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Abstract. We present measures for bounding the instance-based complexity of
AND/OR search algorithms for solution counting and relaget problems. To

this end we estimate the size of the search space, with special considgiation

to the impact of determinism in a problem. The resulting schemes are ®dlua
empirically on a variety of problem instances and shown to be quite polerfu

1 Introduction

Inference algorithms like variable elimination have be@own to be exponentially
bounded by the tree width of a problem’s underlying grapbicstre. More accurate
bounds were derived by looking at the respective domairs ©izéhe variables in each
cluster of a tree decomposition of the underlying graphy®lich was later also applied
to search algorithms that explore the context-minimal AQR/search graph [1].

We recently introduced a more informed upper-bounding mehehat selectively
takes determinism into account [6]. We demonstrated iecéiffeness empirically over
a set of Bayesian networks and showed that the bounds itd@®\an in some cases
be better by orders of magnitude. These tighter bounds alvior instance, to better
predict parameters of algorithms (like variable orderjrajeead of time.

In this paper we extend our earlier work in four ways: Firsg, refine the bound-
ing scheme by “reusing” relations during the estimatiorcpss, projecting their scope
down to the currently relevant variables. Secondly, weothtice a simple scheme for
lower bounding, that uses a sampling-based SAT solutiontoay algorithm. Thirdly,
we show that these schemes are applicable to constrainbrietwy presenting ex-
periments on various sets of constraint problem instari€ieslly, we investigate our
bounds’ ability to discriminate between different variatdrderings and demonstrate
that they are indeed informative in this respect.

2 Bounding Search Space Size

We will assume graphical modelgiven as a set of variableés = {4, ..., x,}, their
finite domainsD = {Ds,...,D,}, a set of functions or relationr = {r1,...,rm},
each of which is defined over a subset¢f and a combination operator (join, sum or
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Fig. 1: (a) An example problem graph, (b) its AND/OR search graphgalomleringd =
A,B,C,D, E, F, and (c) the corresponding bucket tree decomposition.

product) over all functions. The scope of a relatigndenotedscope(r;), is the subset
of X onwhichr; is defined, its tightness is the number of valid tuples in the relation.
A constraint satisfaction probleffCSP) is then a special kind of graphical model.

Given a variable ordering, we furthermore assume the usual definition dfes
decompositiondecomposing the variables and relations into clusterscafrain tree
width w (the max. number of variables in a cluster). If the varialiesach cluster are
covered by the scopes of the cluster’s relations, we haypartree decompositipwith
associated hypertree widtho (the max. number of functions in a cluster). It is known
that, if k = max; | D;| andt = max; t;, the time and space complexity of processing a
tree decomposition is dominated k¥, while a hypertree decomposition can yield a
solution with time and space complexity dominatedtby [3].

AND/OR search, on the other hand, is a novel method to exptolilem decompo-
sition during search. It introduc@8\D nodes into the search space that allow capturing
the independence of subproblems. If we also apply contasédb caching of identical
subproblems, it is easy to see that the resulting AND/ORckesrace has a one-to-one
correspondence to a (bucket) tree decomposition alongatine ®rdering (cf. Fig. 1).
Accordingly, similar asymptotic bounds can be proven [1].

For a more refined analysis of problem complexity, we canrdete the size of
the search space as follows: For each cluster of the buget'ty, containing variables
X, € X and relationsk;, C R, we multiply the domain sizes of the variablesin
— this represents all possible value combinations of thialkas in.X;. Summing over
all clusters we obtain an upper bound on the number of nodé®iAND/OR search
space, denotetlob := Y~ [],.cx, |Dil (this is essentially a fine-grained version of
the asymptotic, tree width-exponential bound). The boumality will depend on the
degree of determinism present in the problem, which is rtgated intwb, but which
can cause significant pruning of the search space in practice

If we are working on a hypertree decomposition, we can takeptibduct over the
tightness of each relation in a cluster as an upper boundeonttmber of search nodes
in that cluster and sum over clusters — a fine-grained versiadhe asymptotic hy-
pertree width bound, thus accounting for determinism. H@wesince relation scopes
typically overlap, this will be far from optimal. We thereéostart from thewb bound,



Algorithm GreedyCovering Algorithm Compute-hwb

Input: Set of variablesX = {z1,...,z,} and set of Input: A bucket tree decomposition with -clusters
relationsR = {ri1,...,7s}, with z; having domain Ci,...,C,, where cluster C;; contains variables
size|D;| andr; having tightness ; X, C X andrelationsR,, C R
Output: A subset ofR (a partial covering ofX') Output: The boundhwb on the size of the search space
Init: Uncov:= X, Covering:= 0 Init: hwb := 0
(1) Find;j* that minimizesg; = ¢;/ | | |Dr|,  (@Q)fori=1ton:
“REly @) R:= Rs.
wherel; = Uncovn scope(r;) . k

(3) For every relevant relation from the ancestral
buckets, project it ontecope(r) N X}, and
Uncov:= Uncov\ scope(r) . add it to R with upd_ated tightness. .
(4) If Uncov= 0, terminate and retur@overing. (4) G := GreedyCoveringXy, R) .
(5) Goto (1) . () hwb+= H,.jectf 1., expe!Pil-
(6) endfor.
(7) Returnhwb .

(2)If gj« > 1,terminate and retur@overing.
(3) Addr« to Coveringand set

Fig. 2: Greedy covering algorithm and procedure to compute the overatidhwb.

the product of variable domains, and iteratively pick lielas whose tightness we can
use to improve the bound, greedily covering variables wethtrons, similar to a SET
COVER problem [4]. This results in the algorith@reedyCoveringjiven in Fig. 2.

Propagating Cluster Size DownwardsWhen considering relations for the cov-
ering of variablesX}, in clusterCy, we can refine the above scheme even further: We
collect all relations from the ancestral clusters in theteddaree decomposition and
project them down taX. This can be seen as propagation of information down the
search tree. In practice, we found that for some problenairss it will decrease the
bound by up to 30%.

Overall Bound and Complexity. The resulting overall algorithn©ompute-hwb
is given in Fig. 2. It computes the upper bouhdb on the number of nodes in the
AND/OR search space. Its complexity can be shown to be tie - m - (¢t + w))
and spac&®(m + t), wheren andm are the number of variables and relations, respec-
tively, w is the tree width of the problem along the given ordering, misdhe maximal
tightness as before (proof in [7]).

Lower Bounds on Cluster SizeTo obtain a lower bound on the size of the search
space, we employ a different scheme: In each cluster we gen@ISAT formula from
all relevant relations (i.e., from within the current cleisand ancestral ones). We encode
the invalid tuples of each relation as the nogoods of the ®3AT formula, thus the
number of SAT solutions will correspond to the number ofdadodes in the cluster.
We feed each cluster’s formula to the sampling-based SATtisol counting algorithm
SampleSearch-LB [2], which gives a (probabilistic) loweuhd. To get a lower bound
on the overall number of search nodes, we again sum the chmteds. We call this
boundsatb.

3 Experimental results

We ran a variety of empirical tests on a large set of diffeoblem instances from
various domains. Here we present selected results, fouthset we refer to [7]. For
every problem instance, we report the number of variabldbe number of relations



Table 1:twb, hwb, andsatb bounds compared to true search space #ize:.

[instance [ n mkruw tr[ twb hwb satb[ #cm[ Qt Qn QSI
pret-60 60 402 3 405D 1,534 1,102 83P 998 1.51 1.10 0.89
pret-150 150 100 2 3 4 0.50 3,934 2,862 2,303 2,598 1.54 1.10 0.84
ssa-0432-003 435 738 2 5 310.75 4,244,330 2,059,616 1,116,6691,868,283 2.27 1.10 0.60
ssa-2670-130 1359 2366 2 5 31 0.1460,631,566 123,388,312 104,689,5P@5,638,20f 1.51 1.16 0.98
ssa-7552-038 1501 2444 2 6 63 0.1308,861,278 115,499,146 6,815,1486,718,327 8.41 3.15 0.19
ssa-7552-158 1363 1985 2 5 31 0.30 90,702 74,406 56,863 69,365 1.31 1.07 0.82
ssa-7552-159 1363 1983 2 5 31 0.30 92,238 73,586 48,929 68,694 1.34 1.07 0.71
BN_105 40 44 221 18 0.6R 2,477,054 363 69 131] 18909 2.77 0.58
BN_107 40 46 2 21 21 0.6 29,983,742 1,643 191 272110234 6.04 0.70
BN_109 40 46 2 20 20 0.6R 13,054,974 4,052 1,309 2,531 5158 1.60 0.5p
BN_111 40 45 220 19 0.6R 8,406,270 2,299 465 979 8587 2.35 0.4f
BN_113 40 47 2 21 21 0.6R 18,916,350 2,752 336 630 30026 4.37 0.58
aim-50-1-6-sat-1 | 50 77 2 3 18 0.88 2,517,118 2,053,046 931,4021,813,906 1.39 1.13 0.51
aim-50-1-6-sat-2 | 50 76 2 3 16 0.88 767,678 626,955 73,180 551,659 1.39 1.14 0.18
aim-50-1-6-sat-3 | 50 78 2 3 20 0.8B 4,742,590 3,859,278 2,023,4653,848,83% 1.23 1.00 0.58
aim-50-1-6-sat-4 | 50 77 2 3 19 0.88 3,615,166 2,616,824 2,079,7522,532,968 1.43 1.03 0.82
aim-50-1-6-unsat{L 50 69 2 3 150.88 377,502 256,482 26,806 211,168 1.79 1.21 0.18
aim-50-1-6-unsat 50 77 2 3 19 0.88 3,484,734 2,551,090 16,9951,908,441 1.83 1.34 0.01
aim-50-1-6-unsat3 50 70 2 3 17 0.88 1,190,910 971,254 43,382 685,060 1.74 1.42 0.0
aim-50-1-6-unsat-4 50 76 2 3 20 0.88 7,236,702 5,195,870 2,386,8933,873,23¢ 1.87 1.34 0.62

m, the maximum variable domain sizethe maximum relation arity, and the median
tightness ratiar over all its relations, defined as the ratio of valid tuplesaiffull)
relation table.

We build a bucket tree decomposition of the problem alongr#ithordering and
report the tree widthu. We then compute and report our bourtds, hwb, andsatb.
Lastly we record the exact size of the AND/OR search graphoel#cm. To make
comparing values easier, we also report the raflps= ;&’7’1, Qn = ;”;’:T, andQ, =
;‘gi. The results are shown in Table 1. We note that computatigmwbfand hwb is
performed within milliseconds, whileatb can take up to three seconds for ssa-7552-
038 on our 2.66 GHz system (with 1000 samples generated mabaster).

Bound Tightness. Going fromtwb to hwb, i.e., exploiting determinism, yields
significantly tighter bounds across all instances, fromjrstance, a 28% decrease on
thePretinstances or 18% on aim-50-1-6-sat-2 to several orders ghinale on théBN
instances (which were generated with forced deterministrea@ thus amenable to our
method). In many cases thevb bound is indeed quite tight when comparedtom,
getting to within 10% on th@ret and someSSAinstances. Overall, the quality of the
hwb bound seems to decrease with growing problem complexitg. dthrent results
for satb are somewhat less impressive at this point, often being thare50% smaller
than#cm — yet they can sometimes give a rough idea and, on top of thiahe stage
for future improvements.

Impact of Orderings. To investigate the power of our bounds in predicting good
orderings, we processed the same problem instance 50 tloresarandomized min-
fill ordering, each time computingvb andhwb as well as recordingtcm. The results
for two instances are presented in Fig. 3. We find thab can provide valuable infor-
mation: On aim-50-1-6-sat-4 theb bound can not distinguish between orderings with
tree width 19, yetwwb captures the differentcm values rather accurately. On aim-
50-1-6-sat-1, some orderings yield a higher tree width ofy&®@have a smaller search
space sizgtcm, which is correctly indicated only bywb.




3000000 T F 6000000 %5
O hwb @ #m = wW_x £ £
P 2500000 f I"III” Illl ””I”I Ill u ” u 20 % g 5000000 — " I I” I | I ! * * o | L 20 %
2 2000000 {7 pE Al o) u Il u LA % 2 4000000 ] | 3
finat tlnonll 3 3
5 (s ” 5% o L5 &
2 o | 111 o O |I il ||||||||||| I
° i il 10 S ° L 10 ©
& 1000000 | 5 & 2000000 { 5
5 g 5 £
< 500000 4 5 % % 1000000 - TS oz
] @
0 Lo ol Lo

0 10 20 30 40 50 0 10 20 30 40 50

(a) aim-50-1-6-sat-1 (b) aim-50-1-6-sat-4

Fig. 3: Plots of thewb andhwb bounds versus the true search space #ize: on two problem
instances, each over 50 randomized minfill variable orderings. ABwersis the tree widtho for
each ordering, which is plotted against a separate scale on the right.

4 Summary & Future Work

We have previously introduced a scheme that extends knowmoahe for bounding the
size of the search space by taking determinism in the relapecification into account
[7]- In this work we expand upon this in four ways: We accoutt ffropagation of
determinism down the search tree by reconsidering andgiiogerelations, we develop
an approach for lower bounding search space size, we shoiieatip the applicability
to constraint networks, and we demonstrate the boundstyataildiscriminate between
variable orderings. Our experimental results show thatiger bounds we obtain can
be quite tight and provide valuable information; the loweubds, however, still leave
room for improvement at this point.

We believe our bounding scheme can be extended to optimizasks by using the
cost function itself. By dynamically adapting the bound®tighout the search process,
we plan to allow for run time parameter updates. Finallyere@dvances in sampling-
based counting should also allow us to improve the qualithefower bounds.
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