
On the Practical Significance of Hypertree vs Tree Width
Rina Dechter1, Lars Otten1, and Radu Marinescu2

Abstract. In 2000, [4] presented a new graph parameter, the hy-
pertree width, and showed that it provides a broader characterization
of tractable constraint networks than the treewidth. In 2005, [5] ex-
tended this result to general probabilistic graphical models, showing
that the hypertree width yields bounds on inference algorithms when
functions are expressed relationally.

The main contribution of this paper is in demonstrating empiri-
cally thatin practicethe bounding power of the treewidth is still su-
perior to the hypertree width for many benchmark instances of both
probabilistic and deterministic networks. Specifically, we show that
the treewidth yields a far tighter bound on the algorithm’s perfor-
mance when the graphical model has a low level of determinism. A
secondary theoretical contribution of the paper is in showing that the
hypertree width bound is also relevant to search algorithms and to
functions which are specified via decision trees.

1 Introduction

Bayesian networks, constraint networks, Markov random fields and
influence diagrams, commonly referred to as graphical models, are
all languages for knowledge representation that use graphs to cap-
ture conditional independencies between variables. These indepen-
dencies allow both the concise representation of knowledge and the
use of efficient graph-based algorithms for query processing.

Algorithms for processing graphical models fall into two gen-
eral types: inference-based algorithms and search-based algorithms.
Inference-based algorithms (e.g., variable-elimination, join-tree clus-
tering) exploit the independencies captured by the underlying graph-
ical model. They are known to be time and space exponential in the
treewidth of the graph. It was recently shown that search algorithms
can also be bounded exponentially by the treewidth if they traverse
an AND/OR search graph, called the context-minimal graph [2].

However, often graphical models algorithms are far more efficient
than what is predicted by the treewidth, especially when the prob-
lem instance possesses a significant amount of determinism. Indeed,
the treewidth is a measure which is completely blind to the specific
representation of the functions and in fact it assumes that a function
defined onr variables must takeO(kr) to specify, whenk bounds
the variables’ domain size.

In 2000, [4] introduced another parameter called hypertree width
and showed that for constraint networks it is more effective at cap-
turing tractable classes. In [5] the applicability of the hypertree width
was extended toinferencealgorithms over general graphical models
having relational function specification.

1 Bren School of Information and Computer Sciences, Universityof Califor-
nia, Irvine, CA 92697-3435. Email:{dechter,lotten}@ics.uci.edu

2 Cork Constraint Computation Centre, Department of Computer Science,
University College Cork, Ireland. Email: r.marinescu@4c.ucc.ie

In this paper we explore the practical significance of the hyper-
tree width against the treewidth from a more practical angle. We
ask if the hypertree width can yield tighter bounds on algorithms’
performance, given a problem instance, than those provided by the
treewidth.

We show empirically, on probabilistic and deterministic bench-
marks, that the answer is negative: in most cases the treewidth yields
a far better predictor of instance-based complexity than the hypertree
width, except when the problem has substantial determinism.

Sections 2 provides preliminaries. Section 3 gives an overview of
work on tree-decomposition and hypertree-decomposition. Sections
4 and 5 extend the hypertree width bound to search algorithms and
decision trees specifications. Section 6 provides the empirical evalu-
ation and Section 7 concludes.

2 Background

We assume the usual definitions of directed and undirected graphs.

DEFINITION 1 (hypergraph, primal and dual graph) A hyper-
graph is a pair H = (V, S) whereS = {S1, ..., St} is a set of
subsets ofV , called hyper-edges. Theprimal graph of a hypergraph
H = (V, S) is an undirected graphG = (V,E) such that there is
an edge(u, v) ∈ E for any two verticesu, v ∈ V that appear in
the same hyper-edge (namely, there existsSi, s.t.,u, v ∈ Si). The
dual graph of a hypergraphH = (V, S) is an undirected graph
G = (S,E) that has a vertex for each hyper-edge, and there is an
edge(Si, Sj) ∈ E when the corresponding hyper-edges share a
vertex (Si ∩ Sj 6= ∅).

DEFINITION 2 (hypertree) A hypergraph is ahypertree, also
calledacyclic hypergraph, if and only if its dual graph has an edge
subgraph that is a tree, such that all the nodes in the dual graph that
contain a common variable form a connected subgraph.

A graphical model is defined by a set of real-valued functionsF

over a set of variablesX, conveying probabilistic or deterministic
information, whose structure can be captured by a graph.

DEFINITION 3 (graphical model) A graphical modelR is a 4-
tuple, R = 〈X,D,F,⊗〉, where: (1)X = {X1, . . . , Xn} is a
set of variables; (2)D = {D1, . . . , Dn} is the set of their respec-
tive finite domains of values; (3)F = {f1, . . . , fr} is a set of dis-
crete real-valued functions, each defined over a subset of variables
Si ⊆ X, called its scope, and sometimes denoted byscope(fi); (4)
⊗ifi ∈ {

∏

i
fi,

∑

i
fi,1i fi} is a combination operator.

The graphical model represents the combination of all its func-
tions:⊗r

i=1fi . A reasoning task is based on a marginalization (elimi-
nation) operator⇓ and is defined by:⇓Z1

⊗r
i=1fi, . . . ,⇓Zt

⊗r
i=1fi,

whereZi ⊆ X.

D

G

A

B C

F

Season

Rain
Automated

Sprinkler

Wet

Manuel
Watering

Slippery

A

B

D

F

C

G

F

A

B

C

G

D

(a) (b) (c)

Figure 1. (a) Belief networkP (g, f, d, c, b, a), (b) its moral graph and (c)
its induced graph.

DEFINITION 4 (acyclic graphical model) The set of variables and
the scopes of a graphical model(X,S) defines the graphical model’s
hypergraph. If this hypergraph is a hypertree the graphical model is
calledacyclic.

The two special cases of reasoning tasks which we have in mind
are constraint networks, belief networks or mixed networks that com-
bine both [2]. The primary tasks for constraint networks are finding
a solution and counting solutions. The common function specifica-
tion is relational, using relational join and project as the combination
and marginalization operators, respectively. The primary tasks over
belief networks are belief updating and finding the most probable ex-
planation. They are defined using conditional probability functions
defined on each variable and its parents in a given directed acyclic
graph, and use multiplication and summation or maximization as the
combination and marginalization operators [5].

Example 1 Consider a belief network in Figure 1a. It con-
tains variablesA,B,C,D, F,G and functionsf(A,B), f(A,C),
f(B,C, F), f(A,B,D), f(F,G) which are conditional proba-
bility tables between a child node and its parents. For example
f(B,C, F) = P (F |B,C). Figure 1c gives the induced-graph along
the orderingd = A,B,C,D, F,G.

3 Tree and Hypertree Decompositions

Tree clustering schemes have been widely used for constraint pro-
cessing and for probabilistic reasoning.

3.1 Tree Decomposition

The most popular variants are join-tree and junction-tree algorithms.
The schemes vary somewhat in their graph definitions as well as in
the way tree-decompositions are processed [3, 6, 4, 8]. However, they
all involve a decomposition of a hypergraph into a hypertree.

DEFINITION 5 (tree-decomposition) [5] Let P = 〈R ⇓, {Zi}〉 be
a reasoning problem over a graphical model〈X,D,F,

⊗

〉. A tree-
decomposition for P is a triple 〈T, χ, ψ〉, whereT = (V,E) is
a tree andχ andψ are labeling functions that associate with each
vertexv ∈ V two sets,χ(v) ⊆ X andψ(v) ⊆ F , that satisfy the
following conditions:

1. For each functionfi ∈ F , there isexactly onevertexv ∈ V such
thatfi ∈ ψ(v).

2. If fi ∈ ψ(v), thenscope(fi) ⊆ χ(v).

3. For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces
a connected subtree ofT . This is also called the running intersec-
tion or the connectedness property.

DEFINITION 6 (treewidth, separator) The treewidthw of a tree-
decomposition〈T, χ, ψ〉 is max

v∈V
|χ(v)| − 1. Given two adjacent ver-

ticesu andv of a tree-decomposition, a separator ofu andv is de-
fined assep(u, v) = χ(u) ∩ χ(v).

Figure 2. Several tree-decompositions of the same belief network

Example 2 Consider the belief network in Figure 1a whose pri-
mal graph is given in Figure 1b. Any of the trees in Figure 2 is a
tree-decomposition for this problem, where the labelingχ is the set
of variables in each node. The functions can be assigned to nodes
whoseχ variables contain their scopes. For example, in the tree-
decomposition of Figure 2c, any function with scope{G} must be
placed in vertex 1 because vertex 1 is the only vertex that contains
variableG. Any function with scope{A,B,C,D} or its subset must
be placed in vertex 2, and any function with scope{F} can be placed
either in vertex 1 or 2.

Once a tree-decomposition is given, it can be processed by a mes-
sage passing algorithm where each vertex of the tree sends a function
to each of its neighbors. If the tree containsm edges, then a total of
2m messages will be sent as follows: for each neighborv, nodeu
takes all the functions inψ(u) and all the messages received byu
from all adjacent nodes and generates theircombinedfunction which
is marginalizedover the separator betweenu andv, the result is sent
to v. The algorithm can be applied with any style of function specifi-
cation over which the combination and marginalization operators are
well defined. For a discussion of various styles of algorithms such
asjoin-tree clustering (JTC)and the more generic version ofCluster
Tree Elimination (CTE)see [5]. We will useCTEas a generic name
for a message passing algorithm over a tree-decomposition.

Theorem 1 (treewidth-based complexity of CTE) [5] Given
a reasoning problemP = 〈X,D,F,

⊗

,⇓Y 〉, and a tree-
decomposition〈T, χ, ψ〉 letm be the number of vertices in the tree
decomposition,w its treewidth,sep its maximum separator size,r
the number of input functions inF , deg the maximum degree inT ,
andk the maximum domain size of a variable. The time complexity
ofCTE is

O((r +m) · deg · kw+1) (1)

and its space complexity isO(m · ksep).

3.2 Hypertree Decomposition

One problem with the treewidth is its sole dependence on the primal
graph, ignoring its hypergraph structure completely. For example, an

2

acyclic problem whose scopes have high arity would have a high
treewidth, even though it can be processed in linear time. In particu-
lar, Bayesian networks which arepolytreesare acyclic, yet they have
treewidth equal to the maximum family size, which can be arbitrarily
large [7].

The hypertree width introduced by [4] for constraint networks
and extended in [5] for general graphical models, relies on the no-
tion of hypertree decompositions. It provides a stronger indicator of
tractability than the treewidth. Hypertree decompositions are a sub-
class of tree-decompositions: on the one hand it has to satisfy the
additional restriction that the variables labeling each node in the de-
composition node are covered by the combined scopes of all its la-
beling functions while on the other, a function can be placed in more
than a single node and therefore cover variables in several clusters.

DEFINITION 7 (hypertree decomposition) (adapted from [4]) Let
T = 〈T, χ, ψ〉, whereT = (V,E), be a tree-decomposition ofP =
〈X,D,F,

⊗

,⇓〉 . T is a hypertree decomposition ofP if condition
1 of definition 5 is relaxed to allow that a function is placed in more
than one node:

1. For each functionfi ∈ F , there isat least onevertexv ∈ V such
thatfi ∈ ψ(v).

and if the following additional condition is satisfied: letsψ(v) be all
the functions in the problem whose scopes are included inχ(v) Then,

4. For eachv ∈ V , χ(v) ⊆ scope(ψ(v)).

The hypertree width of a hypertree decomposition ishw =
maxv|ψ(v)|. The hypertree-width of a hypergraph is the minimum
hypertree width over all hypertree decompositions.

Allowing a probabilistic function to be placed in more than one
node will lead to incorrect processing by CTE for any graphical
model other than constraint networks. To remedy this we should
modify multiple showings of a function byflattening the function
into a 0/1-valued constraint. With this modification we can show that
the algorithm is guaranteed to work properly.

It was shown in [4] that a hypertree decomposition of a constraint
problem can be processed in time exponential in the hypertree width.
[5] showed that this complexity bound can be extended straight-
forwardly to any general graphical model with relational specifica-
tion that is absorbing relative to 0. A graphical model is absorbing
relative to a 0 element if its combination operator has the property
thatx

⊗

0 = 0; for example, multiplication has this property while
summation does not. In summary,

Theorem 2 [5] A hypertree decomposition of a reasoning problem
that is absorbing relative to 0 can be processed in time3

O(m · deg · hw · logt · thw) (2)

and spaceO(thw), wherem is the number of edges in the hypertree
decomposition,hw its hypertree width, andt bounds the size of the
relational representation of each function inR.

4 Hypertree Bounds for Search and for Decision
Tree Specification

AND/OR search spaces were recently introduced for graphical mod-
els, showing that problem decomposition can be captured explicitly

3 The algorithms for processing decompositions assumed in [4] and [5] are
slightly different

in the search space using AND nodes. When caching of nodes that
root identical search subspace is utilized via context-identical nodes,
we get thecontext-minimalAND/OR search space. It was shown that
the size of the context-minimal AND/OR search graph isO(nkw+1)
whenw is the tree-width of the tree-decomposition that guides the
AND/OR search [2].

We next show that the hypertree width bound is also capable of
bounding the AND/OR search graph if functions are specified rela-
tionally, and discuss extensions to additional specifications of func-
tions. It has been shown:

Proposition 1 [2] For any acyclic graphical modelP, having r,
relationally-specified functions absorbing relative to 0, the AND/OR
context-minimal search graph is bounded byO(r · t), whent bounds
the size of the relational specification of each function.

We can now extend the above theorem to any cyclic graphi-
cal model using hypertree decompositions and hypertree width as
follows. Given a hypertree decompositionT , we can consider the
acyclic graphical model that can be generated bycombining(e.g.,
multiplying) all the functions in each node, yielding functions of size
at mostO(thw). As in the acyclic case, it can be argued that the num-
ber of different contexts in an AND/OR search graph derived fromT

will not be larger than the number of tuples in the generated function
in each cluster, which is bounded bythw. In summary:

Theorem 3 Given a graphical modelR, and a hypertree-
decomposition having hypertree widthhw, then there exists a tree
T such that the context minimal AND/OR search graph based onT
is O(m · thw), whent bounds the function relational specification
size andm is the number of vertices in the decomposition.

Corollary 1 Thus, if we have a hypertree decomposition and a tree
T that can drive an AND/OR search graph, then algorithms such as
AND/OR depth-first or best-first search, that perform context-based
caching alongT , are bounded exponentially by the hypertree width.

The question is, what happens when a function is specified more
compactly? For example, what if functions are specified via decision
trees or decision diagrams? It is easy to show that,

Theorem 4 For a graphical model whose functions are specified as
decision treeswhose sizes is bounded byt, both inference (e.g., CTE)
and search (AND/OR search) algorithms have time and space expo-
nential in the hypertree width, namelyO(m · thw).

5 Experimental Results

Note that ift = kw then Equation 2 becomes:m · deg · hw · w ·
logk · (kw)hw. In this case, for any hypertree decomposition, the
treewidth-based bound is clearly superior than the one provided by
its hypertree width. The question we therefore ask is, under what con-
ditions would the complexity bound generated by the hypertree width
(“hw bound”) be tighter than the bound generated by the treewidth
(“w bound”)? And how often are those conditions met in practice? A
simple algebraic manipulation of Equations 1 and 2 yields:

Theorem 5 (comparing bounds) Given a hypertree decomposition
of treewidthw and hypertree widthhw, thehw bound is tighter than
thew bound iff

t <
k

w+1

hw

hw
√
w · hw

,

3

instance n k r t w hw R instance n k r t w hw R

Grid networks Coding networks
90-10-1 100 2 3 8 14 7 2.107 BN 126 512 2 5 16 56 21 8.429
90-14-1 196 2 3 8 20 11 3.913 BN 127 512 2 5 16 55 22 9.934
90-16-1 256 2 3 8 24 12 3.612 BN 128 512 2 5 16 50 20 9.031
90-24-1 576 2 3 8 36 20 7.225 BN 129 512 2 5 16 54 21 9.031
90-24-1e20 576 2 3 8 37 19 6.021 BN 130 512 2 5 16 53 21 9.332
90-26-1e40 676 2 3 8 41 22 7.526 BN 131 512 2 5 16 53 21 9.332
90-30-1e60 900 2 3 8 47 24 7.526 BN 132 512 2 5 16 52 21 9.633
90-34-1e80 1156 2 3 8 56 29 9.332 BN 133 512 2 5 16 56 21 8.429
90-38-1e120 1444 2 3 8 62 33 11.138 BN 134 512 2 5 16 55 21 8.730

Dynamic bayesian networks CPCS medical diagnosis
BN 21 2843 91 4 208 7 4 -4.441 cpcs54 54 2 10 256 14 6 10.235
BN 23 2425 91 4 208 5 3 -2.841 cpcs179 179 4 9 8192 9 3 6.322
BN 25 1819 91 4 208 5 2 -5.159 cpcs360b 360 2 12 4096 21 4 8.128
BN 27 3025 5 7 3645 10 2 0.134 cpcs422b 422 2 18 261408 23 4 14.746
BN 29 24 10 6 999999 6 2 6.000 Genetic linkage

Grid networks pedigree1 334 4 5 32 16 13 9.934
BN 31 1156 2 3 8 52 30 11.439 pedigree18 1184 5 5 50 22 18 15.204
BN 33 1444 2 3 8 61 34 12.342 pedigree20 437 5 4 50 24 16 10.408
BN 35 1444 2 3 8 61 34 12.342 pedigree23 402 5 4 50 29 15 5.214
BN 37 1444 2 3 8 60 34 12.643 pedigree25 1289 5 5 50 27 19 13.408
BN 39 1444 2 3 8 61 34 12.342 pedigree30 1289 5 5 50 25 18 13.107
BN 41 1444 2 3 8 62 34 12.041 pedigree33 798 4 5 32 31 21 12.944

Digital circuits pedigree37 1032 5 4 32 22 13 4.190
BN 48 661 2 5 16 46 23 13.847 pedigree38 724 5 4 50 18 10 4.408
BN 50 661 2 5 16 46 23 13.847 pedigree39 1272 5 4 50 25 18 13.107
BN 52 661 2 5 16 46 23 13.847 pedigree42 448 5 4 50 24 16 10.408
BN 54 561 2 5 16 53 32 22.577 pedigree50 514 6 4 72 18 10 4.567
BN 56 561 2 5 16 53 32 22.577 pedigree7 1068 4 4 32 40 23 10.536
BN 58 561 2 5 16 53 32 22.577 pedigree9 1118 7 4 50 31 21 9.480
BN 60 540 2 5 16 55 30 19.567 pedigree13 1077 3 4 18 35 29 19.704
BN 62 667 2 5 16 46 23 13.847 pedigree19 793 5 5 50 27 21 16.806
BN 64 540 2 5 16 55 30 19.567 pedigree31 1183 5 5 50 34 29 25.505
BN 66 440 2 5 16 69 36 22.577 pedigree34 1160 5 4 32 32 25 15.262
BN 68 440 2 5 16 68 38 25.287 pedigree40 1030 7 5 98 31 24 21.591

CPCS medical diagnosis pedigree41 1062 5 5 50 35 25 18.010
BN 79 54 2 10 1024 14 6 13.847 pedigree44 811 4 5 32 28 22 16.256
BN 81 360 2 12 2048 21 4 6.924 pedigree51 1152 5 4 50 44 33 25.311
BN 83 360 2 12 2048 21 4 6.924 Digital circuits
BN 85 360 2 12 4096 21 4 8.128 c432.isc 432 2 10 512 28 22 51.175
BN 87 422 2 18 131072 23 4 13.546 c499.isc 499 2 6 32 25 25 30.103
BN 89 422 2 18 131072 23 4 13.546 s386.scan 172 2 5 16 19 8 3.913
BN 91 422 2 18 131072 23 4 13.546 s953.scan 440 2 5 16 66 38 25.889
BN 93 422 2 18 261408 23 5 20.163 Various networks

Randomly generated belief networks Barley 48 67 5 40320 8 4 3.813
BN 95 53 3 4 81 20 8 5.725 Diabetes 413 21 3 2040 5 5 9.937
BN 97 54 3 4 81 20 8 5.725 hailfinder 56 11 5 1181 5 3 4.010
BN 99 57 3 4 81 23 10 8.111 insurance 27 5 4 156 8 3 0.988
BN 101 58 3 4 81 22 9 6.680 Mildew 35 100 4 14849 5 3 2.515
BN 103 76 3 4 81 28 11 7.634 Munin1 189 21 4 276 12 6 -1.221

Randomly generated partialk-trees with forced determinism Munin2 1003 21 4 276 8 8 8.950
BN 105 50 2 21 20540 25 3 5.412 Munin3 1044 21 4 276 8 6 4.068
BN 107 50 2 21 327471 25 3 9.020 Munin4 1041 21 4 276 9 5 0.305
BN 109 50 2 20 163866 25 3 8.118 Pigs 441 3 3 15 11 8 4.160
BN 111 50 2 20 81910 25 3 7.214 Water 32 4 6 1454 11 4 6.028
BN 113 50 2 21 327546 25 3 9.020 Genetic linkage

Randomly generated partialk-trees without forced determinism fileEA0 381 4 4 16 8 5 1.204
BN 115 50 2 19 131072 25 3 7.827 fileEA1 836 5 4 20 12 6 -0.581
BN 117 50 2 20 65536 25 3 6.924 fileEA2 979 5 4 20 14 10 3.225
BN 119 50 2 19 32768 25 3 6.021 fileEA3 1122 5 4 20 16 10 1.827
BN 121 50 2 19 131072 25 3 7.827 fileEA4 1231 5 4 20 16 10 1.827
BN 123 50 2 20 32768 25 3 6.021 fileEA5 1515 5 4 20 15 11 3.827
BN 125 50 2 18 131072 25 3 7.827 fileEA6 1816 5 4 20 17 12 3.730

Digital circuits (WCSP) Satellite scheduling (WCSP)
c432 432 2 10 512 28 21 48.466 29 82 4 2 13 15 8 -0.119
c499 499 2 6 32 25 25 30.103 42b 190 4 2 13 19 10 -0.300
c880 880 2 5 16 25 25 22.577 54 67 4 3 31 12 6 1.723
s1196 561 2 5 16 55 30 19.567 404 100 4 3 15 20 10 -0.280
s1238 540 2 5 16 55 30 19.567 408b 200 4 2 13 25 13 -0.570
s1423 748 2 5 16 24 19 15.654 503 143 4 3 63 10 5 2.976
s1488 667 2 5 16 46 23 13.847 505b 240 4 2 15 17 9 0.350
s1494 661 2 5 16 46 23 13.847 Radio frequency assignment (WCSP)
s386 172 2 5 16 19 8 3.913 CELAR6-SUB0 16 44 2 1302 8 4 -0.689
s953 440 2 5 16 66 39 27.093 CELAR6-SUB1-24 14 24 2 301 10 5 -1.409

Mastermind puzzle game (WCSP) CELAR6-SUB1 14 44 2 928 10 5 -1.597
mm 03 08 03 1220 2 3 4 21 14 2.107 CELAR6-SUB2 16 44 2 928 11 6 -0.273
mm 03 08 04 2288 2 3 4 31 20 2.709 CELAR6-SUB3 18 44 2 928 11 6 -0.273
mm 03 08 05 3692 2 3 4 40 25 3.010 CELAR6-SUB4-20 22 20 2 396 12 6 -0.026
mm 04 08 03 1418 2 3 4 26 17 2.408 CELAR6-SUB4 22 44 2 1548 12 6 -0.583
mm 04 08 04 2616 2 3 4 38 24 3.010
mm 10 08 03 2606 2 3 4 56 34 3.612

Table 1. Results for experiments with 112 Bayesian networks and 30 weighted CSP instances

4

wheret bounds the number of tuples in the relational specification.
A necessary condition for the hypertree width to yield a better

bound, given a specific hypertree decomposition, is thatt < k
w+1

hw .

In the remainder of this section we evaluate empirically the
treewidth and hypertree width bounds on 112 practical probabilis-
tic networks such as coding networks, dynamic Bayesian networks,
genetic linkage instances, and CPCS networks used in medical diag-
nosis. We also look at 30 constraint networks such as radio frequency
assignment and satellite scheduling problems. The problem instances
were obtained from various sources, including the UAI’06 evaluation
repository; all of them are made available online4.

Since finding a tree or hypertree decomposition of minimal width
is NP-complete, one usually resorts to heuristic methods. To obtain
a tree decomposition of a given problem, we perform bucket elimi-
nation along a minfill ordering (random tie breaking, optimum over
20 iterations), a wide-spread and established method. The resulting
tree decomposition is then extended to a hypertree decomposition
by the method described in [1], where variables in a decomposition
cluster are greedily covered by functions (by means of a set covering
heuristic).

For each problem instance we collected the following statistics:
the number of variablesn, the maximum domain sizek, the maxi-
mum function arityr, and the maximum function tightnesst – de-
fined as the number of zero cost tuples in CSPs and the number of
non-zero probability tuples in belief networks. We also report the best
treewidth and hypertree width found in the experiments described
above. Lastly, we compute the following measure:

R = log10

(

thw

kw

)

This compares the two dominant factors in Equation 2 and 1. IfR

is positive, it signifies how many orders of magnitude tighter thew

bound is when compared to thehw bound, and vice versa for nega-
tive values ofR. The complete set of results is shown in Table 1.

Going over the numbers for belief networks, we note that out of the
112 problem instances, thehw bound is only superior for 5 instances,
and not by many orders of magnitude. In particular, three of these are
dynamic Bayesian network instances with low tightnesst = 208 (out
of kr = 914 = 68, 574, 961 possible tuples) and small hypertree
width.

For other instances that exhibit determinism, such as pedigree ge-
netic linkage problems and partialk-trees that were randomly gen-
erated with determinism enforced, thehw bound is significantly
worse, often by more than ten orders of magnitude. For the link-
age instance pedigree42, for example, we havekw = 524 =
59, 604, 644, 775, 390, 625. On the other hand,thw = 5016 =
1, 525, 878, 906, 250, 000, 000, 000, 000, 000, which is a difference
of ten orders of magnitude.

Several other belief network instances (all grid networks and most
CPCS instances, for example) show little to no determinism (t ≈ kr),
and thehw bound is inferior, as it was to be expected.

Moving to weighted CSP instances, the situation barely changes:
Only for two instances of radio frequency assignment is thehw

bound more than one order of magnitude better. Again, these prob-
lems exhibit a significant level of determinism in their function spec-
ifications. For satellite scheduling problems both bounds seem to fare
roughly equally well overall, while thehw bound is again inferior on
Mastermind game instances and digital circuit problems, on the latter
often by more than 20 orders of magnitude.

4 Repository at http://graphmod.ics.uci.edu/

In summary we can review that, in order for the hypertree width
bound to be competitive with, or even superior to, the treewidth
bound, problem instances need to comply with several conditions,
foremost among these very tight function specifications. The latter is
promoted by large variable domains and high function arity, which
we found to be not the case for the majority of practical problem
instances.

6 Conclusion

It is well known that a graph’s treewidth provides bounds for
many computational tasks over graphical models (e.g., satisfiabil-
ity, counting, belief updating, finding the most likely explanation.).
All these tasks are bounded exponentially by the graph treewidth.
Also, compiled data-structures such as AND/OR BDDs and OBDDs
are bounded exponentially by their underlying graph’s treewidth and
pathwidth respectively.

In this paper we demonstrated that the hypertree width bound,
shown to provide a broader tractability characterization for constraint
networks and for inference algorithms for general graphical models,
is applicable to search algorithms as well when functions are speci-
fied asrelationsand asdecision trees.

The primary contribution of the paper, however, is in exploring
empirically the practical benefit of the hypertree width compared
with the treewidth in bounding the complexity of algorithms over
given problem instances. Statistics collected over 112 Bayesian net-
works instances and 30 weighted CSPs provided interesting, yet
somewhat sobering information. We confirmed that while the hyper-
tree is always smaller than the treewidth, the complexity bound it im-
plies is often inferior to the bound suggested by the treewidth. Only
when problem instances possess substantial determinism and when
the functions have large arity, the hypertree can provide bounds that
are tighter and therefore more informative than the treewidth. This
demonstrates the added sensitivity of the hypertree width to the hy-
pergraph structure and to the functions’ specification.

The above empirical observation raises doubts regarding the need
to obtain good hypertree decompositions beyond the already substan-
tial effort into the search of good tree-decompositions, that has been
ongoing for two decades now.

REFERENCES
[1] G. Gottlob, B. McMahan, N. Musliu, A. Dermaku, T. Ganzow, and M.

Samen, ‘Heuristic methods for hypertree decompositions’, inTechnical
Report, Technische Universitaet Wien, (2005).

[2] R. Dechter and R. Mateescu, ‘And/or search spaces for graphical mod-
els’, Artificial Intelligence, 73–106, (2007).

[3] R. Dechter and J. Pearl, ‘Tree clustering for constraintnetworks’,Artifi-
cial Intelligence, 353–366, (1989).

[4] N. Leone, G. Gottlob, and F. Scarcello, ‘A comparison of structural CSP
decomposition methods’,Artificial Intelligence, 243–282, (2000).

[5] K. Kask, R. Dechter, J. Larrosa, and A. Dechter, ‘Unifying tree-
decompositions for reasoning in graphical models’,Artificial Intelli-
gence, 166(1-2), 165–193, (2005).

[6] S.L. Lauritzen and D.J. Spiegelhalter, ‘Local computation with proba-
bilities on graphical structures and their application to expert systems’,
Journal of the Royal Statistical Society, Series B, 50(2), 157–224, (1988).

[7] J. Pearl,Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann, 1988.

[8] P.P. Shenoy, ‘Binary join trees for computing marginals inthe shenoy-
shafer architecture’,International Journal of approximate reasoning,
239–263, (1997).

5

