
Refined Bounds for Instance-Based Search Complexity
of Counting and Other #P Problems⋆

Lars Otten and Rina Dechter

Bren School of Information and Computer Sciences
University of California, Irvine, CA 92697-3425, U.S.A.

{lotten,dechter}@ics.uci.edu

Abstract. We present measures for bounding the instance-based complexity of
AND/OR search algorithms for solution counting and related#P problems. To
this end we estimate the size of the search space, with special considerationgiven
to the impact of determinism in a problem. The resulting schemes are evaluated
empirically on a variety of problem instances and shown to be quite powerful.

1 Introduction

Inference algorithms like variable elimination have been known to be exponentially
bounded by the tree width of a problem’s underlying graph structure. More accurate
bounds were derived by looking at the respective domain sizes of the variables in each
cluster of a tree decomposition of the underlying graph [5],which was later also applied
to search algorithms that explore the context-minimal AND/OR search graph [1].

We recently introduced a more informed upper-bounding scheme, that selectively
takes determinism into account [6]. We demonstrated its effectiveness empirically over
a set of Bayesian networks and showed that the bounds it provides can in some cases
be better by orders of magnitude. These tighter bounds allowus, for instance, to better
predict parameters of algorithms (like variable orderings) ahead of time.

In this paper we extend our earlier work in four ways: First, we refine the bound-
ing scheme by “reusing” relations during the estimation process, projecting their scope
down to the currently relevant variables. Secondly, we introduce a simple scheme for
lower bounding, that uses a sampling-based SAT solution counting algorithm. Thirdly,
we show that these schemes are applicable to constraint networks by presenting ex-
periments on various sets of constraint problem instances.Finally, we investigate our
bounds’ ability to discriminate between different variable orderings and demonstrate
that they are indeed informative in this respect.

2 Bounding Search Space Size

We will assume agraphical model, given as a set of variablesX = {x1, . . . , xn}, their
finite domainsD = {D1, . . . ,Dn}, a set of functions or relationsR = {r1, . . . , rm},
each of which is defined over a subset ofX, and a combination operator (join, sum or

⋆ This work is supported in part by NSF grant IIS-0713118 and NIH grant R01-HG004175-02.



(a) (b) (c)

Fig. 1: (a) An example problem graph, (b) its AND/OR search graph along orderingd =

A, B, C, D, E, F , and (c) the corresponding bucket tree decomposition.

product) over all functions. The scope of a relationrj , denotedscope(rj), is the subset
of X on whichrj is defined, its tightnesstj is the number of valid tuples in the relation.
A constraint satisfaction problem(CSP) is then a special kind of graphical model.

Given a variable orderingd, we furthermore assume the usual definition of atree
decomposition, decomposing the variables and relations into clusters of acertain tree
width w (the max. number of variables in a cluster). If the variablesin each cluster are
covered by the scopes of the cluster’s relations, we have ahypertree decomposition, with
associated hypertree widthhw (the max. number of functions in a cluster). It is known
that, if k = maxi |Di| andt = maxj tj , the time and space complexity of processing a
tree decomposition is dominated bykw, while a hypertree decomposition can yield a
solution with time and space complexity dominated bythw [3].

AND/OR search, on the other hand, is a novel method to exploitproblem decompo-
sition during search. It introducesANDnodes into the search space that allow capturing
the independence of subproblems. If we also apply context-based caching of identical
subproblems, it is easy to see that the resulting AND/OR search space has a one-to-one
correspondence to a (bucket) tree decomposition along the same ordering (cf. Fig. 1).
Accordingly, similar asymptotic bounds can be proven [1].

For a more refined analysis of problem complexity, we can determine the size of
the search space as follows: For each cluster of the bucket treeCk, containing variables
Xk ⊆ X and relationsRk ⊆ R, we multiply the domain sizes of the variables inXk

– this represents all possible value combinations of the variables inXk. Summing over
all clusters we obtain an upper bound on the number of nodes inthe AND/OR search
space, denotedtwb :=

∑n
k=1

∏
xi∈Xk

|Di| (this is essentially a fine-grained version of
the asymptotic, tree width-exponential bound). The bound quality will depend on the
degree of determinism present in the problem, which is not reflected intwb, but which
can cause significant pruning of the search space in practice.

If we are working on a hypertree decomposition, we can take the product over the
tightness of each relation in a cluster as an upper bound on the number of search nodes
in that cluster and sum over clusters – a fine-grained versionof the asymptotic hy-
pertree width bound, thus accounting for determinism. However, since relation scopes
typically overlap, this will be far from optimal. We therefore start from thetwb bound,



Algorithm GreedyCovering
Input: Set of variablesX = {x1, . . . , xr} and set of
relationsR = {r1, . . . , rs}, with xi having domain
size|Di| andrj having tightnesstj

Output: A subset ofR (a partial covering ofX)
Init: Uncov := X, Covering:= ∅

(1) Findj∗ that minimizesqj = tj/
∏

xk∈Ij
|Dk| ,

whereIj = Uncov∩ scope(rj) .
(2) If qj∗ ≥ 1 , terminate and returnCovering.
(3) Addrj∗ to Coveringand set

Uncov := Uncov\ scope(rj∗ ) .
(4) If Uncov= ∅ , terminate and returnCovering.
(5) Goto (1) .

Algorithm Compute-hwb
Input: A bucket tree decomposition with clusters
C1, . . . , Cn, where cluster Ck contains variables
Xk ⊆ X and relationsRk ⊆ R

Output: The boundhwb on the size of the search space
Init: hwb := 0

(1) for i = 1 to n:
(2) R := Rk.
(3) For every relevant relationr from the ancestral

buckets, project it ontoscope(r) ∩ Xk and
add it toR with updated tightnesst′r .

(4) G := GreedyCovering(Xk, R) .
(5) hwb +=

∏
rj∈G

tj ·
∏

xi∈Xk\G
|Di| .

(6) endfor .
(7) Returnhwb .

Fig. 2: Greedy covering algorithm and procedure to compute the overallboundhwb.

the product of variable domains, and iteratively pick relations whose tightness we can
use to improve the bound, greedily covering variables with relations, similar to a SET
COVER problem [4]. This results in the algorithmGreedyCoveringgiven in Fig. 2.

Propagating Cluster Size Downwards.When considering relations for the cov-
ering of variablesXk in clusterCk, we can refine the above scheme even further: We
collect all relations from the ancestral clusters in the rooted tree decomposition and
project them down toXk. This can be seen as propagation of information down the
search tree. In practice, we found that for some problem instances it will decrease the
bound by up to 30%.

Overall Bound and Complexity. The resulting overall algorithmCompute-hwb
is given in Fig. 2. It computes the upper boundhwb on the number of nodes in the
AND/OR search space. Its complexity can be shown to be timeO(n · m · (t + w))
and spaceO(m + t), wheren andm are the number of variables and relations, respec-
tively, w is the tree width of the problem along the given ordering, andt is the maximal
tightness as before (proof in [7]).

Lower Bounds on Cluster Size.To obtain a lower bound on the size of the search
space, we employ a different scheme: In each cluster we generate a SAT formula from
all relevant relations (i.e., from within the current cluster and ancestral ones). We encode
the invalid tuples of each relation as the nogoods of the of the SAT formula, thus the
number of SAT solutions will correspond to the number of valid nodes in the cluster.
We feed each cluster’s formula to the sampling-based SAT solution counting algorithm
SampleSearch-LB [2], which gives a (probabilistic) lower bound. To get a lower bound
on the overall number of search nodes, we again sum the cluster bounds. We call this
boundsatb.

3 Experimental results

We ran a variety of empirical tests on a large set of differentproblem instances from
various domains. Here we present selected results, for the full set we refer to [7]. For
every problem instance, we report the number of variablesn, the number of relations



Table 1:twb, hwb, andsatb bounds compared to true search space size#cm.

instance n m k r w tr twb hwb satb #cm Qt Qh Qs

pret-60 60 40 2 3 4 0.50 1,534 1,102 839 998 1.51 1.10 0.89
pret-150 150 100 2 3 4 0.50 3,934 2,862 2,303 2,598 1.54 1.10 0.84
ssa-0432-003 435 738 2 5 31 0.75 4,244,330 2,059,616 1,116,6691,868,283 2.27 1.10 0.60
ssa-2670-130 1359 2366 2 5 31 0.75160,631,566 123,388,312 104,689,598106,638,207 1.51 1.16 0.98
ssa-7552-038 1501 2444 2 6 63 0.75308,861,278 115,499,146 6,815,14036,718,327 8.41 3.15 0.19
ssa-7552-158 1363 1985 2 5 31 0.50 90,702 74,406 56,863 69,365 1.31 1.07 0.82
ssa-7552-159 1363 1983 2 5 31 0.50 92,238 73,586 48,929 68,694 1.34 1.07 0.71
BN 105 40 44 2 21 18 0.62 2,477,054 363 69 131 18909 2.77 0.53
BN 107 40 46 2 21 21 0.62 29,983,742 1,643 191 272 110234 6.04 0.70
BN 109 40 46 2 20 20 0.62 13,054,974 4,052 1,309 2,531 5158 1.60 0.52
BN 111 40 45 2 20 19 0.62 8,406,270 2,299 465 979 8587 2.35 0.47
BN 113 40 47 2 21 21 0.62 18,916,350 2,752 336 630 30026 4.37 0.53
aim-50-1-6-sat-1 50 77 2 3 18 0.88 2,517,118 2,053,046 931,492 1,813,906 1.39 1.13 0.51
aim-50-1-6-sat-2 50 76 2 3 16 0.88 767,678 626,955 73,180 551,659 1.39 1.14 0.13
aim-50-1-6-sat-3 50 78 2 3 20 0.88 4,742,590 3,859,278 2,023,4653,848,835 1.23 1.00 0.53
aim-50-1-6-sat-4 50 77 2 3 19 0.88 3,615,166 2,616,824 2,079,7522,532,968 1.43 1.03 0.82
aim-50-1-6-unsat-1 50 69 2 3 15 0.88 377,502 256,482 26,806 211,168 1.79 1.21 0.13
aim-50-1-6-unsat-2 50 77 2 3 19 0.88 3,484,734 2,551,090 16,995 1,908,441 1.83 1.34 0.01
aim-50-1-6-unsat-3 50 70 2 3 17 0.88 1,190,910 971,254 43,382 685,060 1.74 1.42 0.06
aim-50-1-6-unsat-4 50 76 2 3 20 0.88 7,236,702 5,195,870 2,386,8933,873,236 1.87 1.34 0.62

m, the maximum variable domain sizek, the maximum relation arityr, and the median
tightness ratiotr over all its relations, defined as the ratio of valid tuples ina (full)
relation table.

We build a bucket tree decomposition of the problem along a minfill ordering and
report the tree widthw. We then compute and report our boundstwb, hwb, andsatb.
Lastly we record the exact size of the AND/OR search graph, denoted#cm. To make
comparing values easier, we also report the ratiosQt = twb

#cm , Qh = hwb
#cm , andQs =

satb
#cm . The results are shown in Table 1. We note that computation oftwb andhwb is
performed within milliseconds, whilesatb can take up to three seconds for ssa-7552-
038 on our 2.66 GHz system (with 1000 samples generated in each cluster).

Bound Tightness. Going from twb to hwb, i.e., exploiting determinism, yields
significantly tighter bounds across all instances, from, for instance, a 28% decrease on
thePret instances or 18% on aim-50-1-6-sat-2 to several orders of magnitude on theBN
instances (which were generated with forced determinism and are thus amenable to our
method). In many cases thehwb bound is indeed quite tight when compared to#cm,
getting to within 10% on thePret and someSSAinstances. Overall, the quality of the
hwb bound seems to decrease with growing problem complexity. The current results
for satb are somewhat less impressive at this point, often being morethan 50% smaller
than#cm – yet they can sometimes give a rough idea and, on top of that, set the stage
for future improvements.

Impact of Orderings. To investigate the power of our bounds in predicting good
orderings, we processed the same problem instance 50 times along a randomized min-
fill ordering, each time computingtwb andhwb as well as recording#cm. The results
for two instances are presented in Fig. 3. We find thathwb can provide valuable infor-
mation: On aim-50-1-6-sat-4 thetwb bound can not distinguish between orderings with
tree width 19, yethwb captures the different#cm values rather accurately. On aim-
50-1-6-sat-1, some orderings yield a higher tree width of 19, yet have a smaller search
space size#cm, which is correctly indicated only byhwb.



0

500000

1000000

1500000

2000000

2500000

3000000

 0  10  20  30  40  50
 0

 5

 10

 15

 20

 25

N
um

be
r 

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

gtwb  hwb #cm w

(a) aim-50-1-6-sat-1

0

1000000

2000000

3000000

4000000

5000000

6000000

 0  10  20  30  40  50
 0

 5

 10

 15

 20

 25

N
um

be
r 

of
 A

N
D

 n
od

es

T
re

ew
id

th
 o

f r
an

do
m

iz
ed

 o
rd

er
in

g

(b) aim-50-1-6-sat-4

Fig. 3: Plots of thetwb andhwb bounds versus the true search space size#cm on two problem
instances, each over 50 randomized minfill variable orderings. Also shown is the tree widthw for
each ordering, which is plotted against a separate scale on the right.

4 Summary & Future Work

We have previously introduced a scheme that extends known methods for bounding the
size of the search space by taking determinism in the relation specification into account
[7]. In this work we expand upon this in four ways: We account for propagation of
determinism down the search tree by reconsidering and projecting relations, we develop
an approach for lower bounding search space size, we show empirically the applicability
to constraint networks, and we demonstrate the bounds’ ability to discriminate between
variable orderings. Our experimental results show that theupper bounds we obtain can
be quite tight and provide valuable information; the lower bounds, however, still leave
room for improvement at this point.

We believe our bounding scheme can be extended to optimization tasks by using the
cost function itself. By dynamically adapting the bounds throughout the search process,
we plan to allow for run time parameter updates. Finally, recent advances in sampling-
based counting should also allow us to improve the quality ofthe lower bounds.

References

1. R. Dechter and R. Mateescu: AND/OR Search Spaces for GraphicalModels. InArtificial
Intelligence171(2007): 73–106.

2. V. Gogate and R. Dechter: Approximate Counting by Sampling the Backtrack-free Search
Space. InProceedings of AAAI’07.

3. G. Gottlob, N. Leone, and F. Scarcello: A Comparison of Structural CSP Decomposition
Methods.Artificial Intelligence124(2000): 243–282.

4. D. S. Johnson: Approximation algorithms for combinatorial problems. In Proceedings of
STOC’73: 38–49.

5. U. Kjærulff: Triangulation of Graphs – Algorithms Giving Small Total State Space.Research
Report R-90-09, Dept. of Mathematics and Computer Science, Aalborg University (1990).

6. L. Otten and R. Dechter: Bounding Search Space Size via (Hyper)tree Decompositions. In
Proceedings of UAI’08.

7. L. Otten and R. Dechter: Refined Bounds for Instance-Based Search Complexity of Counting
and Other #P Problems.Technical Report, University of California, Irvine(2008).


