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Abstract. We propose a new top down search-based algorithm for compiling
AND/OR Multi-Valued Decision Diagrams (AOMDDs), as representatiorthef
optimal set of solutions for constraint optimization problems. The amprés
based on AND/OR search spaces for graphical models, state-afttA&D/OR
Branch-and-Bound search, and on decision diagrams reductioniqeels. We
extend earlier work on AOMDDs by considering general weighted gréyaised

on cost functions rather than constraints. An extensive experimerstlation
proves the efficiency of the weighted AOMDD data structure.

1 Introduction

The compilation of graphical models, including constraintl probabilistic networks,
has recently been under intense investigation. Compilagohniques are useful when
an extended off-line computation can be traded for fastties answers. Typically, a
tractable compiled representation of the problem is désB@ce the tasks of interest
are in general NP-hard, this is not always possible in thestiv@ase. In practice, how-
ever, it is often the case that the compiled representatioruch smaller than the worst
case bound, as was observed for Ordered Binary Decision@iag(BDDs) [1] which
are extensively used in hardware and software verification.

In the context of constraint networks, compilation schermesvery useful for in-
teractive solving or product configuration type problems3]2These are combinatorial
problems where a compact representation of the feasiblef selutions is necessary.
The system has to mmpletg(to represent all solutionshacktrack-fregto never en-
counter dead-ends) amnelal-time(to provide fast answers).

In this paper we present a compilation scheme for constogitimization, which
has been of interest recently in the context of post-optignahalysis [4]. Our goal is
to obtain a compact representation of the set of optimatiswis, by employing tech-
niques from search, optimization and decision diagramsapPproach is based on three
main ideas: (1) AND/OR search spaces for graphical modélsSTfeir key feature is
the exploitation of problem structure during search, same yielding exponential im-
provement over structure-blind search methods. (2) BraamchBound search for opti-
mization, applied to AND/OR search spaces [6]. (3) Redunatides similar to OBDDs,
that lead to the compilation of the search algorithm trat@am AND/OR Multi-Valued
Decision Diagram (AOMDD) [7]. The novelty over previousuéis consists in: (1) the
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Fig. 1. Boolean function representations

treatment of general weighted graphs based on cost fusctiather than constraints.
(2) a top down search based approach for generating the AON@Eer than Variable
Elimination based as in [7]. (3) Extensive experimental@son that proves the effi-
ciency of the weighted AOMDD. We show that the compilatiohesoe can often be
accomplished relatively efficiently and that we sometimesagsubstantial reduction
beyond the initial trace of state-of-the-art search atbors.

2 Background
2.1 Constraint Optimization Problems

A finite Constraint Optimization ProbleriCOP) is a tripleP = (X, D, F), where
X ={Xy,...,X,} is a set of variabled) = {Dq,..., D, } is a set of finite domains
andF = {f, ..., f»} is a set of cost functions. Cost functions can be eisiodtror hard
(constraints). Without loss of generality we assume that banstraints are represented
as (bi-valued) cost functions. Allowed and forbidden tsptave cosb andoo, respec-
tively. The scope of functiorf;, denotedscope(f;) C X, is the set of arguments of
fi- The goal is to find a complete value assignment to the vasathlat minimizes the
global cost function, namely to find = arg minx >_,_, fi.

Given a COP instance, igimal graphG has a node for each variable and connects
any two nodes whose variables appear in the scope of the sentigoh. Theinduced
graphof G relative to an ordering of its variables is obtained by processing the nodes
in reverse order ofi. For each node all its earlier neighbors are connected,dirt
neighbors connected by previously added edgesmiitith of a node is the number of
edges connecting it to nodes lower in the ordering. iNdeced widthalso equal to the
treewidth) of a graph alongi, denotedw*(d), is the maximum width of nodes in the
induced graph. Thpathwidthof a graph along, pw*(d), is equal to the induced width
of the graph with extra edges added between any node anctdsssor ind.

2.2 Binary Decision Diagrams

Decision diagrams are widely used in many areas of researcbpresent decision
processes. In particular, they can be used to representdoacDue to the fundamental
importance of Boolean functions, a lot of effort has beeniacdd to the study of
Binary Decision Diagram¢BDDs), which are extensively used in formal verification.
A BDD is a representation of a Boolean function. GiBn= {0, 1}, a Boolean
function f : B® — B, hasn arguments X4, ---, X,,, which are Boolean variables,
and takes Boolean values. A Boolean function can be repesséy a table (see Figure
1(a)), but this is exponential in, and so is the binary tree representation in Figure
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Fig. 2. AND/OR search tree for COP

1(b). OBDDs [1] provide a more compact representation, #fed supports efficient
operations, by imposing the same order to the variablegyadach path in the binary
tree, and then applying the following two reduction rulelsaaxstively: (1jsomorphism
merge nodes that have the same label and the same respédtverc(Figure 1(c)); (2)
redundancyeliminate nodes whose low (zero) and high (one) edges poihie same
node (see Figure 1(d)). The resulting OBDD is shown in Fidgie.

2.3 AND/OR Search Spaces for COP

The AND/OR search space [5] is a unifying framework for asheahalgorithmic schemes
for graphical models, including constraint networks ansteeetworks. Its main virtue
consists in exploiting independencies between variahleg®g search, which can pro-
vide exponential speedups over traditional structureeb$iearch methods. The search
space is defined using a backbgseudo-tre¢8].

Definition 1 (pseudo-tree)Given an undirected grapfi = (X, E), a directed rooted
tree7 = (X, E’) defined on all its nodes is callggbeudo-tred any edge of7 that is
not included inE’ is a back-arc in7, namely it connects a node to an ancestofin

AND/OR Search Trees Given a COP instanc®, its primal graphG and a pseudo tree

T of G, the associated AND/OR search trég,, has alternating levels of OR and AND
nodes. The OR nodes are label¥dand correspond to the variables. The AND nodes
are labeled X;, ;) (or justz;) and correspond to value assignments of the variables.
The structure of the AND/OR search tree is based on the undgrpseudo tred .

The root of the AND/OR search tree is an OR node labeled wighrdlot of 7. The
children of an OR nod&; are AND nodes labeled with assignmefi§;, ;) that are
consistent with the assignments along the path from the Tdwt children of an AND



node(X;, x;) are OR nodes labeled with the children of variakilegn 7. The AND/OR
search tree can be traversed by a depth first search (DFSijtlatgpothus using linear
space to compute the value of the root node. It was shown:[8, 9]

Theorem 1. Given a COP instanc® and a pseudo tre@ of depthm, the size of the
AND/OR search tree based @nis O(n- k™), wherek bounds the domains of variables.
A COP having treewidtw* has a pseudo tree of depth at mastlog n, therefore it
has an AND/OR search tree of sigén - k" 1°8™),

Weighted AND/OR Search Trees The OR-to-AND arcs from nodeX; to x; in an
AND/OR search tree are annotatedvwgightsderived from the cost functions .

Definition 2 (weight). Theweightw(X;, z;) of the arc from the OR nod#&; to the
AND nodez; is the sum of all the cost functions whose scope includeand is fully
assigned along the path from the rootitg evaluated at the values along the path.

The AND/OR search tree in Figure 2(d) shows the weights o®fRdo-AND arcs.
Given a weighted AND/OR search tree, each node can be assbuiéah avalue

Definition 3 (value).Thevaluev(n) of a noden in a weighted AND/OR tree is defined
recursively as follows (whereucc(n) are the children of):

() v(n) =0, if n = x; is aterminal AND node;

(i) v(n) =3, csuce(n) (), if n = z; is an internal AND node;

(iii) v(n) = Mingy csuce(n) (w(n, n') +v(n)), if n = X; is an OR node.

It is easy to see that the valu¢n) of a node in the AND/OR search tregr is
the minimal cost solution to the subproblem rooted atubject to the current variable
instantiation along the path from the rootnolf n is the root ofSr, thenv(n) is the
minimal cost solution to the initial problem [6, 5].

Example 1.Figure 2 shows an example of AND/OR search tree for a COP viritdrp
variables. The cost functions are given in Figure 2(a). Thleeco indicates a hard
constraint. The primal graph is given in Figure 2(b), andpbeudo tree in Figure 2(c).
The square brackets indicate the context of the variablestian explained below. The
AND/OR search tree is given in Figure 2(d). The numbers orQReto-AND arcs are
the weights corresponding to the function values. Notettieatree is pruned whenever
a weight shows inconsistency (e.g., #or=0,B =0, D = 1).

AND/OR Search Graphs The AND/OR search tree may contain nodes that root
identical conditioned subproblems. These nodes are sdid tmifiable When unifi-
able nodes are merged, the search space becomes a graj#e tscmes smaller at
the expense of using additional memory by the search afgorithe depth first search
algorithm can therefore be modified to cache previously ageipresults, and retrieve
them when the same nodes are encountered again. Some eniftadds can be iden-
tified based on theicontexts We can define graph based contexts for both OR nodes
and AND nodes, just by expressing the set of ancestor vasablZ7 that completely
determine a conditioned subproblem. It can be shown thagusiching based on OR
contexts makes caching based on AND contexts redundante saly useéOR caching
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Fig. 3. AND/OR graphs for COP

Given a pseudo treg of an AND/OR search space, tlentextof an OR node
X, denoted byontext(X) = [X;...X,], is the set of ancestors ¢&f in 7 ordered
descendingly, that are connected in the primal grapk tr to descendants of. The
context of X separates the subproblem belainfrom the rest of the network.

Definition 4 (context minimal AND/OR graph). Given a COP instancé and a
pseudo-treel’, the context minimalAND/OR graph, denoted by+ is obtained from
the AND/OR search tree @t along7 by merging all the context unifiable OR nodes.

Theorem 2 ([9, 5]).Given a COPP, its primal graphG and a pseudo tre&, the size
of the context minimal AND/OR search graph is O(n - k*7(%), wherew? (G) is
the induced width of7 over the DFS traversal df, andk bounds the domain size.

Example 2.Figure 2(c) shows a pseudo tree and the context of each laiabquare
brackets. The context minimal AND/OR graph is given in Feg8(a). Note that only
the cache table oF will get cache hits during the depth first search travergais(the
only level of OR nodes that has more than one incoming arcartbe determined from
the pseudo tree inspection that all variables exceptfgeneratalead-cache$s, 10]
(also explained in following section), and their cacheeabieed not be stored.

3 Weighted AND/OR Multi-valued Decision Diagrams

The context minimal AND/OR graph offers an effective wayddtifying some unifi-
able nodes. However, merging based on context is not coeyplet there may still be
unifiable nodes in the search graph that do not have iderdarakexts. The context-
based merging uses only information available from the stoce in the pseudo tree.
If all the information from the descendants would also beilalte, it could lead to
the identification of more unifiable nodes. This comes at adngost, however, since
information from descendants in the pseudo tree meanshbadritire associated sub-
problem has to be solved. Orthogonal to the problem of utifinasome of the nodes
in an AND/OR search graph may be redundant, for example wiesdt of solutions
rooted at variableX; is not dependent on the specific value assignel;to

The above criteria suggest that once an AND/OR search gsaphailable (e.g.,
after search terminates, and its trace is saved) reduaties based ofmsomorphism



and redundancy(similar to OBDDs) can be applied further, reducing the sif¢he
AND/OR search graph that was explicated by search. In oalapply the reduction
rules, it is convenient to group each OR node and its childrenameta-node

Definition 5 (meta-node).A meta-nodes in a weighted AND/OR search graph con-
sists of an OR node labeledr(v) = X, and itsk; AND children labeled;, ..., z;,
that correspond to its value assignments. Each AND nodédehbg, points to a list of
child meta-nodesy.children;, and also stores the weight(X;, ;).

The reduction rules are straightforward. Two meta-nodessammorphicif they
have the same variable label and the same respective listsldfen and weights. A
meta-node isedundantif all its lists of children and weights are respectivelyndieal.

When reduction rules are applied exhaustively to an AND/O&degraph, the
result is an AND/OR Multi-Valued Decision Diagram (AOMDD)he AOMDD data
structure for constraint networks (where weights are alt43 introduced in [7], along
with a Variable Elimination type algorithm to generate isked on thapply operator,
similar to the OBDD case.

An example of a AOMDD appears in Figure 3(b), representiegtthaustive reduc-
tion of the context minimal AND/OR graph in Figure 3(a). Tleenhinal nodes labeled
with 0 and 1 denote inconsistent and consistent assignments, regggctiote that
when A = 1, B is redundant and its common list of children becomes thefishil-
dren for A = 1, namely the problem already splits into two independentmaments
after A = 1, even though this can not be read from the pseudo tree iné-&faj.

4 Compiling COPs into AOMDDs

We next define the AOMDD describing the set of optimal sohdidto a COP and
present a general scheme for generating these compiledtdattures.

Definition 6. Given a set of tuple$ over variablesX and a tree7 over X, 7 ex-
pressesS iff there exists an AND/OR tree guided Bythat expresses all and only
tuples inS.

Proposition 1. If 7 is a pseudo-tree of a COP, then7 can be used to express??,
the set of optimal solutions .

Definition 7. Given a COPP, its set of optimal solution§°?* and a pseudo tre& of
P, its AOMDDE?" is the AOMDD that expresses all and ofig* relative to7 .

The target is to generate AOMD of a COP. The idea is to use a pseudo tree
7T that can express all solutions and explore a subset of itexbminimal AND/OR
graph,Cr that contains all the optimal solutions and then process ithat it will
represent only optimal solutions and be completely reduetative to isomorphism
and redundancy. Therefore, any search algorithm for opsniations that explores the
context minimal graph can be used to generate the initiektrahe better the algorithm
we use, the more efficient the procedure would be becausaitta frace will be tight
around the context minimal graph that is restricted to thexad solutions.

In recent years several Branch-and-Bound and Best-Fiestlsealgorithms were
developed to search the context minimal AND/OR graph foviagl COPs [6, 10, 11].
In this paper we use a depth-first AND/OR Branch-and-BoW@Bg) algorithm.



4.1 AND/OR Branch-and-Bound Search

AOBB traverses the context minimal AND/OR search graph in a dégthmanner via

full caching. It interleaves forward expansion of the caotrpartial solution subtree
with a backward cost revision step that updates node valuds,search terminates.
The efficiency of the algorithm also depends on the strenfyits deuristic evaluation
function (i.e., lower bound). Specifically, each nodalong the path from the root has
an associatestaticheuristic functiom:(n) underestimating(n) that can be computed
efficiently when the node is first expanded. The algorithm then improves the heuristic
function dynamically during search. Thgnamic heuristic functioifi, (n) is computed
based on the search space belowhat has already been explored [6], and is used to
prune irrelevant portions of the search space, based orréimeB-and-Bound principle.

In the forward step the algorithm expands alternating Eg€OR and AND nodes.
Since we are using OR caching, before expanding an OR naxleadhe table is
checked. If the same context was encountered before, itriewed from the cache,
and its successors set is set to empty which will trigger ts evision step. If an OR
node is not found in the cache, it is expanded in the usual Refpre expanding an
AND noden, the algorithm updates the heuristic functifina) for every ancestos
of n along the current path, and discontinues search beldwfor somea, f1,(a) is
greater or equal than the best cost solution found(#te upper bound).

The backward cost revision step is triggered when a closdd has an empty set
of successors. This means that all its children have bednated, and its final value
can now be computed. If the current node is the root, thenghrch terminates with its
value. OR nodes update their values by minimization, whiNDAnodes combine their
children values by summation.

4.2 The Compilation Algorithm

The compilation algorithm, calledOBB- COVPI LE, is described in Algorithm 1. It
extends the AND/OR Branch-and-Bound algorithm descriti/@ by compiling the
trace of the search into an AND/OR Multi-Valued Decision @&m representing all
optimal solutions to the input COP instance.

The algorithm is based on two mutually recursive steps,lairto AOBB: EXPAND
and REVISE which call each other until the search termindths fringe of the search
is maintained on a stack call€PEN. The current node is, its parenip, and the current
path,,. The children of the current node in the AND/OR search graphdanoted by
succ(n). The AND/OR decision diagram being constructed is denoted®MDD.
Each node: in the AND/OR search graph has a pointer, denoted byetanode, to
the corresponding meta-node in AOMDD.

In the EXPAND step, when the current OR nadés expandedAOBB- COVPI LE
creates a new meta-node corresponding &nd adds it to AOMDD. Ifn is already
present in cache, thelOBB- COVPI LE ensures that the meta-node corresponding to
n’s parent in the context minimal search graph points to thieamede that was created
whenn was first expanded.

In the REVISE step when node values are propagated backwhelslgorithm
also attempts to reduce the diagram by removing isomorpbita-modes. Specifically,
if n is the current OR node being evaluated and if there existsta-nwlem which



Algorithm 1: AOBB- COWPI LE

Data: A COP instancé® = (X, D, F), pseudo-tred’, root s, heuristic functionfy, .
Result AOMDD containing the optimal solutions t&.

1 v(X1) < 00; OPEN «— {X1};AOMDD « {; /1 Initialize
2 while OPEN # ( do
3 n «— top(OPEN); removen from OPEN
4 let 7,, be the assignment along the path from the root to
5 if n is an OR node, labeled’; then /1 EXPAND
6 if Cache(n, context(X;)) # 0 then
7 v(n) «— Cache(n, context(X;))
8 suce(n) «— 0
9 letp = (X, z;) be the AND parent of: in the AND/OR search graph
10 p.metanode‘childrenzj — p.metanode‘childrenzj U {n.metanode}
11 else
12 suce(n) — {(X;, z:)|(X;, z;) is consistent withr,, }
13 for (X;,z;) € suce(n) do
14 U(<X“$1>) — 0; h((X,,er” <—heuristic(X1-,wi)
15 w(X;, x;) HZfeF,xiescoqu) f(mn)
16 create a new meta-node for X; and add it to AOMDD
17 letp = (X, z;) be the AND parent of: in the AND/OR search graph
18 p.metanod&child’renzj — p.'rnetanode.childrenzj U {m}
19 Add succ(n) ontop of OPEN
20 else ifn is an AND node, labeledX;, z;) then
21 for a € ancestors(X;, ;) do
22 if (ais OR)and (f1(a) > v(a)) then
23 n.deadend «— true
24 n.metanode.children,, + UNSOLV ED
25 break
26 if n.deadend == false then
27 suce(n) «— {X;|X; € childrent(X;)}
28 v(X;) «— oo; h(X;) <« heuristic(X;)
29 Add suce(n) ontop of OPEN
30 if succ(n) == @ then
31 L n.metanode.children,, «— SOLVED
32 while suce(n) == 0 do /1 REVI SE
33 let p be the parent of
34 if n is an OR node, labeled’; then
35 if X; == X then /'l Search is conplete
36 | retum AOMDD
37 Cache(n, context(X;)) «— v(n)
38 v(p) — v(p) + v(n)
39 n.metanode.value «— v(n)
40 if fi ndl sonor phi sn{ n.metanode) == true then
41 let m be the meta-node isomorphic withmetanode
42 redirect the links ofv.metanode’s parents in AOMDD to point ton
43 AOMDD — AOMDD — {n.metanode}
44 if n is an AND node, labeledX;, z;) then
45 L v(p) « min(v(p), w(Xi, ;) + v(n))
46 removen from succ(p)
47 n+<op

is isomorphic withn.metanode, then the parents of.metanode in the AOMDD are
updated to point tan instead ofr.metanode, which is then removed from the diagram.
The compiled AOMDD may contain sub-optimal solutions thatewisited during

the Branch-and-Bound search but were not pruned. Theredaecond

pass over the



decision diagram is necessary to remove any path which datesppear in any opti-
mal solution (omitted from the algorithm due to space litnitas). Specifically, in the
second pasAOBB- COVPI LE traverses the AOMDD in a depth-first manner for every
meta-node: along the current path from the root, it pruneshildren; from the dia-
gramif(3_ . co chitdren, V(0') Fw (X5, z,)) > v(u), namely the optimal cost solution
to the problem below tjhje child of u is not better than the optimal cost solutionuat

Theorem 3. Given a COP instanc® = (X,D,F) and a pseudo tre€ of P, the
AOMDD generated byAOBB- COVPI LE along7 is AOMDD‘;Z”.

The complexity ofAOBB- COVPI LE is bounded time and space by the trace gen-
erated, which iD(n - exp(w*)). However, the heuristic evaluation function used by
AOBB typically restricts the trace far below this complexity ipou

5 Experiments

In this section we evaluate empirically the compilationestle on two common classes
of optimization problems: Weighted CSPs (WCSP) [12] and @i&der Linear Pro-
grams (0/1 ILP) [13]. In our experiments we compiled the cledrace relative to iso-
morphic meta-nodes only, without removing redundant noélis® we did not perform
the second top-down pass over the diagram to remove adalisab-optimal solutions.

5.1 Weighted CSPs

Weighted CSRP12] extends the classic CSP formalism withft constraintavhich as-
sign positive integer costs to forbidden tuples (allowgulds have cost 0). The goal is
to find a complete assignment with minimum aggregated cbstriiodel has numerous
applications in domains such as resource allocation, stimgdor planning.

We consider the compilation algorithm based on the AND/OBRnBh-and-Bound
algorithm with pre-compiled mini-bucket heuristics ant éaching introduced by [10]
and denoted byAOBB( 7) . The parametei represents the mini-buckeétbound and
controls the accuracy of the heuristic.

For each test instance we report the number of OR nodes inotfitext minimal
AND/OR search graph (#cm) visited AOBB( ) , and the number of meta-nodes in
the resulting AND/OR decision diagram (#aomdd), as welltegrtratio defined as
ratio = fjgfdd. In some cases we also report the compilation time. We rettard
number of variables (n), the number of constraints (c), gt of the pseudo-trees (h)
and the induced width of the graphs*() obtained for the test instances. The pseudo-
trees were generated using the min-fill heuristic, as desdrin [6].

Earth Observing Satellites The problem of scheduling an Earth observing satellite
is to select from a set of candidate photographs, the besetsghch that a set of im-
perative constraints are satisfied and the total importahttee selected photographs is
maximized. We experimented with problem instances fronBSR®T5 benchmark [14]
which can be formulated as non-binary WCSPs. For our purpeseowsidered a sim-
plified MAX-CSP version of the problem where the goal is to imize the number of
imperative constraints violations (i.e., we ignored th@amance of the photographs).



spot 29 spot 54
(n=83, d=3, c=476) - [w*=14, h=42] (n=68, d=3, c=283) - [w*=11, h=33]

3x10° 50x10°
B #cm (AOBB) B #cm (AOBB)
. = #aomdd (AOBB) = #aomdd (AOBB)
3x10 = #cm (BB) 40x10° B #cm (BB)
3 #mdd (BB) 3 #mdd (BB)
2x108
30x10°
° °
N 2x10° N
@ o
20x10°
10°
10t 10x10°
. |ﬂ‘ I LIH I [ P % . H
6 8 10 12 14 16 18 0 2 4 6 8 10 12
i-bound i-bound
spot 404 spot 408
1800 (n=100, d=3, c=710) - [w*=19, h=42] 300x10° (n=201, d=3, ¢=2034) - [w*=35, h=97]

I #cm (AOBB)

1600 7 = #aomdd (AOBB) . = #aomdd (AOBB)
B #cm (BB) 250x10° 7
1400 4 1 #mdd (BB)
1200 200x10°
1000
& 150x10° ]
800 1
600 1 100x10°
400
50x10° 1
200
04 0 H ﬂ — = —
8 10 12 14 16 1

EE #cm (AOBB)

size
size

8

i-bound i-bound
spot 503 spot 505
7000 (n=144, d=3, c=639) - [w*=9, h=39] 250x10° (n=240, d=3, ¢=2002) - [w*=23, h=74]
BN #cm (AOBB) = #cm (AOBB)
6000 =21 #aomdd (AOBB) =23 #aomdd (AOBB)
200x10°
5000 |
s ]
4000 15010,
© °
N N
] ]
3000 9 100x10% 4
2000 |
50x10° o
1000 { H H H
0 T T T H‘ IH‘ 0 T T ﬂ ..
0 2 4 6 8 10 12 6 8 10 12 14 16 18
i-bound i-bound

Fig.4. The trace of AND/OR Branch-and-Bound search (nodes) versusA@DD size
(aomdd) for the SPOT5 networks. Compilation time limit 1 hour.

Figure 4 displays the results for experiments with 6 SPOTwaoiks. Each sub-
graph depicts the trace &OBB(i) and the size of the resulting AND/OR decision
diagram as a function of thebound of the mini-bucket heuristic. For comparison, we
also include the results obtained with the OR version of thamlation scheme that
explores the traditional OR search space.

We observe that the resulting AOMDD is substantially snmalian the context min-
imal AND/OR graph traversed b#OBB( ¢) , especially for relatively small-bounds
that generate relatively weak heuristic estimates. Faam, on th&08 network, we
were able to compile an AOMDD 11 times smaller than the AND&2&rch graph ex-
plored byAOBB( 8) . As thei-bound increases, the heuristic estimates become stronger
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667| 67 ratio = 4.04 ratio = 3.82 ratio=  4.44 ratio = 1.80
s1494661| 48| 138.61 63,856 18,50387.73 125,030 22,39337.78 31,355 11,5489.75 30,610 12,467
661| 69 ratio=  3.45 ratio=  5.58 ratio=  2.72 ratio=  2.46|
c432 [432| 27 [1867.49 395,766 41,964 1.29 7,551 4,024 1.30 7,112 3,69830.74 1,120 88IL
432] 45 ratio=  9.43 ratio=  1.88 ratio=  1.93 ratio=  1.27|
c499 [499| 23| 363.78 93,936 33,137 6.66 12,582 7,05R71.26 88,131 23,5026.75 17,714 9,536
499 74 ratio=  2.83 raio=  1.78 ratio=  3.75 ratio=  1.86|

Table 1. CPU time in seconds, the trace of AND/OR Branch-and-Bound seacth)(#nd the

AOMDD size (#aomdd) for the ISCAS’89 circuits. Compilation time limit 1 hour

[ AOBB+SMB(j) |
planning n |w* i=6 =8 i=10 i=12

c | h| time #cm #aomddtime #cm #aomddime #cm #aomddtime #cm #aomdd
bwt3ac 45(16(77.45 28,558 12,1925.76 22,475 11,108.92 3,878 2,53@9.00 1,775 1,252
d=11 301 34 ratio = 2.35| ratio = 2.02 ratio = 1.53 ratio = 1.42
bwt3bc 45(11(54.22 23,560 10,5429.62 18,734 9,42B8.61 3,455 2,248B5.73 1,599 1,141
d=11 301|33 ratio = 2.23 ratio = 1.99 ratio = 1.5 ratio = 1.40
bwt3cc 45(19(32.55 19,643 9,1220.03 15,696 8,148.51 3,113 2,04B5.57 935 73L
d=11 301|42 ratio = 2.15 ratio = 1.93 ratio = 1.52 ratio = 1.28
depotOlac 66[14] 1.45 7,420 2,5040.73 4,056 1,99®.42 1,214 830 1.48 506 432
d=5 298/ 33 ratio=  2.96| ratio=  2.03 ratio=  1.46 ratio=  1.17
depotOlbc 66|14 1.31 7,068 2,3580.55 3,333 1,64[0.39 1,316 8865 1.47 514 43P
d=5 298| 33 ratio=  3.00 ratio=  2.03 ratio=  1.49 ratio=  1.19
depotOlcc 66 (14| 1.36 7,156 2,4110.82 4,333 2,198.38 1,262 8411 1.47 269 219
d=5 298| 33 ratio=  2.97| ratio=  1.97| ratio=  1.50 ratio=  1.23

i=2 i=4 i=6 i=8

driverlogO0lac| 71| 9 | 1.37 7,490 2,1340.41 3,143 1,41®.05 279 237 0.10 451 331
d=4 27138 ratio = 3.51 ratio = 2.23 ratio = 1.18 ratio = 1.36|
driverlogOlbc| 71| 9 | 1.36 7,447 2,12B80.42 3,098 1,38®M.04 231 210 0.07 247 212
d=4 271/ 38 ratio = 3.50 ratio = 2.23 ratio = 1.10 ratio = 1.17
driverlogOlcc| 71| 9 | 1.61 7,741 2,1850.10 883 6220.04 279 237 0.07 295 239
d=4 271/ 38 ratio = 3.54 ratio = 1.42 ratio = 1.18 ratio = 1.23
mprimeO3ac (49| 9| 2.12 7,172 1,56R0.66 3,343 86[0.11 595 386 0.16 111 94
d=10 185| 23 ratio = 4.59 ratio = 3.87| ratio = 1.54 ratio = 1.18
mprime03bc (49| 9 | 2.07 7,266 1,5730.68 3,486 840.12 641 396 0.10 111 94
d=10 185| 23 ratio = 4.62 ratio = 4.11 ratio = 1.62 ratio = 1.18
mprime03cc (49| 9 | 1.47 5,469 1,391 0.45 2,336 7200.12 534 366 0.10 111 94
d=10 185| 23 ratio = 3.93 ratio = 3.24 ratio = 1.46| ratio = 1.18

Table 2. CPU time in seconds, the trace of AND/OR Branch-and-Bound seaoth)(&nd the
AOMDD size (#aomdd) for the planning instances. Compilation time limit 1 hour

and they are able to prune the search space significantlgnsecuence, the difference
in size between the AOMDD and the AND/OR graph explored desae. When look-
ing at the OR versus the AND/OR compilation schemes, we adtiat AOMDD is
smaller than the OR MDD, for all reportéebounds. On some of the harder instances,
the OR compilation scheme did not finish within the 1 hour tlimnét (e.g.,408, 505).

ISCAS’89 Benchmark Circuits ISCAS’89 circuits are a common benchmark used in
formal verification and diagnosisitp://www.fm.vslib.cz/ kes/asic/iscagFor our pur-
pose, we converted each of these circuits into a non-binarg®ji@stance by removing



flip-flops and buffers in a standard way, creating hard cairgs for gates and uniform
unary cost functions for the input signals. The penaltysosdre distributed uniformly
randomly between 1 and 10.

Table 1 shows the results for experiments with 7 circuite blumns are indexed
by the mini-bucket-bound. We observe again that the difference in size between
resulting AOMDD and the AND/OR search graph explored\®BB( ¢) is more promi-
nent for relatively smali-bounds. For example, on tle& 32 circuit and ati = 10, the
AOMDD is about 9 times smaller than the corresponding ANDP&ph.

Planning We also experimented with problems from planning in temipamd metric
domains fttp://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Behmark$. These instances
were converted into binary WCSPs as follows: each fluent ofpthaning graph is
represented by a variable with domain values representisgilple actions to produce
this fluent. Hard binary constraints represent mutual esiahs between fluents and ac-
tions, and activity edges in the graph. Soft unary condsagpresent action costs. The
goal is to find a valid plan which minimizes the sum of the attiosts.

Table 2 shows the results for experiments with 12 planningioks. On this do-
main we only observe minor differences between the size eictimpiled AOMDD
and the corresponding AND/OR search graph. This is due {pa@urate mini-bucket
heuristics which cause the AND/OR Branch-and-Bound tochespanding nodes that
correspond to solutions whose cost is above the optimal one.

5.2 0/1 Integer Linear Programs

A 0/1 Integer Linear Programmin¢p/1 ILP) [13] consists of a set of integer decision
variables (restricted to values 0 or 1) and a set of lineasiraimts (equalities or inequal-
ities). The goal is to minimize a global linear cost functgarbject to the constraints. 0/1
ILPs can formulate many practical problems such as capitddéting, cargo loading,
combinatorial auctions or maximum satisfiability problems

We consider the AND/OR Branch-and-Bound algorithm devetbim [15] and de-
noted byACBB, as the basis for our AND/OR compilation scheme. The heagstlu-
ation function used byAOBB is computed by solving the linear relaxation of the current
subproblem with theimMPLEX method [16] (our code used the implementation from the
open source libraryp_sol ve 5. 5 available at http://Ipsolve.sourceforge.net/5.5/).

MIPLIB Instances MIPLIB is a library of Mixed Integer Linear Programming in-
stances that is commonly used for benchmarking integeranaging algorithms. For
our purpose we selected four 0/1 ILP instances of increatiffigulty. Table 3 reports
a summary of the experiment. We observe that the AOMDD is lem#dan the cor-
responding AND/OR search graph, especially for harderlprob where the heuristic
function generates relatively weak estimates. Resulthesetinstances have been re-
ported in [4], but we note that they are only for optimal smog, while we also include
suboptimal ones here. Also, in [4] they use of-the-sheliojzed BDD packages, while
we use our own far-from-optimized implementation, and irtipalar we do not use re-
dundancy reduction in these experiments. Moreover, therasél variables plays an
enormous part in compilation and it may be the case that ttierimg selected by the
BDD tools is far superior (albeit OR ordering).



miplib| (n, ¢) (w*, h) time  #cm #aomdgatio
p0033 (33,15)| (19,21)| 0.52 441 1642.69
p0040 (40, 23)| (19,23)| 0.36 129 771.66
p0201j(201, 133)(120, 142) 89.44 12,683 5,492.31
Iseu | (89, 28)| (57, 68) |454.79 109,126 21,49%.08

Table 3. The trace of AND/OR Branch-and-Bound search (#cm) versus th®BD size
(#aomdd) for the MIPLIB instances. Comnilation time limit 1 hour.

16x10° 25x10°
—e— #cm (AOBB) —e— #cm (AOBB)
14x10° 1 o aomdd (AOBB) ) o #aomdd (AOBB)
—v— #cm (BB) 20x10° | —v— #cm (BB)

v+ #mdd (BB) v #mdd (BB)

12x10%
10x10° 15x10%
8x10° o )
o 10x10°
6x10°
4x10° 5x10°

2x10°

0

bids bids

Fig.5. The trace of AND/OR Branch-and-Bound search versus the AOMDE &z the
regi ons- upv andr egi ons- npv combinatorial auctions.

Combinatorial Auctions In combinatorial auctions, an auctioneer has a set of goods,
M = {1,2,...,m} to sell and the buyers submit a set of bils= {Bi, B, ..., B, }.
A bid is a tupleB; = (S;,p;), whereS; C M is a set of goods angd; > 0 is a
price. The winner determination problem is to label the @gdsvinning or loosing so
as to maximize the sum of the accepted bid prices under thetredmt that each good
is allocated to at most one bid. We used the 0/1 ILP formutadiescribed in [17].
Figure 5 shows results for experiments with combinatorigitians drawn from
ther egi ons distribution of the CATS 2.0 test suite [17]. The suffixgsv andupv
indicate that the bid prices were drawn from either a nornnalréform distribution.
These problem instances simulate the auction of radio spedh which a government
sells the right to use specific segments of spectrum in éiffiegeographical areas. We
looked at auctions with 100 goods and increasing numberdsf. liiach data point rep-
resents an average over 10 random instances. For comparis@hso included results
obtained with the OR compilation scheme. On this domain, bseove that the com-
piled AOMDD improves only slightly over the size of the ANDRsearch graph. This
is because the context minimal AND/OR graph is already catngaough due to very
accurate heuristic estimates.

Maximum Satisfiability (MAX-SAT) Given a set of Boolean variables the goal of
MAX-SAT is to find a truth assignment to the variables thataftes the least number of
clauses. The MAX-SAT problem can be formulated as a 0/1 I18}. /e experimented
with problem classegr et andduboi s from the SATLIB (http://www.satlib.org] li-
brary, which were previously shown to be difficult for 0/1 IsBlvers (CPLEX) [19].
Table 4 shows the results for experiments withr&t instances. These are unsatis-
fiable instances of graph 2-coloring with parity constrsiffthe size of these problems



pret (w*, h)| time  #cm #aomdldatio e #om (a0BB)

pret60-25((6, 13) 2.74 593  2552.33 o peomas (h0%8)
pret60-40 (6, 13) 3.39 698  2562.73
pret60-60 | (6, 13) 3.31 603  2222.72
pret60-75 (6, 13)| 2.70 565  2532.23
pret150-2%(6, 15)18.19 1,544 851181
pret150-40(6, 15)[29.09 2,042  922.21]
pret150-60(6, 15)30.09 2,051  87]R.34
pret150-7%(6, 15)[29.08 2,033  89(2.29

log(size)
3

Table 4. The trace of AND/OR Branch-and- Fig.6. The trace of AND/OR Branch-and-
Bound search (#cm) versus the AOMDD sizeBound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SATpr et instances. (#aomdd) for MAX-SATduboi s instances.

is relatively small (60 variables with 160 clauses foret 60 and 150 variables with
400 clauses fopr et 150, respectively). However, they have a very small context wit
size 6 and a shallow pseudo-tree with depths between 13 ai@d ghis problem class
we observe that the AND/OR decision diagrams have about &stiewer nodes than
the AND/OR search graphs explored B@BB. This is because the respective search
spaces are already small enough, and this does not leave mochfor additional
merging of isomorphic nodes in the diagram.

Figure 6 displays the results for experiments with randhrboi s instances with
increasing number of variables. These are 3-SAT instan@bs3wk degree variables
and8 x degree clauses, each of them having 3 literals. As in the previossdase,
the duboi s instances have very small contexts of size 6 and shallowdostees
with depths ranging from 10 to 20. The AND/OR decision diagsa&ompiled for these
problem instances are far smaller than the correspondinQ/®R search graphs, es-
pecially for some of the larger instances. For example, gitade320, the corresponding
AOMDD is 40 times smaller than the trace AOBB.

6 Conclusion and Discussion

We presented a new search based algorithm for compiling pitimal solutions of a
constraint optimization problem into a weighted AND/OR RkitMalued Decision Dia-
gram (AOMDD). Our approach draws its efficiency from: (1) ANIR search spaces
for graphical models [5] that exploit problem structureelging memory intensive
search algorithms exponential in the problenmsewidthrather thanpathwidth (2)
Heuristic search algorithms exploring tight portions of #{iND/OR search space. In
particular, we use here a state-of-the-art AND/OR Branuti-HBound search algorithm
[6,10], with very efficient heuristics (mini-bucket, or gatex-based), that in practice
traverses only a small portion of the context minimal gragrekploiting the pruning
power of the cost function. (3) Reduction techniques simdaOBDDs further reduce
the trace of the search algorithm.

The paper extends earlier work on AOMDDs [7] by considerirgghted AOMDDs
based on cost functions, rather than constraints. This caneasily be extended to



any weighted graphical model, for example to probabilisttworks. Finally, using
an extensive experimental evaluation we show the efficiemz compactness of the
weighted AOMDD data structure.

For future work, we mention the possibility of using besstfihkND/OR search for

the compilation task, whose virtue is that it does not expaodes whose heuristic
evaluation function is larger than the optimal cost.
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