
AND/OR Multi-Valued Decision Diagrams for
Constraint Optimization

Robert Mateescu, Radu Marinescu and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425

{mateescu,radum,dechter}@ics.uci.edu

Abstract. We propose a new top down search-based algorithm for compiling
AND/OR Multi-Valued Decision Diagrams (AOMDDs), as representations ofthe
optimal set of solutions for constraint optimization problems. The approach is
based on AND/OR search spaces for graphical models, state-of-the-art AND/OR
Branch-and-Bound search, and on decision diagrams reduction techniques. We
extend earlier work on AOMDDs by considering general weighted graphs based
on cost functions rather than constraints. An extensive experimental evaluation
proves the efficiency of the weighted AOMDD data structure.

1 Introduction

The compilation of graphical models, including constraintand probabilistic networks,
has recently been under intense investigation. Compilation techniques are useful when
an extended off-line computation can be traded for fast real-time answers. Typically, a
tractable compiled representation of the problem is desired. Since the tasks of interest
are in general NP-hard, this is not always possible in the worst case. In practice, how-
ever, it is often the case that the compiled representation is much smaller than the worst
case bound, as was observed for Ordered Binary Decision Diagrams (BDDs) [1] which
are extensively used in hardware and software verification.

In the context of constraint networks, compilation schemesare very useful for in-
teractive solving or product configuration type problems [2, 3]. These are combinatorial
problems where a compact representation of the feasible setof solutions is necessary.
The system has to becomplete(to represent all solutions),backtrack-free(to never en-
counter dead-ends) andreal-time(to provide fast answers).

In this paper we present a compilation scheme for constraintoptimization, which
has been of interest recently in the context of post-optimality analysis [4]. Our goal is
to obtain a compact representation of the set of optimal solutions, by employing tech-
niques from search, optimization and decision diagrams. Our approach is based on three
main ideas: (1) AND/OR search spaces for graphical models [5]. Their key feature is
the exploitation of problem structure during search, sometimes yielding exponential im-
provement over structure-blind search methods. (2) Branch-and-Bound search for opti-
mization, applied to AND/OR search spaces [6]. (3) Reduction rules similar to OBDDs,
that lead to the compilation of the search algorithm trace into an AND/OR Multi-Valued
Decision Diagram (AOMDD) [7]. The novelty over previous results consists in: (1) the

1111
0011
1101
0001
1110
0010
0100
0000

f(ABC)CBA

(a) Table

B

A

C

0 0

C

0 1

B

C

0 1

C

0 1

(b) Ordered tree

B

A

C C

0 1

B

C C

(c) Isomorphism

B

A

C

0 1

B

C

(d) Redundancy

B

A

0 1

C

(e) OBDD

Fig. 1.Boolean function representations

treatment of general weighted graphs based on cost functions, rather than constraints.
(2) a top down search based approach for generating the AOMDD, rather than Variable
Elimination based as in [7]. (3) Extensive experimental evaluation that proves the effi-
ciency of the weighted AOMDD. We show that the compilation scheme can often be
accomplished relatively efficiently and that we sometimes get a substantial reduction
beyond the initial trace of state-of-the-art search algorithms.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a tripleP = 〈X,D,F〉, where
X = {X1, ...,Xn} is a set of variables,D = {D1, ...,Dn} is a set of finite domains
andF = {f1, ..., fr} is a set of cost functions. Cost functions can be eithersoftor hard
(constraints). Without loss of generality we assume that hard constraints are represented
as (bi-valued) cost functions. Allowed and forbidden tuples have cost0 and∞, respec-
tively. The scope of functionfi, denotedscope(fi) ⊆ X, is the set of arguments of
fi. The goal is to find a complete value assignment to the variables that minimizes the
global cost function, namely to findx = arg minX

∑r

i=1 fi.
Given a COP instance, itsprimal graphG has a node for each variable and connects

any two nodes whose variables appear in the scope of the same function. Theinduced
graphof G relative to an orderingd of its variables is obtained by processing the nodes
in reverse order ofd. For each node all its earlier neighbors are connected, including
neighbors connected by previously added edges. Thewidth of a node is the number of
edges connecting it to nodes lower in the ordering. Theinduced width(also equal to the
treewidth) of a graph alongd, denotedw∗(d), is the maximum width of nodes in the
induced graph. Thepathwidthof a graph alongd, pw∗(d), is equal to the induced width
of the graph with extra edges added between any node and its successor ind.

2.2 Binary Decision Diagrams

Decision diagrams are widely used in many areas of research to represent decision
processes. In particular, they can be used to represent functions. Due to the fundamental
importance of Boolean functions, a lot of effort has been dedicated to the study of
Binary Decision Diagrams(BDDs), which are extensively used in formal verification.

A BDD is a representation of a Boolean function. GivenB = {0, 1}, a Boolean
function f : B

n → B, hasn arguments,X1, · · · ,Xn, which are Boolean variables,
and takes Boolean values. A Boolean function can be represented by a table (see Figure
1(a)), but this is exponential inn, and so is the binary tree representation in Figure

2111

8

011

2101

8

001

2110

8

010

8

100

8

000

f1(ABC)CBA

5111

6011

5101

6001

2110

0010

8

100

1000

f2(ABD)DBA

4111

8

011

3101

8

001

4110

8

010

3100

8

000

f3(BDE)EDB

(a) Functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Primal graph

A

E

B

DC

[]

[A]

[AB]

[BD]

[AB]

(c) Pseudo tree

B

10

A

10

C

10

8 8

D

10

1 8

E

10

8 3

C

10

8 2

D

10

0 2

E

10

8 3

E

10

8 4

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(d) AND/OR search tree

Fig. 2. AND/OR search tree for COP

1(b). OBDDs [1] provide a more compact representation, thatalso supports efficient
operations, by imposing the same order to the variables along each path in the binary
tree, and then applying the following two reduction rules exhaustively: (1)isomorphism:
merge nodes that have the same label and the same respective children (Figure 1(c)); (2)
redundancy: eliminate nodes whose low (zero) and high (one) edges pointto the same
node (see Figure 1(d)). The resulting OBDD is shown in Figure1(e).

2.3 AND/OR Search Spaces for COP

The AND/OR search space [5] is a unifying framework for advanced algorithmic schemes
for graphical models, including constraint networks and cost networks. Its main virtue
consists in exploiting independencies between variables during search, which can pro-
vide exponential speedups over traditional structure-blind search methods. The search
space is defined using a backbonepseudo-tree[8].

Definition 1 (pseudo-tree).Given an undirected graphG = (X, E), a directed rooted
treeT = (X, E′) defined on all its nodes is calledpseudo-treeif any edge ofG that is
not included inE′ is a back-arc inT , namely it connects a node to an ancestor inT .

AND/OR Search Trees Given a COP instanceP, its primal graphG and a pseudo tree
T of G, the associated AND/OR search tree,ST , has alternating levels of OR and AND
nodes. The OR nodes are labeledXi and correspond to the variables. The AND nodes
are labeled〈Xi, xi〉 (or justxi) and correspond to value assignments of the variables.
The structure of the AND/OR search tree is based on the underlying pseudo treeT .
The root of the AND/OR search tree is an OR node labeled with the root ofT . The
children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉 that are
consistent with the assignments along the path from the root. The children of an AND

node〈Xi, xi〉 are OR nodes labeled with the children of variableXi in T . The AND/OR
search tree can be traversed by a depth first search (DFS) algorithm, thus using linear
space to compute the value of the root node. It was shown [8, 9]:

Theorem 1. Given a COP instanceP and a pseudo treeT of depthm, the size of the
AND/OR search tree based onT isO(n·km), wherek bounds the domains of variables.
A COP having treewidthw∗ has a pseudo tree of depth at mostw∗ log n, therefore it
has an AND/OR search tree of sizeO(n · kw∗ log n).

Weighted AND/OR Search Trees The OR-to-AND arcs from nodesXi to xi in an
AND/OR search tree are annotated byweightsderived from the cost functions inF.

Definition 2 (weight). Theweight w(Xi, xi) of the arc from the OR nodeXi to the
AND nodexi is the sum of all the cost functions whose scope includesXi and is fully
assigned along the path from the root toxi, evaluated at the values along the path.

The AND/OR search tree in Figure 2(d) shows the weights on theOR-to-AND arcs.
Given a weighted AND/OR search tree, each node can be associated with avalue:

Definition 3 (value).Thevaluev(n) of a noden in a weighted AND/OR tree is defined
recursively as follows (wheresucc(n) are the children ofn):

(i) v(n) = 0, if n = xi is a terminal AND node;
(ii) v(n) =

∑
n′∈succ(n) v(n′), if n = xi is an internal AND node;

(iii) v(n) = minn′∈succ(n)(w(n, n′) + v(n′)), if n = Xi is an OR node.

It is easy to see that the valuev(n) of a node in the AND/OR search treeST is
the minimal cost solution to the subproblem rooted atn, subject to the current variable
instantiation along the path from the root ton. If n is the root ofST , thenv(n) is the
minimal cost solution to the initial problem [6, 5].

Example 1.Figure 2 shows an example of AND/OR search tree for a COP with binary
variables. The cost functions are given in Figure 2(a). The value∞ indicates a hard
constraint. The primal graph is given in Figure 2(b), and thepseudo tree in Figure 2(c).
The square brackets indicate the context of the variables, anotion explained below. The
AND/OR search tree is given in Figure 2(d). The numbers on theOR-to-AND arcs are
the weights corresponding to the function values. Note thatthe tree is pruned whenever
a weight shows inconsistency (e.g., forA = 0, B = 0,D = 1).

AND/OR Search Graphs The AND/OR search tree may contain nodes that root
identical conditioned subproblems. These nodes are said tobe unifiable. When unifi-
able nodes are merged, the search space becomes a graph. Its size becomes smaller at
the expense of using additional memory by the search algorithm. The depth first search
algorithm can therefore be modified to cache previously computed results, and retrieve
them when the same nodes are encountered again. Some unifiable nodes can be iden-
tified based on theircontexts. We can define graph based contexts for both OR nodes
and AND nodes, just by expressing the set of ancestor variables inT that completely
determine a conditioned subproblem. It can be shown that using caching based on OR
contexts makes caching based on AND contexts redundant, so we only useOR caching.

B

10

A

10

C

10

8 8

D

10

1 8
C

10

8 2

D

10

0 2

B

10

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

C

10

8 2

D

10

6 5

E

10

8 3

E

10

8 4

(a) Context minimal AND/OR graph

E

10

8 4

E

10

8 3

0

B

10

A

10

D

10

1 8

D

10

0 2

C

10

8 2

D

10

6 5

1

(b) AOMDD

Fig. 3.AND/OR graphs for COP

Given a pseudo treeT of an AND/OR search space, thecontextof an OR node
X, denoted bycontext(X) = [X1 . . . Xp], is the set of ancestors ofX in T ordered
descendingly, that are connected in the primal graph toX or to descendants ofX. The
context ofX separates the subproblem belowX from the rest of the network.

Definition 4 (context minimal AND/OR graph). Given a COP instanceP and a
pseudo-treeT , thecontext minimalAND/OR graph, denoted byCT is obtained from
the AND/OR search tree ofP alongT by merging all the context unifiable OR nodes.

Theorem 2 ([9, 5]).Given a COPP, its primal graphG and a pseudo treeT , the size
of the context minimal AND/OR search graphCT is O(n · kw∗

T (G)), wherew∗T (G) is
the induced width ofG over the DFS traversal ofT , andk bounds the domain size.

Example 2.Figure 2(c) shows a pseudo tree and the context of each variable in square
brackets. The context minimal AND/OR graph is given in Figure 3(a). Note that only
the cache table ofE will get cache hits during the depth first search traversal (E is the
only level of OR nodes that has more than one incoming arc). Itcan be determined from
the pseudo tree inspection that all variables except forE generatedead-caches[5, 10]
(also explained in following section), and their cache tables need not be stored.

3 Weighted AND/OR Multi-valued Decision Diagrams

The context minimal AND/OR graph offers an effective way of identifying some unifi-
able nodes. However, merging based on context is not complete, i.e. there may still be
unifiable nodes in the search graph that do not have identicalcontexts. The context-
based merging uses only information available from the ancestors in the pseudo tree.
If all the information from the descendants would also be available, it could lead to
the identification of more unifiable nodes. This comes at a higher cost, however, since
information from descendants in the pseudo tree means that the entire associated sub-
problem has to be solved. Orthogonal to the problem of unification, some of the nodes
in an AND/OR search graph may be redundant, for example when the set of solutions
rooted at variableXi is not dependent on the specific value assigned toXi.

The above criteria suggest that once an AND/OR search graph is available (e.g.,
after search terminates, and its trace is saved) reduction rules based onisomorphism

and redundancy(similar to OBDDs) can be applied further, reducing the sizeof the
AND/OR search graph that was explicated by search. In order to apply the reduction
rules, it is convenient to group each OR node and its childreninto ameta-node:

Definition 5 (meta-node).A meta-nodev in a weighted AND/OR search graph con-
sists of an OR node labeledvar(v) = Xi and itski AND children labeledxi1 , ..., xiki

that correspond to its value assignments. Each AND node labeledxij
points to a list of

child meta-nodes,u.childrenj , and also stores the weightw(Xi, xij
).

The reduction rules are straightforward. Two meta-nodes are isomorphicif they
have the same variable label and the same respective lists ofchildren and weights. A
meta-node isredundantif all its lists of children and weights are respectively identical.

When reduction rules are applied exhaustively to an AND/OR search graph, the
result is an AND/OR Multi-Valued Decision Diagram (AOMDD).The AOMDD data
structure for constraint networks (where weights are all 1)was introduced in [7], along
with a Variable Elimination type algorithm to generate it, based on theapplyoperator,
similar to the OBDD case.

An example of a AOMDD appears in Figure 3(b), representing the exhaustive reduc-
tion of the context minimal AND/OR graph in Figure 3(a). The terminal nodes labeled
with 0 and1 denote inconsistent and consistent assignments, respectively. Note that
whenA = 1, B is redundant and its common list of children becomes the listof chil-
dren forA = 1, namely the problem already splits into two independent components
afterA = 1, even though this can not be read from the pseudo tree in Figure 2(c).

4 Compiling COPs into AOMDDs

We next define the AOMDD describing the set of optimal solutions to a COP and
present a general scheme for generating these compiled datastructures.

Definition 6. Given a set of tuplesS over variablesX and a treeT over X, T ex-
pressesS iff there exists an AND/OR tree guided byT that expresses all and only
tuples inS.

Proposition 1. If T is a pseudo-tree of a COPP, thenT can be used to expressSopt,
the set of optimal solutions ofP.

Definition 7. Given a COPP, its set of optimal solutionsSopt and a pseudo treeT of
P, its AOMDDopt

T is the AOMDD that expresses all and onlySopt relative toT .

The target is to generate AOMDDopt
T of a COP. The idea is to use a pseudo tree

T that can express all solutions and explore a subset of its context minimal AND/OR
graph,CT that contains all the optimal solutions and then process it so that it will
represent only optimal solutions and be completely reducedrelative to isomorphism
and redundancy. Therefore, any search algorithm for optimal solutions that explores the
context minimal graph can be used to generate the initial trace. The better the algorithm
we use, the more efficient the procedure would be because the initial trace will be tight
around the context minimal graph that is restricted to the optimal solutions.

In recent years several Branch-and-Bound and Best-First search algorithms were
developed to search the context minimal AND/OR graph for solving COPs [6, 10, 11].
In this paper we use a depth-first AND/OR Branch-and-Bound (AOBB) algorithm.

4.1 AND/OR Branch-and-Bound Search

AOBB traverses the context minimal AND/OR search graph in a depth-first manner via
full caching. It interleaves forward expansion of the current partial solution subtree
with a backward cost revision step that updates node values,until search terminates.
The efficiency of the algorithm also depends on the strength of its heuristic evaluation
function (i.e., lower bound). Specifically, each noden along the path from the root has
an associatedstaticheuristic functionh(n) underestimatingv(n) that can be computed
efficiently when the noden is first expanded. The algorithm then improves the heuristic
function dynamically during search. Thedynamic heuristic functionfh(n) is computed
based on the search space belown that has already been explored [6], and is used to
prune irrelevant portions of the search space, based on the Branch-and-Bound principle.

In the forward step the algorithm expands alternating levels of OR and AND nodes.
Since we are using OR caching, before expanding an OR node, its cache table is
checked. If the same context was encountered before, it is retrieved from the cache,
and its successors set is set to empty which will trigger the cost revision step. If an OR
node is not found in the cache, it is expanded in the usual way.Before expanding an
AND noden, the algorithm updates the heuristic functionfh(a) for every ancestora
of n along the current path, and discontinues search belown if, for somea, fh(a) is
greater or equal than the best cost solution found ata (the upper bound).

The backward cost revision step is triggered when a closed node has an empty set
of successors. This means that all its children have been evaluated, and its final value
can now be computed. If the current node is the root, then the search terminates with its
value. OR nodes update their values by minimization, while AND nodes combine their
children values by summation.

4.2 The Compilation Algorithm

The compilation algorithm, calledAOBB-COMPILE, is described in Algorithm 1. It
extends the AND/OR Branch-and-Bound algorithm described above by compiling the
trace of the search into an AND/OR Multi-Valued Decision Diagram representing all
optimal solutions to the input COP instance.

The algorithm is based on two mutually recursive steps, similar toAOBB: EXPAND
and REVISE which call each other until the search terminates. The fringe of the search
is maintained on a stack calledOPEN. The current node isn, its parentp, and the current
pathπn. The children of the current node in the AND/OR search graph are denoted by
succ(n). The AND/OR decision diagram being constructed is denoted by AOMDD.
Each nodeu in the AND/OR search graph has a pointer, denoted byu.metanode, to
the corresponding meta-node in AOMDD.

In the EXPAND step, when the current OR noden is expanded,AOBB-COMPILE
creates a new meta-node corresponding ton and adds it to AOMDD. Ifn is already
present in cache, thenAOBB-COMPILE ensures that the meta-node corresponding to
n’s parent in the context minimal search graph points to the meta-node that was created
whenn was first expanded.

In the REVISE step when node values are propagated backwards, the algorithm
also attempts to reduce the diagram by removing isomorphic meta-nodes. Specifically,
if n is the current OR node being evaluated and if there exists a meta-nodem which

Algorithm 1 : AOBB-COMPILE
Data: A COP instanceP = 〈X, D, F〉, pseudo-treeT , roots, heuristic functionfh.
Result: AOMDD containing the optimal solutions toP .
v(X1)←∞; OPEN ← {X1};AOMDD ← ∅; // Initialize1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN3
let πn be the assignment along the path from the root ton4
if n is an OR node, labeledXi then // EXPAND5

if Cache(n, context(Xi)) 6= ∅ then6
v(n)← Cache(n, context(Xi))7
succ(n)← ∅8
let p = 〈Xj , xj〉 be the AND parent ofn in the AND/OR search graph9
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {n.metanode}10

else11
succ(n)← {〈Xi, xi〉|〈Xi, xi〉 is consistent withπn}12
for 〈Xi, xi〉 ∈ succ(n) do13

v(〈Xi, xi〉)← 0; h(〈Xi, xi〉)← heuristic(Xi,xi)14
w(Xi, xi)←

∑
f∈F,Xi∈scope(f) f(πn)15

create a new meta-nodem for Xi and add it to AOMDD16
let p = 〈Xj , xj〉 be the AND parent ofn in the AND/OR search graph17
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {m}18

Add succ(n) on top ofOPEN19

else ifn is an AND node, labeled〈Xi, xi〉 then20
for a ∈ ancestors(Xi, xi) do21

if (a is OR)and (fh(a) > v(a)) then22
n.deadend← true23
n.metanode.childrenxi

← UNSOLV ED24
break25

if n.deadend == false then26
succ(n)← {Xj |Xj ∈ childrenT (Xi)}27
v(Xj)←∞; h(Xj)← heuristic(Xj)28
Add succ(n) on top ofOPEN29
if succ(n) == ∅ then30

n.metanode.childrenxi
← SOLV ED31

while succ(n) == ∅ do // REVISE32
let p be the parent ofn33
if n is an OR node, labeledXi then34

if Xi == X1 then // Search is complete35
return AOMDD36

Cache(n, context(Xi))← v(n)37
v(p)← v(p) + v(n)38
n.metanode.value← v(n)39
if findIsomorphism(n.metanode) == true then40

let m be the meta-node isomorphic withn.metanode41
redirect the links ofn.metanode’s parents in AOMDD to point tom42
AOMDD ← AOMDD − {n.metanode}43

if n is an AND node, labeled〈Xi, xi〉 then44
v(p)← min(v(p), w(Xi, xi) + v(n))45

removen from succ(p)46
n← p47

is isomorphic withn.metanode, then the parents ofn.metanode in the AOMDD are
updated to point tom instead ofn.metanode, which is then removed from the diagram.

The compiled AOMDD may contain sub-optimal solutions that were visited during
the Branch-and-Bound search but were not pruned. Therefore, a second pass over the

decision diagram is necessary to remove any path which does not appear in any opti-
mal solution (omitted from the algorithm due to space limitations). Specifically, in the
second passAOBB-COMPILE traverses the AOMDD in a depth-first manner for every
meta-nodeu along the current path from the root, it prunesu.childrenj from the dia-
gram if(

∑
u′∈u.childrenj

v(u′)+w(Xi, xij
)) > v(u), namely the optimal cost solution

to the problem below thej child of u is not better than the optimal cost solution atu.

Theorem 3. Given a COP instanceP = 〈X,D,F〉 and a pseudo treeT of P, the
AOMDD generated byAOBB-COMPILE alongT is AOMDDopt

T .

The complexity ofAOBB-COMPILE is bounded time and space by the trace gen-
erated, which isO(n · exp(w∗)). However, the heuristic evaluation function used by
AOBB typically restricts the trace far below this complexity bound.

5 Experiments

In this section we evaluate empirically the compilation scheme on two common classes
of optimization problems: Weighted CSPs (WCSP) [12] and 0/1 Integer Linear Pro-
grams (0/1 ILP) [13]. In our experiments we compiled the search trace relative to iso-
morphic meta-nodes only, without removing redundant nodes. Also we did not perform
the second top-down pass over the diagram to remove additional sub-optimal solutions.

5.1 Weighted CSPs

Weighted CSP[12] extends the classic CSP formalism withsoft constraintswhich as-
sign positive integer costs to forbidden tuples (allowed tuples have cost 0). The goal is
to find a complete assignment with minimum aggregated cost. The model has numerous
applications in domains such as resource allocation, scheduling or planning.

We consider the compilation algorithm based on the AND/OR Branch-and-Bound
algorithm with pre-compiled mini-bucket heuristics and full caching introduced by [10]
and denoted byAOBB(i). The parameteri represents the mini-bucketi-bound and
controls the accuracy of the heuristic.

For each test instance we report the number of OR nodes in the context minimal
AND/OR search graph (#cm) visited byAOBB(i), and the number of meta-nodes in
the resulting AND/OR decision diagram (#aomdd), as well as their ratio defined as
ratio = #cm

#aomdd
. In some cases we also report the compilation time. We recordthe

number of variables (n), the number of constraints (c), the depth of the pseudo-trees (h)
and the induced width of the graphs (w∗) obtained for the test instances. The pseudo-
trees were generated using the min-fill heuristic, as described in [6].

Earth Observing Satellites The problem of scheduling an Earth observing satellite
is to select from a set of candidate photographs, the best subset such that a set of im-
perative constraints are satisfied and the total importanceof the selected photographs is
maximized. We experimented with problem instances from theSPOT5 benchmark [14]
which can be formulated as non-binary WCSPs. For our purpose we considered a sim-
plified MAX-CSP version of the problem where the goal is to minimize the number of
imperative constraints violations (i.e., we ignored the importance of the photographs).

Fig. 4. The trace of AND/OR Branch-and-Bound search (nodes) versus theAOMDD size
(aomdd) for the SPOT5 networks. Compilation time limit 1 hour.

Figure 4 displays the results for experiments with 6 SPOT5 networks. Each sub-
graph depicts the trace ofAOBB(i) and the size of the resulting AND/OR decision
diagram as a function of thei-bound of the mini-bucket heuristic. For comparison, we
also include the results obtained with the OR version of the compilation scheme that
explores the traditional OR search space.

We observe that the resulting AOMDD is substantially smaller than the context min-
imal AND/OR graph traversed byAOBB(i), especially for relatively smalli-bounds
that generate relatively weak heuristic estimates. For instance, on the408 network, we
were able to compile an AOMDD 11 times smaller than the AND/ORsearch graph ex-
plored byAOBB(8). As thei-bound increases, the heuristic estimates become stronger

AOBB+SMB(i)

iscas n w* i=10 i=12 i=14 i=16
c h time #cm #aomdd time #cm #aomdd time #cm #aomdd time #cm #aomdd

s386 172 19 0.50 2,420 811 0.17 1,132 558 0.21 527 360 0.38 527 360
172 44 ratio = 2.98 ratio = 2.03 ratio = 1.46 ratio = 1.46

s953 440 66 - - 981.20 186,658 37,08422.46 22,053 9,847
464 101 ratio = 5.03 ratio = 2.24

s1423748 24 21.12 21,863 9,389 7.47 13,393 6,515 5.09 10,523 6,043 2.01 5,754 4,316
751 54 ratio = 2.33 ratio = 2.06 ratio = 1.74 ratio = 1.33

s1488667 47 250.18 83,927 20,774 4.48 15,008 3,929 10.72 23,872 5,3755.54 5,830 3,246
667 67 ratio = 4.04 ratio = 3.82 ratio = 4.44 ratio = 1.80

s1494661 48 138.61 63,856 18,501387.73 125,030 22,39337.78 31,355 11,54639.75 30,610 12,467
661 69 ratio = 3.45 ratio = 5.58 ratio = 2.72 ratio = 2.46

c432 432 27 1867.49 395,766 41,964 1.29 7,551 4,024 1.30 7,112 3,693 0.74 1,120 881
432 45 ratio = 9.43 ratio = 1.88 ratio = 1.93 ratio = 1.27

c499 499 23 363.78 93,936 33,157 6.66 12,582 7,051271.26 88,131 23,50216.75 17,714 9,536
499 74 ratio = 2.83 ratio = 1.78 ratio = 3.75 ratio = 1.86

Table 1. CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm) and the
AOMDD size (#aomdd) for the ISCAS’89 circuits. Compilation time limit 1 hour.

AOBB+SMB(i)

planning n w* i=6 i=8 i=10 i=12
c h time #cm #aomdd time #cm #aomddtime #cm #aomdd time #cm #aomdd

bwt3ac 45 16 77.45 28,558 12,15245.76 22,475 11,1068.92 3,878 2,53799.00 1,775 1,252
d=11 301 34 ratio = 2.35 ratio = 2.02 ratio = 1.53 ratio = 1.42
bwt3bc 45 11 54.22 23,560 10,54429.62 18,734 9,4228.61 3,455 2,24385.73 1,599 1,141
d=11 301 33 ratio = 2.23 ratio = 1.99 ratio = 1.54 ratio = 1.40
bwt3cc 45 19 32.55 19,643 9,12220.03 15,696 8,1498.51 3,113 2,04685.57 935 731
d=11 301 42 ratio = 2.15 ratio = 1.93 ratio = 1.52 ratio = 1.28
depot01ac 66 14 1.45 7,420 2,504 0.73 4,056 1,9950.42 1,214 830 1.48 506 432
d=5 298 33 ratio = 2.96 ratio = 2.03 ratio = 1.46 ratio = 1.17
depot01bc 66 14 1.31 7,068 2,358 0.55 3,333 1,6410.39 1,316 886 1.47 514 432
d=5 298 33 ratio = 3.00 ratio = 2.03 ratio = 1.49 ratio = 1.19
depot01cc 66 14 1.36 7,156 2,411 0.82 4,333 2,1960.38 1,262 841 1.47 269 219
d=5 298 33 ratio = 2.97 ratio = 1.97 ratio = 1.50 ratio = 1.23

i=2 i=4 i=6 i=8

driverlog01ac 71 9 1.37 7,490 2,134 0.41 3,143 1,4120.05 279 237 0.10 451 331
d=4 271 38 ratio = 3.51 ratio = 2.23 ratio = 1.18 ratio = 1.36
driverlog01bc 71 9 1.36 7,447 2,128 0.42 3,098 1,3890.04 231 210 0.07 247 212
d=4 271 38 ratio = 3.50 ratio = 2.23 ratio = 1.10 ratio = 1.17
driverlog01cc 71 9 1.61 7,741 2,185 0.10 883 6220.04 279 237 0.07 295 239
d=4 271 38 ratio = 3.54 ratio = 1.42 ratio = 1.18 ratio = 1.23
mprime03ac 49 9 2.12 7,172 1,562 0.66 3,343 8630.11 595 386 0.16 111 94
d=10 185 23 ratio = 4.59 ratio = 3.87 ratio = 1.54 ratio = 1.18
mprime03bc 49 9 2.07 7,266 1,573 0.68 3,486 8490.12 641 396 0.10 111 94
d=10 185 23 ratio = 4.62 ratio = 4.11 ratio = 1.62 ratio = 1.18
mprime03cc 49 9 1.47 5,469 1,391 0.45 2,336 7210.12 534 366 0.10 111 94
d=10 185 23 ratio = 3.93 ratio = 3.24 ratio = 1.46 ratio = 1.18

Table 2. CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm) and the
AOMDD size (#aomdd) for the planning instances. Compilation time limit 1 hour.

and they are able to prune the search space significantly. In consequence, the difference
in size between the AOMDD and the AND/OR graph explored decreases. When look-
ing at the OR versus the AND/OR compilation schemes, we notice that AOMDD is
smaller than the OR MDD, for all reportedi-bounds. On some of the harder instances,
the OR compilation scheme did not finish within the 1 hour timelimit (e.g.,408, 505).

ISCAS’89 Benchmark Circuits ISCAS’89 circuits are a common benchmark used in
formal verification and diagnosis (http://www.fm.vslib.cz/ kes/asic/iscas/). For our pur-
pose, we converted each of these circuits into a non-binary WCSP instance by removing

flip-flops and buffers in a standard way, creating hard constraints for gates and uniform
unary cost functions for the input signals. The penalty costs were distributed uniformly
randomly between 1 and 10.

Table 1 shows the results for experiments with 7 circuits. The columns are indexed
by the mini-bucketi-bound. We observe again that the difference in size betweenthe
resulting AOMDD and the AND/OR search graph explored byAOBB(i) is more promi-
nent for relatively smalli-bounds. For example, on thec432 circuit and ati = 10, the
AOMDD is about 9 times smaller than the corresponding AND/ORgraph.

Planning We also experimented with problems from planning in temporal and metric
domains (http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS). These instances
were converted into binary WCSPs as follows: each fluent of theplanning graph is
represented by a variable with domain values representing possible actions to produce
this fluent. Hard binary constraints represent mutual exclusions between fluents and ac-
tions, and activity edges in the graph. Soft unary constraints represent action costs. The
goal is to find a valid plan which minimizes the sum of the action costs.

Table 2 shows the results for experiments with 12 planning networks. On this do-
main we only observe minor differences between the size of the compiled AOMDD
and the corresponding AND/OR search graph. This is due to very accurate mini-bucket
heuristics which cause the AND/OR Branch-and-Bound to avoid expanding nodes that
correspond to solutions whose cost is above the optimal one.

5.2 0/1 Integer Linear Programs

A 0/1 Integer Linear Programming(0/1 ILP) [13] consists of a set of integer decision
variables (restricted to values 0 or 1) and a set of linear constraints (equalities or inequal-
ities). The goal is to minimize a global linear cost functionsubject to the constraints. 0/1
ILPs can formulate many practical problems such as capital budgeting, cargo loading,
combinatorial auctions or maximum satisfiability problems.

We consider the AND/OR Branch-and-Bound algorithm developed in [15] and de-
noted byAOBB, as the basis for our AND/OR compilation scheme. The heuristic evalu-
ation function used byAOBB is computed by solving the linear relaxation of the current
subproblem with theSIMPLEX method [16] (our code used the implementation from the
open source librarylp solve 5.5 available at http://lpsolve.sourceforge.net/5.5/).

MIPLIB Instances MIPLIB is a library of Mixed Integer Linear Programming in-
stances that is commonly used for benchmarking integer programming algorithms. For
our purpose we selected four 0/1 ILP instances of increasingdifficulty. Table 3 reports
a summary of the experiment. We observe that the AOMDD is smaller than the cor-
responding AND/OR search graph, especially for harder problems where the heuristic
function generates relatively weak estimates. Results on these instances have been re-
ported in [4], but we note that they are only for optimal solutions, while we also include
suboptimal ones here. Also, in [4] they use of-the-shelf optimized BDD packages, while
we use our own far-from-optimized implementation, and in particular we do not use re-
dundancy reduction in these experiments. Moreover, the order of variables plays an
enormous part in compilation and it may be the case that the ordering selected by the
BDD tools is far superior (albeit OR ordering).

miplib (n, c) (w*, h) time #cm #aomddratio
p0033 (33, 15) (19, 21) 0.52 441 1642.69
p0040 (40, 23) (19, 23) 0.36 129 771.66
p0201 (201, 133)(120, 142) 89.44 12,683 5,4992.31
lseu (89, 28) (57, 68) 454.79 109,126 21,4915.08

Table 3. The trace of AND/OR Branch-and-Bound search (#cm) versus the AOMDD size
(#aomdd) for the MIPLIB instances. Compilation time limit 1 hour.

Fig. 5. The trace of AND/OR Branch-and-Bound search versus the AOMDD size for the
regions-upv andregions-npv combinatorial auctions.

Combinatorial Auctions In combinatorial auctions, an auctioneer has a set of goods,
M = {1, 2, ...,m} to sell and the buyers submit a set of bids,B = {B1, B2, ..., Bn}.
A bid is a tupleBj = 〈Sj , pj〉, whereSj ⊆ M is a set of goods andpj ≥ 0 is a
price. The winner determination problem is to label the bidsas winning or loosing so
as to maximize the sum of the accepted bid prices under the constraint that each good
is allocated to at most one bid. We used the 0/1 ILP formulation described in [17].

Figure 5 shows results for experiments with combinatorial auctions drawn from
theregions distribution of the CATS 2.0 test suite [17]. The suffixesnpv andupv
indicate that the bid prices were drawn from either a normal or uniform distribution.
These problem instances simulate the auction of radio spectrum in which a government
sells the right to use specific segments of spectrum in different geographical areas. We
looked at auctions with 100 goods and increasing number of bids. Each data point rep-
resents an average over 10 random instances. For comparison, we also included results
obtained with the OR compilation scheme. On this domain, we observe that the com-
piled AOMDD improves only slightly over the size of the AND/OR search graph. This
is because the context minimal AND/OR graph is already compact enough due to very
accurate heuristic estimates.

Maximum Satisfiability (MAX-SAT) Given a set of Boolean variables the goal of
MAX-SAT is to find a truth assignment to the variables that violates the least number of
clauses. The MAX-SAT problem can be formulated as a 0/1 ILP [18]. We experimented
with problem classespret anddubois from the SATLIB (http://www.satlib.org/) li-
brary, which were previously shown to be difficult for 0/1 ILPsolvers (CPLEX) [19].

Table 4 shows the results for experiments with 8pret instances. These are unsatis-
fiable instances of graph 2-coloring with parity constraints. The size of these problems

pret (w*, h) time #cm #aomddratio
pret60-25 (6, 13) 2.74 593 2552.33
pret60-40 (6, 13) 3.39 698 2562.73
pret60-60 (6, 13) 3.31 603 2222.72
pret60-75 (6, 13) 2.70 565 2532.23
pret150-25(6, 15) 18.19 1,544 8511.81
pret150-40(6, 15) 29.09 2,042 9222.21
pret150-60(6, 15) 30.09 2,051 8772.34
pret150-75(6, 15) 29.08 2,033 8902.28

Table 4. The trace of AND/OR Branch-and-
Bound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SATpret instances.

Fig. 6. The trace of AND/OR Branch-and-
Bound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SATdubois instances.

is relatively small (60 variables with 160 clauses forpret60 and 150 variables with
400 clauses forpret150, respectively). However, they have a very small context with
size 6 and a shallow pseudo-tree with depths between 13 and 15. For this problem class
we observe that the AND/OR decision diagrams have about 2 times fewer nodes than
the AND/OR search graphs explored byAOBB. This is because the respective search
spaces are already small enough, and this does not leave muchroom for additional
merging of isomorphic nodes in the diagram.

Figure 6 displays the results for experiments with randomdubois instances with
increasing number of variables. These are 3-SAT instances with 3 × degree variables
and8 × degree clauses, each of them having 3 literals. As in the previous test case,
the dubois instances have very small contexts of size 6 and shallow pseudo-trees
with depths ranging from 10 to 20. The AND/OR decision diagrams compiled for these
problem instances are far smaller than the corresponding AND/OR search graphs, es-
pecially for some of the larger instances. For example, at degree 320, the corresponding
AOMDD is 40 times smaller than the trace ofAOBB.

6 Conclusion and Discussion

We presented a new search based algorithm for compiling the optimal solutions of a
constraint optimization problem into a weighted AND/OR Multi-Valued Decision Dia-
gram (AOMDD). Our approach draws its efficiency from: (1) AND/OR search spaces
for graphical models [5] that exploit problem structure, yielding memory intensive
search algorithms exponential in the problem’streewidth rather thanpathwidth. (2)
Heuristic search algorithms exploring tight portions of the AND/OR search space. In
particular, we use here a state-of-the-art AND/OR Branch-and-Bound search algorithm
[6, 10], with very efficient heuristics (mini-bucket, or simplex-based), that in practice
traverses only a small portion of the context minimal graph by exploiting the pruning
power of the cost function. (3) Reduction techniques similar to OBDDs further reduce
the trace of the search algorithm.

The paper extends earlier work on AOMDDs [7] by considering weighted AOMDDs
based on cost functions, rather than constraints. This can now easily be extended to

any weighted graphical model, for example to probabilisticnetworks. Finally, using
an extensive experimental evaluation we show the efficiencyand compactness of the
weighted AOMDD data structure.

For future work, we mention the possibility of using best-first AND/OR search for
the compilation task, whose virtue is that it does not expandnodes whose heuristic
evaluation function is larger than the optimal cost.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transaction
on Computers35 (1986) 677–691

2. Fargier, H., Vilarem, M.: Compiling CSPs into tree-driven automata for interactive solving.
Constraints9 (2004) 263–287

3. Hadzic, T., Andersen, H.R.: A BDD-based polytime algorithm for cost-bounded interactive
configuration. In: National Conference on Artificial Intelligence (AAAI-2006). (2006)

4. Hadzic, T., Hooker, J.: Cost-bounded binary decision diagrams for 0-1 programming. In:
International Conference on Integration of AI and OR Techniques (CPAIOR-2007). (2007)

5. Dechter, R., Mateescu, R.: AND/OR search spaces for graphicalmodels. Artificial Intelli-
gence171(2007) 73–106

6. Marinescu, R., Dechter, R.: AND/OR branch-and-bound for graphical models. In: Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI-2005). (2005) 224–229

7. Mateescu, R., Dechter, R.: Compiling constraint networks into AND/ORmulti-valued de-
cision diagrams (AOMDDs). In: International Conference on Principles and Practice of
Constraint Programming (CP-2006). (2006) 329–343

8. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfac-
tion problems. In: International Joint Conferences on Artificial Intelligence (IJCAI-1985).
(1985) 1076–1078

9. Bayardo, R., Miranker, D.: A complexity analysis of space-boundlearning algorithms for the
constraint satisfaction problem. In: National Conference on Artificial Intelligence (AAAI-
1996). (1996) 298–304

10. Marinescu, R., Dechter, R.: Memory intensive branch-and-bound search for graphical mod-
els. In: National Conference on Artificial Intelligence (AAAI-2006). (2006)

11. Marinescu, R., Dechter, R.: Best-first AND/OR search for graphical models. In: National
Conference on Artificial Intelligence (AAAI-2007). (2007)

12. Bistarelli, S., Montanari, U., Rossi, F.: Semiring based constraint solving and optimization.
Journal of ACM44 (1997) 309–315

13. Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley (1988)
14. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellitemanagement. Con-

straints4 (1999) 293–299
15. Marinescu, R., Dechter, R.: AND/OR branch-and-bound search for pure 0/1 integer linear

programming problems. In: International Conference on Integrationof AI and OR Tech-
niques (CPAIOR-2006). (2006) 152–166

16. Dantzig, G.: Maximization of a linear function of variables subject to linear inequalities.
Activity Analysis of Production and Allocation (1951)

17. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial
auction algorithms. In ACM Electronic Commerce (2000) 66–76

18. Joy, S., Mitchell, J., Borchers, B.: A branch and cut algorithm for max-SAT and weighted
max-SAT. Satisfiability Problem: Theory and Applications (1997) 519–536

19. de Givry, S., Larrosa, J., Schiex, T.: Solving max-SAT as weighted CSP. In: International
Conference on Principles and Practice of Constraint Programming (CP-2003). (2003)

