Advancing AND/OR Search for Optimization Using
Diverse Principles

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum dechter }@cs. uci . edu

Abstract. In recent years, several Branch-and-Bound and best-firstisalgo-
rithms were developed to explore the AND/OR search graph for solvingrge
constraint optimization problems. Previous work showed the tremeyousb-
tained by exploiting problem’s decomposition (using AND nodes), etprivz
(by caching) and irrelevance (via the power of lower bound heuristitfis pa-
per, we show the additional improvements that can be gained by bringjathtr
all the above, as well as diverse refinements and optimizing principbsssuex-
ploiting determinism via constraint propagation, using good initial uppent®u
generated via stochastic local search and improving the quality of the guidin
pseudo tree. We illustrate our results using a number of benchmark nkstwo
including the very challenging ones that arise in genetic linkage analysis.

1 Introduction

Constraint satisfaction problems (CSPs) provide a foisnafior formulating many in-
teresting real world problems as an assignment of valueartables, subject to a set of
constraints. A constraint optimization problem (COP) ifirdel as a regular CSP aug-
mented with a set of cost functions (called soft constraintdicating preferences. The
aim of constraint optimization is to find a solution to thelgeam whose cost, expressed
as the sum of the cost functions, is minimized or maximizégk dlassical approach to
solving COPs is the Branch-and-Bound method which maisthia best solution found
so far and discards any partial solution which cannot impmv the best.

The AND/OR Branch-and-Bound search (AOBB) introduced ihi§la Branch-
and-Bound algorithm that explores an AND/OR search tregffaphical models [2], in
a depth-first manner. The AND/OR Branch-and-Bound seartihagiching (AOBB-C)
[3] allows saving previously computed results and retrigwhem when the same sub-
problem is encountered again. The algorithm explores tinéegb minimal AND/OR
graph. A best-first AND/OR search algorithm (AOBF-C) thatverses the AND/OR
graph was also explored [4]. Earlier empirical evaluatidesonstrated (1) the impact
of AND decomposition, (2) the impact of caching, (3) the iripaf some dynamic
variable ordering heuristics, (4) the impact of the loweutd strength, as well as (5)
the impact of best-first versus depth-first search regime fi.

In this paper, we want to take these classes of algorithmsuerh further as we
can by including additional known principles of problem\doy and examine their
interactive impact on performance. We investigate three fletors that impact the

performance of any search algorithm: (1) the availabilityard constraintsi(e., de-
terminism) in the problem (2) the availability of a good iaitupper bound provided to
the algorithm, and (3) the availability of good quality guig pseudo trees. We there-
fore extend AOBB-C (and whenever relevant, AOBF-C) to eitaplicitly the com-
putational power of hard constraints by incorporating déad constraint propagation
technigues such as unit resolution. We provide AOBB-C witla-trivial initial uppers
bound computed by local search. Finally, we investigateloarized orderings gener-
ated via two heuristics for constructing small induced widépth pseudo trees.

We evaluate the impact and interaction of these extensiotissooptimization prob-
lem of finding the most probable explanation in belief netwarsing a variety of ran-
dom and real-world benchmarks. We show that exploiting #terminism as well as
good quality initial upper bounds and pseudo trees impraveperformance dramati-
cally in many cases.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization ProbleriCOP) is a tripleP = (X, D, F), where
X = {Xy,...,X,} is a set of variabledD = {D,, ..., D,,} is a set of finite domains
andF = {f1, ..., f-} is a set of cost functions. Cost functions can be eisioéror hard
(constraints). Without loss of generality we assume that banstraints are represented
as (bi-valued) cost functions. Allowed and forbidden tsgiave cosd andoco, respec-
tively. The scope of functiorf;, denotedscope(f;) C X, is the set of arguments of
fi- The goal is to find a complete value assignment to the vasathlat minimizes the
global cost functiory (X) = Y_._, f;, namely to findz = arg minx > _;_, f;.

Given a COP instance, itgimal graphG associates each variable with a node and
connects any two nodes whose variables appear in the scope sdme function. The
induced graphof G relative to an ordering of its variables, denote@*(d), is obtained
by processing the nodes in reverse ordet.dfor each node all its earlier neighbors are
connected, including neighbors connected by previoustieddedges. Given a graph
and an ordering of its nodes, thédth of a node is the number of edges connecting it to
nodes lower in the ordering. Theduced widthalso equal to théreewidtl) of a graph
alongd, denotedv™*(d), is the maximum width of nodes in the induced graph.

Belief networks[5] provide a formalism for reasoning under conditions ofemainty.
A belief network represents a joint probability distrilmrtiover the variables of interest.
A function of the model encodes the conditional probabititstribution of a variable
given its parents in the graph (also viewed as a cost funetiere each tuple has as-
sociated a real cost between 0 and 1). The most common ciomstpgimization task
over belief networks if finding thMost Probable ExplanatioMPE), namely finding a
complete assignment with maximum probability that is cstesit with the evidence in
the network. It appears in applications such as speechméemyor medical diagnosis.
The task can also be formulated using the semi-ring framewtroduced in [6].

A|B|C|f,(ABC)| |A|B|D|t,(ABD)| |B|D|E|f,(BDE) O
0]/0]0 ® 0j0]|0 1 0|00 ®
001 ® 0|01 © 0[0[1 3 f,(ABC)
0[1]0 ® 0|10 0 0|1]0 ®
011 2 0|11 2 0|11 4 f,(ABD) 91 Q
1{olo] e 1]olo] 6 1]0[0] o f,(BDE)
1101 2 1101 5 1101 3
1/11]0 ® 1{1]0 6 1{1]0 ©
1111 2 11]1 5 1111 4 G G
(a) Functions (b) Primal graph (c) Pseudo tree

oo oo4
8 b

(d) AND/OR search tree

—
D

~
>

ND/OR search graph

Fig. 1. AND/OR search spaces for constraint optimization.
2.2 AND/OR Search Spaces for Constraint Optimization

The AND/OR search space [2] is a unifying framework for asheahalgorithmic schemes
for graphical models, including belief networks, consttaietworks and cost networks.
Its main virtue consists in exploiting conditional indepencies between variables dur-
ing search, which can provide exponential speedups ovdititnaal structure-blind
search methods. The search space is defined using a bagiderdgo tre¢7].

Definition 1 (pseudo tree) Given an undirected grap&& = (X, F), a directed rooted
tree7 = (X, E’) defined on all its nodes is callggbeudo-tred any edge of~ that is
not included inE’ is a back-arc in7, namely it connects a node to an ancestofin

AND/OR Search Trees.Given a COP instancE = (X, D, F) its primal graph and

a pseudo tred of G, the associated AND/OR search trég;, has alternating levels
of OR and AND nodes. The OR nodes are labelgdand correspond to the variables.
The AND nodes are labeled;, ;) (or justz;) and correspond to value assignments
of the variables. The structure of the AND/OR search treeased on the underlying
pseudo treeZ . The root of the AND/OR search tree is an OR node labeled waigh t
root of 7. The children of an OR nod&; are AND nodes labeled with assignments

(X, x;) that are consistent with the assignments along the pathtfierroot. The chil-
dren of an AND nod€X;, z;) are OR nodes labeled with the children of varialilg
in 7. The AND/OR search tree can be traversed by a depth firstts¢BFES) algo-
rithm, thus using linear space to compute the value of themode. It was shown in
that [7, 2] that given a COP instangeand a pseudo tre€ of depthm, the size of the
AND/OR search tree based @nis O(n-k™), wherek bounds the domains of variables.

AND/OR Search Graphs.The AND/OR search tree may contain nodes that root iden-
tical conditioned subproblems. Such nodes can be mergktingean AND/OR graph.
Its size becomes smaller at the expense of using additiomalary by the search algo-
rithm. Some mergeable nodes can be identified based orcthraixts

Given a pseudo treg of an AND/OR search space, tleentextof an OR node
X, denoted bycontext(X) = [X; ... X,], is the set of ancestors ¢f in 7 ordered
descendingly, that are connected in the primal graplXtor to descendants oX.
The context ofX separates the subproblem beldvfrom the rest of the network.
The context minimaAND/OR graph [2] is obtained from the AND/OR search tree by
merging all the context mergeable nodes.

It can be shown [2] that given a COR, its primal graphz and a pseudo treg, the
size of the context minimal AND/OR search graptOig: - k*7(%)), wherew (G) is
the induced width of7 over the DFS traversal &f, andk bounds the domain size.

Weighted AND/OR Search Graphs. The OR-to-AND arcs from nodex; to x; in an
AND/OR search tree or graph are annotateaveyghtsderived from the cost functions
in F. Theweightw(X;, z;) of the arc from the OR nod¥; to the AND nodez; is the
sum of all the cost functions whose scope includgsand is fully assigned along the
path from the root ta;;, evaluated at the values along the path.

Given a weighted AND/OR search graph, each of its nodes casdumiated with a
value The valuev(n) of a noden is the minimal cost solution to the subproblem rooted
atn, subject to the current variable instantiation along thté fram the root ton. It can
be computed recursively using the valuesisfsuccessors (see also [2] for detalils).

Example 1.Figure 1 shows an example of AND/OR search spaces for a CGP wit
binary variables. The cost functions are given in Figure.1Tae valueco indicates

a hard constraint. The primal graph is given in Figure 1(log ¢he pseudo tree in
Figure 1(c). The square brackets indicate the context of/éinebles. The AND/OR
search tree is given in Figure 1(d). The numbers on the ORND-arcs are the weights
corresponding to the function values. Note that the treeuisgd whenever a weight
shows inconsistency (e.g., faf = 0, B = 0, D = 1 there is no need to visit variable
E, due to the valugz(0,0,1) = oo). The context minimal AND/OR graph is given
in Figure 1(e). Note that only the cache tablefofvill get cache hits during the depth
first search traversaF{ is the only level of OR nodes that has more than one incoming
arc). It can be determined from the pseudo tree inspectatnathvariables except for

E generatalead-cachef?] and their cache tables need not be stored.

3 AND/OR Search Algorithms for Constraint Optimization

In recent years several depth-first Branch-and-Bound astiflist search algorithms
were developed to search the context minimal AND/OR grapkdtving COPs [3, 4].

We next briefly overview these two classes of algorithms.

AND/OR Branch-and-Bound (AOBB-C) traverses the context minimal AND/OR graph
in a depth-first manner via full caching. It interleaves fardiexpansion of the current
partial solution tree with a backward cost revision step thplates node values, until
search terminates. The efficiency of the algorithm also dép®n the strength of its
heuristic evaluation function.g., lower bound). Specifically, each nodén the search
graph has an associated heuristic funcfign) underestimating(n) that can be com-
puted efficiently when the node s first expanded. The algorithm then computes the
heuristic evaluation functiofi(7”) of the current partial solutio” and uses it to prune
irrelevant portions of the search space, as part of a BrandhBound scheme.

In the forward step the algorithm expands alternating Eg€OR and AND nodes.
Before expanding an OR node, its cache table is checkedels#ime context was
encountered before, it is retrieved from the cache, andidsessors set is set to empty
which will trigger the cost revision step. If an OR node is faind in the cache, it is
expanded in the usual way. Before expanding an AND ngdbe algorithm computes
the heuristic evaluation functiofi(Z},) for every partial solution subtreE/, rooted at
each OR anceston of n along the search path. The search is terminated be|dfy
for somem, f(T},) is greater or equal to the best cost solution founchat

The backward cost revision step is triggered when a closdéd has an empty set
of successors. This means that all its children have bednaged, and its final value
can now be computed. If the current node is the root, thenglich terminates with its
value. OR nodes update their values by minimization, whiNDAnodes combine their
children values by summation.

Best-First AND/OR Search(AOBF-C) explores the context minimal AND/OR graph
and interleaves forward expansion of the best partial mriutee with a cost revision
step that updates the node values. First, a top-down, grephirgg operation finds
the best partial solution tree by tracing down through theketh arcs of the explicit
AND/OR search grapt€’- . These previously computed marks indicate the current
best partial solution tree from each nodeG#-.. One of the nonterminal leaf nodes
n of this best partial solution tree is then expanded and aigteuestimateh(n;),
underestimating(n;), is assigned to its successors.

The second operation in AOBF-C is a bottom-up, cost revigiommarking, SOLVE-
labeling procedure. Starting with the node just expandethe procedure revises its
valuev(n) (using the newly computed values of its successors) andsihekoutgo-
ing arcs on the estimated best path to terminal nodes. ORsmretlise their values by
minimization, while AND node by summation. This reviseduals then propagated
upwards in the graph. The revised coét) is an updated lower bound on the cost of
an optimal solution to the subproblem rootechaDuring the bottom-up step, AOBF-C
labels an AND node as SOLVED if all of its OR child nodes areved| and labels an
OR node as SOLVED if its marked AND child is also solved. Thérapl cost solution
to the initial problem is obtained when the root node is lale$OLVED.

Mini-Bucket Heuristics. The effectiveness of both depth-first and best-first AND/OR
search algorithms greatly depends on the quality of thedtwend heuristic evaluation
functions. The primary heuristic that we used in our experita is the Mini-Bucket

heuristic, which was presented in [3, 4]. It was shown thatititermediate functions
generated by the Mini-Bucket algorithm MBE(8] can be used to compute a heuristic
function that underestimates the minimal cost solutiomé&durrent subproblem in the
AND/OR graph.

4 Improving AND/OR Branch-and-Bound Search

In this section we overview several principled improversdntthe AND/OR Branch-
and-Bound algorithm that we will incorporate.

4.1 Exploiting Determinism

When the functions of the COP instance express both hardragrtstand general cost
functions, it may be beneficial to exploit the computatiopalver of the constraints
explicitly via constraint propagation [9, 10]. In beliefta®rks, for example, the hard
constraints are represented by the zero probability tugldse CPTs. We note that the
use of constraint propagation via directional resolutibi] for generalized arc consis-
tency has been explored in [12], in the context of variabimiektion algorithms. The
approach we take for handling the determinism in COP is basélde known technique
of unit resolutionfor Boolean Satisfiability (SAT) over a logical knowledgesbgKB)
in the form of propositional clauses (CNF) representingihe constraints.

One common way of encoding hard constraints as a CNF formulzedirect en-
coding[13]. Given a COP instance, we associate a propositionaar:;; with each
valuej that can be assigned to the COP variakile We then have clauses that ensures
each COP variable is given a value: for each;; V ... V z;,,. We optionally have
clauses that ensure each variable takes no more than oresvédu each, j, & with
J # k, ~x;; V . Finally, we have clauses that rule out any no-goods. Famela
if X1 =2andX3; = 1is not allowed then we have the clause;s V —x3;.

The changes needed in the AND/OR Branch-and-Bound proeedarthen as fol-
lows. Upon expanding an AND nodgX;, z;) the corresponding SAT instantiation is
asserted in KB, namely;; is set totrue. If the unit resolution leads to a contradic-
tion, then the current AND node is marked as dead-end andeiduels continues by
expanding the next node on the search stack. Whenever thitlatgdacktracks to the
previous level, it also retracts any SAT instantiation®rded by unit resolution. Notice
that the algorithm is capable of pruning the domains of fitariables in the current
subproblem due to conflicts detected during unit propagatio

4.2 Exploiting Good Initial Upper Bounds via Local Search

The AND/OR Branch-and-Bound algorithm assumed a trivigidhupper bound.e.,
o0), which effectively guarantees that the optimal solutiah be computed, however
it provides limited pruning in the initial phase. We themef@an incorporate a more
informed upper bound, obtained by solving the problem vizcallsearch scheme. This
approach is often used by state-of-the-art constraintpdtion solvers.

One of the most popular local search algorithms for COP iSthided Local Search
(GLS) method [14]. GLS is a penalty-based meta-heuristigckhworks by augmenting
the objective function of a local search algoritheny(hill climbing) with penalties, to
help guide them out of local minima. GLS has been shown to beessful in solving
a number of practical real life problems, such as the tragedalesman problem, radio
link frequency assignment problem and vehicle routing.dswalso applied to solving
the MPE in belief networks [15] as well as weighted MAX-SATDplems [16].

4.3 Exploiting the Pseudo Tree Quality

The performance of the AND/OR search algorithms can be heifiuenced by the
quality of the guiding pseudo tree. Finding the minimal themtinduced width pseudo
tree is a hard problem [7,17]. We describe next two heusdtic generating pseudo
trees which we used in our experiments.

Min-Fill Heuristic. The Min-Fill ordering [18] is generated by placing the variable
with the smallestill set (i.e., number of induced edges that need be added to fully con-
nect the neighbors of a node) at the end of the ordering, abimgeall of its neighbors
and then removing the variable from the graph. The processnes until all variables
have been eliminated. Once an elimination order is givem pgeudo tree can be ex-
tracted as a depth-first traversal of the min-fill inducedbrastarting with the variable
that initiated the ordering, always preferring as sucaesa node the earliest adja-
cent node in the induced graph. An ordering uniquely deteesia pseudo tree. This
approach was first used by [17].

Hypergraph Decomposition Heuristic. An alternative heuristic for generating a low
height balanced pseudo tree is based on the recursive desiiop of the dual hyper-
graph associated with the COP instance. The dual hypergfegpCOP(X, D, F) is a
pair (V, E) where each function i is a vertexv; € V and each variable iX is a
hyperedge:; € E connecting all the functions (vertices) in which it appears
Generating heuristically good hypergraph separators eaddme using a pack-
age callechMeTi S (available at: http://www-users.cs.umn.edu/karypisisiemeti3,
which we used following [19]. The vertices of the hypergrapl partitioned into two
balanced (roughly equal-sized) parts, denoteddayy, andH,;4x: respectively, while
minimizing the number of hyperedges across. A small numberassing edges trans-
lates into a small number of variables shared between theeétgoof functionsH,. ¢,
andH,.;4n: are then each recursively partitioned in the same fashiatil, tbey contain
a single vertex. The result of this process is a tree of hypptgseparators which can be
shown to also be a pseudo tree of the original model where ssrdrator corresponds
to a subset of variables chained together.

Randomization. Both the min-fill and hypergraph partitioning heuristice candom-
ize their tie breaking rules, yielding varying qualitiestoé generated pseudo tree.

5 Experiments

In order to empirically evaluate the performance of the pemul improvements to
AOBB-C algorithms, we have conducted a number of experimentthe optimization

problem of finding the most probable explanation in beligfuwoeks. We implemented
our algorithms in C++ and ran all experiments on a 2.4GHziBentd with 2GB of
RAM running Windows XP.

5.1 Overview and Methodology

Algorithms. We evaluated the following AND/OR Branch-and-Bound hybaido-
rithms with full caching and static mini-bucket heuristics

— AOBB-C+SAT+SMB(), which exploits the determinism in the network by apply-
ing unit resolution over the CNF encoding of the zero prolighiuples of the
probability tables. We used a unit resolution scheme bardgt@one available in
thezChaf f SAT solver [20].

— AOBB-C+GLS+SMB(), which exploits a good initial upper bound obtained by
a guided local search algorithm. We used the GLS implemient&br belief net-
works available from [15].

— AOBB-C+SAT+GLS+SMB(), which combines the previous two approaches.
We compare these algorithms against the baseline AND/ORdBrand-Bound

with full caching and mini-bucket heuristics, AOBB-C+SMRB(We also ran the best-
first search version of the algorithm, denoted by AOBF-C+$NBout the algorithm
did not exploit any of the above principles. The guiding mketrees were constructed
using both the min-fill and the hypergraph partitioning ligtios, described earlier.

We also compared with the Samlam version 2.3.2 softwaregugckvailable at
http://reasoning.cs.ucla.ejluSamlam is a public implementation of Recursive Con-
ditioning [19] which can also be viewed as an AND/OR searao@thm, namely
it explores a context minimal AND/OR graph [2]. Since any Mpi®blem instance
can be converted into an equivalent 0-1 Integer Linear Rradf1], we also ran the
ILOG CPLEX 11.0 solver, with default settingsd., best-bound control strategy, strong
branching based variable ordering heuristic, and thermufilanes engine turned on).

Benchmarks.We tested the performance of the AND/OR search algorithnramtiom
grid networks, belief networks derived from the ISCAS’88ithl circuits, genetic link-
age analysis networks, and relational belief networks itiadel the popular game of
Mastermind. All of these networks contain a significant antaf determinism.

Measures of performance We report CPU time in seconds and the number of nodes
visited. We also specify the the number of variablels umber of evidence variables
(e), maximum domain sizek{, the depth of the pseudo trel) @nd the induced width
of the graph {*) for each problem instance. When evidence is asserted inghe n
work, thew* andh are computed after the evidence variables are removed fiem t
graph. We also report the time required by GLS to compute ritimli upper bound.
Note that in each domain we ran GLS for a fixed number of flipsrédeer, AOBB-
C+GLS+SMB¢) and AOBB-C+SAT+GLS+SMB{) do not include the GLS running
time, because GLS can be tuned independently for each pnatiéess to minimize its
running time. The best performance points are highlighteeach table, ”-” denotes
that the respective algorithm exceeded the time limit. Birlyi "out” stands for ex-
ceeding the 2GB memory limit. A "*” by the GLS running time iicdtes that it found
the optimal solution to the respective problem instance.

minfill pseudo tree without randomization
AOBB-C+SMB()) AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB()
Samlan] AOBB-C+SAT+SMB(j) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid CPLEX| AOBB-C+GLS+SMB() AOBB-C+GLS+SMBJ(i) AOBB-C+GLS+SMB()) AOBB-C+GLS+SMBJ(j) AOBB-C+GLS+SMB())
(w*, h) GLS |AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i
(n,e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time node: time node: time node: time nodeg time node:
- -11273.09 9,047,518 596.27 4,923,76D 70.42 473,67% 74.99 412,291
90-24-1 out |687.96 4,823,044 202.05 1,564,80D 172.31 1,370,22p 55.52 401,294 69.53 386,78
(33,111) 8.43 - 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,86
(576, 20) 0.53 [473.64 3,181,35p 19.09 131,54 8.41 49,054 6,891 23.87 39,17
out 21.94 75,637 10.59 33,77 6.06 5,144 23.80 17,29
146.97 878,874 152.80 962,48/ 4.36 15,632 12.92 46,489 22.13 2,24
90-26-1 out 32.67 230,030 53.11 360,612 11,620 11.95 40,07% 22.02 1,85
(36, 113) 7.87 | 36.94 252,380 87.02 559,51 4.17 14,58 7.86 6,31Q 22.00 1,894
(676,40) | 056 | 15.09 104,775 32.85 219,03 10,932 8.06 8,124 24.42 1,65
19.06 65,271 24.39 79,61 4.27 7,19 8.05 3,771 22.44 1,43
652.15 3,882,30D 165.74 1,070,828 155.20 956,83) 40.14 212,968 59.28 174,71
90-30-1 out |[117.25 771,238 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,00:
(43, 150) 263.32 1,498,75p 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,54
(900, 60) 0.72 | 89.94 561,397 38.92 247,271 28.67 176,330 15.50 52,260 40.52 72,05:
158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,80
- - - - - - - -1369.36 823,604
90-34-1 out - - - - - - - -1132.84 271,609
(45, 153) - - - -11096.14 5,569,2761772.51 5,516,888294.11 630,406
(1154,80)| 1.31 - - - -| 550.55 2,944,05b 651.04 2,614,171124.16 238,338
out out 243.63 596,978 270.88 667,018 71.19 67,61
969.02 2,623,97[11753.10 3,794,053 203.67 614,868 165.45 488,878113.06 214,91
90-38-1 out |141.89 577,768 204.69 593,809 86.16 319,185 102.03 312,478 85.74 142,58
(47, 163) 854.61 2,498,70p1822.71 3,792,826 212.63 647,089 164.43 484,815109.77 211,74
(1444,120) 1.11 [138.44 573,928 204.68 597,751l 96.27 339,729 98.21 311,072 85.50 140,581
101.69 174,786 103.80 146,23] 54.00 95,511 53.44 78,431 73.10 59,85

Table 1. CPU time and nodes visited for solving deterministic grid networks. Time limiiur.h
Number of flips for GLS is 50,000. Pseudo tree generated by a singlaf the min-fill heuristic,
without randomization. Samlam ran out of memory on all test instances.

5.2 Empirical Results

Deterministic Grid Networks. In grid networks, the nodes are arranged inarx N
square and each CPT is generated uniformly randomly. Weriexgeted with problem
instances initially developed by [22] for the task of werghtnodel counting. For these
problems,N ranged between 24 and 38, and, for each instance, 90% ofdbalglity
tables were deterministic, namely they contained only Olapcbbability entries.

Table 1 shows the results for experiments with 5 deterninggid networks. The
columns are indexed by the mini-buckiebound which we varied between 12 and
20. We generated a single MPE query witlvariables picked randomly and instan-
tiated as evidence. When comparing the AND/OR Branch-anghBalgorithms, we
observe that AOBB-C+SAT+SMB) improves considerably over AOBB-C+SM#B(
especially for relatively small-bounds ¢.g., i € {12,14}) which correspond to rel-
atively weak heuristic estimates. For example, on the 90-88id instance, AOBB-
C+SAT+SMB(14) is about 9 times faster than AOBB-C+SMB(14{ axplores 6 times
fewer nodes. Similarly, AOBB-C+GLS+SMB(which exploits a non-trivial initial up-
per bound is better than AOBB-C+SM#B(or relatively small-bounds. Overall, AOBB-
C+SAT+GLS+SMBY{(), which exploits both the determinism and informed initipper
bounds, is the best performing among the Branch-and-Bolguditams and in some
cases it is able to outperform AOBF-C+SMRB(across all reporteétbounds ¢.g., 90-
30-1). As thei-bound increases and the heuristics become strong enougit the
search space significantly, the difference between AOBBI@B(i) and its competi-
tors decreases. The mini-bucket heuristic already doeshdéconstraint propagation.
Notice that CPLEX achieves the best performance on 3 testrinss.

0 90-24-1 grid network [pseudo tree width and depth] 140

a
a & N

IN F 120

w* (hypergraph) | 100
w (minfill)

h (hypergraph)
h (minfill) [80

>x0e

width (w*)
&
depth (h)

oe

0 1 2 3 4 5 6 7 8 9 10 1

10000 90-24-1 grid network [hypergraph trees and SMB(16)] 10000 90-24-1 grid network [min-fill trees and SMB(16)]

I AOBB-C I AOBB-C
[AOBB-C+SAT [0 AOBB-C+SAT
I AOBB-C+SAT+GLS [AOBB-C+SAT+GLS

1000 1000

| m’ h h
1 h h
2 3 4 5 6 7 8
run

time (sec)
3
g
time (sec)

0 1 2 3 4 5 6 7 8 9 10 1 0 1 9 10 1

Fig.2. Detailed execution of AOBB-C+SMB(16), AOBB-C+SAT+SMB(16) andOBB-
C+SAT+GLS+SMB(16) on the 90-24-1 grid network over 10 runs usengdomized min-fill
and hypergraph based pseudo trees. Pseudo tree depth is plotteiffereatdscale to the right.

Figure 2 shows the execution of AOBB-C+SMB(16), AOBB-C+S3AIMB(16) and
AOBB-C+SAT+GLS+SMB(16) on the 90-24-1 network with randaed min-fill and
hypergraph pseudo trees, over 10 independent runs. Forreache also report the
induced width and depth of the corresponding pseudo treesse# that the best per-
formance in this case is obtained for min-fill trees. Thisnslyably because the mini-
bucket heuristics were more accurate when computed alengit-fill ordering which
has smaller induced width than the hypergraph partitiobeaged ordering.

ISCAS’89 Circuits (available at http://www.fm.vslib.cz/kes/asic/iScase a common
benchmark used in formal verification and diagnosis. Forpaupose, we converted
each of these circuits into a belief network by removing flgps and buffers in a stan-
dard way, creating a deterministic conditional probapthitble for each gate and putting
uniform distributions on the input signals.

Table 2 displays the results obtained on 5 ISCAS’89 circile see that con-
straint propagation via unit resolution plays a dramatle an this domain rendering
the search space almost backtrack-free, across all rejpebieunds. For instance, on
the s953 circuit, AOBB-C+SAT+SMB(6) is 3 orders of magniudster than AOBB-
C+SMB(6) and 2 orders of magnitude faster than CPLEX, resmdy, while AOBF-
C+SMB(6) exceeded the memory limit. When looking at the ANR/Branch-and-
Bound algorithms that exploit a local search based inifigder bound, namely AOBB-
C+GLS+SMB() and AOBB-C+SAT+GLS+SMB]), we see that they did not expand

minfill pseudo tree without randomization
AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB()
Samlan] AOBB-C+SAT+SMB(j) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 |CPLEX| AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(j) AOBB-C+GLS+SMBJ(i) AOBB-C+GLS+SMB(j) AOBB-C+GLS+SMB(i)
GLS |AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14
time nodeg time nodeg time nodes time nodeg time node:
- - - -1182.53 2,316,024 0.16 432 0.24 432
c432 out [374.29 4,336,40p189.13 2,043,475 1.02 9,512 0.16 432 0.25 432
(27,45) | 20.54 | [0.05) 0| 0.06 0 0.09 0 0.13 0 0.19
(432,2) | 0.08* 0.06 0 0.08 0 0.09 0.13 0 0.20
out out 106.27 488,46p 0.20 437 0.28 437
899.63 7,715,138 17.99 155,865 48.13 417,92417.00 132,139 2.19 13,03
s953 out 0.19 829 0.16 667 0.20 689 0.31 623 0.74 623
(66, 101) 12.14 | [0.12] o[0.13 0 0.17 0 0.28 0 0.69 0
(440,2) | 0.05* 0.13 0 013 0 0.17 0 0.30 0 0.70 0
out 41.03 150,598110.45 408,82836.50 113,322 4.06 12,25
18.05 104,316124.53 686,060 3.69 26,84714.23 94,98% 9.47 62,88
s1196 out 0.19 564 0.19 564 0.23 569 0.38 564 0.92 564
(54,97) | 92.19 0.14 0 0.16 0 0.20 0 0.34 0 0.89 0
(560, 2) | 0.08* | [0.13] o[0.14 0 0.20 0 0.34 0 0.87 0
26.16 77,019158.19 372,129 7.22 23,34826.97 80,26417.64 48,11
13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,51
51488 out 0.20 704 0.20 667 0.25 667 0.44 667 1.06 667
(47,67) | 33.48 0.14 0 0.16 0 0.22 0 0.44 0 0.99 0
(667,2) | 0.13* | [0.13 o[0.16 0 0.20 0 0.47 0 0.99 0
21.75 74,658 1.67 5,499 4.22 14,44% 1.84 5,374 1.80 3,124
7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104
1494 out 0.20 669 0.22 664 0.27 669 0.45 664 1.11 664
(48,69) | 421 0| 017 o 022 0 041 0o 1.09 [o
(661,2) | 0.11* of 017 0 0.22 0 0.42 0 1.22 0
9.67 24,849 27.28 65,859 7.86 19,67811.48 28,793 3.03 6,484

Table 2. CPU time and nodes visited for solving belief networks derived from ti@AIS89
circuits. Time limit 30 minutes. Number of flips for GLS is 10,000. Pseude ienerated by a
single run of the min-fill heuristic, without randomization. Samlam ranadubemory.

any nodes. This is because the upper bound obtained by GLi&h wias the optimal
solution in this case, was equal to the the mini-bucket Idveemd computed at the root
node. The best performance on this domain were achieved IBBAO+SAT+SMB()
and AOBB-C+SAT+GLS+SMBY), respectively, for the smallest reporteiound { =
6). Notice the poor performance of Samlam which ran out of ngroa all tests.

Genetic Linkage Analysis. The maximum likelihood haplotypproblem in genetic
linkage analysis is the task of finding a joint haplotype agunfation for all members
of the pedigree which maximizes the probability of datas leguivalent to finding the
most probable explanation of a belief network which repnesthe pedigree data [23].

Table 3 displays the results obtained for 6 hard linkageyaismhetworksgvailable
at http://bioinfo.cs.technion.ac.il/superlipksing randomized min-fill and hypergraph
partitioning based pseudo trees. We selected the hypérgesged tree having the small-
est depth over 100 independent runs (ties were broken omthkest induced width).
Similarly, the min-fill based tree was the one having the ssainduced width out
of 100 tries (ties were broken on the smallest depth). Forpasison, we also include
results obtained with Superlink version 1.6 [23]. Supérigmcurrently one of the most
efficient solvers for genetic linkage analysis, is dediddtethis domain, uses a combi-
nation of variable elimination and conditioning, and tadgantage of the determinism
present in the network. To the best of our knowledge, theteanks were never solved
before for the maximum likelihood haplotype tasle(, the MPE task).

We see that the AND/OR Branch-and-Bound algorithms areritheames that could
solve all the problem instances, especially when guided ypetfyraph partitioning
based pseudo trees. This can be explained by the much suafihr of these pseudo
trees compared with the min-fill ones, which overcame thatikedly poor quality of

hypergraph pseudo tree min-fill pseudo tree

MBE() MBE() MBE() MBE()
pedigreg Samlam| (w*, h) AOBB-C+SMB(j) AOBB-C+SMB(i) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n,d) |Superini AOBB-C+SAT+SMB(i) | AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)| AOBB-C+SAT+SMB(i)

CPLEX AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMBJ() AOBB-C+GLS+SMB(i)| AOBB-C+GLS+SMBJ(i)
GLS AOBF-C+SMBJ(j) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=20 i=22 i=20 i=22
time node: time node: time nodeg time node:

out 25.26 164.49 117.03 out

ped7 - 30504.84 285,084,134 3005.66 27,761,21)
(868,4)| out [(36,60)31701.54 285,084,134 3116.07 27,761,219(32, 133
13.32 30349.92 284,635,348[2955.04 27,371,52 -
out out out
out 67.93 300.06 76.31 out
ped9 - 8922.81 117,328,162[3292.3) 40,251,72 1434.74 15,825,340
(936,7)| out |(3558)10075.90 117,328,162 3657.91 40,251,723(27, 130) 1515.50 15,825,340
12.85* 8866.40 117,011,941 3336.86 40,251,661 12,444,96
out out out
out 59.31 150.38 out out
ped19 - 45075.31 466,748,365 8321.42 90,665,87]
(693,5)| out |(35 53)47986.66 466,748,345 8774.51 90,665,870 (24, 122
10.23 44585.84 459,741,495[8070.93 87,060,72:
out out
out 42.21 209.51 out out
ped34 - 67647.42 1,293,350,82911719.28 220,199,93
(923,4)| out |(34,60)74020.63 1,293,350,82912847.33 220,199,937(32, 127
13.99 64136.36 1,230,870,5 218,890,661
out out
out 35.41 111.24 out out
pedal - 3891.86 31,731,270 380.01 2,318,54f]
(886,5)| out [(36,61) 4055.15 31,731,270 390.93 2,318,544 (33, 128
12.28* 3869.31 31,729,654 2,317,321
out out
out 32.92 140.81 57.88 344.68
peda4 - 3597.12 62,385573 204.96 1,35559 112.60 1,114,641385.30 668,73
(644,4)| out [(31,52) 3904.39 60,709,547 215.46 1,35559F (26,73)| 127.42 1,114,641385.47 668,73
9.84 3580.32 62,392,439 1,213,051 752,970 366.18 447,514
out out out out

Table 3. CPU time and nodes visited for solving genetic linkage analysis networ&adBdrees
created using randomized min-fill and hypergraph partitioning heuristioge limit 24 hours.

Samlam, CPLEX and AOBF-C+SMB(i) ran out of memory, whereapeBlink exceeded the
time limit. The maximum number of flips for GLS was set to 1,000,000.

the mini-bucket heuristics obtained on these highly cotetenetworks. Exploiting the
GLS initial upper bound improved slightly the performané&@BB-C+SMB(:) (e.g.,
AOBB-C+GLS+SMB(22) improves over AOBB-C+SMB(22) on pedBi#h a margin

of 7% only). This was probably because AOBB-C+SN)Ebund the optimal or very
close to optimal solutions quite early in the search. Siryilave observe that apply-

ing unit resolution was not cost effective in this case, NgM®©BB-C+SMB(i) and
AOBB-C+SAT+SMB() expanded the same number of nodes. Notice also that Super-
link exceeded the 24 hour time limit, whereas Samlam, CPLEXAOBF-C+SMB()

ran out of memory on all test instances.

Figure 3 shows the execution of AOBB-C+SMB(22), AOBB-C+3AIMB(22) and
AOBB-C+GLS+SMB(22) on the ped44 network with randomizech+fill and hyper-
graph pseudo trees, over 10 independent runs. For each rafsaveeport the induced
width and depth of the corresponding pseudo trees. We seththhypergraph pseudo
trees, which have small depths, offer the best performantt@s case. This can be ex-
plained by the large induced width4., context) which in this case renders most of the
cache entries dead. Therefore, the AND/OR graph explofedtafly is very close to
a tree and the dominant factor that impacts performanceidepth of the pseudo tree.

Mastermind Game Instances Each of these networks is a ground instance of a rela-
tional belief network that models differing sizes of the plaw game of Mastermind,
and was produced by therRRMULA System fttp://www.cs.auc.dk/jaeger/Primyla

6 ped44 linkage network - [hypergraph and minfill trees] 100

® v (hypergraph)

551 o w* (minfil) N

width (w*)
M
2
depth (h)

o

k40

o
o

L] L] o L] L] L] 8 L] L]
30 o

o

0 1 2 3 4 5 6 7 8 9 10 1

10000 ped44 linkage network - [hypergraph trees and SMB(22)] 10000 ped44 linkage network - [min-fill trees and SMB(22)]
N AOBB-C N AOBB-C

[0 AOBB-C+SAT [AOBB-C+SAT
I AOBB-C+GLS I AOBB-C+GLS

1000

oMl fodln |

0 2 3 6 7 8 9 10 11 12 0 1 2 3 4 5 B 7 8 9 10 11 12
run

time (sec)
time (sec)

Fig. 3. Detailed execution of AOBB-C+SMB(22), AOBB-C+SAT+SMB(22) andOBB-
C+GLS+SMB(22) on the ped44 linkage network over 10 runs usingamaimed min-fill and
hypergraph based pseudo trees. Pseudo tree depth is plotted omentlgtale to the right.

Table 4 reports the results obtained on 6 Mastermind netvd¥le generated a sin-
gle MPE query withe random evidence variables. We see that AOBB-C+SAT+SMB(
is far better than AOBB-C+SMB), especially for relatively smafl-bounds. For ex-
ample, on the mm-03-08-05 network, AOBB-C+SAT+SMB(14) itndes faster than
AOBB-C+SMB(14), 3 times faster than AOBF-C+SMB(14), andtbBes faster than
CPLEX, respectively. When looking at the effect of the GLSdshgpper bound, which
was equal to the optimal solution in this case, we see noeuttie difference between
AOBB-C+GLS+SMB() and AOBB-C+SMBY{). This is because AOBB-C+SMB(was
able to find close to optimal solutions quite fast. Notice Bemlam exceeded the mem-
ory bound on all instances, whereas CPLEX obtained the leefirmance on only one
instance, namely mm-10-08-03.

Summary of Empirical Results. Summarizing our empirical observations we see that
exploiting the hard constraints present in the problem awes in many cases sig-
nificantly the performance of the AND/OR Branch-and-Boufgbdathms with mini-
bucket heuristicse(g., ISCAS'89 circuits). The impact of the local search baséihin
upper bound is more prominent at relatively smatounds, when the corresponding
heuristics are relatively weak and the algorithm does nat ilose to optimal solu-
tion early enough in the search 4., grid networks). The two heuristics for generating
pseudo trees do not dominate each other. When the inducel isidmall enough,
which is typically the case for min-fill pseudo trees, theesgth of the mini-bucket

minfill pseudo tree without randomization

AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB()
mastermind |Samlan] AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
CPLEX| AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(j) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(j)
(w*, h) GLS |AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(n,e) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time node: time node: time node: time node: time node:
1.88 9,552 0.98 2,47 1.83 2,418 4.19 2,427 7.80 2,349
mm-03-08-03 out 158 9,28 2,464 1.83 2,412 4.09 2,424 7.87 2,34
(20, 56) 13.42 1.94 9,552 1.03 2,47 191 2,418 4.14 2,427 7.75 2,34
(1221, 30) 4.23* 1.59 9,287 0.94 2,464 1.84 2,412 4.14 2,42 7.80 2,34
1.83 3,83 1.00 1,191 1.95 1,194 4.20 1,191 7.83 1,191
1174.31 1,231,506 63.45 99,228 50.89 84,757 44.39 53,972 72.52 46,76
mm-03-08-04 out 52.97 210,798 16.25 44,888 16.33 40,016 26.03 34,467 61.86 35,97
(31, 84) 894.43|1167.09 1,231,506 55.08 86,11% 51.10 84,619 44.75 53,916 72.88 45,67
(2288, 30) 21.95%| 53.17 210,798 14.33 40,372 16.64 40,016 26.48 34,467 62.80 35,66
1058.78 650,50p 2,543 6.41 2,56 17.81 2,443 53.99 8,12
943.92 907,020 293.66 467,949 580.10 621,83 93.89 94,79% 167.25 122,672
mm-03-08-0§ out 74.88 141,07 125,914 247.27 399,764 43.88 46,59¢ 121.38 89,194
(38, 102) 2478.3| 948.12 907,009 281.55 455,07p 576.24 621,83 91.05 91,329 166.46 122,654
(3691, 60) 44.28*| 73.86 141,07% 40.84 120,896 252.69 399,764 43.05 44,961 120.05 89,194
308.33 251,406 135.08 112,264 543.87 308,62f 54.45 26,426 152.50 53,56
2.44 12,177 258 8,221 3.00 4,13 8.63 3,92 19.84 3,842
mm-04-08-03 out 8,331 211 7,991 278 4,060 852 3,907 19.36 3,83
(23,61) 47.14 2.45 12,09 2.56 8,10 3.03 4,134 8.66 3,928 19.70 3,842
(1422, 30) 4.76* 1.44 8,331 216 7,991 289 4,06 8.67 3,907 19.50 3,836
2.25 4,021 224 3,127 285 1,503 8.59 1,41Q 20.10 1,41
- -12199.25 7,127,831 501.60 996,7702391.51 4,841,6441067.00 3,303,36p
mm-04-08-04 out |1126.50 1,705,02(31031.31 5,137,32 774,17§1015.98 3,292,828 699.65 3,166,653
(36, 87) 654.82 - -12200.43 7,127,248 500.30 996,5152409.06 4,841,5781063.08 3,302,87p
(2615, 30) 32.34* |1133.77 1,705,02R1052.40 5,137,324 217.44 774,1761019.18 3,292,828 697.10 3,166,42D
635.01 353,63p 515.58 427,70 276.71 249,87P 412.15 364,118 241.72 251,01
693.32 1,115,425 453.65 1,074,830 494.44 920,849 442.88 446,45p 252.89 236,756
mm-10-08-03 out 406.60 901,908 308.30 905,778 342.90 830,171 319.94 410,324 197.93 222,644
(42,99) 707.96 1,115,42p 467.79 1,074,834 502.10 920,849 450.83 446,45p 255.52 236,702
(2604, 60) 29.31* | 408.43 901,908 310.91 905,778 347.16 830,171 324.33 410,324+ 199.58 222,644
464.40 444,878 269.13 398,706 353.30 383,31 335.76 193,385 198.97 95,48

Table 4. CPU time and nodes visited for solving Mastermind game instances. Time Imoiirl
Number of flips for GLS is 200,000. Pseudo tree generated by a sungtef the min-fill heuristic,
without randomization. Samlam ran out of memory on all test instances.

heuristics compiled along these orderings usually detegmihe performance.g.,
grid networks). However, when the graph is highly connectiee relatively large in-
duced width causes the AND/OR algorithms to traverse a Besace that is very close
to a tree (due to dead caches) and therefore the hypergrapld paeudo trees which
have far smaller depths improve performance substan{i@lly, genetic linkage).

6 Conclusion

The paper rests on three key contributions. First, we pm@pgsincipled approach for
handling hard constraints in COPs within the AND/OR searamgwork, which builds
upon progress made in the SAT community. Second, we alloexploiting non-trivial
initial upper bounds which are obtained by a local searckmseh Third, we investigate
two heuristics for generating good quality pseudo trees:ntiin-fill heuristic which
minimizes the induced width, and the hypergraph partitigrieuristic that minimizes
the depth of the pseudo tree. We demonstrated empiricaliyrthact of these factors on
hard benchmarks, including some very challenging netwfydea the field of genetic
linkage analysis.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound fgtical models. Irinterna-
tional Joint Conference on Atrtificial Intelligence (IJCAI-200ppges 224—229, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

R. Dechter and R. Mateescu. AND/OR search spaces for graphochls. Artificial Intel-
ligence 171(2-3):73-106, 2007.

. R. Marinescu and R. Dechter. Memory intensive branch-anddasearch for graphical

models. InNational Conference on Artificial Intelligence (AAAZOO6.

. R. Marinescu and R. Dechter. Best-first and/or search for gralpimodels. InNational

Conference on Atrtificial Intelligence (AAABROO7.

. J. PearlProbabilistic Reasoning in Intelligent SystenMorgan Kaufmann, 1988.
. S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constrduimg@nd optimization.

Journal of ACM 44(2):309-315, 1997.

. E. C. Freuder and M. J. Quinn. Taking advantage of stable setgiabls in constraint

satisfaction problems. Imternational Joint Conference on Artificial Intelligence (IJCAI)
pages 1076-1078, 1985.

. R. Dechter. Mini-buckets: A general scheme of generating appations in automated

reasoning. Irinternational Joint Conference on Artificial Intelligence (IJCAppges 1297—
1302, 1997.

. D. Larkin and R. Dechter. Bayesian inference in the presencetefrdimism. Ininterna-

tional Workshop on Atrtificial Intelligence and Statistics (AISTAPSD3.

D. Allen and A. Darwiche. New advances in inference using reeiconditioning. In
Uncertainty in Artificial Intelligence (UAI-2003pages 2-10, 2003.

I. Rish and R. Dechter. Resolution vs. search: two strategiestfod@arnal of Automated
Reasoning24(1-2):225-275, 2000.

R. Dechter and D. Larkin. Hybrid processing of beliefs and caimtf. InUncertainty in
Artificial Intelligence (UAI) pages 112-119, 2001.

T. Walsh. Sat v csp. IRrinciples and Practice of Constraint Programming (CBages
441-456, 2000.

C. Voudouris. Guided local search for combinatorial optimizatiayblems. Technical
report, PhD Thesis. University of Essex, 1997.

F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local sefarcimpe solving. In
International Joint Conference on Artificial Intelligence (IJCAppges 169-174, 2005.

P. Mills and E. Tsang. Guided local search for solving sat and wezighax-sat problems.
Journal of Automated Reasoning (JARJOO.

R. Bayardo and D. P. Miranker. On the space-time trade-off inrgpbonstraint satisfaction
problems. Ininternational Joint Conference on Artificial Intelligence (IJCAbpges 558—
562, 1995.

U. Kjeeaerulff. Triangulation of graph-based algorithms giving small totatep@echnical
Report, University of Aalborg, Denmark990.

A. Darwiche. Recursive conditioningrtificial Intelligence 125(1-2):5-41, 2001.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. @Hafigineering an efficient
sat solverDesign and Automation Conferen@901.

E. Santos. On the generation of alternative explanations with implicétiobslief revision.
In Uncertainty in Artificial Intelligence (UAl)pages 339-347, 1991.

T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks ighted model counting.
In National Conference of Atrtificial Intelligence (AAAPages 475482, 2005.

M. Fishelson and D. Geiger. Exact genetic linkage computationsefioergl pedigrees.
Bioinformatics 18(1):189-198, 2002.

