
Advancing AND/OR Search for Optimization Using
Diverse Principles

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{radum,dechter}@ics.uci.edu

Abstract. In recent years, several Branch-and-Bound and best-first search algo-
rithms were developed to explore the AND/OR search graph for solving general
constraint optimization problems. Previous work showed the tremendousgain ob-
tained by exploiting problem’s decomposition (using AND nodes), equivalence
(by caching) and irrelevance (via the power of lower bound heuristics). In this pa-
per, we show the additional improvements that can be gained by bringing together
all the above, as well as diverse refinements and optimizing principles such as ex-
ploiting determinism via constraint propagation, using good initial upper bounds
generated via stochastic local search and improving the quality of the guiding
pseudo tree. We illustrate our results using a number of benchmark networks,
including the very challenging ones that arise in genetic linkage analysis.

1 Introduction

Constraint satisfaction problems (CSPs) provide a formalism for formulating many in-
teresting real world problems as an assignment of values to variables, subject to a set of
constraints. A constraint optimization problem (COP) is defined as a regular CSP aug-
mented with a set of cost functions (called soft constraints) indicating preferences. The
aim of constraint optimization is to find a solution to the problem whose cost, expressed
as the sum of the cost functions, is minimized or maximized. The classical approach to
solving COPs is the Branch-and-Bound method which maintains the best solution found
so far and discards any partial solution which cannot improve on the best.

The AND/OR Branch-and-Bound search (AOBB) introduced in [1] is a Branch-
and-Bound algorithm that explores an AND/OR search tree forgraphical models [2], in
a depth-first manner. The AND/OR Branch-and-Bound search with caching (AOBB-C)
[3] allows saving previously computed results and retrieving them when the same sub-
problem is encountered again. The algorithm explores the context minimal AND/OR
graph. A best-first AND/OR search algorithm (AOBF-C) that traverses the AND/OR
graph was also explored [4]. Earlier empirical evaluationsdemonstrated (1) the impact
of AND decomposition, (2) the impact of caching, (3) the impact of some dynamic
variable ordering heuristics, (4) the impact of the lower bound strength, as well as (5)
the impact of best-first versus depth-first search regimes [1, 3, 4].

In this paper, we want to take these classes of algorithms as much further as we
can by including additional known principles of problem solving and examine their
interactive impact on performance. We investigate three key factors that impact the

performance of any search algorithm: (1) the availability of hard constraints (i.e., de-
terminism) in the problem (2) the availability of a good initial upper bound provided to
the algorithm, and (3) the availability of good quality guiding pseudo trees. We there-
fore extend AOBB-C (and whenever relevant, AOBF-C) to exploit explicitly the com-
putational power of hard constraints by incorporating standard constraint propagation
techniques such as unit resolution. We provide AOBB-C with anon-trivial initial uppers
bound computed by local search. Finally, we investigate randomized orderings gener-
ated via two heuristics for constructing small induced width/depth pseudo trees.

We evaluate the impact and interaction of these extensions on the optimization prob-
lem of finding the most probable explanation in belief networks using a variety of ran-
dom and real-world benchmarks. We show that exploiting the determinism as well as
good quality initial upper bounds and pseudo trees improvesthe performance dramati-
cally in many cases.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a tripleP = 〈X,D,F〉, where
X = {X1, ...,Xn} is a set of variables,D = {D1, ...,Dn} is a set of finite domains
andF = {f1, ..., fr} is a set of cost functions. Cost functions can be eithersoftor hard
(constraints). Without loss of generality we assume that hard constraints are represented
as (bi-valued) cost functions. Allowed and forbidden tuples have cost0 and∞, respec-
tively. The scope of functionfi, denotedscope(fi) ⊆ X, is the set of arguments of
fi. The goal is to find a complete value assignment to the variables that minimizes the
global cost functionf(X) =

∑r

i=1 fi, namely to findx = arg minX

∑r

i=1 fi.
Given a COP instance, itsprimal graphG associates each variable with a node and

connects any two nodes whose variables appear in the scope ofthe same function. The
induced graphof G relative to an orderingd of its variables, denotedG∗(d), is obtained
by processing the nodes in reverse order ofd. For each node all its earlier neighbors are
connected, including neighbors connected by previously added edges. Given a graph
and an ordering of its nodes, thewidthof a node is the number of edges connecting it to
nodes lower in the ordering. Theinduced width(also equal to thetreewidth) of a graph
alongd, denotedw∗(d), is the maximum width of nodes in the induced graph.

Belief networks [5] provide a formalism for reasoning under conditions of uncertainty.
A belief network represents a joint probability distribution over the variables of interest.
A function of the model encodes the conditional probabilitydistribution of a variable
given its parents in the graph (also viewed as a cost functionwere each tuple has as-
sociated a real cost between 0 and 1). The most common constraint optimization task
over belief networks if finding theMost Probable Explanation(MPE), namely finding a
complete assignment with maximum probability that is consistent with the evidence in
the network. It appears in applications such as speech recognition or medical diagnosis.
The task can also be formulated using the semi-ring framework introduced in [6].

2111

8

011

2101

8

001

2110

8

010

8

100

8

000

f1(ABC)CBA

5111

6011

5101

6001

2110

0010

8

100

1000

f2(ABD)DBA

4111

8

011

3101

8

001

4110

8

010

3100

8

000

f3(BDE)EDB

(a) Functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Primal graph

A

E

B

DC

[]

[A]

[AB]

[BD]

[AB]

(c) Pseudo tree

B

10

A

10

C

10

8 8

D

10

1 8

E

10

8 3

C

10

8 2

D

10

0 2

E

10

8 3

E

10

8 4

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(d) AND/OR search tree

B

10

A

10

C

10

8 8

D

10

1 8

C

10

8 2

D

10

0 2

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(e) AND/OR search graph

Fig. 1.AND/OR search spaces for constraint optimization.

2.2 AND/OR Search Spaces for Constraint Optimization

The AND/OR search space [2] is a unifying framework for advanced algorithmic schemes
for graphical models, including belief networks, constraint networks and cost networks.
Its main virtue consists in exploiting conditional independencies between variables dur-
ing search, which can provide exponential speedups over traditional structure-blind
search methods. The search space is defined using a backbonepseudo tree[7].

Definition 1 (pseudo tree).Given an undirected graphG = (X, E), a directed rooted
treeT = (X, E′) defined on all its nodes is calledpseudo-treeif any edge ofG that is
not included inE′ is a back-arc inT , namely it connects a node to an ancestor inT .

AND/OR Search Trees.Given a COP instanceP = 〈X,D,F〉 its primal graphG and
a pseudo treeT of G, the associated AND/OR search tree,ST , has alternating levels
of OR and AND nodes. The OR nodes are labeledXi and correspond to the variables.
The AND nodes are labeled〈Xi, xi〉 (or justxi) and correspond to value assignments
of the variables. The structure of the AND/OR search tree is based on the underlying
pseudo treeT . The root of the AND/OR search tree is an OR node labeled with the
root of T . The children of an OR nodeXi are AND nodes labeled with assignments

〈Xi, xi〉 that are consistent with the assignments along the path fromthe root. The chil-
dren of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variableXi

in T . The AND/OR search tree can be traversed by a depth first search (DFS) algo-
rithm, thus using linear space to compute the value of the root node. It was shown in
that [7, 2] that given a COP instanceP and a pseudo treeT of depthm, the size of the
AND/OR search tree based onT isO(n·km), wherek bounds the domains of variables.

AND/OR Search Graphs.The AND/OR search tree may contain nodes that root iden-
tical conditioned subproblems. Such nodes can be merged yielding an AND/OR graph.
Its size becomes smaller at the expense of using additional memory by the search algo-
rithm. Some mergeable nodes can be identified based on theircontexts.

Given a pseudo treeT of an AND/OR search space, thecontextof an OR node
X, denoted bycontext(X) = [X1 . . . Xp], is the set of ancestors ofX in T ordered
descendingly, that are connected in the primal graph toX or to descendants ofX.
The context ofX separates the subproblem belowX from the rest of the network.
Thecontext minimalAND/OR graph [2] is obtained from the AND/OR search tree by
merging all the context mergeable nodes.

It can be shown [2] that given a COPP, its primal graphG and a pseudo treeT , the
size of the context minimal AND/OR search graph isO(n · kw∗

T
(G)), wherew∗

T
(G) is

the induced width ofG over the DFS traversal ofT , andk bounds the domain size.

Weighted AND/OR Search Graphs. The OR-to-AND arcs from nodesXi to xi in an
AND/OR search tree or graph are annotated byweightsderived from the cost functions
in F. Theweightw(Xi, xi) of the arc from the OR nodeXi to the AND nodexi is the
sum of all the cost functions whose scope includesXi and is fully assigned along the
path from the root toxi, evaluated at the values along the path.

Given a weighted AND/OR search graph, each of its nodes can beassociated with a
value. The valuev(n) of a noden is the minimal cost solution to the subproblem rooted
atn, subject to the current variable instantiation along the path from the root ton. It can
be computed recursively using the values ofn’s successors (see also [2] for details).

Example 1.Figure 1 shows an example of AND/OR search spaces for a COP with
binary variables. The cost functions are given in Figure 1(a). The value∞ indicates
a hard constraint. The primal graph is given in Figure 1(b), and the pseudo tree in
Figure 1(c). The square brackets indicate the context of thevariables. The AND/OR
search tree is given in Figure 1(d). The numbers on the OR-to-AND arcs are the weights
corresponding to the function values. Note that the tree is pruned whenever a weight
shows inconsistency (e.g., forA = 0, B = 0,D = 1 there is no need to visit variable
E, due to the valuef2(0, 0, 1) = ∞). The context minimal AND/OR graph is given
in Figure 1(e). Note that only the cache table ofE will get cache hits during the depth
first search traversal (E is the only level of OR nodes that has more than one incoming
arc). It can be determined from the pseudo tree inspection that all variables except for
E generatedead-caches[2] and their cache tables need not be stored.

3 AND/OR Search Algorithms for Constraint Optimization

In recent years several depth-first Branch-and-Bound and best-first search algorithms
were developed to search the context minimal AND/OR graph for solving COPs [3, 4].

We next briefly overview these two classes of algorithms.

AND/OR Branch-and-Bound (AOBB-C) traverses the context minimal AND/OR graph
in a depth-first manner via full caching. It interleaves forward expansion of the current
partial solution tree with a backward cost revision step that updates node values, until
search terminates. The efficiency of the algorithm also depends on the strength of its
heuristic evaluation function (i.e., lower bound). Specifically, each noden in the search
graph has an associated heuristic functionh(n) underestimatingv(n) that can be com-
puted efficiently when the noden is first expanded. The algorithm then computes the
heuristic evaluation functionf(T ′) of the current partial solutionT ′ and uses it to prune
irrelevant portions of the search space, as part of a Branch-and-Bound scheme.

In the forward step the algorithm expands alternating levels of OR and AND nodes.
Before expanding an OR node, its cache table is checked. If the same context was
encountered before, it is retrieved from the cache, and its successors set is set to empty
which will trigger the cost revision step. If an OR node is notfound in the cache, it is
expanded in the usual way. Before expanding an AND noden, the algorithm computes
the heuristic evaluation functionf(T ′

m) for every partial solution subtreeT ′
m rooted at

each OR ancestorm of n along the search path. The search is terminated belown, if,
for somem, f(T ′

m) is greater or equal to the best cost solution found atm.
The backward cost revision step is triggered when a closed node has an empty set

of successors. This means that all its children have been evaluated, and its final value
can now be computed. If the current node is the root, then the search terminates with its
value. OR nodes update their values by minimization, while AND nodes combine their
children values by summation.

Best-First AND/OR Search(AOBF-C) explores the context minimal AND/OR graph
and interleaves forward expansion of the best partial solution tree with a cost revision
step that updates the node values. First, a top-down, graph growing operation finds
the best partial solution tree by tracing down through the marked arcs of the explicit
AND/OR search graphC ′

T
. These previously computed marks indicate the current

best partial solution tree from each node inC ′

T
. One of the nonterminal leaf nodes

n of this best partial solution tree is then expanded and a heuristic estimateh(ni),
underestimatingv(ni), is assigned to its successors.

The second operation in AOBF-C is a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure. Starting with the node just expandedn, the procedure revises its
valuev(n) (using the newly computed values of its successors) and marks the outgo-
ing arcs on the estimated best path to terminal nodes. OR nodes revise their values by
minimization, while AND node by summation. This revised value is then propagated
upwards in the graph. The revised costv(n) is an updated lower bound on the cost of
an optimal solution to the subproblem rooted atn. During the bottom-up step, AOBF-C
labels an AND node as SOLVED if all of its OR child nodes are solved, and labels an
OR node as SOLVED if its marked AND child is also solved. The optimal cost solution
to the initial problem is obtained when the root node is labeled SOLVED.

Mini-Bucket Heuristics. The effectiveness of both depth-first and best-first AND/OR
search algorithms greatly depends on the quality of the lower bound heuristic evaluation
functions. The primary heuristic that we used in our experiments is the Mini-Bucket

heuristic, which was presented in [3, 4]. It was shown that the intermediate functions
generated by the Mini-Bucket algorithm MBE(i) [8] can be used to compute a heuristic
function that underestimates the minimal cost solution to the current subproblem in the
AND/OR graph.

4 Improving AND/OR Branch-and-Bound Search

In this section we overview several principled improvements to the AND/OR Branch-
and-Bound algorithm that we will incorporate.

4.1 Exploiting Determinism

When the functions of the COP instance express both hard constraints and general cost
functions, it may be beneficial to exploit the computationalpower of the constraints
explicitly via constraint propagation [9, 10]. In belief networks, for example, the hard
constraints are represented by the zero probability tuplesof the CPTs. We note that the
use of constraint propagation via directional resolution [11] or generalized arc consis-
tency has been explored in [12], in the context of variable elimination algorithms. The
approach we take for handling the determinism in COP is basedon the known technique
of unit resolutionfor Boolean Satisfiability (SAT) over a logical knowledge base (KB)
in the form of propositional clauses (CNF) representing thehard constraints.

One common way of encoding hard constraints as a CNF formula is thedirect en-
coding[13]. Given a COP instance, we associate a propositional variablexij with each
valuej that can be assigned to the COP variableXi. We then have clauses that ensures
each COP variable is given a value: for eachi, xi1 ∨ ... ∨ xim. We optionally have
clauses that ensure each variable takes no more than one values: for eachi, j, k with
j 6= k, ¬xij ∨ ¬xik. Finally, we have clauses that rule out any no-goods. For example,
if X1 = 2 andX3 = 1 is not allowed then we have the clause¬x12 ∨ ¬x31.

The changes needed in the AND/OR Branch-and-Bound procedure are then as fol-
lows. Upon expanding an AND node〈Xi, xj〉 the corresponding SAT instantiation is
asserted in KB, namelyxij is set totrue. If the unit resolution leads to a contradic-
tion, then the current AND node is marked as dead-end and the search continues by
expanding the next node on the search stack. Whenever the algorithm backtracks to the
previous level, it also retracts any SAT instantiations recorded by unit resolution. Notice
that the algorithm is capable of pruning the domains of future variables in the current
subproblem due to conflicts detected during unit propagation.

4.2 Exploiting Good Initial Upper Bounds via Local Search

The AND/OR Branch-and-Bound algorithm assumed a trivial initial upper bound (i.e.,
∞), which effectively guarantees that the optimal solution will be computed, however
it provides limited pruning in the initial phase. We therefore can incorporate a more
informed upper bound, obtained by solving the problem via a local search scheme. This
approach is often used by state-of-the-art constraint optimization solvers.

One of the most popular local search algorithms for COP is theGuided Local Search
(GLS) method [14]. GLS is a penalty-based meta-heuristic, which works by augmenting
the objective function of a local search algorithm (e.g. hill climbing) with penalties, to
help guide them out of local minima. GLS has been shown to be successful in solving
a number of practical real life problems, such as the traveling salesman problem, radio
link frequency assignment problem and vehicle routing. It was also applied to solving
the MPE in belief networks [15] as well as weighted MAX-SAT problems [16].

4.3 Exploiting the Pseudo Tree Quality

The performance of the AND/OR search algorithms can be heavily influenced by the
quality of the guiding pseudo tree. Finding the minimal depth or induced width pseudo
tree is a hard problem [7, 17]. We describe next two heuristics for generating pseudo
trees which we used in our experiments.

Min-Fill Heuristic. The Min-Fill ordering [18] is generated by placing the variable
with the smallestfill set (i.e., number of induced edges that need be added to fully con-
nect the neighbors of a node) at the end of the ordering, connecting all of its neighbors
and then removing the variable from the graph. The process continues until all variables
have been eliminated. Once an elimination order is given, the pseudo tree can be ex-
tracted as a depth-first traversal of the min-fill induced graph, starting with the variable
that initiated the ordering, always preferring as successor of a node the earliest adja-
cent node in the induced graph. An ordering uniquely determines a pseudo tree. This
approach was first used by [17].

Hypergraph Decomposition Heuristic.An alternative heuristic for generating a low
height balanced pseudo tree is based on the recursive decomposition of the dual hyper-
graph associated with the COP instance. The dual hypergraphof a COP〈X,D,F〉 is a
pair (V,E) where each function inF is a vertexvi ∈ V and each variable inX is a
hyperedgeej ∈ E connecting all the functions (vertices) in which it appears.

Generating heuristically good hypergraph separators can be done using a pack-
age calledhMeTiS (available at: http://www-users.cs.umn.edu/karypis/metis/hmetis),
which we used following [19]. The vertices of the hypergraphare partitioned into two
balanced (roughly equal-sized) parts, denoted byHleft andHright respectively, while
minimizing the number of hyperedges across. A small number of crossing edges trans-
lates into a small number of variables shared between the twosets of functions.Hleft

andHright are then each recursively partitioned in the same fashion, until they contain
a single vertex. The result of this process is a tree of hypergraph separators which can be
shown to also be a pseudo tree of the original model where eachseparator corresponds
to a subset of variables chained together.

Randomization. Both the min-fill and hypergraph partitioning heuristics can random-
ize their tie breaking rules, yielding varying qualities ofthe generated pseudo tree.

5 Experiments

In order to empirically evaluate the performance of the proposed improvements to
AOBB-C algorithms, we have conducted a number of experiments on the optimization

problem of finding the most probable explanation in belief networks. We implemented
our algorithms in C++ and ran all experiments on a 2.4GHz Pentium 4 with 2GB of
RAM running Windows XP.

5.1 Overview and Methodology

Algorithms. We evaluated the following AND/OR Branch-and-Bound hybridalgo-
rithms with full caching and static mini-bucket heuristics:

– AOBB-C+SAT+SMB(i), which exploits the determinism in the network by apply-
ing unit resolution over the CNF encoding of the zero probability tuples of the
probability tables. We used a unit resolution scheme based on the one available in
thezChaff SAT solver [20].

– AOBB-C+GLS+SMB(i), which exploits a good initial upper bound obtained by
a guided local search algorithm. We used the GLS implementation for belief net-
works available from [15].

– AOBB-C+SAT+GLS+SMB(i), which combines the previous two approaches.
We compare these algorithms against the baseline AND/OR Branch-and-Bound

with full caching and mini-bucket heuristics, AOBB-C+SMB(i). We also ran the best-
first search version of the algorithm, denoted by AOBF-C+SMB(i), but the algorithm
did not exploit any of the above principles. The guiding pseudo trees were constructed
using both the min-fill and the hypergraph partitioning heuristics, described earlier.

We also compared with the SamIam version 2.3.2 software package (available at
http://reasoning.cs.ucla.edu). SamIam is a public implementation of Recursive Con-
ditioning [19] which can also be viewed as an AND/OR search algorithm, namely
it explores a context minimal AND/OR graph [2]. Since any MPEproblem instance
can be converted into an equivalent 0-1 Integer Linear Program [21], we also ran the
ILOG CPLEX 11.0 solver, with default settings (i.e., best-bound control strategy, strong
branching based variable ordering heuristic, and the cutting planes engine turned on).

Benchmarks.We tested the performance of the AND/OR search algorithms onrandom
grid networks, belief networks derived from the ISCAS’89 digital circuits, genetic link-
age analysis networks, and relational belief networks thatmodel the popular game of
Mastermind. All of these networks contain a significant amount of determinism.

Measures of performance.We report CPU time in seconds and the number of nodes
visited. We also specify the the number of variables (n), number of evidence variables
(e), maximum domain size (k), the depth of the pseudo tree (h) and the induced width
of the graph (w∗) for each problem instance. When evidence is asserted in the net-
work, thew∗ andh are computed after the evidence variables are removed from the
graph. We also report the time required by GLS to compute the initial upper bound.
Note that in each domain we ran GLS for a fixed number of flips. Moreover, AOBB-
C+GLS+SMB(i) and AOBB-C+SAT+GLS+SMB(i) do not include the GLS running
time, because GLS can be tuned independently for each problem class to minimize its
running time. The best performance points are highlighted.In each table, ”-” denotes
that the respective algorithm exceeded the time limit. Similarly, ”out” stands for ex-
ceeding the 2GB memory limit. A ”*” by the GLS running time indicates that it found
the optimal solution to the respective problem instance.

minfill pseudo tree without randomization
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(w*, h) GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
90-24-1 out 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294 69.53 386,785
(33, 111) 8.43 - - 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868
(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 5.45 6,891 23.87 39,175

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291
146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

90-26-1 out 32.67 230,030 53.11 360,612 3.58 11,620 11.95 40,075 22.02 1,858
(36, 113) 7.87 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310 22.00 1,894
(676, 40) 0.56 15.09 104,775 32.85 219,037 3.58 10,932 8.06 8,128 24.42 1,658

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435
652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,004
(43, 150) 6.32 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,540
(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 15.50 52,260 40.52 72,053

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800
- - - - - - - - 369.36 823,604

90-34-1 out - - - - - - - - 132.84 271,609
(45, 153) 17.02 - - - - 1096.14 5,569,2761772.51 5,516,888294.11 630,406
(1154, 80) 1.31 - - - - 550.55 2,944,055 651.04 2,614,171124.16 238,333

out out 243.63 596,978 270.88 667,013 71.19 67,611
969.02 2,623,9711753.10 3,794,053 203.67 614,868 165.45 488,873113.06 214,919

90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473 85.74 142,589
(47, 163) 12.48 854.61 2,498,7021822.71 3,792,826 212.63 647,089 164.43 484,815109.77 211,740
(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072 85.50 140,581

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

Table 1.CPU time and nodes visited for solving deterministic grid networks. Time limit 1 hour.
Number of flips for GLS is 50,000. Pseudo tree generated by a single run of the min-fill heuristic,
without randomization. SamIam ran out of memory on all test instances.

5.2 Empirical Results

Deterministic Grid Networks. In grid networks, the nodes are arranged in anN × N

square and each CPT is generated uniformly randomly. We experimented with problem
instances initially developed by [22] for the task of weighted model counting. For these
problems,N ranged between 24 and 38, and, for each instance, 90% of the probability
tables were deterministic, namely they contained only 0 and1 probability entries.

Table 1 shows the results for experiments with 5 deterministic grid networks. The
columns are indexed by the mini-bucketi-bound which we varied between 12 and
20. We generated a single MPE query withe variables picked randomly and instan-
tiated as evidence. When comparing the AND/OR Branch-and-Bound algorithms, we
observe that AOBB-C+SAT+SMB(i) improves considerably over AOBB-C+SMB(i),
especially for relatively smalli-bounds (e.g., i ∈ {12, 14}) which correspond to rel-
atively weak heuristic estimates. For example, on the 90-38-1 grid instance, AOBB-
C+SAT+SMB(14) is about 9 times faster than AOBB-C+SMB(14) and explores 6 times
fewer nodes. Similarly, AOBB-C+GLS+SMB(i) which exploits a non-trivial initial up-
per bound is better than AOBB-C+SMB(i) for relatively smalli-bounds. Overall, AOBB-
C+SAT+GLS+SMB(i), which exploits both the determinism and informed initialupper
bounds, is the best performing among the Branch-and-Bound algorithms and in some
cases it is able to outperform AOBF-C+SMB(i), across all reportedi-bounds (e.g., 90-
30-1). As thei-bound increases and the heuristics become strong enough tocut the
search space significantly, the difference between AOBB-C+SMB(i) and its competi-
tors decreases. The mini-bucket heuristic already does a level of constraint propagation.
Notice that CPLEX achieves the best performance on 3 test instances.

Fig. 2. Detailed execution of AOBB-C+SMB(16), AOBB-C+SAT+SMB(16) and AOBB-
C+SAT+GLS+SMB(16) on the 90-24-1 grid network over 10 runs usingrandomized min-fill
and hypergraph based pseudo trees. Pseudo tree depth is plotted on a different scale to the right.

Figure 2 shows the execution of AOBB-C+SMB(16), AOBB-C+SAT+SMB(16) and
AOBB-C+SAT+GLS+SMB(16) on the 90-24-1 network with randomized min-fill and
hypergraph pseudo trees, over 10 independent runs. For eachrun we also report the
induced width and depth of the corresponding pseudo trees. We see that the best per-
formance in this case is obtained for min-fill trees. This is probably because the mini-
bucket heuristics were more accurate when computed along the min-fill ordering which
has smaller induced width than the hypergraph partitioningbased ordering.

ISCAS’89 Circuits (available at http://www.fm.vslib.cz/kes/asic/iscas) are a common
benchmark used in formal verification and diagnosis. For ourpurpose, we converted
each of these circuits into a belief network by removing flip-flops and buffers in a stan-
dard way, creating a deterministic conditional probability table for each gate and putting
uniform distributions on the input signals.

Table 2 displays the results obtained on 5 ISCAS’89 circuits. We see that con-
straint propagation via unit resolution plays a dramatic role on this domain rendering
the search space almost backtrack-free, across all reported i-bounds. For instance, on
the s953 circuit, AOBB-C+SAT+SMB(6) is 3 orders of magnitude faster than AOBB-
C+SMB(6) and 2 orders of magnitude faster than CPLEX, respectively, while AOBF-
C+SMB(6) exceeded the memory limit. When looking at the AND/OR Branch-and-
Bound algorithms that exploit a local search based initial upper bound, namely AOBB-
C+GLS+SMB(i) and AOBB-C+SAT+GLS+SMB(i), we see that they did not expand

minfill pseudo tree without randomization
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
- - - - 182.53 2,316,024 0.16 432 0.24 432

c432 out 374.29 4,336,403189.13 2,043,475 1.02 9,512 0.16 432 0.25 432
(27, 45) 20.54 0.05 0 0.06 0 0.09 0 0.13 0 0.19 0
(432, 2) 0.08* 0.06 0 0.08 0 0.09 0 0.13 0 0.20 0

out out 106.27 488,462 0.20 432 0.28 432
899.63 7,715,133 17.99 155,865 48.13 417,92417.00 132,139 2.19 13,039

s953 out 0.19 829 0.16 667 0.20 685 0.31 623 0.74 623
(66, 101) 12.14 0.12 0 0.13 0 0.17 0 0.28 0 0.69 0
(440, 2) 0.05* 0.13 0 0.13 0 0.17 0 0.30 0 0.70 0

out 41.03 150,598110.45 408,82836.50 113,322 4.06 12,256
18.05 104,316124.53 686,069 3.69 26,84714.23 94,985 9.47 62,883

s1196 out 0.19 565 0.19 565 0.23 565 0.38 565 0.92 565
(54, 97) 92.19 0.14 0 0.16 0 0.20 0 0.34 0 0.89 0
(560, 2) 0.08* 0.13 0 0.14 0 0.20 0 0.34 0 0.87 0

26.16 77,019158.19 372,129 7.22 23,34826.97 80,26417.64 48,114
13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516

s1488 out 0.20 708 0.20 667 0.25 667 0.44 667 1.06 667
(47, 67) 33.48 0.14 0 0.16 0 0.22 0 0.44 0 0.99 0
(667, 2) 0.13* 0.13 0 0.16 0 0.20 0 0.47 0 0.99 0

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124
7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104

s1494 out 0.20 665 0.22 665 0.27 665 0.45 665 1.11 665
(48, 69) 42.1 0.16 0 0.17 0 0.22 0 0.41 0 1.09 0
(661, 2) 0.11* 0.16 0 0.17 0 0.22 0 0.42 0 1.22 0

9.67 24,849 27.28 65,859 7.86 19,67811.48 28,793 3.03 6,484

Table 2. CPU time and nodes visited for solving belief networks derived from the ISCAS’89
circuits. Time limit 30 minutes. Number of flips for GLS is 10,000. Pseudo tree generated by a
single run of the min-fill heuristic, without randomization. SamIam ran outof memory.

any nodes. This is because the upper bound obtained by GLS, which was the optimal
solution in this case, was equal to the the mini-bucket lowerbound computed at the root
node. The best performance on this domain were achieved by AOBB-C+SAT+SMB(i)
and AOBB-C+SAT+GLS+SMB(i), respectively, for the smallest reportedi-bound (i =
6). Notice the poor performance of SamIam which ran out of memory on all tests.

Genetic Linkage Analysis.The maximum likelihood haplotypeproblem in genetic
linkage analysis is the task of finding a joint haplotype configuration for all members
of the pedigree which maximizes the probability of data. It is equivalent to finding the
most probable explanation of a belief network which represents the pedigree data [23].

Table 3 displays the results obtained for 6 hard linkage analysis networks (available
at http://bioinfo.cs.technion.ac.il/superlink) using randomized min-fill and hypergraph
partitioning based pseudo trees. We selected the hypergraph based tree having the small-
est depth over 100 independent runs (ties were broken on the smallest induced width).
Similarly, the min-fill based tree was the one having the smallest induced width out
of 100 tries (ties were broken on the smallest depth). For comparison, we also include
results obtained with Superlink version 1.6 [23]. Superlink is currently one of the most
efficient solvers for genetic linkage analysis, is dedicated to this domain, uses a combi-
nation of variable elimination and conditioning, and takesadvantage of the determinism
present in the network. To the best of our knowledge, these networks were never solved
before for the maximum likelihood haplotype task (i.e., the MPE task).

We see that the AND/OR Branch-and-Bound algorithms are the only ones that could
solve all the problem instances, especially when guided by hypergraph partitioning
based pseudo trees. This can be explained by the much smallerdepth of these pseudo
trees compared with the min-fill ones, which overcame the relatively poor quality of

hypergraph pseudo tree min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) Superlink AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)

CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
GLS AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=20 i=22 i=20 i=22
time nodes time nodes time nodes time nodes

out 25.26 164.49 117.03 out
ped7 - 30504.84 285,084,124 3005.66 27,761,219 - -
(868, 4) out (36, 60) 31701.54 285,084,124 3116.07 27,761,219(32, 133) - -

13.32 30349.92 284,635,328 2955.06 27,371,526 - -
out out out

out 67.93 300.06 76.31 out
ped9 - 8922.81 117,328,162 3292.30 40,251,723 1434.74 15,825,340
(936, 7) out (35, 58) 10075.90 117,328,162 3657.91 40,251,723(27, 130) 1515.50 15,825,340

12.85* 8866.40 117,011,941 3336.86 40,251,661 1163.09 12,444,961
out out out

out 59.31 150.38 out out
ped19 - 45075.31 466,748,365 8321.42 90,665,870
(693, 5) out (35, 53) 47986.66 466,748,365 8774.51 90,665,870(24, 122)

10.23 44585.84 459,741,495 8070.95 87,060,723
out out

out 42.21 209.51 out out
ped34 - 67647.42 1,293,350,82911719.28 220,199,927
(923, 4) out (34, 60) 74020.63 1,293,350,82912847.33 220,199,927(32, 127)

13.99 64136.36 1,230,870,57611005.18 218,890,668
out out

out 35.41 111.24 out out
ped41 - 3891.86 31,731,270 380.01 2,318,544
(886, 5) out (36, 61) 4055.15 31,731,270 390.93 2,318,544 (33, 128)

12.28* 3869.31 31,729,654 374.95 2,317,321
out out

out 32.92 140.81 57.88 344.68
ped44 - 3597.12 62,385,573 204.96 1,355,595 112.60 1,114,641385.30 668,737
(644, 4) out (31, 52) 3904.39 60,709,547 215.46 1,355,595 (26, 73) 127.42 1,114,641385.47 668,737

9.84 3580.32 62,392,439 196.57 1,213,051 95.09 752,970 366.18 447,514
out out out out

Table 3.CPU time and nodes visited for solving genetic linkage analysis networks. Pseudo trees
created using randomized min-fill and hypergraph partitioning heuristics. Time limit 24 hours.
SamIam, CPLEX and AOBF-C+SMB(i) ran out of memory, whereas Superlink exceeded the
time limit. The maximum number of flips for GLS was set to 1,000,000.

the mini-bucket heuristics obtained on these highly connected networks. Exploiting the
GLS initial upper bound improved slightly the performance of AOBB-C+SMB(i) (e.g.,
AOBB-C+GLS+SMB(22) improves over AOBB-C+SMB(22) on ped34with a margin
of 7% only). This was probably because AOBB-C+SMB(i) found the optimal or very
close to optimal solutions quite early in the search. Similarly, we observe that apply-
ing unit resolution was not cost effective in this case, namely AOBB-C+SMB(i) and
AOBB-C+SAT+SMB(i) expanded the same number of nodes. Notice also that Super-
link exceeded the 24 hour time limit, whereas SamIam, CPLEX and AOBF-C+SMB(i)
ran out of memory on all test instances.

Figure 3 shows the execution of AOBB-C+SMB(22), AOBB-C+SAT+SMB(22) and
AOBB-C+GLS+SMB(22) on the ped44 network with randomized min-fill and hyper-
graph pseudo trees, over 10 independent runs. For each run wealso report the induced
width and depth of the corresponding pseudo trees. We see that the hypergraph pseudo
trees, which have small depths, offer the best performance in this case. This can be ex-
plained by the large induced width (i.e., context) which in this case renders most of the
cache entries dead. Therefore, the AND/OR graph explored effectively is very close to
a tree and the dominant factor that impacts performance is the depth of the pseudo tree.

Mastermind Game Instances.Each of these networks is a ground instance of a rela-
tional belief network that models differing sizes of the popular game of Mastermind,
and was produced by the PRIMULA System (http://www.cs.auc.dk/jaeger/Primula).

Fig. 3. Detailed execution of AOBB-C+SMB(22), AOBB-C+SAT+SMB(22) and AOBB-
C+GLS+SMB(22) on the ped44 linkage network over 10 runs using randomized min-fill and
hypergraph based pseudo trees. Pseudo tree depth is plotted on a different scale to the right.

Table 4 reports the results obtained on 6 Mastermind networks. We generated a sin-
gle MPE query withe random evidence variables. We see that AOBB-C+SAT+SMB(i)
is far better than AOBB-C+SMB(i), especially for relatively smalli-bounds. For ex-
ample, on the mm-03-08-05 network, AOBB-C+SAT+SMB(14) is 7times faster than
AOBB-C+SMB(14), 3 times faster than AOBF-C+SMB(14), and 58times faster than
CPLEX, respectively. When looking at the effect of the GLS based upper bound, which
was equal to the optimal solution in this case, we see no noticeable difference between
AOBB-C+GLS+SMB(i) and AOBB-C+SMB(i). This is because AOBB-C+SMB(i) was
able to find close to optimal solutions quite fast. Notice that SamIam exceeded the mem-
ory bound on all instances, whereas CPLEX obtained the best performance on only one
instance, namely mm-10-08-03.

Summary of Empirical Results.Summarizing our empirical observations we see that
exploiting the hard constraints present in the problem improves in many cases sig-
nificantly the performance of the AND/OR Branch-and-Bound algorithms with mini-
bucket heuristics (e.g., ISCAS’89 circuits). The impact of the local search based initial
upper bound is more prominent at relatively smalli-bounds, when the corresponding
heuristics are relatively weak and the algorithm does not find close to optimal solu-
tion early enough in the search (e.g., grid networks). The two heuristics for generating
pseudo trees do not dominate each other. When the induced width is small enough,
which is typically the case for min-fill pseudo trees, the strength of the mini-bucket

minfill pseudo tree without randomization
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

mastermind SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(w*, h) GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
1.88 9,552 0.98 2,470 1.83 2,418 4.19 2,427 7.80 2,349

mm-03-08-03 out 1.58 9,287 0.92 2,464 1.83 2,412 4.09 2,426 7.87 2,349
(20, 56) 13.42 1.94 9,552 1.03 2,470 1.91 2,418 4.14 2,427 7.75 2,349
(1221, 30) 4.23* 1.59 9,287 0.94 2,464 1.84 2,412 4.14 2,426 7.80 2,349

1.83 3,833 1.00 1,191 1.95 1,194 4.20 1,191 7.83 1,191
1174.31 1,231,505 63.45 99,228 50.89 84,757 44.39 53,972 72.52 46,762

mm-03-08-04 out 52.97 210,793 16.25 44,888 16.33 40,016 26.03 34,467 61.86 35,973
(31, 84) 894.43 1167.09 1,231,505 55.08 86,115 51.10 84,619 44.75 53,916 72.88 45,672
(2288, 30) 21.95* 53.17 210,793 14.33 40,372 16.64 40,016 26.48 34,467 62.80 35,662

1058.78 650,509 3.59 2,543 6.41 2,563 17.81 2,443 53.99 8,125
943.92 907,020 293.66 467,949 580.10 621,834 93.89 94,795 167.25 122,672

mm-03-08-05 out 74.88 141,075 43.88 125,914 247.27 399,764 43.88 46,596 121.38 89,194
(38, 102) 2478.3 948.12 907,009 281.55 455,075 576.24 621,834 91.05 91,329 166.46 122,654
(3691, 60) 44.28* 73.86 141,075 40.84 120,896 252.69 399,764 43.05 44,961 120.05 89,194

308.33 251,406 135.08 112,264 543.87 308,627 54.45 26,426 152.50 53,561
2.44 12,177 2.58 8,221 3.00 4,138 8.63 3,925 19.84 3,842

mm-04-08-03 out 1.42 8,331 2.11 7,991 2.78 4,060 8.52 3,907 19.36 3,836
(23, 61) 47.14 2.45 12,091 2.56 8,108 3.03 4,138 8.66 3,925 19.70 3,842
(1422, 30) 4.76* 1.44 8,331 2.16 7,991 2.89 4,060 8.67 3,907 19.50 3,836

2.25 4,021 2.24 3,127 2.85 1,503 8.59 1,410 20.10 1,410
- - 2199.25 7,127,831 501.60 996,7702391.51 4,841,6441067.00 3,303,366

mm-04-08-04 out 1126.50 1,705,0231031.31 5,137,324215.24 774,176 1015.98 3,292,823 699.65 3,166,653
(36, 87) 654.82 - - 2200.43 7,127,248 500.30 996,5152409.06 4,841,5781063.08 3,302,875
(2615, 30) 32.34* 1133.77 1,705,0231052.40 5,137,324 217.44 774,1761019.18 3,292,823 697.10 3,166,420

635.01 353,630 515.58 427,707 276.71 249,872 412.15 364,113 241.72 251,018
693.32 1,115,426 453.65 1,074,834 494.44 920,849 442.88 446,455 252.89 236,756

mm-10-08-03 out 406.60 901,908 308.30 905,773 342.90 830,171 319.94 410,324 197.93 222,644
(42, 99) 38.89 707.96 1,115,426 467.79 1,074,834 502.10 920,849 450.83 446,455 255.52 236,702
(2604, 60) 29.31* 408.43 901,908 310.91 905,773 347.16 830,171 324.33 410,324 199.58 222,644

464.40 444,873 269.13 398,706 353.30 383,310 335.76 193,385 198.97 95,488

Table 4.CPU time and nodes visited for solving Mastermind game instances. Time limit 1hour.
Number of flips for GLS is 200,000. Pseudo tree generated by a single run of the min-fill heuristic,
without randomization. SamIam ran out of memory on all test instances.

heuristics compiled along these orderings usually determines the performance (e.g.,
grid networks). However, when the graph is highly connected, the relatively large in-
duced width causes the AND/OR algorithms to traverse a search space that is very close
to a tree (due to dead caches) and therefore the hypergraph based pseudo trees which
have far smaller depths improve performance substantially(e.g., genetic linkage).

6 Conclusion

The paper rests on three key contributions. First, we propose a principled approach for
handling hard constraints in COPs within the AND/OR search framework, which builds
upon progress made in the SAT community. Second, we allow forexploiting non-trivial
initial upper bounds which are obtained by a local search scheme. Third, we investigate
two heuristics for generating good quality pseudo trees: the min-fill heuristic which
minimizes the induced width, and the hypergraph partitioning heuristic that minimizes
the depth of the pseudo tree. We demonstrated empirically the impact of these factors on
hard benchmarks, including some very challenging networksfrom the field of genetic
linkage analysis.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models. InInterna-
tional Joint Conference on Artificial Intelligence (IJCAI-2005), pages 224–229, 2005.

2. R. Dechter and R. Mateescu. AND/OR search spaces for graphicalmodels.Artificial Intel-
ligence, 171(2-3):73–106, 2007.

3. R. Marinescu and R. Dechter. Memory intensive branch-and-bound search for graphical
models. InNational Conference on Artificial Intelligence (AAAI), 2006.

4. R. Marinescu and R. Dechter. Best-first and/or search for graphical models. InNational
Conference on Artificial Intelligence (AAAI), 2007.

5. J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and optimization.

Journal of ACM, 44(2):309–315, 1997.
7. E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in constraint

satisfaction problems. InInternational Joint Conference on Artificial Intelligence (IJCAI),
pages 1076–1078, 1985.

8. R. Dechter. Mini-buckets: A general scheme of generating approximations in automated
reasoning. InInternational Joint Conference on Artificial Intelligence (IJCAI), pages 1297–
1302, 1997.

9. D. Larkin and R. Dechter. Bayesian inference in the presence of determinism. InInterna-
tional Workshop on Artificial Intelligence and Statistics (AISTATS), 2003.

10. D. Allen and A. Darwiche. New advances in inference using recursive conditioning. In
Uncertainty in Artificial Intelligence (UAI-2003), pages 2–10, 2003.

11. I. Rish and R. Dechter. Resolution vs. search: two strategies for sat. Journal of Automated
Reasoning, 24(1-2):225–275, 2000.

12. R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. InUncertainty in
Artificial Intelligence (UAI), pages 112–119, 2001.

13. T. Walsh. Sat v csp. InPrinciples and Practice of Constraint Programming (CP), pages
441–456, 2000.

14. C. Voudouris. Guided local search for combinatorial optimization problems. Technical
report, PhD Thesis. University of Essex, 1997.

15. F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local searchfor mpe solving. In
International Joint Conference on Artificial Intelligence (IJCAI), pages 169–174, 2005.

16. P. Mills and E. Tsang. Guided local search for solving sat and weighted max-sat problems.
Journal of Automated Reasoning (JAR), 2000.

17. R. Bayardo and D. P. Miranker. On the space-time trade-off in solving constraint satisfaction
problems. InInternational Joint Conference on Artificial Intelligence (IJCAI), pages 558–
562, 1995.

18. U. Kjæaerulff. Triangulation of graph-based algorithms giving small total space. Technical
Report, University of Aalborg, Denmark, 1990.

19. A. Darwiche. Recursive conditioning.Artificial Intelligence, 125(1-2):5–41, 2001.
20. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an efficient

sat solver.Design and Automation Conference, 2001.
21. E. Santos. On the generation of alternative explanations with implicationsfor belief revision.

In Uncertainty in Artificial Intelligence (UAI), pages 339–347, 1991.
22. T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model counting.

In National Conference of Artificial Intelligence (AAAI), pages 475–482, 2005.
23. M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.

Bioinformatics, 18(1):189–198, 2002.

