
Advancing AND/OR Search for Optimization Using
Diverse Principles

Radu Marinescu1 and Rina Dechter2

Abstract. In recent years, several Branch-and-Bound and best-first
search algorithms were developed to explore the AND/OR search
graph for solving general constraint optimization problems. Previous
work showed the tremendous gain obtained by exploiting problem’s
decomposition (using AND nodes), equivalence (by caching) and ir-
relevance (via the power of lower bound heuristics). In this paper,
we show the additional improvements that can be gained by bringing
together all the above, as well as diverse refinements and optimizing
principles such as exploiting determinism via constraint propagation,
using good initial upper bounds generated via stochastic local search
and improving the quality of the guiding pseudo tree. We illustrate
our results using a number of benchmark networks, including the
very challenging ones that arise in genetic linkage analysis.

1 INTRODUCTION

Constraint satisfaction problems (CSPs) provide a formalism for for-
mulating many interesting real world problems as an assignment of
values to variables, subject to a set of constraints. A constraint opti-
mization problem (COP) is defined as a regular CSP augmented with
a set of cost functions (called soft constraints) indicating preferences.
The aim of constraint optimization is to find a solution to the problem
whose cost, expressed as the sum of the cost functions, is minimized
or maximized.

The AND/OR Branch-and-Bound search (AOBB) introduced in
[10] is a Branch-and-Bound algorithm that explores an AND/OR
search tree for graphical models [5], in a depth-first manner. The
AND/OR Branch-and-Bound search with caching (AOBB-C) [11]
allows saving previously computed results and retrieving them when
the same subproblem is encountered again. The algorithm explores
the context minimal AND/OR graph. A best-first AND/OR search
algorithm (AOBF-C) that traverses the AND/OR graph was also ex-
plored [12]. Earlier empirical evaluations demonstrated (1) the im-
pact of AND decomposition, (2) the impact of caching, (3) the im-
pact of some dynamic variable ordering heuristics, (4) the impact of
the lower bound strength, as well as (5) the impact of best-first versus
depth-first search regimes [10, 11, 12].

In this paper, we want to take these classes of algorithms as much
further as we can by including additional known principles of prob-
lem solving and examine their interactive impact on performance.
We investigate three key factors that impact the performance of any
search algorithm: (1) the availability of hard constraints (i.e., deter-
minism) in the problem (2) the availability of a good initial upper
bound provided to the algorithm, and (3) the availability of good
quality guiding pseudo trees. We therefore extend AOBB-C (and

1 4C, University College Cork, Ireland email:r.marinescu@4c.ucc.ie
2 University of California, Irvine, USA email: dechter@ics.uci.edu

whenever relevant, AOBF-C) to exploit explicitly the computational
power of hard constraints by incorporating standard constraint prop-
agation techniques such as unit resolution. We provide AOBB-C with
a non-trivial initial upper bound computed by local search. Finally,
we investigate randomized orderings generated via two heuristics for
constructing small induced width/depth pseudo trees.

We evaluate the impact and interaction of these extensions on the
optimization problem of finding the most probable explanation in
belief networks using a variety benchmarks. We show that exploiting
the determinism as well as good quality initial upper bounds and
pseudo trees improves the performance dramatically in many cases.

2 BACKGROUND

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a triple
P = 〈X,D,F〉, whereX = {X1, ..., Xn} is a set of variables,
D = {D1, ..., Dn} is a set of finite domains andF = {f1, ..., fr}
is a set of cost functions. Cost functions can be eithersoft or
hard (constraints). Without loss of generality we assume that hard
constraints are represented as (bi-valued) cost functions. Allowed
and forbidden tuples have cost0 and∞, respectively. The scope
of function fi, denotedscope(fi) ⊆ X, is the set of arguments of
fi. The goal is to find a complete value assignment to the variables
that minimizes the global cost functionf(X) =

∑r

i=1 fi, namely
to find x = arg minX

∑r

i=1 fi. Given a COP instance, itsprimal
graphG associates each variable with a node and connects any two
nodes whose variables appear in the scope of the same function.

Belief networks [14] provide a formalism for reasoning under con-
ditions of uncertainty. A belief network represents a joint probability
distribution over the variables of interest. A function of the model
encodes the conditional probability distribution of a variable given
its parents in the graph. The most common optimization task over
belief networks is finding theMost Probable Explanation(MPE),
namely finding a complete assignment with maximum probability
that is consistent with the evidence in the network. It appears in ap-
plications such as speech recognition or medical diagnosis.

2.2 AND/OR Search Spaces for Constraint
Optimization

The AND/OR search space [5] is a unifying framework for advanced
algorithmic schemes for graphical models, including belief networks,
constraint networks and cost networks. Its main virtue consists in ex-
ploiting conditional independencies between variables during search,

2111

8

011

2101

8

001

2110

8

010

8

100

8

000

f1(ABC)CBA

5111

6011

5101

6001

2110

0010

8

100

1000

f2(ABD)DBA

4111

8

011

3101

8

001

4110

8

010

3100

8

000

f3(BDE)EDB

(a) Functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Primal graph

A

E

B

DC

[]

[A]

[AB]

[BD]

[AB]

(c) Pseudo tree

B

10

A

10

C

10

8 8

D

10

1 8

E

10

8 3

C

10

8 2

D

10

0 2

E

10

8 3

E

10

8 4

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(d) AND/OR search tree

B

10

A

10

C

10

8 8

D

10

1 8

C

10

8 2

D

10

0 2

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(e) AND/OR search graph

Figure 1. AND/OR search spaces for constraint optimization.

which can provide exponential speedups over traditional structure-
blind search methods. The search space is defined using a backbone
pseudo tree[6].

DEFINITION 1 (pseudo tree) Given an undirected graphG =
(X, E), a directed rooted treeT = (X, E′) defined on all its nodes
is calledpseudo-treeif any edge ofG that is not included inE′ is a
back-arc inT , namely it connects a node to an ancestor inT .

AND/OR Search Trees.Given a COP instanceP = 〈X,D,F〉 its
primal graphG and a pseudo treeT of G, the associated AND/OR
search tree,ST , has alternating levels of OR and AND nodes. The
OR nodes are labeledXi and correspond to the variables. The
AND nodes are labeled〈Xi, xi〉 (or just xi) and correspond to
value assignments of the variables. The structure of the AND/OR
search tree is based on the underlying pseudo treeT . The root of the
AND/OR search tree is an OR node labeled with the root ofT . The
children of an OR nodeXi are AND nodes labeled with assignments
〈Xi, xi〉 that are consistent with the assignments along the path
from the root. The children of an AND node〈Xi, xi〉 are OR nodes
labeled with the children of variableXi in T . It was shown in [6, 5]
that given a COP instanceP and a pseudo treeT of depthm, the
size of the AND/OR search tree based onT is O(n · km), wherek

bounds the domains of variables.

AND/OR Search Graphs.The AND/OR search tree may contain
nodes that root identical conditioned subproblems. Such nodes can
be merged yielding an AND/OR graph. Its size becomes smaller at
the expense of using additional memory by the search algorithm.
Some mergeable nodes can be identified based on theircontexts.

Given a pseudo treeT of an AND/OR search space, thecontext
of an OR nodeX, denoted bycontext(X) = [X1 . . . Xp], is the
set of ancestors ofX in T ordered descendingly, that are connected
in the primal graph toX or to descendants ofX. The context ofX
separates the subproblem belowX from the rest of the network. The
context minimalAND/OR graph [5] is obtained from the AND/OR
search tree by merging all the context mergeable nodes.

It can be shown [5] that given a COPP, its primal graphG and
a pseudo treeT , the size of the context minimal AND/OR search
graph isO(n · kw∗

T
(G)), wherew∗

T (G) is the induced width ofG
over the DFS traversal ofT , andk bounds the domain size.

Weighted AND/OR Search Graphs. The OR-to-AND arcs from
nodesXi to xi in an AND/OR search tree or graph are annotated by
weightsderived from the cost functions inF. Theweightw(Xi, xi)
of the arc from the OR nodeXi to the AND nodexi is the sum of
all the cost functions whose scope includesXi and is fully assigned
along the path from the root toxi, evaluated at the values along the
path. Given a weighted AND/OR search graph, each of its nodes
can be associated with avalue. The valuev(n) of a noden is the
minimal cost solution to the subproblem rooted atn, subject to the
current variable instantiation along the path from the root ton. It can
be computed recursively using the values ofn’s successors (see also
[5] for details).

Example 1 Figure 1 shows an example of AND/OR search spaces
for a COP with binary variables. The cost functions are given in
Figure 1(a). The value∞ indicates a hard constraint. The primal
graph is given in Figure 1(b), and the pseudo tree in Figure 1(c). The
square brackets indicate the context of the variables. The AND/OR
search tree is given in Figure 1(d). The numbers on the OR-to-AND
arcs are the weights corresponding to the function values. The con-
text minimal AND/OR graph is given in Figure 1(e).

3 AND/OR SEARCH ALGORITHMS FOR
CONSTRAINT OPTIMIZATION

In recent years several depth-first Branch-and-Bound and best-first
search algorithms were developed to search the context minimal
AND/OR graph for solving COPs [11, 12]. We next briefly overview
these two classes of algorithms.

AND/OR Branch-and-Bound (AOBB-C) traverses the context
minimal AND/OR graph in a depth-first manner via full caching.
It interleaves forward expansion of the current partial solution tree
with a backward cost revision step that updates node values, until
search terminates. The efficiency of the algorithm also depends on
the strength of its heuristic evaluation function (i.e., lower bound).
Specifically, each noden in the search graph has an associated
heuristic functionh(n) underestimatingv(n) that can be computed
efficiently when the noden is first expanded. The algorithm then
computes the heuristic evaluation functionf(T ′) of the current
partial solutionT ′ and uses it to prune irrelevant portions of the

search space, as part of a Branch-and-Bound scheme.

Best-First AND/OR Search(AOBF-C) explores the context mini-
mal AND/OR graph and interleaves forward expansion of the best
partial solution tree with a cost revision step that updates the node
values. First, AOBF-C finds the best partial solution tree by tracing
down through the marked arcs of the explicit AND/OR search graph
C′

T and expands one of its nonterminal leaf nodes. Starting with the
node just expandedn, the algorithm then revises its valuev(n) and
marks the outgoing arcs on the estimated best path to terminal nodes
(OR nodes revise their values by minimization, while AND node
by summation). The revised valuev(n), which is an updated lower
bound on the cost of the subproblem rooted atn, is then propagated
upwards in the graph. During the bottom-up step, AOBF-C labels
an AND node as SOLVED if all of its OR child nodes are solved,
and labels an OR node as SOLVED if its marked AND child is also
solved. The optimal cost solution to the initial problem is obtained
when the root node is labeled SOLVED.

Mini-Bucket Heuristics. The effectiveness of both depth-first and
best-first AND/OR search algorithms greatly depends on the qual-
ity of the lower bound heuristic evaluation functions. The primary
heuristic that we used in our experiments is the Mini-Bucket heuris-
tic, which was presented in [11, 12]. It was shown that the interme-
diate functions generated by the Mini-Bucket algorithm MBE(i) [4]
can be used to compute a heuristic function that underestimates the
minimal cost solution to a subproblem in the AND/OR graph.

4 IMPROVING AND/OR
BRANCH-AND-BOUND SEARCH

In this section we overview several principled improvements to the
AND/OR Branch-and-Bound algorithm that we will incorporate.

4.1 Exploiting Determinism

When the functions of the COP instance express both hard con-
straints and general cost functions, it may be beneficial to exploit
the computational power of the constraints explicitly via constraint
propagation [1]. The approach we take for handling the determin-
ism in COP is based on the known technique ofunit resolutionfor
Boolean Satisfiability (SAT) over a logical knowledge base (KB) in
the form of propositional clauses (CNF) representing the hard con-
straints. One common way of encoding hard constraints as a CNF
formula is thedirect encoding[17].

The changes needed in the AND/OR Branch-and-Bound proce-
dure are then as follows. Upon expanding an AND node〈Xi, xj〉 the
corresponding SAT instantiation is asserted in KB, namelyxij is set
to true. If the unit resolution leads to a contradiction, then the current
AND node is marked as dead-end and the search continues by ex-
panding the next node on the search stack. Whenever the algorithm
backtracks to the previous level, it also retracts any SAT instantia-
tions recorded by unit resolution. Notice that the algorithm is capable
of pruning the domains of future variables in the current subproblem
due to conflicts detected during unit propagation.

4.2 Exploiting Good Initial Upper Bounds via
Local Search

The AND/OR Branch-and-Bound algorithm assumed a trivial initial
upper bound (i.e., ∞), which effectively guarantees that the optimal
solution will be computed, however it provides limited pruning in the

initial phase. We therefore can incorporate a more informed upper
bound, obtained by solving the problem via a local search scheme.
This approach is often used by state-of-the-art constraint optimiza-
tion solvers.

One of the most popular local search algorithms for COP is the
Guided Local Search(GLS) method [16]. GLS is a penalty-based
meta-heuristic, which works by augmenting the objective function
of a local search algorithm (e.g. hill climbing) with penalties, to help
guide them out of local minima. GLS has been shown to be success-
ful in solving a number of practical real life problems, such as the
traveling salesman problem, radio link frequency assignment prob-
lem and vehicle routing.

4.3 Exploiting the Pseudo Tree Quality

The performance of the AND/OR search algorithms can be heavily
influenced by the quality of the guiding pseudo tree. Finding the
minimal depth or induced width pseudo tree is a hard problem [6, 2].
We describe next two heuristics for generating pseudo trees which
we used in our experiments.

Min-Fill Heuristic. The Min-Fill ordering [9] is generated by
placing the variable with the smallestfill set (i.e., number of induced
edges that need be added to fully connect the neighbors of a node)
at the end of the ordering, connecting all of its neighbors and then
removing the variable from the graph. The process continues until
all variables have been eliminated. Once an elimination order is
given, the pseudo tree can be extracted as a depth-first traversal of
the min-fill induced graph, starting with the variable that initiated
the ordering, always preferring as successor of a node the earliest
adjacent node in the induced graph. An ordering uniquely determines
a pseudo tree. This approach was first used by [2].

Hypergraph Decomposition Heuristic.An alternative heuristic for
generating a low height balanced pseudo tree is based on the recur-
sive decomposition of the dual hypergraph associated with the COP
instance. The dual hypergraph of a COP〈X,D,F〉 is a pair(V,E)
where each function inF is a vertexvi ∈ V and each variable in
X is a hyperedgeej ∈ E connecting all the functions (vertices) in
which it appears.

Generating heuristically good hypergraph separators can be
done using a package calledhMeTiS (available at: http://www-
users.cs.umn.edu/karypis/metis/hmetis), which we used following
[3]. The vertices of the hypergraph are partitioned into two bal-
anced (roughly equal-sized) parts, denoted byHleft and Hright

respectively, while minimizing the number of hyperedges across.
A small number of crossing edges translates into a small number
of variables shared between the two sets of functions.Hleft and
Hright are then each recursively partitioned in the same fashion,
until they contain a single vertex. The result of this process is a tree
of hypergraph separators which can be shown to also be a pseudo
tree of the original model where each separator corresponds to a
subset of variables chained together.

Randomization. Both the min-fill and hypergraph partitioning
heuristics can randomize their tie breaking rules, yielding varying
qualities of the generated pseudo tree.

5 EXPERIMENTS

In order to empirically evaluate the performance of the proposed im-
provements to AOBB-C algorithms, we have conducted a number of

minfill pseudo tree without randomization
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
- - - - 182.53 2,316,024 0.16 432 0.24 432

c432 out 374.29 4,336,403 189.13 2,043,475 1.02 9,512 0.16 432 0.25 432
(27, 45) 20.54 0.05 0 0.06 0 0.09 0 0.13 0 0.19 0
(432, 2) 0.08* 0.06 0 0.08 0 0.09 0 0.13 0 0.20 0

out out 106.27 488,462 0.20 432 0.28 432
899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139 2.19 13,039

s953 out 0.19 829 0.16 667 0.20 685 0.31 623 0.74 623
(66, 101) 12.14 0.12 0 0.13 0 0.17 0 0.28 0 0.69 0
(440, 2) 0.05* 0.13 0 0.13 0 0.17 0 0.30 0 0.70 0

out 41.03 150,598 110.45 408,828 36.50 113,322 4.06 12,256
18.05 104,316 124.53 686,069 3.69 26,847 14.23 94,985 9.47 62,883

s1196 out 0.19 565 0.19 565 0.23 565 0.38 565 0.92 565
(54, 97) 92.19 0.14 0 0.16 0 0.20 0 0.34 0 0.89 0
(560, 2) 0.08* 0.13 0 0.14 0 0.20 0 0.34 0 0.87 0

26.16 77,019 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114
13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516

s1488 out 0.20 708 0.20 667 0.25 667 0.44 667 1.06 667
(47, 67) 33.48 0.14 0 0.16 0 0.22 0 0.44 0 0.99 0
(667, 2) 0.13* 0.13 0 0.16 0 0.20 0 0.47 0 0.99 0

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124
7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104

s1494 out 0.20 665 0.22 665 0.27 665 0.45 665 1.11 665
(48, 69) 42.1 0.16 0 0.17 0 0.22 0 0.41 0 1.09 0
(661, 2) 0.11* 0.16 0 0.17 0 0.22 0 0.42 0 1.22 0

9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 3.03 6,484

Table 1. CPU time and nodes visited for solving belief networks derived from the ISCAS’89 circuits. Time limit 30 minutes. Number of flips for GLS is
10,000. Pseudo tree generated by a single run of the min-fill heuristic, without randomization. SamIam ran out of memory.

experiments on the optimization problem of finding the most proba-
ble explanation in belief networks. We implemented our algorithms
in C++ and ran all experiments on a 2.4GHz Pentium 4 with 2GB of
RAM running Windows XP.

5.1 Overview and Methodology

Algorithms. We evaluated the following AND/OR Branch-and-
Bound hybrid algorithms with full caching and static mini-bucket
heuristics:

• AOBB-C+SAT+SMB(i), which exploits the determinism in the
network by applying unit resolution over the CNF encoding of the
zero probability tuples of the probability tables. We used a unit
resolution scheme based on the one available in thezChaff SAT
solver [13].

• AOBB-C+GLS+SMB(i), which exploits a good initial upper
bound obtained by a guided local search algorithm. We used the
GLS implementation for belief networks available from [8].

• AOBB-C+SAT+GLS+SMB(i), which combines the previous two
approaches.

We compare these algorithms against the baseline AND/OR
Branch-and-Bound with full caching and mini-bucket heuristics,
AOBB-C+SMB(i). We also ran the best-first search version of the
algorithm, denoted by AOBF-C+SMB(i), but the algorithm did not
exploit any of the above principles. The guiding pseudo trees were
constructed using both the min-fill and the hypergraph partitioning
heuristics, described earlier.

We also compared with the SamIam version 2.3.2 software
package (available at http://reasoning.cs.ucla.edu). SamIam is a
public implementation of Recursive Conditioning [3] which can
also be viewed as an AND/OR search algorithm, namely it explores
a context minimal AND/OR graph [5]. Since any MPE problem
instance can be converted into an equivalent 0-1 Integer Linear
Program [15], we also ran the ILOG CPLEX 11.0 solver, with
default settings (i.e., best-bound control strategy, strong branching
based variable ordering heuristic, and cutting planes).

Benchmarks. We tested the performance of the AND/OR search
algorithms on belief networks derived from the ISCAS’89 digital
circuits and genetic linkage analysis networks. All of these networks

contain a significant amount of determinism.

Measures of performance.We report CPU time in seconds and the
number of nodes visited. We also specify the number of variables
(n), number of evidence variables (e), maximum domain size (k),
the depth of the pseudo tree (h) and the induced width of the graph
(w∗) for each problem instance. When evidence is asserted in the
network,w∗ andh are computed after the evidence variables are re-
moved from the graph. We also report the time required by GLS to
compute the initial upper bound. Note that in each domain we ran
GLS for a fixed number of flips. Moreover, AOBB-C+GLS+SMB(i)
and AOBB-C+SAT+GLS+SMB(i) do not include the GLS running
time, because GLS can be tuned independently for each problem in-
stance to minimize its running time. The best performance points are
highlighted. In each table, ”-” denotes that the respective algorithm
exceeded the time limit. Similarly, ”out” stands for exceeding the
2GB memory limit. A ”*” by the GLS running time indicates that it
found the optimal solution to the respective problem instance.

5.2 Empirical Results

ISCAS’89 Circuits3 are a common benchmark used in formal veri-
fication and diagnosis. For our purpose, we converted each of these
circuits into a belief network by removing flip-flops and buffers in
a standard way, creating a deterministic conditional probability table
for each gate and putting uniform distributions on the input signals.

Table 1 displays the results obtained on 5 ISCAS’89 circuits. We
see that constraint propagation via unit resolution plays a dramatic
role on this domain rendering the search space almost backtrack-
free, across all reportedi-bounds. For instance, on the s953 cir-
cuit, AOBB-C+SAT+SMB(6) is 3 orders of magnitude faster than
AOBB-C+SMB(6) and 2 orders of magnitude faster than CPLEX,
respectively, while AOBF-C+SMB(6) exceeded the memory limit.
When looking at the AND/OR Branch-and-Bound algorithms that
exploit a local search based initial upper bound, namely AOBB-
C+GLS+SMB(i) and AOBB-C+SAT+GLS+SMB(i), we see that
they did not expand any nodes. This is because the upper bound ob-
tained by GLS, which was the optimal solution in this case, was equal
to the the mini-bucket lower bound computed at the root node.

3 available at http://www.fm.vslib.cz/kes/asic/iscas

hypergraph pseudo tree min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) Superlink AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)

CPLEX AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
GLS AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=20 i=22 i=20 i=22
time nodes time nodes time nodes time nodes

out 25.26 164.49 117.03 out
ped7 - 30504.84 285,084,124 3005.66 27,761,219 - -
(868, 4) out (36, 60) 31701.54 285,084,124 3116.07 27,761,219 (32, 133) - -

13.32 30349.92 284,635,328 2955.06 27,371,526 - -
out out out

out 67.93 300.06 76.31 out
ped9 - 8922.81 117,328,162 3292.30 40,251,723 1434.74 15,825,340
(936, 7) out (35, 58) 10075.90 117,328,162 3657.91 40,251,723 (27, 130) 1515.50 15,825,340

12.85* 8866.40 117,011,941 3336.86 40,251,661 1163.09 12,444,961
out out out

out 59.31 150.38 out out
ped19 - 45075.31 466,748,365 8321.42 90,665,870
(693, 5) out (35, 53) 47986.66 466,748,365 8774.51 90,665,870 (24, 122)

10.23 44585.84 459,741,495 8070.95 87,060,723
out out

out 42.21 209.51 out out
ped34 - 67647.42 1,293,350,829 11719.28 220,199,927
(923, 4) out (34, 60) 74020.63 1,293,350,829 12847.33 220,199,927 (32, 127)

13.99 64136.36 1,230,870,576 11005.18 218,890,668
out out

out 35.41 111.24 out out
ped41 - 3891.86 31,731,270 380.01 2,318,544
(886, 5) out (36, 61) 4055.15 31,731,270 390.93 2,318,544 (33, 128)

12.28* 3869.31 31,729,654 374.95 2,317,321
out out

out 32.92 140.81 57.88 344.68
ped44 - 3597.12 62,385,573 204.96 1,355,595 112.60 1,114,641 385.30 668,737
(644, 4) out (31, 52) 3904.39 60,709,547 215.46 1,355,595 (26, 73) 127.42 1,114,641 385.47 668,737

9.84 3580.32 62,392,439 196.57 1,213,051 95.09 752,970 366.18 447,514
out out out out

Table 2. CPU time and nodes visited for solving genetic linkage analysis networks. Pseudo trees created using randomized min-fill and hypergraph
partitioning heuristics. Time limit 24 hours. The maximum numberof flips for GLS was set to 1,000,000.

Genetic Linkage Analysis. Table 2 displays the results ob-
tained for 6 hard linkage analysis networks (available at
http://bioinfo.cs.technion.ac.il/superlink) using randomized min-fill
and hypergraph partitioning based pseudo trees. We selected the hy-
pergraph based tree having the smallest depth over 100 independent
runs (ties were broken on the smallest induced width). Similarly, the
min-fill based tree was the one having the smallest induced width out
of 100 tries (ties were broken on the smallest depth). For compari-
son, we also include results obtained with the state-of-the-art linkage
analysis solver Superlink 1.6 [7]. To the best of our knowledge, these
networks were never solved before for the MPE task (i.e., maximum
likelihood haplotype task [7]).

We see that the AND/OR Branch-and-Bound algorithms are the
only ones that could solve all the problem instances, especially when
guided by hypergraph partitioning based pseudo trees. This can be
explained by the much smaller depth of these pseudo trees compared
with the min-fill ones, which overcame the relatively poor quality of
the mini-bucket heuristics obtained on these highly connected net-
works. Exploiting the GLS initial upper bound improved slightly
the performance of AOBB-C+SMB(i). This was probably because
AOBB-C+SMB(i) found the optimal or very close to optimal solu-
tions quite early in the search. Similarly, we observe that applying
unit resolution was not cost effective in this case. Notice also that Su-
perlink exceeded the 24 hour time limit, whereas SamIam, CPLEX
and AOBF-C+SMB(i) ran out of memory on all test instances.

6 CONCLUSION

The paper rests on three key contributions. First, we propose a prin-
cipled approach for handling hard constraints in COPs within the
AND/OR search framework, which builds upon progress made in the
SAT community. Second, we allow for exploiting non-trivial initial
upper bounds which are obtained by a local search scheme. Third, we
investigate two heuristics for generating good quality pseudo trees:
the min-fill heuristic which minimizes the induced width, and the
hypergraph partitioning heuristic that minimizes the depth of the
pseudo tree. We demonstrated empirically the impact of these fac-

tors on hard benchmarks, including some very challenging networks
from the field of genetic linkage analysis.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF grant IIS-0412854 and
by the NIH grant R01-HG004175-02.

REFERENCES
[1] D. Allen and A. Darwiche, ‘New advances in inference using recursive

conditioning’, inUAI, pp. 2–10, (2003).
[2] R. Bayardo and D. P. Miranker, ‘On the space-time trade-off in solving

constraint satisfaction problems’, inIJCAI, pp. 558–562, (1995).
[3] A. Darwiche, ‘Recursive conditioning’,Artificial Intelligence, 125(1-

2), 5–41, (2001).
[4] R. Dechter, ‘Mini-buckets: A general scheme of generating approxima-

tions in automated reasoning’, inIJCAI, pp. 1297–1302, (1997).
[5] R. Dechter and R. Mateescu, ‘AND/OR search spaces for graphical

models’,Artificial Intelligence, 171(2-3), 73–106, (2007).
[6] E.Freuder and M.Quinn, ‘Taking advantage of stable setsof variables

in constraint satisfaction problems’, inIJCAI, pp. 1076–1078, (1985).
[7] M. Fishelson and D. Geiger, ‘Exact genetic linkage computations for

general pedigrees’,Bioinformatics, 18(1), 189–198, (2002).
[8] F. Hutter, H. Hoos, and T. Stutzle, ‘Efficient stochasticlocal search for

mpe solving’, inIJCAI, pp. 169–174, (2005).
[9] U. Kjæaerulff, ‘Triangulation of graph-based algorithms giving small

total state space’, Technical report, University of Aalborg, (1990).
[10] R. Marinescu and R. Dechter, ‘And/or branch-and-boundfor graphical

models.’, inIJCAI, pp. 224–229, (2005).
[11] R. Marinescu and R. Dechter, ‘Memory intensive branch-and-bound

search for graphical models.’, inAAAI, (2006).
[12] R. Marinescu and R. Dechter, ‘Best-first and/or search for graphical

models’, inAAAI, (2007).
[13] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, ‘Chaff:

Engineering an efficient sat solver’, inDAC, (2001).
[14] J. Pearl,Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-

mann, 1988.
[15] E. Santos, ‘On the generation of alternative explanations with implica-

tions for belief revision’, inUAI, pp. 339–347, (1991).
[16] C. Voudouris, ‘Guided local search for combinatorial optimization

problems’, Technical report, PhD Thesis. University of Essex, (1997).
[17] T. Walsh, ‘Sat v csp’, inPrinciples and Practice of Constraint Pro-

gramming (CP), pp. 441–456, (2000).

