)

∏m
i=1 Fi(x) is the normalizing

constant. The primal graph of a mixed network has variables as its vertices and an
edge between any two variables than appear in the scope of a function F ∈ F or a
constraint C ∈ C.

We can define several queries over the mixed network. In this paper, however we will
focus on the following two queries:

Definition 6 (The Weighted Counting Task). Given a mixed network M = 〈 X,
D, F, C〉, the weighted counting task is to compute the normalization constant given by:

Z =
∑

x∈Sol(C)

m∏

i=1

Fi(x) (1)

Equivalently, if we represent the constraints in C as 0/1 functions, we can rewrite Z as:

Z =
∑

x∈X

m∏

i=1

Fi(x)

p∏

j=1

Cj(x) (2)

We will refer to Z as weighted counts.

Definition 7 (Marginal task). Given a mixed network M = 〈X,D,F,C〉, the marginal
task is to compute the marginal distribution of each variable. Namely, for each variable
Xi and xi ∈ Di, compute:

P (xi) =
∑

x∈X

δxi
(x)PM(x), where δxi

(x) =

{
1 if Xi is assigned the value xi in x

0 otherwise
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To be able to use the constraint portion of the mixed network more effectively, for
the remainder of the paper, we require that all zero probabilities in the mixed network
are also represented as constraints. It is easy to define such a network as we show below.

Definition 8 (Modified Mixed network). Given a mixed network M = 〈X,D,F,C〉,
a modified mixed network is a four-tuple M′ = 〈X,D,F,C′〉 where C′ = C ∪ {Hi}mi=1

where

Hi(Si = si) =

{
0 if Fi(si) = 0
1 Otherwise

(3)

Hi can also be expressed as a relation. The set of constraints C′ is called the flat

constraint network of the probability distribution PM.

Clearly, the modified mixed network M ′ and the original mixed network M are
equivalent in that PM′ = PM. It is easy to see that the weighted counts over a mixed
network specialize to (a) the probability of evidence in a Bayesian network, (b) the
partition function in a Markov network and (c) the number of solutions of a constraint
network. The marginal task expresses the task of computing posterior marginals in a
Bayesian or Markov network.

2.3. Importance Sampling for approximating the weighted counts and marginals

Importance sampling (Marshall, 1956; Geweke, 1989) is a general Monte Carlo sim-
ulation technique which can be used for estimating various statistics of a given target
distribution. Since it is often hard to sample from the target distribution, the main idea
is to generate samples from another easy-to-simulate distribution Q called the proposal
(or trial or importance) distribution and then estimate various statistics over the target
distribution by a weighted sum over the samples. The weight of a sample is the ratio
between the probability of generating the sample from the target distribution and its
probability based on the proposal distribution. In this subsection, we describe how the
weighted counts and posterior marginals can be approximated via importance sampling.
For more details on the theoretical results presented in this subsection, we refer the
reader to (Rubinstein, 1981; Liu, 2001).

We assume throughout the paper that the proposal distribution is specified in the
product form along a variable ordering o = (X1 , . . . , Xn) as:

Q(X) =
n∏

i=1

Qi(Xi|X1, . . . , Xi−1).

Q is therefore specified as a Bayesian network with CPTs Q = {Q1, . . . , Qn} along
the ordering o. We can generate a full sample from this product form specification as
follows. For i = 1 to n, sample Xi = xi from the conditional distribution Q(Xi|X1 =
x1, . . . , Xi−1 = xi−1) and set Xi = xi. This is often referred to as an ordered Monte
Carlo sampler or logic sampling (Pearl, 1988).

Thus, when we say that Q is easy to sample from, we assume that Q can be expressed
in a product form and can be specified in polynomial space, namely,

Q(X) =

n∏

i=1

Qi(Xi|X1, . . . , Xi−1) =

n∏

i=1

Qi(Xi|Yi) (4)
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where Yi ⊆ {X1, . . . , Xi−1}. The size of the set Yi is assumed to be bounded by a
constant.

Throughout the paper, we will often use the notion of biased and unbiased estimators,
which we define below.

Definition 9 (Unbiased and Asymptotically Unbiased Estimator). Given a prob-

ability distribution Q, a statistics θ of Q, and N samples drawn from Q, a function θ̂N ,
defined over the samples is an unbiased estimator of θ if EQ[θ̂N ] = θ. Similarly, a func-

tion θ̃N is an asymptotically unbiased estimator of θ if limN→∞ EQ[θ̃N ] = θ. Clearly, all
unbiased estimators are asymptotically unbiased.

Note that we denote an unbiased estimator of a statistics θ by θ̂, an asymptotically
unbiased estimator by θ̃ and an arbitrary estimator by θ.

The notion of unbiasedness and asymptotic unbiasedness is important because it
helps to characterize the performance of an estimator which we explain briefly below.
The mean-squared error of an estimator θ is given by:

MSE(θ) = EQ[(θ − θ)2] (5)

= EQ[θ
2
]− 2EQ[θ]θ + θ2 (6)

=
[
EQ[θ

2
]− EQ[θ]

2
]
+
[
EQ[θ]

2 − 2EQ[θ]θ + θ2
]

(7)

The bias of θ is given by:
BQ[θ] = EQ[θ]− θ

The variance of θ is given by:

VQ[θ] = EQ[θ
2
]− EQ[θ]

2

From the definitions of bias, variance and mean-squared error, we get:

MSE(θ) = VQ[θ] +
[
BQ[θ]

]2
(8)

In other words, the mean squared error of an estimator is equal to bias squared plus
variance. For an unbiased estimator, the bias is zero and therefore one can reduce its
mean squared error by reducing its variance. In case of an asymptotically unbiased
estimator, the bias goes to zero as the number of samples tend to infinity. However, for
a finite sample size it may have a non-zero bias.

2.3.1. Estimating weighted counts

Consider the expression for weighted counts (see Definition 6).

Z =
∑

x∈X

m∏

i=1

Fi(x)

p∏

j=1

Cj(x) (9)

If we have a proposal distribution Q(X) such that
∏m

i=1 Fi(x)
∏p

j=1Cj(x) > 0 → Q(x) >
0, we can rewrite Equation 9 as follows:

Z =
∑

x∈X

∏m

i=1 Fi(x)
∏p

j=1Cj(x)

Q(x)
Q(x) = EQ

[∏m

i=1 Fi(x)
∏p

j=1Cj(x)

Q(x)

]
(10)
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Given independent and identically distributed (i.i.d.) samples (x1, . . . ,xN) generated
from Q, we can estimate Z by:

ẐN =
1

N

N∑

k=1

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

Q(xk)
=

1

N

N∑

k=1

w(xk) (11)

where

w(xk) =

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

Q(xk)

is the weight of sample xk. By definition, the variance of the weights is given by:

VQ[w(x)] =
∑

x∈X

(w(x)− Z)2Q(x) (12)

We can estimate the variance of ẐN by:

V̂Q[ẐN ] =
1

N(N − 1)

N∑

k=1

(
w(xk)− ẐN

)2

(13)

and it can be shown that V̂Q[ẐN ] is an unbiased estimator of VQ[ẐN ], namely,

EQ[V̂Q[ẐN ]] = VQ[ẐN ]

We can show that:

1. EQ[ẐN ] = Z i.e. ẐN is unbiased.

2. limN→∞ ẐN = Z , with probability 1 (follows from the central limit theorem).

3. EQ

[
V̂Q[ẐN ]

]
= VQ[ẐN ] = VQ[w(x)]/N

Therefore, VQ[ẐN ] can be reduced by either increasing the number of samples N or by
reducing the variance of the weights. It is easy to see that if Q(x) ∝ ∏m

i=1 Fi(x)∏p
j=1 Cj(x), then for any sample x, we have w(x) = Z yielding an optimal (zero

variance) estimator. However, making Q(x) ∝ ∏m

i=1 Fi(x)
∏p

j=1Cj(x) is NP-hard and
therefore in order to have a small MSE in practice, it is recommended that Q must
be as “close” as possible to the function it tries to approximate which in our case is∏m

i=1 Fi(x)
∏p

j=1Cj(x).

2.3.2. Estimating the marginals

The marginal problem is defined as:

P (xi) =
∑

x∈X

δxi
(x)PM(x) (14)

where PM is defined by:

PM(x) =
1

Z

m∏

i=1

Fi(x)

p∏

j=1

Cj(x) (15)
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Given a proposal distribution Q(x) satisfying PM(x) > 0 → Q(x) > 0, we can
rewrite Equation 14 as follows:

P (xi) =
∑

x∈X

δxi
(x)PM(x)

Q(x)
Q(x) = EQ

[
δxi

(x)PM(x)

Q(x)

]
(16)

Given independent and identically distributed (i.i.d.) samples (x1, . . . ,xN) generated
from Q, we can estimate P (xi) by:

P̂N (xi) =
1

N

N∑

k=1

δxi
(xk)PM(xk)

Q(xk)
=

1

N

N∑

k=1

δxi
(xk)

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

ZQ(xk)
(17)

Unfortunately, Equation 17, while an unbiased estimator of P (xi) cannot be eval-
uated because Z is not known. We can sacrifice unbiasedness and estimate P (xi) by
using the notion of properly weighted samples.

Definition 10 (A Properly weighted sample). (Liu, 2001) A set of weighted samples
{xk, w(xk)}Nk=1 drawn from a distribution G are said to be properly weighted with respect
to a distribution P if for any discrete function H,

EG[H(xk)w(xk)] = cEP [H(x)]

where c is a normalization constant common to all samples.

Given a set of N weighted samples drawn from P , we can estimate EP [H(x)] as:

ẼP [H(x)] =

∑N
k=1H(xk)w(xk)∑N

k=1w(x
k)

Substituting Equation 15 in Equation 16, we have:

P (xi) =
1

Z
EQ

[
δxi

(x)
∏m

i=1 Fi(x)
∏p

j=1Cj(x)

Q(x)

]
(18)

It is easy to prove that:

Proposition 1. Given w(x) =
δxi (x)

∏m
i=1 Fi(x)

∏p
j=1 Cj(x)

Q(x)
, the set of weighted samples

{xk, w(xk)}Nk=1 are properly weighted with respect to PM.

Therefore, we can estimate P (xi) by:

P̃N(xi) =

∑N

k=1w(x
k)δxi

(xk)
∑N

k=1w(x
k)

(19)

It is easy to prove that limN→∞ E[P̃N(xi)] = P (xi) i.e. it is asymptotically unbiased.

Therefore, by weak law of large numbers the sample average P̃N(xi) converges almost
surely to P (xi) as N → ∞. Namely,

lim
N→∞

P̃N(xi) = P (xi), with probability 1 (from the weak law of large numbers)

In order to have small estimation error, the proposal distribution Q should be as close
as possible to the target distribution PM.
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3. Eliminating the Rejection Problem using the Backtrack-free distribution

In this section, we describe the rejection problem and show that the problem can
be mitigated by modifying the proposal distribution. Given a mixed network M =
〈X,D,F,C〉, a proposal distribution Q defined over X suffers from the rejection problem
if the probability of generating a sample from Q that violates the constraints of PM

expressed in C is relatively high. When a sample x violates some constraints in C,
its weight w(x) is zero and it is effectively rejected from the sample average. In an
extreme case, if the probability of generating a rejected sample is arbitrarily close to
one, then even after generating a large number of samples, the estimate of the weighted
counts (given by Equation 11) would be zero and the estimate of the marginals (given
by Equation 19) would be ill-defined. Clearly, if Q properly encodes all the zeros in M,
then we would have no rejection.

Definition 11 (Zero Equivalence). A distribution P is zero equivalent to a distribu-
tion P ′, iff their flat constraint networks (see Definition 8) are equivalent. Namely, they
have the same set of consistent solutions.

Clearly then, given a mixed network M = 〈X,D,F,C〉 representing PM and given
a proposal distribution Q = {Q1, . . . , Qn} which is zero equivalent to PM, every sample
x generated from Q satisfies PM(x) > 0 and no sample generated from Q would be
rejected.

Because Q is expressed in a product form: Q(X) =
∏n

i=1 Qi(Xi| X1, . . . , Xi−1)
along o = (X1, . . . , Xn), we can make Q zero equivalent to PM by modifying its com-
ponents Qi(Xi|X1, . . . , Xi−1) along o. To accomplish that, we have to make the set
Q = {Q1, . . . , Qn} backtrack-free along o relative to the constraints in C. The following
definitions formalize this notion.

Definition 12 (consistent and globally consistent partial sample). Given a set of
constraints C defined over X = {X1, . . . , Xn}, a partial sample (x1, . . . , xi) is consistent
if it does not violate any constraint in C. A partial sample (x1, . . . , xi) is globally consis-
tent if it can be extended to a solution of C (i.e. it can be extended to a full assignment
to all n variables that satisfies all constraints in C).

Note that a consistent partial sample may not be globally consistent.

Definition 13 (Backtrack-free distribution of Q w.r.t. C). Given a mixed network
M = 〈X,D,F,C〉 and a proposal distribution Q = {Q1, . . . , Qn} representing Q(X) =∏n

i=1 Qi(Xi| X1, . . . , Xi−1) along an ordering o, the backtrack-free distribution QF =
{QF

1 , . . . , Q
F
n } of Q along o w.r.t. C where QF (X) =

∏n

i=1Q
F
i (Xi|X1, . . . , Xi−1) is

defined by:

QF

i
(xi|x1, . . . , xi−1)

{
= αQi(xi|x1, . . . , xi−1) if (x1, . . . , xi) is globally consistent w.r.t C
= 0 otherwise.

where α is a normalization constant.

Let xi−1 = (x1, . . . , xi−1) and define the set B
xi−1

i = {x′
i ∈ Di|(x1, . . . , xi−1, x

′
i) is not

globally consistent w.r.t. C }. Then, α can be expressed by:

α =
1

1−∑
x′

i∈B
xi−1
i

Qi(x′
i|x1, . . . , xi−1)

11



Algorithm 1: Sampling from the Backtrack-free distribution

Input: A mixed network M = 〈X,D,F,C〉, a proposal distribution Q along an
ordering o and an oracle

Output: A full sample (x1, . . . , xn) from the backtrack free distribution QF of Q
x = φ;1

for i=1 to n do2

QF
i (Xi|x) = Qi(Xi|x);3

for each value xi ∈ Di do4

y = x ∪ xi;5

if oracle says that y is not globally consistent w.r.t C then6

QF
i (xi|x) = 0 ;7

Normalize QF
i (Xi|x) and generate a sample Xi = xi from it;8

x = x ∪ xi;9

return x10

We borrow the term backtrack-free from the constraint satisfaction literature (Freuder,
1982; Dechter, 2003). An order o is said to be backtrack-free w.r.t. a set of constraints C
if it guarantees that no inconsistent partial assignment would be generated along o (i.e.
every sample generated would not be rejected). By definition, a proposal distribution
Q = {Q1, . . . , Qn} is backtrack-free along o w.r.t. its flat constraint network (see Defi-
nition 8). The modification of the proposal distribution defined in Definition 13 takes a
proposal distribution that is backtrack-free relative to itself and modifies its components
to yield a distribution that is backtrack-free relative to PM.

Given a mixed network M = 〈X,D,F,C〉 and a proposal distribution Q = {Q1,
. . . , Qn} along o, we now show how to generate samples from the backtrack-free dis-
tribution QF = {QF

1 , . . . , Q
F
n } of Q w.r.t. C. Algorithm 1 assumes that we have an

oracle which takes a partial assignment (x1, . . . , xi) and a constraint satisfaction prob-
lem 〈X,D,C〉 as input and answers “yes” if the assignment is globally consistent and
“no” otherwise. Given a partial assignment (x1, . . . , xi−1), the algorithm constructs
QF

i (Xi|x1, . . . , xi−1) and samples a value for Xi as follows. QF
i (Xi|x1, . . . , xi−1) is ini-

tialized to Qi(Xi|x1, . . . , xi−1). Then, for each assignment (x1, . . . , xi−1, xi) extending to
Xi = xi, it checks whether (x1, . . . , xi−1, xi) is globally consistent relative to C using
the oracle. If not, it sets QF

i (xi|x1, . . . , xi−1) to zero, normalizes QF
i (xi|x1, . . . , xi−1) and

generates a sample from it. Repeating this process along the order (X1, . . . , Xn) yields
a single sample from QF . Note that for each sample, the oracle should be invoked a
maximum of O(n× d) times where n is the number of variables and d is the maximum
domain size.

Given samples (x1, . . . ,xN) generated from QF , we can estimate Z (defined in Equa-
tion 2) by replacing Q by QF in Equation 11. We get:

ẐN =
1

N

N∑

k=1

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

QF (xk)
=

1

N

N∑

k=1

wF (xk) (20)

12



where

wF (x) =

∏m
i=1 Fi(x)

∏p
j=1Cj(x)

QF (x)
(21)

is the backtrack-free weight of the sample.
Similarly, we can estimate the posterior marginals by replacing the weight w(x) in

Equation 19 with the backtrack-free weight wF (x).

P̃N (xi) =

∑N

k=1w
F (xk)δxi

(xk)∑N

k=1w
F (xk)

(22)

Clearly, ẐN defined in Equation 20 is an unbiased estimate of Z while P̃N(xi) defined
in Equation 22 is an asymptotically unbiased estimate of the posterior marginals P (xi).

In practice, one could use any constraint solver as a substitute for the oracle in
Algorithm 1. However, generating samples using an exact solver would be inefficient in
many cases. Next, we present the SampleSearch scheme which integrates backtracking
search with sampling. In essence, we integrate more naturally sampling with a specific
oracle that is based on systematic backtracking search, hopefully, generating a more
efficient scheme.

4. The SampleSearch Scheme

In a nutshell, SampleSearch incorporates systematic backtracking search into the or-
dered Monte Carlo sampler so that all full samples are solutions of the constraint portion
of the mixed network but it does not insist on backtrack-freeness of the search process.
We will sketch our ideas using the most basic form of systematic search: chronologi-
cal backtracking, emphasizing that the scheme can work with any advanced systematic
search scheme. In our empirical work, we will indeed use advanced search schemes such
as minisat (Sorensson and Een, 2005).

Given a mixed network M = 〈X,D,F,C〉 and a proposal distribution Q(X), the tra-
ditional ordered Monte Carlo sampler samples variables along the order o = (X1, . . . , Xn)
from Q and rejects a partial sample (x1, . . . , xi) if it violates any constraints in C. Upon
rejecting a sample, the sampler starts sampling anew from the first variable (X1) in the
ordering. Instead, when there is a dead-end at (x1, . . . , xi−1, xi) SampleSearch modifies
the conditional probability as Qi(Xi = xi|x1, . . . , xi−1) = 0 to reflect that (x1, . . . , xi) is
not consistent, normalizes the distribution Qi(Xi|x1, . . . , xi−1) and re-samples Xi from
the normalized distribution. The newly sampled value may be consistent in which case
the algorithm proceeds to variable Xi+1 or it may be inconsistent in which case the al-
gorithm will further modify Qi(Xi|x1, . . . , xi−1). If we repeat the process we may reach
a point where Qi(Xi|x1, . . . , xi−1) is 0 for all values of Xi. In this case, (x1, . . . , xi−1)
is inconsistent and therefore the algorithm revises the distribution at Xi−1 by setting
Qi−1(Xi−1 = xi−1|x1, . . . , xi−2) = 0, normalizes Qi−1 and re-samples a new value for
Xi−1 and so on. SampleSearch repeats this process until a consistent full sample that
satisfies all constraints in C is generated. By construction, this process always yields a
consistent full sample.

13



Algorithm 2: SampleSearch
Input: A mixed network M = 〈X,D,F,C〉, the proposal distribution

Q(X) =
∏

n

i=1
Qi(Xi|X1, . . . , Xi−1) along an ordering o = (X1, . . . , Xn)

Output: A consistent full sample x = (x1, . . . , xn)
SET i=1, D′

i
= Di (copy domains), Q′

1(X1) = Q1(X1) (copy distribution), x = ∅;1

while 1 ≤ i ≤ n do2

// Forward phase

if D′

i
is not empty then3

Sample Xi = xi from Q′

i
and remove it from D′

i
;4

if (x1, . . . , xi) violates any constraint in C then5

SET Q′

i
(Xi = xi|x1, . . . , xi−1) = 0 and normalize Q′

i
;6

Goto step 3.;7

x = x ∪ xi, i = i + 1, D′

i
= Di, Q

′

i
(Xi|x1, . . . , xi−1) = Qi(Xi|x1, . . . , xi−1);8

// Backward phase

else9

x = x\xi−1.;10

SET Q′

i−1
(Xi−1 = xi−1|x1, . . . , xi−2) = 0 and normalize Q′

i−1
(Xi−1|x1, . . . , xi−2);11

SET i = i− 1;12

if i = 0 then13

return inconsistent;14

else15

return x;16

The pseudo-code for SampleSearch is given in Algorithm 2. It can be viewed as a
depth first backtracking search (DFS) over the state space of consistent partial assign-
ments searching for a solution to a constraint satisfaction problem 〈X,D,C〉, whose
value ordering is stochastically guided by Q. The updated distribution that guides the
search is Q′. In the forward phase, variables are sampled in sequence and a current par-
tial sample (or assignment) is extended by sampling a value xi for the next variable Xi

using the current distribution Q′
i. If for all values xi ∈ Di, Q

′
i(xi|x1, . . . , xi−1) = 0, then

SampleSearch backtracks to the previous variable Xi−1 (backward phase) and updates
the distribution Q′

i−1 by setting Q′
i−1(xi−1|x1, . . . , xi−2) = 0 and normalizing Q′

i−1 and
continues.

4.1. The Sampling Distribution of SampleSearch

Let I =
∏n

i=1 Ii(Xi|X1, . . . , Xi−1) be the sampling distribution of SampleSearch along
the ordering o = (X1, . . . , Xn). We will show that:

Theorem 1 (Main Result). Given a mixed network M = 〈X,D,F,C〉 and a proposal
distribution Q, the sampling distribution I of SampleSearch equals the backtrack-free
probability distribution QF of Q w.r.t. C, i.e. ∀ i QF

i = Ii.

To prove this theorem, we need the following proposition:

Proposition 2. Given a mixed network M = 〈X,D,F,C〉, a proposal distribution
Q = {Q1, . . . , Qn} and a partial assignment (x1, . . . , xi−1) which is globally consistent
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Figure 1: A full OR search tree given a set of constraints and a proposal distribution.

w.r.t. C, SampleSearch samples values without replacement from the domain Di of Xi

until a globally consistent extension (x1, . . . , xi−1, xi) is generated.

Proof. Consider a globally inconsistent extension (x1, . . . , xi−1, x
′
i) of (x1, . . . , xi−1). Let

Q′
i(Xi|x1, . . . , xi−1) be the most recently updated proposal distribution. Because Sam-

pleSearch is systematic, if (x1, . . . , x
′
i) is sampled then SampleSearch would eventually

detect its inconsistency by not being able to extend it to a solution. At this point, it will
set Q′

i(x
′
i|x1, . . . , xi−1) = 0 either in step 6 or step 11 and normalize Q′

i. In other words,
x′
i is sampled just once yielding sampling without replacement from Q′

i(Xi|x1, . . . , xi−1).
On the other hand, again because of its systematic nature, if a globally consistent ex-
tension (x1, . . . , xi) is sampled, SampleSearch will always extend it to a full sample that
is consistent.

We can use Proposition 2 to derive Ii(xi|x1, . . . , xi−1), the probability of sampling
a globally consistent extension (x1, . . . , xi−1, xi) to a globally consistent assignment
(x1, . . . , xi−1) from Qi(Xi|x1, . . . , xi−1) as illustrated in the next example (Example 1).

Example 1. Consider the complete search tree corresponding to the proposal distri-
bution and to the constraints given in Figure 1. The inconsistent partial assignments
are grounded in the figure. Each arc is labeled with the probability of generating the
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Figure 2: Five possible traces of SampleSearch which lead to the sample (A = 0 , B = 2 , C = 0 ). The
children of each node are specified from left to right in the order in which they are generated.

child node from Q given an assignment from the root node to its parent. Consider
the full assignment (A = 0, B = 2, C = 0). Based on Proposition 2, the five dif-
ferent ways in which this assignment could be generated by SampleSearch (called as
DFS-traces) are shown in Figure 2. In the following, we show how to compute the
probability IB(B = 2|A = 0) i.e. the probability of sampling B = 2 given A = 0.
Given A = 0, the events that could lead to sampling B = 2 are shown in Figure 2,
(a) 〈B = 2〉|A = 0 (b) 〈B = 0, B = 2〉|A = 0 (c) 〈B = 3, B = 0〉|A = 0 (d)
〈B = 0, B = 3, B = 2〉|A = 0 and (e) 〈B = 3, B = 0, B = 2〉|A = 0. The nota-
tion 〈B = 3, B = 0, B = 2〉|A = 0 means that given A = 0, the states were sam-
pled in the order from left to right (B = 3, B = 0, B = 2). Clearly, the probability
IB(B = 2|A = 0) equals the sum over the probability of these events. Let us now com-
pute the probability of the event 〈B = 3, B = 0, B = 2〉|A = 0. The probability of
sampling B = 3|A = 0 from Q(B|A = 0) = (0.3, 0.4, 0.2, 0.1) is 0.1. The assignment
(A = 0, B = 3) is inconsistent and therefore the distribution Q(B|A = 0) is changed by
SampleSearch to Q′(B|A = 0) = (0.3/0.9, 0.4/0.9, 0.2/0.9, 0) = (3/9, 4/9, 2/9, 0). Sub-
sequently, the probability of sampling B = 0 from Q′ is 3/9. However, the assignment
(A = 0, B = 0) is also globally inconsistent and therefore the distribution is changed to
Q′′(B|A = 0) ∝ (0, 4/9, 2/9, 0) = (0, 2/3, 1/3, 0). Next, the probability of sampling B = 2
from Q′′ is 1/3. Therefore, the probability of the event 〈B = 3, B = 0, B = 2〉|A = 0 is
0.1× (3/9)× (1/3) = 1/90. By calculating the probabilities of the remaining events using
the approach described above and taking the sum, one can verify that the probability of
sampling B = 2 given A = 0 i.e. IB(B = 2|A = 0) = 1/3.

We will now show that:
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Proposition 3. Given a mixed network M = 〈X,D,F,C〉, an initial proposal distri-
bution Q = {Q1, . . . , Qn} and a partial assignment (x1, . . . , xi−1, xi) which is globally
consistent w.r.t. C, the probability Ii(xi|x1, . . . , xi−1) of sampling xi given (x1, . . . , xi−1)
using SampleSearch is proportional to Qi(xi|x1, . . . , xi−1), i.e. Ii(xi|x1, . . . , xi−1) ∝
Qi(xi|x1, . . . , xi−1).

Proof. The proof is obtained by deriving a general expression for Ii(xi|x1, . . . , xi−1), sum-
ming the probabilities of all events that can lead to this desired partial sample. Consider
a globally consistent partial assignment xi−1 = (x1, . . . , xi−1). Let us assume that the
domain of the next variable Xi given xi−1, denoted by D

xi−1

i is partitioned into D
xi−1

i =
R

xi−1

i ∪ B
xi−1

i where R
xi−1

i = {xi ∈ D
xi−1

i |(x1, . . . , xi−1, xi) is globally consistent} and
B

xi−1

i = D
xi−1

i \Rxi−1

i .
Let B

xi−1

i = {xi,1, . . . , xi,q}. Let j = 1, . . . , 2q index the sequence of all subsets of
B

xi−1

i with B
xi−1

i,j denoting the j-th element of this sequence. Let π(B
xi−1

i,j ) denote the
sequence of all permutations of B

xi−1

i,j with πk(B
xi−1

i,j ) denoting the k-th element of this
sequence. Finally, let Pr(πk(B

xi−1

i,j ), xi|xi−1) be the probability of generating xi and
πk(B

xi−1

i,j ) given xi−1 by SampleSearch.
The probability of sampling xi ∈ R

xi−1

i given xi−1 is obtained by summing over all
the events that generate Xi = xi given xi−1:

Ii(xi|xi−1) =
2q∑

j=1

|π(B
xi−1
i,j )|∑

k=1

Pr(πk(B
xi−1

i,j ), xi|xi−1) (23)

where, Pr(πk(B
xi−1

i,j ), xi|xi−1) is given by:

Pr(πk(B
xi−1

i,j ), xi|xi−1) = Pr(πk(B
xi−1

i,j )|xi−1)Pr(xi|πk(B
xi−1

i,j ),xi−1) (24)

Substituting Equation 24 in Equation 23, we get:

Ii(xi|xi−1) =

2q∑

j=1

|π(B
xi−1
i,j )|∑

k=1

Pr(πk(B
xi−1

i,j )|xi−1)Pr(xi|πk(B
xi−1

i,j ),xi−1) (25)

where Pr(xi|πk(B
xi−1

i,j ),xi−1) is the probability with which the value xi is sampled
given that (πk(B

xi−1

i,j ),xi−1) is proved inconsistent. Because, we sample without replace-
ment (see Proposition 2) from Qi, this probability is given by:

Pr(xi|πk(B
xi−1

i,j ),xi−1) =
Qi(xi|xi−1)

1−∑
x′

i∈B
xi−1
i,j

Qi(x
′
i|xi−1)

(26)

From Equations 25 and 26, we get:

Ii(xi|xi−1) =
2q∑

j=1

|π(B
xi−1
i,j )|∑

k=1

Qi(xi|xi−1)

1−∑
x′

i∈B
xi−1
i,j

Qi(x′
i|xi−1)

Pr(πk(B
xi−1

i,j )|xi−1) (27)
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Qi(xi|xi−1) does not depend on the indices j and k in Equation 27 and therefore we can
rewrite Equation 27 as:

Ii(xi|xi−1) = Qi(xi|xi−1)




2q∑

j=1

|π(B
xi−1
i,j )|∑

k=1

Pr(πk(B
xi−1

i,j )|xi−1)

1−∑
x′

i∈B
xi−1
i,j

Qi(x
′
i|xi−1)


 (28)

The term enclosed in brackets in Equation 28 does not depend on xi and therefore it
follows that if (x1, . . . , xi−1, xi) is globally consistent:

Ii(xi|xi−1) ∝ Qi(xi|xi−1) (29)

We now have the necessary components to prove Theorem 1:

Proof of Theorem 1. From Proposition 2, Ii(xi|xi−1) equals zero iff xi is not globally con-
sistent and from Proposition 3, for all other values, Ii(xi|xi−1) ∝ Qi(xi|xi−1). Therefore,
the normalization constant equals 1−∑

x′

i∈B
xi−1
i

Qi(x
′
i|xi−1). Consequently,

Ii(xi|xi−1) =
Qi(xi|xi−1)

1−∑
x′

i∈B
xi−1
i

Qi(x
′
i|xi−1)

(30)

The right hand side of Equation 30 is by definition equal to QF
i (xi|xi−1) (see Defini-

tion 13).

4.2. Computing QF (x)

Once we have the sample, we still need to compute the weights for estimating the
marginals and the weighted counts, which in turn requires computing QF

i (xi|xi−1). From
Definition 13, we see that to compute the components QF

i (xi|xi−1) for a sample x =
(x1, . . . , xn), we have to determine all values x′

i ∈ Di which cannot be extended to a
solution. One way to accomplish that, as described in Algorithm 1 is to use an oracle.
The oracle should be invoked a maximum of n × (d − 1) times where n is the number
of variables and d is the maximum domain size. Methods such as adaptive consistency
(Dechter, 2003) or any other exact CSP solver can be used as oracles. But then, what
have we gained by SampleSearch, if ultimately, we need to use the oracle almost the same
number of times as the sampling method presented in Algorithm 1. Next, we will show
how to approximate the backtrack-free probabilities on the fly while still maintaining
some desirable guarantees.

4.2.1. Approximating QF (x)

During the process of generating the sample x, SampleSearch may have discovered
one or more values in the set B

xi−1

i and therefore we can build an approximation of
QF

i (xi|xi−1) as follows. Let A
xi−1

i ⊆ B
xi−1

i be the set of values in the domain of Xi that
were proved to be inconsistent given xi−1 while generating a sample x. We use the set
A

xi−1

i to compute an approximation T F
i (xi|xi−1) of Q

F
i (xi|xi−1) as follows:

T F
i (xi|xi−1) =

Qi(xi|xi−1)

1−∑
x′

i∈A
xi−1
i

Qi(x′
i|xi−1)

(31)
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Figure 3: (a) Three DFS-traces (b) Combined information from the three DFS-traces given in (a) and
(c) Two possible approximations of I(B|A = 1)

Finally we compute T F (x) =
∏n

i=1 T
F
i (xi|xi−1). However, T F (x) does not guarantee

asymptotic unbiasedness when replacing QF (x) for computing the weight wF (x) in Equa-
tion 21.

To remedy the situation, we can store each sample (x1, . . . , xn) and all its partial
assignments (x1, . . . , xi−1, x

′
i) that were proved inconsistent during each trace of an in-

dependent execution of SampleSearch called DFS-traces (for example, Figure 2 shows the
five DFS-traces that could generate the sample (A = 0, B = 2, C = 0)). After executing
SampleSearch N times generating N samples, we can use all the stored DFS-traces to
compute an approximation of QF (x) as illustrated in the following example.

Example 2. Consider the three traces given in Figure 3 (a). We can combine the
information from the three traces as shown in Figure 3(b). Consider the assignment
(A = 1, B = 2). The backtrack-free probability of generating B = 2 given A = 1 requires
the knowledge of all the values of B which are inconsistent. Based on the combined
traces, we know that B = 0 and B = 1 are inconsistent (given A = 1) but we do not
know whether B = 3 is consistent or not because it is not explored (indicated by “???”
in Figure 3(b)). Setting the unexplored nodes to either inconsistent or consistent gives
us the two different approximations shown in Figure 3(c).

Generalizing Example 2, we consider two bounding approximations denoted by UF
N

and LF
N respectively which are based on setting each unexplored node in the combined N
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traces to consistent or inconsistent respectively. As we will show, these approximations
can be used to bound the sample mean ẐN from above and below3.

Definition 14 (Upper and Lower Approximations of QF by UF
N and LF

N ). Given a
mixed network M = 〈X,D,F,C〉, an initial proposal distribution Q = {Q1, . . . , Qn}, a
combined sample tree generated from N independent runs of SampleSearch and a partial
sample xi−1 = (x1, . . . , xi−1) generated in one of the N independent runs, we define two
sets:

• A
xi−1

N,i ⊆ B
xi−1

i = {xi ∈ D
xi−1

i | (x1, . . . , xi−1, xi) was proved to be inconsistent during
the N independent runs of SampleSearch }.

• C
xi−1

N,i ⊆ D
xi−1

i = {xi ∈ D
xi−1

i | (x1, . . . , xi−1, xi) was not explored during the N
independent runs of SampleSearch }.

We can set all the nodes in C
xi−1

N,i (i.e. the nodes which are not explored) either to
consistent or inconsistent yielding:

UF
N (x) =

n∏

i=1

UF
N,i(xi|xi−1) where

UF
N,i(xi|xi−1) =

Qi(xi|xi−1)

1−∑
x′

i∈A
xi−1
N,i

Qi(x′
i|xi−1)

(32)

LF
N (x) =

n∏

i=1

LF
N,i(xi|xi−1) where

LF
N,i(xi|xi−1) =

Qi(xi|xi−1)

1−∑
x′

i∈A
xi−1
N,i

∪C
xi−1
N,i

Qi(x′
i|xi−1)

(33)

It is clear that as N grows, the sample tree grows and therefore more inconsistencies
will be discovered and as N → ∞, all inconsistencies will be discovered making the
respective sets approach A

xi−1

N,i = B
xi−1

i and C
xi−1

N,i = φ. Clearly then,

Proposition 4. limN→∞ UF
N (x) = limN→∞ LF

N(x) = QF (x).

As before, given a set of i.i.d. samples (x1 = (x1
1, . . . , x

1
n), . . . ,x

N = (xN
1 , . . . , x

N
n ))

generated by SampleSearch, we can estimate the weighted counts Z using the two
statistics UF

N (x) and LF
N(x) by:

Z̃U
N =

1

N

N∑

k=1

∏m

i=1 Fi(x
k)
∏p

j=1Cj(x
k)

UF
N (x

k)
=

1

N

N∑

k=1

wU
N(x

k) (34)

3Note that it is easy to envision other approximations in which we designate some unexplored nodes
as consistent while others as inconsistent based on the domain knowledge or via some other Monte
Carlo estimate. We consider the two extreme options because they usually work well in practice and
bound the sample mean from above and below.
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where

wU
N(x

k) =

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

UF
N (x

k)

is the weight of the sample based on the combined sample tree using the upper approx-
imation UF

N .

Z̃L
N =

1

N

N∑

k=1

∏m
i=1 Fi(x

k)
∏p

j=1Cj(x
k)

LF
N (x

k)
=

1

N

N∑

k=1

wL
N(x

k) (35)

where

wL
N(x

k) =

∏m

i=1 Fi(x
k)
∏p

j=1Cj(x
k)

LF
N (x

k)

is the weight of the sample based on combined sample tree using the lower approximation
LF
N .
Similarly, for marginals, we can develop the statistics.

P̃U
N (xi) =

∑N

k=1w
U
N(x

k)δxi
(xk)∑N

k=1w
U
N(x

k)
(36)

and

P̃L
N (xi) =

∑N

k=1w
L
N(x

k)δxi
(xk)∑N

k=1w
L
N(x

k)
(37)

In the following three theorems, we state some interesting properties of Z̃L
N , Z̃

U
N , P̃

L
N (xi)

and P̃U
N (xi). The proofs are provided in the appendix.

Theorem 2. Z̃L
N ≤ ẐN ≤ Z̃U

N .

Theorem 3. The estimates Z̃U
N and Z̃L

N of Z given in Equations 34 and 35 respectively

are asymptotically unbiased. Similarly, the estimates P̃U
N (xi) and P̃L

N(xi) of P (xi) given
in Equations 36 and 37 respectively are asymptotically unbiased.

Theorem 4. Given N samples output by SampleSearch for a mixed network M =
〈X,D, F, C〉, the space and time complexity of computing Z̃L

N , Z̃
U
N , P̃

L
N(xi) and P̃U

N (xi)
given in Equations 35, 34, 37 and 36 is O(N × d× n).

In summary, we presented two approximations for the backtrack-free probability QF

which are used to bound the sample mean ẐN . We proved that the two approximations
yield an asymptotically unbiased estimate of the weighted counts and marginals. They
will also enable trading bias with variance as we discuss next.

4.2.2. Bias-Variance Tradeoff

As pointed in Section 2, the mean squared error of an estimator can be reduced by
either controling the bias or by increasing the number of samples. The estimators Z̃U

N

and Z̃L
N have more bias than the unbiased estimator ẐF

N (which has a bias of zero but
requires invoking an exact CSP solver O(n × d) times ). However, given a fixed time
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bound, we expect that the estimators Z̃U
N and Z̃L

N will allow larger sample size than

ẐF
N . Moreover, Z̃U

N and Z̃L
N bound ẐF

N from above and below and therefore the absolute

distance |Z̃U
N − Z̃L

N | can be used to estimate their bias. If |Z̃U
N − Z̃L

N | is small enough,

then we can expect Z̃U
N and Z̃L

N to perform better than ẐF
N because they can be based

on a larger sample size.

4.3. Incorporating Advanced Search Techniques in SampleSearch

Theorem 1 is applicable to any search procedure that is systematic i.e. once the
search procedure encounters an assignment (x1, . . . , xi), it will either prove that the
assignment is inconsistent or return with a full consistent sample extending (x1, . . . , xi).
Therefore, we can use any advanced systematic search technique (Dechter, 2003) instead
of naive backtracking and easily show that:

Proposition 5. Given a mixed network M = 〈X,D,F,C〉 and an initial proposal distri-
bution Q = {Q1, . . . , Qn}, SampleSearch augmented with any systematic advanced search
technique generates independent and identically distributed samples from the backtrack-
free probability distribution QF of Q w.r.t. C.

While advanced search techniques would not change the sampling distribution of
SampleSearch, in practice, they can have a significant impact on its time complexity
and the quality of the upper and lower approximations. In particular, since SAT solvers
developed over the last decade are quite efficient, we can represent the constraints in the
mixed network using a CNF formula4 and use minisat (Sorensson and Een, 2005) as our
SAT solver. However, we have to make minisat (or any other state-of-the-art SAT solver
e.g. RSAT (Pipatsrisawat and Darwiche, 2007)) systematic via the following changes
(the changes can be implemented with minimal effort):

• Turn off random restarts and far backtracks. The use of restarts and far
backtracks makes a SAT solver non-systematic and therefore they cannot be used.

• Change variable and value Ordering. We change the variable ordering to
respect the structure of the input proposal distribution Q, namely given Q(X) =∏n

i=1 Qi (Xi| X1 , . . . , Xi−1), we order variables as o = (X1, . . . , Xn). Also, at
each decision point, variable Xi is assigned a value xi by sampling it from Qi(Xi

|x1 , . . . , xi−1).

5. Empirical Evaluation

We conducted empirical evaluation on three tasks: (a) counting models of a SAT
formula, (b) computing probability of evidence and partition function in Bayesian and
Markov networks respectively, and (c) computing posterior marginals in Bayesian and
Markov networks.

4It is easy to convert any (relational) constraint network to a CNF formula. In our implementation,
we use the direct encoding described in (Walsh, 2000).
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The results are organized as follows. In the next subsection, we present the im-
plementation details of SampleSearch. Section 5.2 describes other techniques that we
compared with. In Section 5.3, we describe the results for the weighted counting task
while in Section 5.4, we focus on the posterior marginals task.

5.1. SampleSearch with Iterative Join Graph Propagation and w-cutset sampling (IJGP-
wc-SS)

In our experiments, we show how SampleSearch operates on top of an advanced im-
portance sampling algorithm IJGP-wc-IS presented in (Gogate and Dechter, 2005). We
call the resulting scheme IJGP-wc-SS. IJGP-wc-IS uses a generalized belief propagation
scheme called Iterative Join Graph Propagation (IJGP) to construct a proposal distri-
bution and the w-cutset sampling framework (Bidyuk and Dechter, 2007) to reduce the
variance. Below, we outline the details of IJGP-wc-IS followed by those of IJGP-wc-SS.

• The Proposal distribution: The performance of importance sampling is highly de-
pendent on how close the proposal distribution is to the posterior distribution
(Rubinstein, 1981; Cheng and Druzdzel, 2000). In principle, one could use the
prior distribution as the proposal distribution, such as in Likelihood weighting
(Shachter and Peot, 1990; Fung and Chang, 1990). However, when the evidence
is unlikely, the prior is a very bad approximation of the posterior (Pearl, 1988;
Cheng and Druzdzel, 2000). In this case, the variance of the sample weights will
be large and a few samples with large weights will dominate the mean, yielding an
inefficient sampling scheme.

Several schemes have been proposed to address this problem and below we briefly
review two different but complementary approaches. In the first approach, which
is often referred to as adaptive importance sampling (Cheng and Druzdzel, 2000;
Ortiz and Kaelbling, 2000), the sampling algorithm periodically updates the pro-
posal distribution using the generated samples. As more and more samples are
drawn, the hope is that the updated proposal distribution would get closer and
closer to the posterior distribution; yielding a low variance sampling scheme. In
the second approach, the idea is to use a state-of-the-art approximation algorithm,
e.g., Belief propagation (Pearl, 1988) to construct a proposal distribution (Fung
and del Favero, 1994; Yuan and Druzdzel, 2006; Gogate and Dechter, 2005). In
IJGP-wc-IS, we use the latter approach.

In particular, IJGP-wc-IS uses Q = {Q1, . . . , Qn}, obtained from the output of
Iterative Join Graph Propagation (IJGP) (Dechter et al., 2002; Mateescu et al.,
2009) which was shown to yield good performance in earlier studies (Yuan and
Druzdzel, 2006; Gogate and Dechter, 2005). IJGP is a generalized belief propaga-
tion (Yedidia et al., 2004) technique for approximating the posterior distribution
in graphical models. It uses the same message passing scheme as join tree propaga-
tion (Kask, Dechter, Larrosa, and Dechter, 2005), but applies it over the clusters
of a join graph rather than a join tree, iteratively. A join graph is a decomposition
of the functions of the mixed network into a graph of clusters that satisfies all the
properties required of a valid join tree decomposition except the tree requirement.
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The time and space complexity of IJGP can be controlled by its i-bound parameter
which bounds the cluster size. IJGP is exponential in its i-bound and its accuracy
generally increases with the i-bound. In our experiments, for every instance, we
select the maximum i-bound that can be accommodated by 512 MB of space as
follows.

The space required by a message (or a function) is the product of the domain sizes
of the variables in its scope. Given an i-bound, we can create a join graph whose
cluster size is bounded by i as described in (Dechter et al., 2002) and compute, in
advance, the space required by IJGP by summing over the space required by the
individual messages5. We iterate from i = 1 until the space bound (of 512 MB)
is surpassed. This ensures that IJGP terminates in a reasonable amount of time
and requires bounded space.

• w-cutset sampling: As mentioned in Section 2.3, the mean squared error of impor-
tance sampling can be reduced by reducing the variance of the weights. To reduce
the variance of the weights, we combine importance sampling with w-cutset sam-
pling (Bidyuk and Dechter, 2007). The idea is to partition the variables X into
two sets K and R such that the treewidth of the mixed network restricted to R is
bounded by a constant w. The set K is called the w-cutset. Because we can effi-
ciently compute marginals and weighted counts over the mixed network restricted
to R conditioned on K = k using exact inference techniques such as bucket elim-
ination (Dechter, 1999), we need to sample only the variables in K. From the
Rao-Blackwell theorem (Casella and Robert, 1996; Liu, 2001), it is easy to show
that sampling from the subspace K reduces the variance.

Formally, given a mixed network M = 〈X,D,F,C〉, a w-cutset K and a sample
k generated from a proposal distribution Q(K), in w-cutset sampling, the weight
of k is given by:

wwc(k) =

∑
r∈R

∏m

j=1 Fj(r,K = k)
∏p

a=1 Ca(r,K = k)

Q(k)
(38)

where R = X\K. Given a w-cutset K, we can compute the sum in the numerator
of Equation 38 in polynomial time (exponential in the constant w) using bucket
elimination (Dechter, 1999).

It was demonstrated that the higher the w-bound (Bidyuk and Dechter, 2007), the
lower the sampling variance. Here also, we select the maximum w such that the
resulting bucket elimination algorithm uses less than 512 MB of space. We can
choose the appropriate w by using a similar iterative scheme to the one described
above for choosing the i-bound.

• Variable Ordering heuristics: We experimented with three different variable order-
ing heuristics for constructing the join graph of IJGP: min-fill ordering, min-degree

5Note that we can do this without constructing the messages explicitly.
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ordering and the hmetis ordering 6. We performed sampling along the reverse or-
der in which the join graph was constructed. Intuitively, this makes sense because
IJGP is akin to variable elimination and sampling is akin to search, and it is known
that the best ordering for elimination is the reverse ordering for search and vice
versa. In case of Bayesian networks, we also experimented with topological order-
ing for sampling. We found that the min-fill ordering gives the best performance
and therefore for brevity, we only compare the performance of min-fill based IJGP-
wc-IS and IJGP-wc-SS with the other solvers. We evaluate the ordering heuristics
in Section 5.5.

Algorithm 3: Implementation details of IJGP-wc-SS (SampleSearch with IJGP
based proposal and w-cutset sampling)

Input: A mixed network M = 〈X,D,F,C〉, integers i, N and w.
Output: A set of N samples globally consistent w.r.t. C
Create a min-fill ordering o = (X1, . . . , Xn);1

Create a join-graph JG with i-bound i along o using the join-graph structuring2

algorithm given in (Dechter et al., 2002) and run IJGP on JG;
Create a w-cutset K ⊆ X using the greedy scheme described in (Bidyuk and3

Dechter, 2004, 2007). Let K = {K1, . . . , Kt};
Create a proposal distribution Q(K) =

∏t
i=1Qi(Ki|K1, . . . , Ki−1) from the4

messages and functions in JG using the the following heuristic scheme (Gogate
and Dechter, 2005). First, we select a cluster A in JG that mentions Ki and has
the largest number of variables common with the previous variables
{K1, . . . , Ki−1}. Then, we construct Qi(Ki|K1, . . . , Ki−1) by marginalizing out all
variables not mentioned in K1, . . . , Ki from the marginal over the variables of A;
for i=1 to N do do5

Apply minisat based SampleSearch on M with proposal distribution Q(K) to6

get a sample ki.;
Store the DFS-trace of the sample ki in a combined sample tree.7

Output the required statistics (marginals or weighted counts) based on the8

combined sample tree;

The details of IJGP-wc-SS are given in Algorithm 3. The algorithm takes as input a
mixed network and integer i, w and N which specify the i-bound for IJGP, w for creating
a w-cutset and the number of samples N respectively7. In Steps 1-2, the algorithm
creates a join graph along the min fill ordering and runs IJGP. Then, in Step 3, it
computes a w-cutset K for the mixed network. Then the algorithm creates a proposal
distribution over the w-cutset K, Q(K) =

∏t

i=1Qi(Ki|K1, . . . , Ki−1) from the output of

6This ordering heuristic due to (Darwiche and Hopkins, 2001) is based on hyper-graph par-
titioning. To create the partitioning, we use the hmetis software available at: http://www-
users.cs.umn.edu/karypis/metis/hmetis and hence the name.

7This is done after we determine the i-bound and the w for the w-cutset.
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IJGP using a heuristic scheme outlined in Step 4. Finally, in Steps 5-8 the algorithm
executes minisat based SampleSearch on the mixed network to generate the required N
samples and outputs the required statistics.

Henceforth, we will refer to the estimates of IJGP-wc-SS generated using the upper
and lower approximations of the backtrack-free probability given by Equations 34 and 35
as IJGP-wc-SS/UB and IJGP-wc-SS/LB respectively. Note that IJGP-wc-SS/UB and

IJGP-wc-SS/LB bound the sample mean ẐN from above and below respectively and not
the true mean or the (exact) weighted counts Z.

5.2. Alternative schemes

In addition to IJGP-wc-SS and IJGP-wc-IS, we experimented with the following
schemes.
1. Iterative Join Graph Propagation (IJGP)

In our experiments, we used an anytime version of IJGP (Dechter et al., 2002; Ma-
teescu et al., 2009) in which we start with an i-bound of 1, run IJGP until convergence
or until 10 iterations, whichever is earlier. Then we increase the i-bound by one and
reconstruct the join graph. We do this until one the following conditions is met: (a) i
equals the treewidth in which case IJGP yields exact marginals or (b) the 2 GB space
limit is reached or (c) the prescribed time-bound is reached.
2. ApproxCount and SampleCount (Wei and Selman, 2005) introduced an ap-
proximate solution counting scheme called ApproxCount. ApproxCount is based on the
formal result of (Valiant, 1987) that if one can sample uniformly (or close to it) from
the set of solutions of a SAT formula F , then one can exactly count (or approximate
with a good estimate) the number of solutions of F . Consider a SAT formula F with S
solutions. If we are able to sample solutions uniformly, then we can exactly compute the
fraction of the number of solutions, denoted by γ that have a variable X set to True or
1 (and similarly to False or 0). If γ is greater than zero, we can set X to that particular
value and simplify F to F ′. The estimate of the number of solutions is now equal to
the product of 1

γ
and the number of solutions of F ′. Then, we recursively repeat the

process, leading to a series of multipliers, until all variables are assigned a value or until
the conditioned formula is easy for exact model counters like Cachet (Sang, Beame, and
Kautz, 2005). To reduce the variance, (Wei and Selman, 2005) suggest to set the se-
lected variable to a value that occurs more often in the given set of sampled solutions. In
this scheme, the fraction for each variable branching is selected via a solution sampling
method called SampleSat (Wei et al., 2004), which is an extension of the well-known
local search SAT solver Walksat (Selman, Kautz, and Cohen, 1994). We experimented
with an anytime version of ApproxCount in which we report the cumulative average
accumulated over several runs.

SampleCount (Gomes et al., 2007) differs from ApproxCount in the following two
ways: (a) SampleCount heuristically reduces the variance by branching on variables
which are more balanced i.e. variables having multipliers 1/γ close to 2 and (b) At each
branch point, SampleCount assigns a value to a variable by sampling it with probability
0.5 yielding an unbiased estimate of the solution counts. We experimented with an
anytime version of SampleCount in which we report the unbiased cumulative averages
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over several runs8.
In our experiments, we used an implementation of ApproxCount and SampleCount

available from the respective authors (Wei et al., 2004; Gomes et al., 2007). Following
the recommendations made in (Gomes et al., 2007), we use the following parameters
for ApproxCount and SampleCount: (a) Number of samples for SampleSat = 20, (b)
Number of variables remaining to be assigned a value before running Cachet = 100 and
(c) local search cutoff α = 100K.
3. Evidence Pre-propagated Importance sampling (EPIS) is an importance
sampling algorithm for computing marginals in Bayesian networks (Yuan and Druzdzel,
2006). The algorithm uses loopy belief propagation (Pearl, 1988; Murphy, Weiss, and
Jordan, 1999) to construct the proposal distribution. In our experiments, we used the
anytime implementation of EPIS submitted to the UAI 2008 evaluation (Darwiche,
Dechter, Choi, Gogate, and Otten, 2008).
4. Edge Deletion Belief Propagation (EDBP)(Choi and Darwiche, 2006) is an ap-
proximation algorithm for computing posterior marginals and for computing probability
of evidence. EDBP solves exactly a simplified version of the original problem, obtained
by deleting some of the edges from the primal graph. Deleted edges are selected based
on two criteria : quality of approximation and complexity of computation (tree-width
reduction) which is parameterized by an integer k, called the k-bound. Subsequently,
information loss from the lost dependencies is compensated for by using several heuristic
techniques. The implementation of this scheme is available from the authors (Choi and
Darwiche, 2006).
5. Variable Elimination + Conditioning (VEC): When a problem having a high
treewidth is encountered, variable or bucket elimination may be unsuitable, primarily
because of its extensive memory demand. To alleviate the space complexity, we can use
the w-cutset conditioning scheme (Dechter, 1999). Namely, we condition or instanti-
ate enough variables or the w-cutset so that the remaining problem after removing the
instantiated variables can be solved exactly using bucket elimination (Dechter, 1999).
In our experiments we select the w-cutset in such a way that bucket elimination would
require less than 1.5GB of space. Again, this is done to ensure that bucket elimination
terminates in a reasonable amount of time and uses bounded space. Exact weighted
counts can be computed by summing over the exact solution output by bucket elimi-
nation for all possible instantiations of the w-cutset. When VEC is terminated before
completion, it outputs a partial sum yielding a lower bound on the weighted counts.

As pre-processing, the algorithm performs SAT-based variable domain pruning that
often yields significant performance gains in practice. Here, we first convert all zero prob-
abilities and constraints in the problem to a CNF formula F . Then, for each variable-
value pair, we construct a new CNF formula F ′ by adding a clause corresponding to
the pair to F and check using minisat (Sorensson and Een, 2005) if F ′ is consistent or
not. If F ′ is inconsistent then we delete the value from the domain of the variable. The
implementation of this scheme is available publicly from our software website (Dechter,

8In the original paper, SampleCount (Gomes et al., 2007) was investigated for lower bounding solu-
tion counts. Here, we evaluate the unbiased solution counts computed by the algorithm.
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Figure 4: Chart showing the scope of our experimental study

Gogate, Otten, Marinescu, and Mateescu, 2009).
6. Relsat9 (Roberto J. Bayardo and Pehoushek, 2000) is an exact algorithm for counting
solutions of a satisfiability problem. When Relsat is stopped before completion, it yields
a lower bound on the number of solutions.
7. ACE10 is a package for exact inference in Bayesian and Markov networks; currently it
is state-of-the-art. It first compiles the Bayesian or Markov network into an Arithmetic
circuit (AC) (Darwiche, 2003) and then uses the AC to answer various queries over the
network. ACE uses the c2d compiler (Darwiche, 2004) to compile the network into a d-
DNNF (Darwiche and Marquis, 2002) and then extracts the AC from the d-DNNF. Note
that unlike other exact schemes described until now, ACE is not an anytime scheme.
We therefore report only the time required by ACE to solve the instance, and use these
times as a baseline for comparison.

The benchmarks and the solvers for the different task types are shown in Figure 4.
Table 1 summarizes different query types that can be handled by the various solvers.
A ’

√
’ indicates that the algorithm is able to approximately estimate the query while a

lack of
√

indicates otherwise.

5.3. Results for Weighted Counts

Notation in Tables

The first column in each table (see Table 2 for example) gives the name of the in-
stance. The second column provides various statistical information about the instance
such as the number of variables n, the average domain size k, the number of clauses or
constraints c, the number of evidence variables e and the treewidth of the instance w

9Available at http://www.bayardo.org/resources.html
10Available at http://reasoning.cs.ucla.edu/ace/
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Problem Type IJGP-wc-SS IJGPEDBPEPIS-BNVEC SampleCount
IJGP-wc-IS ApproxCount

Relsat
Bayesian networks P (e)

√ √ √

Markov Networks Z
√ √ √

Bayesian networks Mar
√ √ √ √

Markov networks Mar
√ √ √

Model counting
√ √

Z: partition function, P(e): probability of evidence and Mar: posterior marginals.

Table 1: Query types handled by various solvers.

Problem 〈n, k, c,w〉 Exact Sample Approx REL IJGP-wc- IJGP-wc- IJGP-
Count Count SAT SS/LB SS/UB wc-IS

ls8-norm 〈512, 2, 5584, 255〉 Z 5.40E11 5.15E+11 3.52E+11 2.44E+08 5.91E+11 5.91E+11 X
M 16514 17740 236510 236510 0

ls9-norm 〈729, 2, 9009, 363〉 Z 3.80E17 4.49E+17 1.26E+17 1.78E+08 3.44E+17 3.44E+17 X
M 7762 8475 138572 138572 0

ls10-norm 〈1000, 2, 13820, 676〉 Z 7.60E24 7.28E+24 1.17E+24 1.36E+08 6.74E+24 6.74E+24 X
M 3854 4313 95567 95567 0

ls11-norm 〈1331, 2, 20350, 956〉 Z 5.40E33 2.08E+34 4.91E+31 1.09E+08 3.87E+33 3.87E+33 X
M 2002 2289 66795 66795 0

Table 2: Table showing the solution counts Z and the number of consistent samples M (only for the
sampling based solvers) output by IJGP-wc-SS, IJGP-wc-IS, ApproxCount, SampleCount and Relsat
after 10 hours of CPU time for 4 Latin Square instances for which the exact solution counts are known.

(computed using the min-fill heuristic after incorporating evidence and removing irrele-
vant variables). The fourth column provides the exact answer for the problem instance
if available while the remaining columns display the results for the various solvers when
terminated at the specified time-bound. The solver(s) giving the best results is high-
lighted in each row. A “*” next to the output of a solver indicates that it solved the
problem instance exactly (before the time-bound expired) followed by the number of
seconds it took to solve the instance enclosed in brackets. An “X” indicates that no
solution was output by the solver.

5.3.1. Satisfiability instances

For the task of counting solutions (or models) of a satisfiability formula, we evaluate
the algorithms on formulas from three domains: (a) normalized Latin square problems,
(b) Langford problems, (c) FPGA-Routing instances. We ran each algorithm for 10
hours on each instance.

Results on instances for which exact solution counts are known

Our first set of benchmark instances come from the normalized Latin squares domain.
A Latin square of order s is an s×s table filled with s numbers from {1, . . . , s} in such a
way that each number occurs exactly once in each row and exactly once in each column.
In a normalized Latin square the first row and column are fixed. The task here is to
count the number of normalized Latin squares of a given order. The Latin squares were
modeled as SAT formulas using the extended encoding given in (Gomes and Shmoys,
2002). The exact counts for these formulas are known up to order 11 (Ritter, 2003).
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Figure 5: Time versus solution counts for two sample Latin square instances. IJGP-wc-IS is not plotted
in the figures because it fails on all the instances.

Problem 〈n, k, c, w〉 Ex- Sample Approx REL IJGP-wc- IJGP-wc- IJGP-
act Count Count SAT SS/LB SS/UB wc-IS

lang12 〈576, 2, 13584, 383〉 Z 2.16E+5 1.93E+05 2.95E+04 2.16E+05*(297s) 2.16E+05 2.16E+05 X
M 2720 4668 999991 999991 0

lang16 〈1024, 2, 32320, 639〉 Z 6.53E+08 5.97E+08 8.22E+06 6.28E+06 6.51E+08 6.99E+08 X
M 328 641 14971 14971 0

lang19 〈1444, 2, 54226, 927〉 Z 5.13E+11 9.73E+10 6.87E+08 8.52E+05 6.38E+11 7.31E+11 X
M 146 232 3431 3431 0

lang20 〈1600, 2, 63280, 1023〉 Z 5.27E+12 1.13E+11 3.99E+09 8.55E+04 2.83E+12 3.45E+12 X
M 120 180 2961 2961 0

lang23 〈2116, 2, 96370, 1407〉 Z 7.60E+15 7.53E+14 3.70E+12 X 4.17E+15 4.19E+15 X
M 38 54 1111 1111 0

lang24 〈2304, 2, 109536, 1535〉 Z 9.37E+16 1.17E+13 4.15E+11 X 8.74E+15 1.40E+16 X
M 25 33 271 271 0

Table 3: Table showing the solution counts Z and the number of consistent samples M (only for the
sampling based solvers) output by IJGP-wc-SS, IJGP-wc-IS , ApproxCount, SampleCount and Relsat
after 10 hours of CPU time for Langford’s problem instances. A “*” next to the output of a solver
indicates that it solved the problem exactly (before the time-bound of 10 hours expired) followed by
the number of seconds it took to solve the instance exactly.

Table 2 shows the results for latin square instances up to order 11 for which exact
solution counts are known. ApproxCount and Relsat underestimate the counts by sev-
eral orders of magnitude. On the other hand, IJGP-wc-SS/UB, IJGP-wc-SS/LB and
SampleCount yield very good estimates close to the true counts. The counts output
by IJGP-wc-SS/UB and IJGP-wc-SS/LB are the same for all instances indicating that
the sample mean is accurately estimated by the upper and lower approximations of the
backtrack-free distribution (see the discussion on bias versus variance in Section 4.2.2).
IJGP-wc-IS fails on all instances and is unable to generate a single consistent sample in
ten hours. IJGP-wc-SS generates far more solution samples as compared with Sample-
Count and ApproxCount. In Figure 5 (a) and (b), we show how the estimates output by
various solvers change with time for the two largest instances. Here, we can clearly see
the superior convergence of IJGP-wc-SS/LB, IJGP-wc-SS/UB and SampleCount over
other approaches.

Our second set of benchmark instances come from the Langford’s problem domain.
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Figure 6: Time versus solution counts for two sample Langford instances. IJGP-wc-IS and Relsat are
not plotted in the figures because they fail on the given instances.

The problem is parameterized by its (integer) size denoted by s. Given a set of s numbers
{1, 2, . . . , s}, the problem is to produce a sequence of length 2s such that each i ∈ {1,
2, . . . , s} appears twice in the sequence and the two occurrences of i are exactly i apart
from each other. This problem is satisfiable only if n is 0 or 3 modulo 4. We encoded
the Langford problem as a SAT formula using the channeling SAT encoding described
in (Walsh, 2001).

Table 3 presents the results. ApproxCount and Relsat severely under estimate the
true counts except on the instance of size 12 (lang12 in Table 3) which Relsat solves
exactly in about 5 minutes. SampleCount is inferior to IJGP-wc-SS/UB and IJGP-wc-
SS/LB by several orders of magnitude. IJGP-wc-SS/UB is slightly better than IJGP-
wc-SS/LB. Unlike the Latin square instances, the solution counts output by IJGP-wc-
SS/LB and IJGP-wc-SS/UB are different for large problems but the difference is small.
IJGP-wc-IS fails on all instances because it does not perform search. Again, we see that
IJGP-wc-SS generates far more consistent samples as compared with SampleCount and
ApproxCount. In Figure 6 (a) and (b), we show how the the estimates output by various
solvers change with time for the two largest instances. Here, we clearly see the superior
anytime performance of IJGP-wc-SS/LB and IJGP-wc-SS/UB11.

Results on instances for which exact solution counts are not known

When exact results are not available evaluating the capability of SampleSearch or any
other approximation algorithm is problematic because the quality of the approximation
(namely how close the approximation is to the exact) cannot be assessed. To allow some
comparison on such hard instances we evaluate the power of various sampling schemes for
yielding good lower-bound approximations whose quality can be compared (the higher

11An anonymous reviewer pointed out that the number of solutions of the Langford problem can
be estimated using a specialized sampling scheme (he/she also provided a python implementation).
This scheme suffers from the rejection problem, but the rejection rate is very small. The scheme often
yields sample means which are closer to the true mean than the sample means output by SampleSearch,
SampleCount and ApproxCount.
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Problem 〈n, k, c, w〉 Exact Sample REL IJGP-wc- IJGP-
Count SAT SS/LB wc-IS

ls12-norm 〈1728, 2, 28968, 1044〉 Z 2.23E+43 1.26E+08 1.25E+43 X
M 1064 13275 0

ls13-norm 〈2197, 2, 40079, 1558〉 Z 3.20E+54 9.32E+07 1.15E+55 X
M 566 6723 0

ls14-norm 〈2744, 2, 54124, 1971〉 Z 5.08E+65 7.1E+07 1.24E+70 X
M 299 3464 0

ls15-norm 〈3375, 2, 71580, 2523〉 Z 3.12E+79 2.06E+07 2.03E+83 X
M 144 1935 0

ls16-norm 〈4096, 2, 92960, 2758〉 Z 7.68E+95 X 2.08E+98 X
M 58 1530 0

Table 4: Table showing the lower bounds on solution counts Z and the number of consistent samples
M (only for the sampling-based solvers) output by IJGP-wc-SS/LB, IJGP-wc-IS, SampleCount and
Relsat after 10 hours of CPU time for 5 Latin Square instances for which the exact solution counts are
not known. The entries for IJGP-wc-IS, SampleCount and IJGP-wc-SS/LB contain the lower bounds
computed by combining their respective sample weights with the Markov inequality based Average and
Martingale schemes given in (Gogate et al., 2007).

the better) even when exact solution is not available. Specifically, we compare the lower
bounds obtained by combining IJGP-wc-SS/LB, IJGP-wc-IS and SampleCount with
the Markov inequality based martingale and average schemes described in our previous
work (Gogate et al., 2007). These lower bounding schemes (Gomes et al., 2007; Gogate
et al., 2007) take as input: (a) a set of unbiased sample weights or a lower bound on the
unbiased sample weights and (b) a real number 0 < α < 1, and output a lower bound
on the weighted counts Z (or solution counts in case of a SAT formula) that is correct
with probability greater than α. In our experiments, we set α = 0.99 which means that
the lower bounds are correct with probability greater than 0.99.

We will show that the samples derived from SampleSearch (IJGP-wc-SS/LB) give
rise to superior lower bounds compared with other sampling-based schemes. Comparing
lower-bounds facilitates a comparative evaluation even on instances for which exact
weighted count sare not available12.

IJGP-wc-SS/UB cannot be used to lower bound Z because it outputs upper bounds
on the unbiased sample weights. Likewise, ApproxCount cannot be used to lower bound
Z because it is not unbiased. Finally, note that Relsat always yields a lower bound on
the solution counts with probability one.

First we compare the lower bounding ability of IJGP-wc-IS, IJGP-wc-SS/LB, Sam-
pleCount and Relsat on latin square instances of size 12 through 15 for which the exact
counts are not known. Table 4 contains the results. IJGP-wc-SS/LB yields far better
(higher) lower bounds than SampleCount as the problem size increases. Relsat under-
estimates the counts by several orders of magnitude as compared with IJGP-wc-SS/LB
and SampleCount. As expected, IJGP-wc-IS fails on all instances. Again, we can see
that the lower bounds obtained via IJGP-wc-SS/LB are based on a much larger sample
size as compared with SampleCount.

12We still cannot evaluate the quality of the marginals when the exact solution is not known because
the Markov inequality based schemes (Gomes et al., 2007; Gogate et al., 2007) cannot lower bound
marginal probabilities.
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Problem 〈n, k, c, w〉 Exact SampleCount Relsat IJGP-wc-SS/LB IJGP-wc-IS
9symml gr 2pin w6 〈2604, 2, 36994, 413〉 Z 3.36E+51 3.41E+32 3.06E+53 X

M 3 6241 0
9symml gr rcs w6 〈1554, 2, 29119, 613〉 Z 8.49E+84 3.36E+72 2.80E+82 X

M 374 16911 0
alu2 gr rcs w8 〈4080, 2, 83902, 1470〉 Z 1.21E+206 1.88E+56 1.69E+235 X

M 8 841 0
apex7 gr 2pin w5 〈1983, 2, 15358, 188〉 Z 5.83E+93 4.83E+49 2.33E+94 X

M 54 25161 0
apex7 gr rcs w5 〈1500, 2, 11695, 290〉 Z 2.17E+139 3.69E+46 9.64E+133 X

M 1028 48331 0
c499 gr 2pin w6 〈2070, 2, 22470, 263〉 Z X 2.78E+47 2.18E+55 X

M 0 4491 0
c499 gr rcs w6 〈1872, 2, 18870, 462〉 Z 2.41E+87 7.61E+54 1.29E+84 X

M 40 14151 0
c880 gr rcs w7 〈4592, 2, 61745, 1024〉 Z 1.50E+278 1.42E+43 7.16E+255 X

M 5 831 0
example2 gr 2pin w6 〈3603, 2, 41023, 350〉 Z 3.93E+160 7.35E+38 7.33E+160 X

M 1 1971 0
example2 gr rcs w6 〈2664, 2, 27684, 476〉 Z 4.17E+265 1.13E+73 6.85E+250 X

M 167 6211 0
term1 gr 2pin w4 〈746, 2, 3964, 31〉 Z X 2.13E+35 6.90E+39 X

M 0 326771 0
term1 gr rcs w4 〈808, 2, 3290, 57〉 Z X 1.17E+49 7.44E+55 X

M 0 341951 0
too large gr rcs w7 〈3633, 2, 50373, 1069〉 Z X 1.46E+73 1.05E+182 X

M 0 1561 0
too large gr rcs w8 〈4152, 2, 57495, 1330〉 Z X 1.02E+64 5.66E+246 X

M 0 1171 0
vda gr rcs w9 〈6498, 2, 130997, 2402〉 Z X 2.23E+92 5.08E+300 X

M 0 221 0

Table 5: Table showing the lower bounds on solution counts Z and the number of consistent samples M
(only for the sampling-based solvers) output by IJGP-wc-SS/LB, IJGP-wc-IS, SampleCount and Relsat
after 10 hours of CPU time for FPGA routing instances. The entries for IJGP-wc-IS, SampleCount
and IJGP-wc-SS/LB contain the lower bounds computed by combining their respective sample weights
with the Markov inequality based Average and Martingale schemes given in (Gogate et al., 2007).
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Problem 〈n, k, c, e, w〉 Exact IJGP-wc IJGP-wc VEC EDBP IJGP-wc
ACE time -SS/LB -SS/UB -IS

BN 69 〈777, 7, 228, 78, 39〉 Z 5.28E-054 3.00E-55 3.00E-55 1.93E-61 2.39E-57 X
ACE (Timeout) M 6.84E+5 6.84E+5 0

BN 70 〈2315, 5, 484, 159, 35〉 Z 2.00E-71 1.21E-73 1.21E-73 7.99E-82 6.00E-79 X
ACE (233s) M 1.92E+5 1.92E+5 0

BN 71 〈1740, 6, 663, 202, 53〉 Z 5.12E-111 1.28E-111 1.28E-111 7.05E-115 1.01E-114 X
ACE (Timeout) M 7.46E+4 7.46E+4 0

BN 72 〈2155, 6, 752, 252, 65〉 Z 4.21E-150 4.73E-150 4.73E-150 1.32E-153 9.21E-155 X
ACE (Timeout) M 1.53E+5 1.53E+5 0

BN 73 〈2140, 5, 651, 216, 67〉 Z 2.26E-113 2.00E-115 2.00E-115 6.00E-127 2.24E-118 X
ACE (Timeout) M 7.75E+4 7.75E+4 0

BN 74 〈749, 6, 223, 66, 35〉 Z 3.75E-45 2.13E-46 2.13E-46 3.30E-48 5.84E-48 X
ACE (Timeout) M 2.80E+5 2.80E+5 0

BN 75 〈1820, 5, 477, 155, 37〉 Z 5.88E-91 2.19E-91 2.19E-91 5.83E-97 3.10E-96 X
ACE (Timeout) M 7.72E+4 7.72E+4 0

BN 76 〈2155, 7, 605, 169, 53〉 Z 4.93E-110 1.95E-111 1.95E-111 1.00E-126 3.86E-114 X
ACE (Timeout) M 2.52E+4 2.52E+4 0

Table 6: Probability of evidence (Z) computed by VEC, EDBP, IJGP-wc-IS and IJGP-wc-SS after 3
hours of CPU time for Linkage instances from the UAI 2006 evaluation. For IJGP-wc-SS and IJGP-
wc-IS, we also report the number of consistent samples (M) generated in 3 hours.

Our final domain is that of the FPGA routing instances. These instances are con-
structed by reducing FPGA (Field Programmable Gate Array) detailed routing problems
into a satisfiability formula. The instances were generated by Gi-Joon Nam and were
used in the SAT 2002 competition (Simon, Berre, and Hirsch, 2005). Table 5 presents
the results for these instances. IJGP-wc-SS/LB yields higher lower bounds than Sam-
pleCount and Relsat on ten out of the fifteen instances. On the remaining five instances
SampleCount yields higher lower bounds than IJGP-wc-SS/LB. Relsat is always inferior
to IJGP-wc-SS/LB while IJGP-wc-IS fails on all instances. SampleCount fails to yield
even a single consistent sample on 6 out of the 15 instances. On the remaining nine
instances, the number of consistent samples generated by SampleCount are far less than
IJGP-wc-SS.

Next, we present results for Bayesian and Markov networks benchmarks. For the rest
of the paper, note a slight change in the content of each table. In the second column,
we also report the time required by ACE to compute the weighted counts or marginals
for the instance. The time-bound for ACE was set to 3 hrs.

5.3.2. Linkage networks

The Linkage networks are generated by converting biological linkage analysis data
into a Bayesian or Markov network. Linkage analysis is a statistical method for mapping
genes onto a chromosome (Ott, 1999). This is very useful in practice for identifying
disease genes. The input is an ordered list of loci L1, . . . , Lk+1 with allele frequencies at
each locus and a pedigree with some individuals typed at some loci. The goal of linkage
analysis is to evaluate the likelihood of a candidate vector [θ1, . . . , θk] of recombination
fractions for the input pedigree and locus order. The component θi is the candidate
recombination fraction between the loci Li and Li+1.

The pedigree data can be represented as a Bayesian network with three types of ran-
dom variables: genetic loci variables which represent the genotypes of the individuals
in the pedigree (two genetic loci variables per individual per locus, one for the paternal
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Figure 7: A fragment of a Bayesian network used in genetic linkage analysis.

allele and one for the maternal allele), phenotype variables, and selector variables which
are auxiliary variables used to represent the gene flow in the pedigree. Figure 7 repre-
sents a fragment of a network that describes parents-child interactions in a simple 2-loci
analysis. The genetic loci variables of individual i at locus j are denoted by Li,jp and
Li,jm. Variables Xi,j , Si,jp and Si,jm denote the phenotype variable, the paternal selec-
tor variable and the maternal selector variable of individual i at locus j, respectively.
The conditional probability tables that correspond to the selector variables are param-
eterized by the recombination ratio θ. The remaining tables contain only deterministic
information. It can be shown that given the pedigree data, computing the likelihood of
the recombination fractions is equivalent to computing the probability of evidence on
the Bayesian network that model the problem (for more details consult (Fishelson and
Geiger, 2003)).

We first evaluate the solvers on Linkage (Bayesian) networks used in the UAI 2006
evaluation (Bilmes and Dechter, 2006). Table 6 contains the results. The exact results
for these instances are available from the UAI 2006 evaluation website. We see that
IJGP-wc-SS/UB and IJGP-wc-SS/LB are very accurate usually yielding a few orders of
magnitude improvement over VEC and EDBP. Because the estimates output by IJGP-
wc-SS/UB and IJGP-wc-SS/LB are the same on all instances, they yield an exact value
of the sample mean. Figure 8 shows how the probability of evidence changes as a function
of time for two sample instances. We see superior anytime performance of both IJGP-
wc-SS schemes as compared with VEC and EDBP. IJGP-wc-IS fails to output a single
consistent sample in 3 hours of CPU time on all the instances.

In Table 7, we present the results on the 18 linkage instances that were used in the
UAI 2008 evaluation (Darwiche et al., 2008) for which the exact value of probability
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Problem 〈n, k, c, e, w〉 Exact IJGP-wc IJGP-wc VEC EDBP IJGP-wc
ACE time -SS/LB -SS/UB -IS

pedigree18 〈1184, 2, 386, 0, 26〉 Z 7.18E-79 7.39E-79 7.39E-79 7.18E-79*(64s) 7.18E-79*(772s) X
ACE (10s) M 1.30E+5 1.30E+5 0

pedigree1 〈334, 2, 121, 0, 20〉 Z 7.81E-15 7.81E-15 7.81E-15 7.81E-15*(12s) 7.81E-15*(14s) X
ACE (2s) M 3.26E+5 3.26E+5 0

pedigree20 〈437, 2, 147, 0, 25〉 Z 2.34E-30 2.31E-30 2.31E-30 2.34E-30*(1216s) 6.19E-31 X
ACE (Timeout) M 2.31E+5 2.31E+5 0

pedigree23 〈402, 2, 130, 0, 26〉 Z 2.78E-39 2.76E-39 2.76E-39 2.78E-39*(913s) 1.52E-39 X
ACE (8s) M 3.28E+5 3.28E+5 0

pedigree25 〈1289, 2, 396, 0, 38〉 Z 1.69E-116 1.69E-116 1.69E-116 1.69E-116*(318s) 1.69E-116*(2562s) X
ACE (Timeout) M 1.29E+5 1.29E+5 0

pedigree30 〈1289, 2, 413, 0, 27〉 Z 1.84E-84 1.90E-84 1.90E-84 1.85E-84*(808s) 1.85E-84*(179s) X
ACE (8s) M 1.14E+5 1.14E+5 0

pedigree37 〈1032, 2, 333, 0, 25〉 Z 2.63E-117 1.18E-117 1.18E-117 2.63E-117*(2521s) 5.69E-124 X
ACE (52s) M 4.26E+5 4.26E+5 0

pedigree38 〈724, 2, 263, 0, 18〉 Z 5.64E-55 3.80E-55 3.80E-55 5.65E-55*(735s) 8.41E-56 X
ACE (340s) M 1.63E+5 1.63E+5 0

pedigree39 〈1272, 2, 354, 0, 29〉 Z 6.32E-103 6.29E-103 6.29E-103 6.32E-103*(136s) 6.32E-103*(694s) X
ACE (Timeout) M 1.25E+5 1.25E+5 0

pedigree42 〈448, 2, 156, 0, 23〉 Z 1.73E-31 1.73E-31 1.73E-31 1.73E-31*(3188s) 8.91E-32 X
ACE (Timeout) M 3.26E+5 3.26E+5 0

pedigree31 〈1183, 2, 0, 45〉 Z 1.98E-70 2.08E-70 2.08E-70 1.67E-76 1.34E-70 X
ACE (Timeout) M 6.7E+4 6.7E+4 0

pedigree34 〈1160, 1, 0, 59〉 Z 5.9E-65 3.84E-65 3.84E-65 2.58E-76 4.30E-65 X
ACE (Timeout) M 1.2E+5 1.2E+5 0

pedigree13 〈1077, 1, 0, 51〉 Z 5.44E-32 7.03E-32 7.03E-32 2.17E-37 6.53E-34 X
ACE (Timeout) M 8.1E+4 8.1E+4 0

pedigree9 〈1118, 2, 0, 41〉 Z 3.43E-79 2.93E-79 2.93E-79 8.00E-82 3.13E-79 X
ACE (Timeout) M 8.0E+4 8.0E+4 0

pedigree19 〈793, 2, 0, 23〉 Z 9.4E-60 6.76E-60 6.76E-60 7.97E-60 3.35E-60 X
ACE (Timeout) M 9.5E+4 9.5E+4 0

pedigree7 〈1068, 1, 0, 56〉 Z 1.49E-65 1.33E-65 1.33E-65 1.66E-72 2.93E-66 X
ACE (Timeout) M 8.3E+4 8.3E+4 0

pedigree51 〈1152, 1, 0, 51〉 Z 1.34E-74 2.47E-74 2.47E-74 5.56E-85 6.16E-76 X
ACE (Timeout) M 1.0E+5 1.0E+5 0

pedigree44 〈811, 1, 0, 29〉 Z 3.36E-64 3.39E-64 3.39E-64 2.23E-64 7.69E-66 X
ACE (Timeout) M 1.7E+5 1.7E+5 0

Table 7: Probability of evidence Z computed by VEC, EDBP, IJGP-wc-IS and IJGP-wc-SS after 3
hours of CPU time for Linkage instances from the UAI 2008 evaluation. For IJGP-wc-SS and IJGP-
wc-IS, each cell in the table also reports the number of consistent samples M generated in 3 hours. A
“*” next to the output of a solver indicates that it solved the problem exactly (before the time-bound
expired) followed by the number of seconds it took to solve the instance exactly.
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Figure 8: Convergence of probability of evidence as a function of time for two sample Linkage instances.
IJGP-wc-IS is not plotted in the figures because it fails on all the instances.

of evidence is known13. We see that VEC (as an anytime scheme) exactly solves 10
instances (as indicated by a ∗ in Table 7). On 7 out of the remaining 8 instances, IJGP-
wc-SS/LB and IJGP-wc-SS/UB are better than VEC. EDBP exactly solves 5 instances.
On the remaining 13 instances, IJGP-wc-SS/LB and IJGP-wc-SS/UB are better than
VEC. Overall, IJGP-wc-SS/LB and IJGP-wc-SS/UB deviate only slightly from the exact
value of probability of evidence. Again, IJGP-wc-IS fails on all the instances.

5.3.3. Relational Instances

The relational instances are generated by grounding the relational Bayesian networks
using the primula tool (Chavira et al., 2006). We experimented with ten Friends and
Smoker networks and six mastermind networks from this domain which have between
262 to 76,212 variables. Table 8 summarizes the results.

VEC solves 2 friends and smokers networks exactly while on the remaining instances,
it fails to output any answer. EDBP solves one instance exactly while on the remaining
instances it either fails or is inferior to IJGP-wc-SS. IJGP-wc-IS is better than IJGP-wc-
SS on 3 instances while on the remaining instances it fails to generate a single consistent
sample; especially as the instances get larger. The estimates computed by IJGP-wc-
SS/LB and IJGP-wc-SS/UB on the other hand are very close to the exact probability
of evidence.

VEC solves exactly six out of the eight mastermind instances while on the remaining
two instances VEC is worse than IJGP-wc-SS/UB and IJGP-wc-SS/LB. EDBP solves
two instances exactly while on the remaining instances it is worse than IJGP-wc-SS/LB
and IJGP-wc-SS/UB.

Again, the estimates output by IJGP-wc-SS/LB and IJGP-wc-SS/UB are the same
for all the relational instances indicating that our lower and upper approximations have

13The exact value of probability of evidence for instances that ACE and VEC were unable to solve
was obtained by running the Bucket elimination (BE) with external memory (BEEM) algorithm (Kask,
Dechter, and Gelfand, 2010). BEEM uses external memory, such as disk storage, to increase the amount
of memory available to BE, thereby significantly improving BE’s scalability.
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Problem 〈n, k, c, e, w〉 Exact IJGP-wc IJGP-wc VEC EDBP IJGP-wc
ACE time -SS/LB -SS/UB -IS

Friends and
Smokers

fs-04 〈262, 2, 74, 226, 12〉 Z 1.53E-05 8.11E-06 8.11E-06 1.53E-05*(1s) 1.53E-05*(2s) 1.52E-05
ACE (4s) M 1.00E+6 1.00E+6 2.17E+8

fs-07 〈1225, 2, 371, 1120, 35〉 Z 1.78E-15 2.23E-16 2.23E-16 1.78E-15*(708s) 1.11E-16 X
ACE (4s) M 1.00E+6 1.00E+6 0

fs-10 〈3385, 2, 1055, 3175, 71〉 Z 7.88E-31 2.49E-32 2.49E-32 X 7.70E-34 X
ACE (9s) M 8.51E+5 8.51E+5 0

fs-13 〈7228, 2, 2288, 6877, 117〉 Z 1.33E-51 3.26E-55 3.26E-55 X 1.63E-55 1.33E-51
ACE (9s) M 5.41E+5 5.41E+5 4.67E+7

fs-16 〈13240, 2, 4232, 12712, 171〉 Z 8.63E-78 6.04E-79 6.04E-79 X 1.32E-82 8.63E-78
ACE (14s) M 1.79E+5 1.79E+5 1.37E+7

fs-19 〈21907, 2, 7049, 21166, 243〉 Z 2.12E-109 1.62E-114 1.62E-114 X X X
ACE (22s) M 1.90E+5 1.90E+5 0

fs-22 〈33715, 2, 10901, 32725, 315〉 Z 2.00E-146 4.88E-147 4.88E-147 X X X
ACE (49s) M 1.18E+5 1.18E+5 0

fs-25 〈49150, 2, 15950, 47875, 431〉 Z 7.18E-189 2.67E-189 2.67E-189 X X X
ACE (74s) M 9.23E+4 9.23E+4 0

fs-28 〈68698, 2, 22358, 67102, 527〉 Z 9.82E-237 4.53E-237 4.53E-237 X X X
ACE (148s) M 9.35E+4 9.35E+4 0

fs-29 〈76212, 2, 24824, 74501, 559〉 Z 6.81E-254 9.44E-255 9.44E-255 X X X
ACE (167s) M 2.62E+4 2.62E+4 0

Mastermind

mm 03 08 03 〈1220, 2, 1193, 48, 20〉 Z 9.79E-8 9.87E-08 9.87E-08 9.79E-08* (3s) 9.79E-08*(11s) X
ACE (7s) M 564101 564101 0

mm 03 08 04 〈2288, 2, 2252, 64, 30〉 Z 8.77E-09 8.19E-09 8.19E-09 8.77E-09* (1231s) X X
ACE (12s) M 35101 35101 0

mm 03 08 05 〈3692, 2, 3647, 80, 42〉 Z 8.89E-11 7.27E-11 7.27E-11 8.90E-11* (1503s) X X
ACE (35s) M 10401 10401 0

mm 04 08 03 〈1418, 2, 1391, 48, 22〉 Z 8.39E-08 8.37E-08 8.37E-08 8.39E-08* (7s) X X
ACE (9s) M 379501 379501 0

mm 04 08 04 〈2616, 2, 2580, 64, 33〉 Z 2.20E-08 1.84E-08 1.84E-08 1.21E-08 X X
ACE (19s) M 12901 12901 0

mm 05 08 03 〈1616, 2, 1589, 48, 28〉 Z 5.29E-07 4.78E-07 4.78E-07 5.30E-07* (229s) 5.3E-07*(6194s) X
ACE (12s) M 60201 60201 0

mm 06 08 03 〈1814, 2, 1787, 48, 31〉 Z 1.79E-08 1.12E-08 1.12E-08 1.80E-08* (2082s) 5.85E-09 X
ACE (13s) M 113301 113301 0

mm 10 08 03 〈2606, 2, 2579, 48, 56〉 Z 1.92E-07 5.01E-07 5.01E-07 7.79E-08 2.39E-10 X
ACE (27s) M 10801 10801 0

Table 8: Probability of evidence computed by VEC, EDBP, IJGP-wc-IS and IJGP-wc-SS after 3 hours
of CPU time for relational instances. For IJGP-wc-SS and IJGP-wc-IS each cell in the table also reports
the number of consistent samples generated in 10 hours. A “*” next to the output of a solver indicates
that it solved the problem exactly (before the time-bound expired) followed by the number of seconds
it took to solve the instance exactly.
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zero bias.

5.4. Results for the Posterior Marginal Tasks

5.4.1. Setup and Evaluation Criteria

We experimented with the following four benchmark domains: (a) The linkage in-
stances (b) The relational instances and (c) The grid instances and (d) The logistics
planning instances. We measure the accuracy of the solvers using average Hellinger dis-
tance (Kokolakis and Nanopoulos, 2001). Given a mixed network with n variables, let
P (Xi) and A(Xi) denote the exact and approximate marginals for a variable Xi, then
the average Hellinger distance denoted by ∆ is defined as:

∆ =

∑n
i=1

1
2

∑
xi∈Di

(
√

P (xi)−
√
A(xi))

2

n
(39)

Hellinger distance lies between 0 and 1 and lower bounds the Kullback Leibler dis-
tance (Kullback and Leibler, 1951). A Hellinger distance of 0 for a solver indicates that
the solver output the exact marginal distribution for each variable while a Hellinger
distance of 1 indicates that the solver failed to output any solution.

As pointed out in (Kokolakis and Nanopoulos, 2001), Hellinger distance is superior
to other choices such as the Kullback-Leibler (KL) distance, the mean squared error
and the relative error when zero or infinitesimally small probabilities are present. We
do not use the KL distance because it lies between 0 and ∞ and in practice when
the exact marginals are 0 or close to it, floating-point precision errors in the exact (or
the approximate) solver may yield a false zero when the correct marginal is non-zero
and vice versa yielding infinite KL distance14. We did compute the error using all other
commonly used distance measures such as the mean squared error, the relative error and
the absolute error. All error measures show similar trends, with the Hellinger distance
being the most discriminative.

Finally, for the marginal task, IJGP-wc-SS/LB and IJGP-wc-SS/UB output the same
marginals for all benchmarks that we experimented with and therefore we do not distin-
guish between them. This implies that our lower and upper approximations of the back-
track free probability are indeed quite strong and have negligible or zero bias. Therefore,
for the rest of this subsection, we will refer to IJGP-wc-SS/LB and IJGP-wc-SS/UB as
IJGP-wc-SS.

5.4.2. Linkage instances

In Table 9, we report the average Hellinger distance between exact and approximate
marginals for the linkage instances from the UAI 2006 evaluation (Bilmes and Dechter,
2006). We do not report on the pedigree instances from the UAI 2008 evaluation (Dar-
wiche et al., 2008) because their exact marginals are not known. We can see that
IJGP-wc-SS is more accurate than IJGP which in turn is more accurate than EDBP on

14Also see for example the results of the recent UAI evaluation (Darwiche et al., 2008). (Dechter and
Mateescu, 2003) proved that IJGP (and EDBP) cannot yield marginals having infinite KL distance.
However, in many cases these solvers had infinite KL distance because of precision errors.
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Problem 〈n, k, c, e, w〉 IJGP-wc-SS IJGP EPIS EDBP IJGP-wc-IS
ACE time

BN 69 〈777, 7, 228, 78, 39〉 ∆ 9.4E-04 3.2E-02 1 8.0E-02 1
ACE (Timeout) M 6.84E+5 0

BN 70 〈2315, 5, 484, 159, 35〉 ∆ 2.6E-03 3.3E-02 1 9.6E-02 1
ACE (233s) M 1.92E+5 0

BN 71 〈1740, 6, 663, 202, 53〉 ∆ 5.6E-03 1.9E-02 1 2.5E-02 1
ACE (Timeout) M 7.46E+4 0

BN 72 〈2155, 6, 752, 252, 65〉 ∆ 3.6E-03 7.2E-03 1 1.3E-02 1
ACE (Timeout) M 1.53E+5 0

BN 73 〈2140, 5, 651, 216, 67〉 ∆ 2.1E-02 2.8E-02 1 6.1E-02 1
ACE (Timeout) M 7.75E+4 0

BN 74 〈749, 6, 223, 66, 35〉 ∆ 6.9E-04 4.3E-06 1 4.3E-02 1
ACE (Timeout) M 2.80E+5 0

BN 75 〈1820, 5, 477, 155, 37〉 ∆ 8.0E-03 6.2E-02 1 9.3E-02 1
ACE (Timeout) M 7.72E+4 0

BN 76 〈2155, 7, 605, 169, 53〉 ∆ 1.8E-02 2.6E-02 1 2.7E-02 1
ACE (Timeout) M 2.52E+4 0

Table 9: Table showing the Hellinger distance ∆ between the exact and approximate marginals for
IJGP-wc-SS, IJGP-wc-IS, IJGP, EPIS and EDBP for Linkage instances from the UAI 2006 evaluation

after 3 hours of CPU time. For IJGP-wc-IS and IJGP-wc-SS, we also report the number of consistent
samples M generated in 3 hours.
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Figure 9: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-
wc-IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Linkage instances.
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Problem 〈n, k, c, e, w〉 IJGP-wc-SS IJGP EPIS EDBP IJGP-wc-IS
ACE time

Friends and
Smokers

fs-04 〈262, 2, 74, 226, 12〉 ∆ 5.4E-05 4.6E-08 1 6.4E-02 3.6E-06
ACE (4s) M 1.00E+6 2.17E+8

fs-07 〈1225, 2, 371, 1120, 35〉 ∆ 1.4E-02 1.6E-02 1 3.0E-02 1
ACE (4s) M 1.00E+6 0

fs-10 〈3385, 2, 1055, 3175, 71〉 ∆ 1.2E-02 6.3E-03 1 2.7E-02 1
ACE (9s) M 8.51E+5 0

fs-13 〈7228, 2, 2288, 6877, 117〉 ∆ 2.0E-02 6.5E-03 1 2.3E-02 1.4E-04
ACE (10s) M 5.41E+5 4.67E+7

fs-16 〈13240, 2, 4232, 12712, 171〉 ∆ 1.2E-03 6.8E-03 1 1.7E-02 2.1E-05
ACE (14s) M 1.79E+5 1.37E+7

fs-19 〈21907, 2, 7049, 21166, 243〉 ∆ 3.1E-03 8.8E-03 1 1 1
ACE (23s) M 1.90E+5 0

fs-22 〈33715, 2, 10901, 32725, 315〉 ∆ 2.5E-03 8.6E-03 1 1 1
ACE (49s) M 1.18E+5 0

fs-25 〈49150, 2, 15950, 47875, 431〉 ∆ 2.5E-03 8.4E-03 1 1 1
ACE (74s) M 9.23E+4 0

fs-28 〈68698, 2, 22358, 67102, 527〉 ∆ 1.3E-03 7.4E-03 1 1 1
ACE (149s) M 9.35E+4 0

fs-29 〈76212, 2, 24824, 74501, 559〉 ∆ 1.9E-03 7.0E-03 1 1 1
ACE (168s) M 2.62E+4 0

Mastermind
mm 03 08 03 〈1220, 2, 1193, 48, 20〉 ∆ 1.1E-03 3.8E-02 1 3.8E-01 1

ACE (7s) M 5.64E+5 0
mm 03 08 04 〈2288, 2, 2252, 64, 30〉 ∆ 1.1E-02 4.4E-02 1 1 1

ACE (12s) M 3.51E+4 0
mm 03 08 05 〈3692, 2, 3647, 80, 42〉 ∆ 4.0E-02 3.2E-02 1 1 1

ACE (35s) M 1.04E+4 0
mm 04 08 04 〈2616, 2, 1391, 64, 33〉 ∆ 3.1E-02 3.5E-02 1 1 1

ACE (19s) M 1.29E+4 0
mm 05 08 03 〈1616, 2, 2580, 48, 28〉 ∆ 1.0E-02 3.6E-02 1 4.0E-02 1

ACE (12s) M 6.02E+4 0
mm 06 08 03 〈1814, 2, 1787, 48, 31〉 ∆ 4.7E-03 3.3E-02 5.6E-01 3.2E-01 1

ACE (13s) M 1.13E+5 0
mm 10 08 03 〈2606, 2, 2579, 48, 56〉 ∆ 3.9E-02 5.3E-02 1 8.3E-02 1

ACE (27s) M 1.08E+4 0

Table 10: Table showing the Hellinger distance ∆ between the exact and approximate marginals for
IJGP-wc-SS, IJGP-wc-IS, IJGP, EPIS and EDBP for relational instances after 3 hours of CPU time.
For IJGP-wc-IS and IJGP-wc-SS, we also report the number of consistent samples M generated in 3
hours.

7 out of the 8 instances. We can clearly see the relationship between treewidth and the
performance of propagation based and sampling based techniques. When the treewidth
is relatively small (on BN 74), a propagation based scheme like IJGP is more accurate
than IJGP-wc-SS but as the treewidth increases, there is one to two orders of magnitude
difference in the Hellinger distance. EPIS and IJGP-wc-IS do not generate even a single
consistent sample in 3 hours of CPU time and therefore their average Hellinger distance
is 115. In Figure 9, we demonstrate the superior anytime performance of IJGP-wc-SS
compared with other solvers.

15The EPIS program does not output the number of consistent samples that were used in computing
the marginals. It outputs an invalid marginal distribution for all variables (for e.g., it will output a
marginal distribution of (0, 0, 0) for a variable having 3 values in its domain) when it generates no
consistent samples within the stipulated time bound.
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Figure 10: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-
wc-IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Friends and Smokers networks.

 0.001

 0.01

 0.1

 1

 0  2000  4000  6000  8000  10000  12000

A
ve

ra
ge

 H
el

lin
ge

r 
D

is
ta

nc
e 

Time in seconds

 Approximation Error vs Time for mastermind_03_08_03-0015, num-vars= 1220

IJGP-wc-SS
IJGP

EPIS
EDBP

IJGP-wc-IS

(a)

 0.001

 0.01

 0.1

 1

 0  2000  4000  6000  8000  10000  12000

A
ve

ra
ge

 H
el

lin
ge

r 
D

is
ta

nc
e 

Time in seconds

 Approximation Error vs Time for mastermind_06_08_03-0015, num-vars= 1814

IJGP-wc-SS
IJGP

EPIS
EDBP

IJGP-wc-IS

(b)

Figure 11: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-
wc-IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Mastermind networks.

5.4.3. Relational Instances

We experimented again with the 10 Friends and Smoker networks and 6 mastermind
networks from the relational Bayesian networks domain (Chavira et al., 2006). Table
10 shows the Hellinger distance between the exact and approximate marginals after 3
hours of CPU time for each solver.

On the small friends and smoker networks, fs-04 to fs-13, IJGP performs better than
IJGP-wc-SS. However, on large networks which have between 13240 and 76212 variables,
and treewidth between 12 and 559, IJGP-wc-SS performs better than IJGP. EDBP is
slightly worse than IJGP and runs out of memory on large instances, indicated by a
Hellinger distance of 1. EPIS is not able to generate a single consistent sample in 3
hours of CPU time indicated by Hellinger distance of 1 for all instances. IJGP-wc-IS
fails on all but three instances. On these three instances, IJGP-wc-IS has smaller error
than IJGP-wc-SS because it generates many more consistent samples than IJGP-wc-SS
(by a factor of 10-200).

Discussion: The small sample size of IJGP-wc-SS as compared with its pure sampling
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Figure 12: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-wc-
IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Grid instances with deterministic ratio=50%.

counterpart IJGP-wc-IS is due to the overhead of solving a satisfiability formula via
backtracking search to generate a sample. IJGP-wc-IS, on the other hand, uses the
relational consistency (Dechter, 2003; Dechter and Mateescu, 2003) power of IJGP to
reduce rejection as a pre-processing step (Gogate and Dechter, 2005). This highlights
that sometimes using constraint-based inference to determine the inconsistencies before
sampling is more cost-effective to combining search with sampling. Such constraint based
inference schemes are however not scalable and as we can see they fail to yield even a
single consistent sample for the larger instances (fs-19 to fs-29). Thus, to take advantage
of larger sample size, we can use a simple strategy in which we run conventional sampling
for a few minutes and resort to SampleSearch only when pure sampling does not produce
any consistent samples.

On the mastermind networks, IJGP-wc-SS is the superior scheme followed by IJGP.
EPIS fails to output even a single consistent sample in 3 hours on 6 out of the 7 instances
while IJGP-wc-IS fails on all instances. EDBP is slightly worse than IJGP on 5 out
of the 6 instances. Figures 10 and 11 show the anytime performance of the solvers
demonstrating the clear superiority of IJGP-wc-SS.

5.4.4. Grid Networks

The Grid Bayesian networks are available from the authors of Cachet (Sang et al.,
2005). A grid Bayesian network is a s × s grid, where there are two directed edges
from a node to its neighbors right and down. The upper-left node is a source, and the
bottom-right node is a sink. The sink node is the evidence node. The deterministic
ratio p is a parameter specifying the fraction of nodes that are deterministic (functional
in this case), that is, whose values are a function of the values of their parents. The grid
instances are designated as p− s. For example, the instance 50− 18 indicates a grid of
size 18 in which 50% of the nodes are deterministic or functional. Table 11 shows the
Hellinger distance after 3 hours of CPU time for each solver. Time versus approximation
error plots are shown for six sample instances in Figures 12 through 14.

On grids with deterministic ratio of 50%, EPIS is the best performing scheme on all
but two instances. On most instances, IJGP-wc-IS yeilds marginals having smaller error
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Problem 〈n, k, c, e, w〉 IJGP-wc-SS IJGP EPIS EDBP IJGP-wc-IS
ACE time

Deterministic
Ratio = 50%

50-12-5 〈144, 2, 62, 1, 16〉 ∆ 4.3E-04 3.2E-07 2.6E-04 2.5E-02 1.5E-04
ACE (3s) M 1.90E+6 1.23E+8

50-14-5 〈196, 2, 93, 1, 20〉 ∆ 4.9E-04 1.8E-02 1.2E-04 4.0E-02 2.1E-04
ACE (3s) M 9.37E+5 8.90E+7

50-15-5 〈225, 2, 111, 1, 23〉 ∆ 4.9E-04 1.0E-02 2.3E-04 6.1E-02 6.5E-04
ACE (6s) M 5.24E+5 7.68E+7

50-17-5 〈289, 2, 138, 1, 25〉 ∆ 8.0E-04 2.1E-02 2.0E-04 3.6E-03 1.0E-03
ACE (211s) M 4.34E+5 5.82E+7

50-18-5 〈324, 2, 153, 1, 27〉 ∆ 9.3E-04 1.9E-02 3.0E-04 2.1E-03 7.6E-04
ACE (Timeout) M 3.46E+5 5.15E+7

50-19-5 〈361, 2, 172, 1, 28〉 ∆ 1.1E-03 3.4E-02 4.0E-04 3.4E-04 1.5E-03
ACE (Timeout) M 2.87E+5 2.80E+7

Deterministic
Ratio = 75%

75-16-5 〈256, 2, 193, 1, 24〉 ∆ 6.5E-04 2.5E-07 1.7E-04 7.8E-02 1.4E-04
ACE (7s) M 9.74E+5 7.11E+7

75-17-5 〈289, 2, 217, 1, 25〉 ∆ 1.4E-03 2.6E-07 2.7E-04 1.2E-03 1.6E-04
ACE (9s) M 7.15E+5 5.41E+7

75-18-5 〈324, 2, 245, 1, 27〉 ∆ 1.2E-03 3.9E-02 2.0E-04 5.0E-03 1.9E-04
ACE (11s) M 4.47E+5 5.23E+7

75-19-5 〈361, 2, 266, 1, 28〉 ∆ 9.0E-03 4.3E-02 2.5E-04 6.7E-05 1.9E-04
ACE (14s) M 4.07E+5 3.93E+7

75-20-5 〈400, 2, 299, 1, 30〉 ∆ 6.2E-04 3.1E-07 1.9E-04 1.7E-02 2.8E-04
ACE (11s) M 4.10E+5 2.64E+7

75-21-5 〈441, 2, 331, 1, 32〉 ∆ 1.9E-03 2.9E-07 2.8E-04 1.5E-02 6.2E-04
ACE (60s) M 3.13E+5 2.33E+7

75-22-5 〈484, 2, 361, 1, 35〉 ∆ 3.2E-03 2.3E-02 2.6E-04 2.0E-02 5.4E-04
ACE (78s) M 2.67E+5 2.12E+7

75-23-5 〈529, 2, 406, 1, 35〉 ∆ 2.0E-03 4.8E-02 2.3E-04 2.4E-02 7.1E-04
ACE (420s) M 1.75E+5 1.77E+7

75-24-5 〈576, 2, 442, 1, 38〉 ∆ 8.4E-03 4.3E-02 2.6E-04 3.5E-02 8.9E-04
ACE (228s) M 1.29E+5 2.61E+7

75-26-5 〈676, 2, 506, 1, 44〉 ∆ 2.4E-02 5.1E-02 3.5E-04 5.1E-02 1.4E-03
ACE (Timeout) M 1.25E+5 2.20E+7

Deterministic
Ratio = 90%

90-20-5 〈400, 2, 356, 1, 30〉 ∆ 1.6E-03 2.7E-07 2.5E-04 3.7E-02 6.5E-05
ACE (8s) M 8.32E+5 4.77E+7

90-22-5 〈484, 2, 430, 1, 35〉 ∆ 4.6E-04 2.8E-07 1.5E-04 5.1E-02 1.0E-04
ACE (7s) M 4.42E+5 3.97E+7

90-23-5 〈529, 2, 468, 1, 35〉 ∆ 2.8E-04 3.2E-07 3.9E-04 1.9E-02 7.0E-05
ACE (9s) M 6.70E+5 4.00E+7

90-24-5 〈576, 2, 528, 1, 38〉 ∆ 5.0E-04 3.9E-07 3.5E-04 2.8E-02 9.2E-05
ACE (6s) M 7.01E+5 2.29E+7

90-25-5 〈625, 2, 553, 1, 39〉 ∆ 2.7E-07 2.7E-07 3.4E-04 4.6E-02 2.7E-07
ACE (7s) M 7.04E+5 2.57E+7

90-26-5 〈676, 2, 597, 1, 44〉 ∆ 1.0E-03 1.9E-06 2.3E-04 3.9E-02 1.9E-04
ACE (10s) M 4.13E+5 2.90E+7

90-34-5 〈1156, 2, 1048, 1, 65〉 ∆ 8.6E-04 1.8E-07 3.9E-04 4.1E-02 6.3E-04
ACE (25s) M 2.80E+5 1.37E+7

90-38-5 〈1444, 2, 1300, 1, 69〉 ∆ 1.6E-02 4.3E-07 1.7E-03 1.6E-01 1.0E-03
ACE (136s) M 1.15E+5 7.08E+6

Table 11: Table showing the Hellinger distance ∆ between the exact and approximate marginals for
IJGP-wc-SS, IJGP-wc-IS, IJGP, EPIS and EDBP for Grid networks after 3 hours of CPU time. For
IJGP-wc-IS and IJGP-wc-SS, we also report the number of consistent samples M generated in 3 hours.
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Figure 13: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-wc-
IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Grid instances with deterministic ratio=75%.
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Figure 14: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-wc-
IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Grid instances with deterministic ratio=90%.
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than IJGP-wc-SS. On four out of the six instances, the sampling schemes yield smaller
error than EDBP and IJGP. There is two orders of magnitude difference between IJGP-
wc-SS and EDBP/IJGP while there is one order of magnitude difference between EPIS
and IJGP-wc-IS and IJGP-wc-SS.

On grids with deterministic ratio of 75%, IJGP is best on four out of the six smaller
grids (up to size 21). EPIS dominates on the larger grids (size 22-26). IJGP-wc-IS is
worse than IJGP on the smaller grids (up to size 21) but dominates IJGP on larger
grids. IJGP-wc-IS is consistently worse than EPIS and this is because of the overhead
of the exact inference step of w-cutset sampling and also because of the min-fill ordering
used by IJGP-wc-IS. We found that the topological ordering (which is used by EPIS)
performs better than the min-fill ordering. Specifically, we found that when we set w=0
and use topological ordering, the performance of IJGP-wc-IS and EPIS is almost the
same (results not shown).

On grids with deterministic ratio of 90%, IJGP is the superior scheme. IJGP-wc-IS
is slightly better than EPIS which in turn is slightly better than IJGP-wc-SS. EDBP
is the least accurate scheme. Again, we see that there is a two orders of magnitude
difference between the sample size of IJGP-wc-IS and IJGP-wc-SS.

The poor performance of IJGP-wc-SS as compared with EPIS and IJGP-wc-IS is
because of its search overhead. On grid networks, rejection is not an issue for the IJGP-
wc-IS and EPIS solvers because the deterministic portion is easy for inference. Although,
it may seem on surface that both EPIS and IJGP-wc-IS do not reason about determinism,
it is not the case. It is known that Loopy Belief propagation, when run until convergence
makes the constraint portion of the mixed network relationally-arc-consistent (Dechter
and Mateescu, 2003). Therefore, if the constraint network has small treewidth, Loopy
BP (or IJGP) may yield a proposal distribution that is either backtrack-free or almost
backtrack-free. Note however that enforcing relational consistency may reduce but would
not completely eliminate the rejection problem. Typically, to guarantee that a backtrack-
free distribution is obtained, one has to use a consistency enforcement scheme whose time
and space complexity is bounded by the treewidth of the constraint portion of the mixed
network (see (Gogate, 2009), Chapter 2 for details). Overall, when the treewidth of the
constraint portion is large, SampleSearch is the only practical alternative available to
date.

5.4.5. Logistics Planning instances

Our last domain is that of logistics planning. Given prior probabilities on actions and
facts, the task is to compute marginal distribution of each variable. Goals and initial
conditions are observed true. Bayesian networks are generated from the plan graphs,
where additional nodes (all observed false) are added to represent mutex, action-effect
and preconditions of actions. These benchmarks are available from the authors of Cachet
(Sang et al., 2005).

Table 12 summarizes the results. IJGP-wc-IS, EPIS and EDBP fail on all instances.
IJGP solves the log-1 instance exactly as indicated by a * in Table 12 while on the
remaining instances, IJGP-wc-SS is more accurate than IJGP. In Figure 15, we demon-
strate the superior anytime performance of IJGP-wc-SS as compared with the other
schemes.
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Problem 〈n, k, c, e, w〉 IJGP-wc-SS IJGP EPIS EDBP IJGP-wc-IS
ACE time

log-1 〈4724, 2, 3785, 3785, 22〉 ∆ 2.2E-05 0* (2s) 1 1 1
ACE (1s) M 1.35E+8 0

log-2 〈26114, 2, 24777, 24777, 51〉 ∆ 8.6E-04 9.8E-03 1 1 1
ACE (58s) M 1.49E+6 0

log-3 〈30900, 2, 29487, 29487, 56〉 ∆ 1.2E-04 7.5E-03 1 1 1
ACE (23s) M 1.05E+5 0

log-4 〈23266, 2, 20963, 20963, 52〉 ∆ 2.3E-02 1.8E-01 1 1 1
ACE (68s) M 1.03E+5 0

log-5 〈32235, 2, 29534, 29534, 51〉 ∆ 8.6E-03 1.2E-02 1 1 1
ACE (727s) M 9.73E+3 0

Table 12: Table showing the Hellinger distance ∆ between the exact and approximate marginals for
IJGP-wc-SS, IJGP-wc-IS, IJGP, EPIS and EDBP for Logistics planning instances after 3 hours of CPU
time. For IJGP-wc-IS and IJGP-wc-SS, we also report the number of consistent samples M generated
in 3 hours.
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Figure 15: Time versus Hellinger distance ∆ between the exact and approximate marginals for IJGP-
wc-IS, IJGP-wc-SS, IJGP, EPIS and EDBP for two sample Logistics planning instances.

47



IJGP-wc-SS
Problem 〈n, k, e〉 min-fill min-degree topological hmetis
Linkage
BN 69 〈777, 7, 78〉 ∆ 9.4E-04 2.0E-03 4.7E-03 2.2E-03

w 39 38 122 39
BN 70 〈2315, 5, 159〉 ∆ 2.6E-03 1.4E-02 7.5E-03 8,3E-03

w 35 56 144 51
BN 75 〈1820, 5, 155〉 ∆ 8.0E-03 2.2E-03 2.1E-02 5.5E-03

w 37 41 178 46
BN 76 〈2155, 7, 169〉 ∆ 1.8E-02 1.5E-01 3.2E-02 1.8E-02

w 37 40 333 40
Grids
50-18-5 〈324, 2, 1〉 ∆ 9.3E-04 7.1E-03 3.3E-04 2.3E-03

w 27 27 21 30
50-19-5 〈361, 2, 1〉 ∆ 1.1E-03 1.3E-03 3.5E-04 1.8E-03

w 28 27 21 28
75-24-5 〈576, 2, 1〉 ∆ 4.3E-02 3.8E-02 1.9E-03 2.2E-02

w 38 40 37 38
75-26-5 〈676, 2, 1〉 ∆ 2.4E-02 8.0E-02 8E-04 4.5E-02

w 44 48 38 46
90-34-5 〈1156, 2, 1〉 ∆ 8.6E-04 1.6E-03 1.4E-03 9.4E-04

w 65 65 51 61
90-38-5 〈1444, 2, 1〉 ∆ 1.6E-02 1.6E-02 3.0E-03 4.5E-02

w 69 69 56 69
Relational

fs-28 〈68698, 2, 67102〉 ∆ 1.1E-03 1.3E-03 6.4E-04 2.7E-03
w 527 527 632 719

fs-29 〈76212, 2, 74501〉 ∆ 1.9E-03 2.1E-03 6.8E-03 3.4E-03
w 559 559 803 799

mm 06 08 03-0015 〈1814, 2, 48〉 ∆ 4.7E-03 6.1E-03 1.9E-02 8.5E-03
w 31 31 173 35

mm 10 08 03-0015 〈2606, 2, 48〉 ∆ 3.9E-02 6.5E-02 8.8E-02 5.6E-02
w 56 56 185 48

Table 13: Table showing the effect of the four ordering heuristics: min-fill, min-degree, hmetis and
topological on the Hellinger distance ∆ between the exact and approximate marginals computed by
IJGP-wc-SS. The time-bound used was 3 hours. The best performing scheme is highlighted in each
row. For each ordering heuristic, we report its treewidth w.

5.5. Impact of Ordering Heuristics

Table 13 shows the impact of using different variable ordering heuristics on the
performance of IJGP-wc-SS measured in terms of the Hellinger distance between the
exact and the approximate marginals. For brevity, we show the results for a few sample
instances from each domain. We can clearly see that except for the Grid instances, on
average the min-fill ordering performs better than the other schemes. The topological
ordering scheme performs the best on the grid instances. hmetis and min-degree ordering
are the worst performing schemes.

5.6. Summary of Experimental Evaluation

We implemented SampleSearch on top of an advanced importance sampling technique
IJGP-wc-IS presented in (Gogate and Dechter, 2005); yielding a scheme called IJGP-wc-
SS. The search was implemented using minisat (Sorensson and Een, 2005). For model
counting, we compared IJGP-wc-SS with three other approximate solution counters
available in literature: ApproxCount (Wei et al., 2004), SampleCount (Gomes et al.,
2007) and Relsat (Roberto J. Bayardo and Pehoushek, 2000) as well as with IJGP-wc-IS
on three benchmarks: (a) Latin Square instances (b) Langford instances and (c) FPGA-
routing instances. We found that on most instances, IJGP-wc-SS yields solution counts
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which are closer to the true counts by a few orders of magnitude than those output by
SampleCount and by several orders of magnitude than those output by ApproxCount
and Relsat. IJGP-wc-IS fails to generate even a single consistent sample on all the SAT
instances in 10 hours of CPU time clearly demonstrating the usefulness of IJGP-wc-SS
for deriving meaningful approximations in presence of significant amount of determinism.

For computing the probability of evidence in a Bayesian network and the partition
function in a Markov network, we compared IJGP-wc-SS with Variable Elimination and
Conditioning (VEC) (Dechter, 1999) and an advanced generalized belief propagation
scheme called Edge Deletion Belief Propagation (EDBP) (Choi and Darwiche, 2006) on
two benchmark domains: (a) linkage analysis and (b) relational Bayesian networks. We
found that on most instances the estimates output by IJGP-wc-SS were closer to the
exact answer than those output by EDBP. VEC solved some instances exactly, while on
the remaining instances it was substantially inferior. IJGP-wc-IS was superior to IJGP-
wc-SS whenever it was able to generate consistent samples. However, on a majority of
the instances it simply failed to yield any consistent samples.

For the posterior marginal task, we experimented with linkage analysis benchmarks,
partially deterministic grid benchmarks, relational benchmarks and logistics planning
benchmarks. We compared the accuracy of IJGP-wc-SS using the Hellinger distance
with four other schemes: two generalized belief propagation schemes of Iterative Join
Graph Propagation (Dechter et al., 2002) and Edge Deletion Belief Propagation (Choi
and Darwiche, 2006), an adaptive importance sampling scheme called Evidence Pre-
propagated Importance Sampling (EPIS) (Yuan and Druzdzel, 2006) and IJGP-wc-IS.
We found that except on the grid instances, IJGP-wc-SS consistently yielded estimates
having smaller error than EDBP and IJGP. Whenever IJGP-wc-IS and EPIS did not
fail, they generated more consistent samples and performed better than IJGP-wc-SS.
On the remaining instances, IJGP-wc-SS was clearly superior.

6. Conclusion

The paper presented the SampleSearch scheme for improving the performance of
importance sampling in mixed probabilistic and deterministic graphical models. It is
well known that on such graphical models, importance sampling performs quite poorly
because of the rejection problem. SampleSearch remedies the rejection problem by
interleaving random sampling with systematic backtracking. Specifically, when sampling
variables one by one via logic sampling (Pearl, 1988), instead of rejecting a sample when
its inconsistency is detected, SampleSearch backtracks to the previous variable, modifies
the proposal distribution to reflect the inconsistency and continues this process until a
consistent sample is found.

We showed that SampleSearch can be viewed as a systematic search technique whose
value selection is stochastically guided by sampling from a distribution. This view
enables the integration of any systematic SAT/CSP solver within SampleSearch (with
minor modifications). Indeed, in our experiments, we used an advanced SAT solver
called minisat (Sorensson and Een, 2005). Thus, advances in the systematic search
community whose primary focus is solving “yes/no” type NP-complete problems can be
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leveraged through SampleSearch for approximating much harder #P-complete problems
in Bayesian inference.

We characterized the sampling distribution of SampleSearch as the backtrack-free
distribution, which is a modification of the proposal distribution from which all incon-
sistent partial assignments along a specified order are removed. When the backtrack-free
probability for a given sampled assignment is too complex to compute, we proposed two
approximations, which bound the backtrack-free probability from above and below and
yield asymptotically unbiased estimates of the weighted counts and marginals.

We performed an extensive empirical evaluation on several benchmark graphical
models and our results clearly demonstrate that our lower and upper approximations
were accurate on most benchmarks. Overall SampleSearch was consistently superior to
other state-of-the-art schemes on domains having a substantial amount of determinism.

Specifically, on probabilistic graphical models, we showed that state-of-the-art im-
portance sampling techniques such as EPIS (Yuan and Druzdzel, 2006) and IJGP-wc-IS
(Gogate and Dechter, 2005) which reason about determinism in a limited way are un-
able to generate a single consistent sample on several hard linkage analysis and relational
benchmarks. In such cases, SampleSearch is the only alternative importance sampling
technique to date.

SampleSearch is also superior to generalized belief propagation schemes like Itera-
tive Join Graph Propagation (IJGP) (Dechter et al., 2002) and Edge Deletion Belief
Propagation (EDBP) (Choi and Darwiche, 2006). In theory, these propagation tech-
niques are anytime, whose approximation quality can be improved by increasing their
i-bound. However, their time and space complexity is exponential in i and in practice
their memory requirement becomes a major bottleneck beyond a certain i-bound (typ-
ically > 22), . Consequently, on most benchmarks, we observed that IJGP and EDBP
quickly converge to an estimate which they are unable to improve with time. On the
other hand, SampleSearch improves with time and as we demonstrated, yields superior
anytime performance than IJGP and EDBP.

Finally, on the problem of counting solutions of a SAT/CSP, we showed that Sample-
Search is slightly better than the recently proposed SampleCount (Gomes et al., 2007)
technique and substantially better than ApproxCount (Wei et al., 2004) and Relsat
(Roberto J. Bayardo and Pehoushek, 2000).

SampleSearch leaves plenty of room for future improvements, which are likely to
make it more cost effective in practice. For instance, to generate samples, we solve the
same SAT/CSP problem multiple times. Therefore, various goods and no-goods (i.e.
knowledge about the problem space) learnt while generating one sample may be used to
speed-up the search for a solution while generating the next sample. How to achieve this
in a principled and structured way is an important theoretical and practical question.
Some initial related research on solving the similar SAT problems has appeared in the
bounded model checking community (Eén and Sörensson, 2003) and can be applied to
improve SampleSearch’s performance. A second line of improvement is a more efficient
algorithm for compactly storing and combining various DFS traces used for deriving
the lower and upper approximations. Currently, we store all DFS traces using an OR
tree. Instead, we can easily use the AND/OR search space (Dechter and Mateescu,
2007). Borrowing ideas from the literature on ordered binary decision diagrams (OB-
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DDs) (Bryant, 1986), we could even merge together isomorphic traces, and eliminate
redundancy to further compact our representation. A third line of future research is
to use adaptive importance sampling (Cheng and Druzdzel, 2000; Ortiz and Kaelbling,
2000; Moral and Salmerón, 2005). In adaptive importance sampling, one updates the
proposal distribution based on the generated samples; so that with every update the
proposal gets closer and closer to the desired posterior distribution. Because we already
store the DFS traces of the generated samples in SampleSearch, one could use them to
dynamically update and learn the proposal distribution.
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Appendix A. Proofs

Proof. (of Theorem 2) Because, B
xi−1

i ⊆ A
xi−1

N,i ∪C
xi−1

N,i , we have:

∑

x′

i
∈B

xi−1
i

Qi(x
′
i|xi−1) ≤

∑

x′

i
∈A

xi−1
N,i

∪C
xi−1
N,i

Qi(x
′
i|xi−1) (A.1)

∴ 1−
∑

x′

i∈B
xi−1
i

Qi(x
′
i|xi−1) ≥ 1−

∑

x′

i∈A
xi−1
N,i

∪C
xi−1
N,i

Qi(x
′
i|xi−1) (A.2)

∴
Qi(xi|xi−1)

1−∑
x′

i∈B
xi−1
i

Qi(x
′
i|xi−1)

≤ Qi(xi|xi−1)

1−∑
x′

i∈A
xi−1
N,i

∪C
xi−1
N,i

Qi(x
′
i|xi−1)

(A.3)

∴ QF
i (xi|xi−1) ≤ LF

N,i(xi|xi−1) (A.4)

∴

n∏

i=1

QF
i (xi|xi−1) ≤

n∏

i=1

LF
N,i(xi|xi−1) (A.5)

∴ QF (x) ≤ LF
N (x) (A.6)

∴

∏m

i=1 Fi(x)
∏p

j=1Cj(x)

QF (x)
≥

∏m

i=1 Fi(x)
∏p

j=1Cj(x)

LF
N (x)

(A.7)

∴ wF (x) ≥ wF
L (x) (A.8)

∴
1

N

N∑

k=1

wF (xk) ≥ 1

N

N∑

k=1

wF
L (x

k) (A.9)

∴ ẐN ≥ Z̃L
N (A.10)

Similarly, by using A
xi−1

N,i ⊆ B
xi−1

i , it is easy to prove that ẐF
N ≤ Z̃U

N .

Proof. (of Theorem 3) From Proposition 4, it follows that UF
N and LF

N in the limit of
infinite samples coincide with the backtrack-free distribution QF . Therefore,

lim
N→∞

wL
N(x) = lim

N→∞

∏m

i=1 Fi(x)
∏p

j=1Cj(x)

LF
N (x)

(A.11)

=

∏m

i=1 Fi(x)
∏p

j=1Cj(x)

QF (x)
(A.12)

= wF (x) (A.13)

Therefore,

lim
N→∞

EQ

[
1

N

N∑

k=1

wL(x)

]
= lim

N→∞

1

N

∑

x∈X

wL
N(x)Q(x)
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(1) (A.14)

=
1

N
×N lim

N→∞

∑

x∈X

wL
N(x)Q(x) (A.15)

=
∑

x∈X

wF (x)Q(x) . . . (From Equation A.13) (A.16)

= Z (A.17)
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Similarly, we can prove that the estimator based on UF
N in Equation 34 is asymptot-

ically unbiased by replacing wL
N(x) with wU

N(x) in Equations A.14-A.17.

Finally, because the estimates P̃U
N (xi) and P̃L

N(xi) of P (xi) given in Equations 36 and
37 respectively are ratios of two asymptotically unbiased estimators, by definition, they
are asymptotically unbiased too.

Proof. (of Theorem 4) Because we store all full solutions (x1 , . . . , xn) and all partial
assignments (x1 , . . . , xi−1 , x′

i) that were proved inconsistent during the N executions
of SampleSearch, we require an additional O(N × n × d) space to store the combined
sample tree used to estimate Z and the marginals. Similarly, because we compute a sum
or their ratios by visiting all nodes of this combined sample tree, the time complexity is
also O(N × d× n)
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