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Abstract

Compiling graphical models has recently been
under intense investigation, especially for prob-
abilistic modeling and processing. We present
here a novel data structure for compiling
weighted graphical models (in particular, prob-
abilistic models), called AND/OR Multi-Valued
Decision Diagram (AOMDD). This is a general-
ization of our previous work on constraint net-
works, to weighted models. The AOMDD is
based on the frameworks of AND/OR search
spaces for graphical models, and Ordered Binary
Decision Diagrams (OBDD). The AOMDD is a
canonical representation of a graphical model,
and its size and compilation time are bounded ex-
ponentially by the treewidth of the graph, rather
than pathwidth as is known for OBDDs. We dis-
cuss a Variable Elimination schedule for compi-
lation, and present the generalAPPLY algorithm
that combines two weighted AOMDDs, and also
present a search based method for compilation
method. The preliminary experimental evalua-
tion is quite encouraging, showing the potential
of the AOMDD data structure.

1 Introduction

We present here an extension of AND/OR Multi-Valued
Decision Diagrams (AOMDDs) [13] to general weighted
graphical models, including Bayesian networks, influence
diagrams and Markov random fields.

The work on AOMDDs is based on two existing frame-
works: (1) AND/OR search spaces for graphical models
and (2) decision diagrams (DD). AND/OR search spaces
[9] have proven to be a unifying framework for various
classes of search algorithms for graphical models. The
main characteristic is the exploitation of independencies
between variables during search, which can provide expo-
nential speedups over traditional search methods that can

be viewed as traversing an OR structure. The AND nodes
capture problem decomposition intoindependent subprob-
lems, and the OR nodes represent branching according to
variable values.

Decision diagrams are widely used in many areas of re-
search, especially in software and hardware verification [5].
A BDD represents a Boolean function by a directed acyclic
graph with two sink nodes (labeled 0 and 1), and every in-
ternal node is labeled with a variable and has exactly two
children: low for 0 andhigh for 1. A BDD is ordered
if variables are encountered in the same order along ev-
ery path. A BDD isreducedif all isomorphic nodes (i.e.,
with the same label and identical children) are merged, and
all redundant nodes (i.e., whoselow andhigh children are
identical) are eliminated. The result is the celebratedre-
duced ordered binary decision diagram, or OBDD [3].

AOMDDs combine the two ideas, in order to create a deci-
sion diagram that has an AND/OR structure, thus exploit-
ing problem decomposition. As a detail, the number of val-
ues is also increased from two to any constant, but this is
less significant for the algorithms.

A decision diagram offers a compilation of a problem. It
typically requires an extended offline effort in order to be
able to support polynomial (in its size) or constant time on-
line queries. The benefit of moving from OR structure to
AND/OR is in a lower complexity of the algorithms and
size of the compiled structure. It typically moves from
being bounded exponentially inpathwidthpw∗, which is
characteristic to chain decompositions or linear structures,
to being exponentially bounded intreewidthw∗, which is
characteristic of tree structures (it always holds thatw∗ ≤
pw∗ andpw∗ ≤ w∗ · log n).

Our contributions in this paper are as follows. (1) We for-
mally describe the extension of AND/OR multi-valued de-
cision diagram (AOMDD) to weighted graphical models.
(2) We describe the extension to weighted models of the
APPLY operator that combines two AOMDDs by an opera-
tion. The output ofAPPLY is still bounded by the product
of the sizes of the inputs. (3) We present two compilation
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algorithms for AOMDDs. One is based on the repeated ap-
plication of APPLY along a Variable Elimination schedule.
The other is based on search. Both schemes are exponen-
tial in the treewidth of the model. (4) We provide encourag-
ing preliminary experimental evaluation of the search based
compilation method. (5) We discuss how AOMDDs relate
to various earlier and recent works, providing a unifying
perspective for all these methods.

The structure of the paper is as follows: Section 2 provides
preliminaries. Section 3 gives an overview of AND/OR
search space. Section 4 describes the AOMDD for con-
straint networks, the Variable Elimination schedule for
compilation and theAPPLY operator, and a search based
compilation scheme. Section 5 contains the main contribu-
tion: the extension of AOMDDs to weighted models, and
a discussion of their canonical form and the extensions of
the compilation schedule andAPPLY operator. Section 6
provides experimental evaluation and section 7 concludes.

2 Preliminaries

In this section we describe graphical models, Binary Deci-
sion Diagrams (OBDDs) and Variable Elimination.

DEFINITION 1 (graphical model) A graphical modelR
is a 4-tuple, R = 〈X,D,F,⊗〉, where: (1) X =
{X1, . . . ,Xn} is a set of variables; (2) D =
{D1, . . . ,Dn} is the set of their respective finite domains
of values; (3)F = {f1, . . . , fr} is a set of discrete real-
valued functions, each defined over a subset of variables
Si ⊆ X, called its scope, and sometimes denoted by
scope(fi). (4) ⊗ifi ∈ {

∏
i fi,

∑
i fi,1i fi} is a combi-

nation operator1. The graphical model represents the com-
bination of all its functions:⊗r

i=1fi. A reasoning task is

1The combination operator can be defined axiomatically [17].

based on a projection (elimination) operator,⇓, and is de-
fined by:⇓Z1

⊗r
i=1fi, . . . ,⇓Zt

⊗r
i=1fi, whereZi ⊆ X.

Examples of graphical models include Bayesian networks,
constraint networks, influence diagrams, Markov networks.

DEFINITION 2 (universal equivalent graphical model)
Given a graphical modelR = 〈X,D,F1,⊗〉 the uni-
versal equivalent model ofR is u(R) = 〈X,D,F2 =
{⊗fi∈F1

fi},⊗〉.

Two graphical models areequivalent if they represent the
same set of solutions. Namely, if they have the same uni-
versal model.

DEFINITION 3 (primal graph) The primal graph of a
graphical model is an undirected graph that has variables
as its vertices and an edge connects any two variables that
appear in the scope of the same function.

A pseudo tree resembles the tree rearrangements [11]:

DEFINITION 4 (pseudo tree)A pseudo treeof a graph
G = (X, E) is a rooted treeT having the same set of
nodesX, such that every arc inE is a back-arc inT (i.e.,
it connects nodes on the same path from root).

DEFINITION 5 (induced graph, induced width,
treewidth, pathwidth) Anordered graphis a pair (G, d),
whereG is an undirected graph, andd = (X1, ...,Xn)
is an ordering of the nodes. Thewidth of a nodein an
ordered graph is the number of neighbors that precede it in
the ordering. Thewidth of an orderingd, denoted byw(d),
is the maximum width over all nodes. Theinduced width
of an ordered graph, w∗(d), is the width of the induced
ordered graph obtained as follows: for each node, from
last to first ind, its preceding neighbors are connected in
a clique. Theinduced width of a graph, w∗, is the minimal
induced width over all orderings. The induced width is
also equal to thetreewidth of a graph. Thepathwidth
pw∗ of a graph is the treewidth over the restricted class of
orderings that correspond to chain decompositions.

2.1 Binary Decision Diagrams

Decision diagrams are widely used in many areas of re-
search to represent decision processes. In particular, they



A

D

B C

E

f3(ABE)

f2(AB)

f4(BCD)

f1(AC)

(a) Graphical model

A

D

B

CE

[ ]

[A]

[AB]

[BC]

[AB]

(b) Pseudo tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

(c) Search tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

(d) Context minimal graph

Figure 3: AND/OR search space

can be used to represent functions. Due to the fundamen-
tal importance of Boolean functions, a lot of effort has
been dedicated to the study ofBinary Decision Diagrams
(BDDs), which are extensively used in software and hard-
ware verification [5, 15, 12, 3].

A BDD is a representation of a Boolean function. Given
B = {0, 1}, a Boolean functionf : Bn → B, hasn argu-
ments,X1, · · · ,Xn, which are Boolean variables, and takes
Boolean values. A Boolean function can be represented by
a table (see Figure 1(a)), but this is exponential inn, and
so is the binary tree representation in Figure 1(b). The goal
is to have a compact representation, that also supports ef-
ficient operations between functions. OBDDs [3] provide
such a framework by imposing the same order to the vari-
ables along each path in the binary tree, and then applying
the following two reduction rules exhaustively:

(1) isomorphism: merge nodes that have the same label
and the same respective children (see Figure 1(c)).

(2) redundancy: eliminate nodes whose low (zero) and
high (one) edges point to the same node, and connect
the parent of removed node directly to the child of re-
moved node (see Figure 1(d)).

The resulting OBDD is shown in Figure 1(e).

2.2 Variable Elimination (VE)

Variable elimination (VE) [2, 8] is a well known algo-
rithm for inference in graphical models. Consider a graph-
ical modelR = 〈X,D,F〉 and an elimination ordering
d = (X1,X2, . . . ,Xn) (Xn is eliminated first,X1 last).
Each function placed in the bucket of its latest variable in
d. Buckets are processed fromXn to X1 by eliminating
the bucket variable (the functions residing in the bucket are
combined together, and the bucket variable is projected out)
and placing the resulting function (also calledmessage) in
the bucket of its latest variable ind. Figure 2(a) shows a
graphical model and 2(b) the execution ofVE.

VE execution defines a bucket tree, by linking the bucket
of eachXi to the destination bucket of its message (called
the parent bucket). A node in the bucket tree has abucket
variable, a collection of functions, and ascope(the union
of the scopes of its functions). If the nodes of the bucket
tree are replaced by their respective bucket variables, we
obtain a pseudo tree (see Figure 2(c) and 3(b)).

3 AND/OR Search Space

The AND/OR search space [9] is a recently introduced
unifying framework for advanced algorithmic schemes for
graphical models. Its main virtue consists in exploiting in-
dependencies between variables during search, which can
provide exponential speedups over traditional search meth-
ods oblivious to problem structure.

3.1 AND/OR Search Trees

Given a graphical modelM = 〈X,D,F〉, its primal graph
G and a pseudo treeT of G, the associated AND/OR
search tree,ST (R), has alternating levels of OR and AND
nodes. The OR nodes are labeledXi and correspond to the
variables. The AND nodes are labeled〈Xi, xi〉 and corre-
spond to the value assignments in the domains of the vari-
ables. The structure of the AND/OR search tree is based
on the underlying pseudo treeT . The root of the AND/OR
search tree is an OR node labeled with the root ofT . The
children of an OR nodeXi are AND nodes labeled with
assignments〈Xi, xi〉. that are consistent with the assign-
ments along the path from the root. The children of an
AND node〈Xi, xi〉 are OR nodes labeled with the children
of variableXi in the pseudo treeT .

The AND/OR search tree can be traversed by a depth first
search algorithm, thus using linear space. It was already
shown [11, 1, 6, 9] that:

THEOREM 1 Given a graphical modelM and a pseudo
tree T of depthm, the size of the AND/OR search tree
based onT is O(n km), wherek bounds the domains of
variables. A graphical model having treewidthw∗ has a
pseudo tree of depth at mostw∗ log n, therefore it has an
AND/OR search tree of sizeO(n kw∗ log n).

3.2 AND/OR Search Graphs

The AND/OR search tree may contain nodes that root iden-
tical conditioned subproblems. These nodes are said to be
unifiable. When unifiable nodes are merged, the search
space becomes a graph. Its size becomes smaller at the
expense of using additional memory by the search algo-
rithm. The depth first search algorithm can therefore be
modified to cache previously computed results, and retrieve
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them when the same nodes are encountered again. Some
unifiable nodes can be identified based on theircontexts.
We can define graph based contexts for both OR nodes and
AND nodes, just by expressing the set of ancestor variables
in T that completely determine a conditioned subproblem.
However, it can be shown that using caching based on OR
contexts makes caching based on AND contexts redundant,
so we will only useOR caching.

Given a pseudo treeT of an AND/OR search space, the
context of an OR nodeX, denoted bycontext(X) =
[X1 . . . Xp], is the set of ancestors ofX in T ordered de-
scendingly, that are connected in the primal graph toX or
to descendants ofX.

It is easy to verify that the context ofX separates the sub-
problem belowX from the rest of the network. Thecon-
text minimalAND/OR graph is obtained by merging all the
context unifiable OR nodes. It was shown that [1, 9]:

THEOREM 2 Given a graphical modelM, its primal
graphG and a pseudo treeT , the size of the context min-
imal AND/OR search graph based onT is O(n kw∗

T
(G)),

wherew∗T (G) is the induced width ofG over the depth first
traversal ofT , andk bounds the domain size.

Figure 3(a) shows the primal graph of a graphical model
defined by the functionsf1, . . . , f4, which are assumed to
be strictly positive (i.e., every assignment is valid). Figure
3(b) shows a pseudo tree for the graph. The dotted lines are
edges in the primal graph, and back-arcs in the pseudo-tree.
The OR context of each node is shown in square brackets.
Figure 3(c) shows the AND/OR search tree and 3(d) shows
the context minimal AND/OR graph.

3.3 Weighted AND/OR Search Graphs

In some cases (e.g. constraint networks), the functions of
the graphical model take binary values (0 and 1, ortrueand
false). In this case, an AND/OR search graph expresses
the consistency (valid or not) of each assignment, and can
associate this value with its leaves.

In more general cases, which are the focus of this paper, the
functions of the graphical model take (positive) real val-
ues, calledweights. For example, in Bayesian networks
the weights express the conditional probability. In the
more general case of weighted models, it is useful to asso-
ciate weights to the internal OR-AND arcs in the AND/OR
graph, to maintain the global function decomposition and
facilitate the merging of nodes.

DEFINITION 6 (buckets relative to a backbone tree)
Given a graphical modelR = 〈X,D,F,⊗〉 and a
backbone treeT , thebucketof Xi relative toT , denoted
by BT (Xi), is the set of functions whose scopes contain
Xi and are included inpathT (Xi), which is the set of
variables from the root toXi in T . Namely,BT (Xi) =
{f ∈ F |Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}.

DEFINITION 7 (OR-AND weights) Given an AND/OR
tree ST (R), of a graphical modelR, the weight
w(n,m)(Xi, xi) of arc (n,m) where Xi labels n and
xi labels m, is the combination (e.g. product) of
all the functions inBT (Xi) assigned by values along
the path to m, πm. Formally, w(n,m)(Xi, xi) =
⊗f∈BT (Xi)f(asgn(πm)[scope(f)]).

Figure 4 shows a belief network, a DFS tree that drives
its weighted AND/OR search tree, and a portion of the
AND/OR search tree with the appropriate weights on the
arcs expressed symbolically. In this case the bucket ofE
contains the functionP (E|A,B), and the bucket ofC con-
tains two functions,P (C|A) andP (D|B,C). Note that
P (D|B,C) belongs neither to the bucket ofB nor to the
bucket ofD, but it is contained in the bucket ofC, which
is the last variable in its scope to be instantiated in a path
from the root of the pseudo tree.
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4 AND/OR Multi-Valued Decision Diagram
for Constraint Networks

Constraint networks have only binary valued functions. In
[13] we presented a compilation scheme for AOMDDs
for constraint networks based on the Variable Elimination
schedule. For completeness, we only provide below the
main ideas for constraint networks, and then present the
current contribution extending the AOMDD for weighted
graphical models.

The context minimal graph is a data structure that is equiv-
alent to the given graphical model, in the sense that it repre-
sents the same set of solutions, and any query on the graph-
ical model can be answered by inspecting the context mini-
mal graph. Our goal is to shrink the context minimal graph
even further, by identifying mergeable nodes beyond those
based on context. Redundant nodes can also be identified
and removed.

Suppose we are given an AND/OR search graph (it could
also be a tree initially). The reduction rules of OBDDs are
also applicable to it, if we maintain the semantics. In par-
ticular, we have to detail the treatment of AND nodes and
OR nodes. If we consider only reduction by isomorphism,
then the AND/OR graph can be processed by ignoring the
AND or OR attributes of the nodes. If we consider reduc-
tion by redundancy, then it is useful to group each OR node

together with its AND children into ameta-node.

DEFINITION 8 (meta-node) A nonterminalmeta-nodev
in an AND/OR search graph consists of an OR node labeled
var(v) = Xi and itski AND children labeled〈Xi, xi1〉,
. . . , 〈Xi, xiki

〉 that correspond to its value assignments.
We will sometimes abbreviate〈Xi, xij

〉, by xij
. Each

AND node labeledxij
points to a list of child meta-nodes,

u.childrenj .

Consider the pseudo tree in Figure 3(b). An example of
meta-node corresponding to variableA is given in Figure 5,
assuming three values. That is just a portion of an AND/OR
graph, where redundant meta-nodes were removed. For
A = 0, the child meta-node has variableB. ForA = 1, B
is irrelevant so the corresponding meta-node was removed,
and there is an AND arc pointing toE andC. ForA = 2,
bothB andC are irrelevant. This example did not take into
account possible weights on the OR-AND arcs.

4.1 Compiling AOMDDs by Variable Elimination

Consider the network defined byX = {A,B, . . . ,H},
DA = . . . = DH = {0, 1} and the constraints (⊕ denotes
XOR):C1 = F∨H, C2 = A∨¬H, C3 = A⊕B⊕G, C4 =
F∨G, C5 = B∨F , C6 = A∨E, C7 = C∨E, C8 = C⊕D,
C9 = B∨C. The constraint graph is shown in Figure 6(a).



Algorithm 1 : APPLY(v1; w1, . . . , wm)
input : AOMDDs f with nodesvi andg with nodeswj , based on

compatiblepseudo treesT1, T2 that can be embedded inT .
var(v1) is an ancestor of allvar(w1), . . . , var(wm) in T .
var(wi), var(wj) are not ancestor-descendant inT .

output : AOMDD v1 ./ (w1 ∧ . . . ∧ wm), based onT .
if H1(v1, w1, . . . , wm) 6= null then return H1(v1, w1, . . . , wm)1
if (any ofv1, w1, . . . , wm is 0) then return 02
if (v1 = 1) then return 13
if (m = 0) then return v14
create new nonterminal meta-nodeu5
var(u)← var(v1) (call it Xi, with domainDi = {x1, . . . , xki

} )6
for j ← 1 to ki do7

u.childrenj ← φ // children of j-th AND node of u8
if ( (m = 1) and (var(v1) = var(w1) = Xi) ) then9

temp Children← w1.childrenj10

else11
temp Children← {w1, . . . , wm}12

group nodes fromv1.childrenj ∪ temp Children in several{v1;13
w1, . . . , wr}
for each{v1; w1, . . . , wr} do14

y ← APPLY(v1; w1, . . . , wr)15
if (y = 0) then16

u.childrenj ← 0; break17

else18
u.childrenj ← u.childrenj ∪ {y}19

if (u.children1 = . . . = u.childrenki
) then20

return u.children121

if (H2(var(u), u.children1, . . . , u.childrenki
) 6= null)22

then
return H2(var(u), u.children1, . . . , u.childrenki

)23

Let H1(v1, w1, . . . , wm) = u24
Let H2(var(u), u.children1, . . . , u.childrenki

) = u25
return u26

Consider the orderingd = (A,B,C,D,E, F,G,H). The
pseudo tree induced byd is given in Fig. 6(a). Figure 6(b)
shows the execution ofVE with AOMDDs along ordering
d. Initially, the constraintsC1 throughC9 are represented
as AOMDDs and placed in the bucket of their latest vari-
able in d. Eachoriginal constraint is represented by an
AOMDD based on a chain. For bi-valued variables, they
are OBDDs, for multiple-valued they are MDDs (multi-
valued decision diagrams). Note that we depict meta-
nodes: one OR node and its two AND children, that ap-
pear inside each larger square node. The dotted edge cor-
responds to the 0 value (thelow edge in OBDDs), the solid
edge to the 1 value (thehigh edge). We have some redun-
dancy in our notation, keeping both AND value nodes and
arc types (doted arcs from “0” and solid arcs from “1”).

The VE scheduling is used to process the buckets in re-
verse order ofd. A bucket is processed byjoining all the
AOMDDs inside it, using theAPPLY operator (described
further). However, the step of eliminating the bucket vari-
able will be omitted because we want to generate the full
AOMDD. In our example, the messagesm1 = C1 ./ C2

andm2 = C3 ./ C4 are still based on chains, so they are
still OBDDs. Note that they still contain the variablesH
andG, which have not been eliminated. However, the mes-
sagem3 = C5 ./ m1 ./ m2 is not an OBDD anymore.
We can see that it follows the structure of the pseudo tree,

whereF has two children,G andH. Some of the nodes
corresponding toF have two outgoing edges for value 1.

The processing continues in the same manner The final out-
put of the algorithm, which coincides withm7, is shown
in Figure 6(c). The OBDD based on the same orderingd
is shown in Fig. 6(d). Notice that the AOMDD has 18
nonterminal nodes and 47 edges, while the OBDD has 27
nonterminal nodes and 54 edges.

We present theAPPLY algorithm for combining AOMDDs
for constraints. It was shown in [13] that the complexity of
theAPPLY is at most quadratic in the input.

In [13] it was shown that the time and space complexity
of theVE based compilation scheme is exponential in the
treewidth of the model.

4.2 Compiling AOMDDs by AND/OR Search

We describe here a search based approach for compiling
an AOMDD. Theorem 2 ensures that the context minimal
(CM) graph can be traversed by AND/OR search in time
and spaceO(n kw∗

T
(G)). When full caching is used, the

trace of AND/OR search (i.e., the AND/OR graph traversed
by the algorithm) is a subset of the CM graph (if pruning
techniques are used, some portions of the CM graph may
not be traversed). When the AND/OR search algorithm ter-
minates, its trace is an AND/OR graph that expresses the
original graphical model. We can therefore apply the re-
duction rules (isomorphism and redundancy) to the trace of
the AND/OR search in a single bottom up pass, that has
complexity linear in the size of the trace. In fact, the re-
duction rules can be included in the depth first AND/OR
search algorithm itself: whenever the entire subgraph of a
meta-node has been visited, the algorithm can check for
isomorphism between the current node and metanodes of
the same variable, and also check redundancy, before the
search retracts to the parent meta-node. The end result
will be the AOMDD of the original graphical model. The
time and space complexity of this scheme is bounded in
the worst case by that of exploring the CM graph, which is
given in Theorem 2 (i.e., exponential in the treewidth of the
model). In Section 6 we provide preliminary evaluation of
the search based compilation.

5 AND/OR Multi-Valued Decision Diagram
for Weighted Graphs

We will now describe an extension of AOMDDs to
weighted graphical models, which include probabilistic
graphical models. The functions defining the model can in
this case take arbitrary positive real values. The AND/OR
search space is well defined for such graphical models, and
in particular the context minimal graph is a decision dia-
gram that represents the same function as the model. The
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Figure 7: Weighted graphical model
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reduction rules (merge isomorphic nodes and reduce re-
dundant nodes) are also well defined for weighted models
(if we operate with meta-nodes), and guaranteed to pro-
duce equivalent decision diagrams. For example, isomor-
phic nodes should have the same variable, the same sets
of children, and the same weights on their respective OR-
AND arcs. If we start with the AND/OR tree and apply the
isomorphism rule exhaustively, we are guaranteed to obtain
a graph at least as compact as the context minimal graph.
This is because OR nodes that have the same context also
represent isomorphic meta-nodes when the isomorphic rule
was applied exhaustively to all the levels below.

However, the property of being a canonical representation
of a function is lost in the case of weighted graphs, if we
only use the usual reduction rules.

Figure 7(a) shows a weighted graphical model, defined by
two (cost) functions,f(M,A,B) and g(M,B,C). As-
suming the order (M,A,B,C), Figure 7(b) shows the
AND/OR search tree. The arcs are labeled with function
values, and the leaves show the value of the correspond-
ing full assignment (which is the product of numbers on
the arcs of the path). We can see that either value ofM (0
or 1) gives rise to the same function (because the leaves in
the two subtrees have the same values). Therefore, theuni-
versal modelof the conditioned subproblem forM = 0 is
identical to that forM = 1. However, the two subtrees can
not be identified as representing the same function by the
usual reduction rules, because of different weights on the
arcs. Figure 7(c) shows the context minimal graph, which

has a compact representation of each subtree, but does not
share any of their parts. In these figures we do not show the
contours of meta-nodes, to reduce clutter.

What we would like in this case is to have a method of
recognizing that the left and right subtrees correspondingto
M = 0 andM = 1 represent the same function. We do this
by normalizing the weights in each level, and processing
bottom up by promoting the normalization constant.

In Figure 8(a) the weights on the OR-AND arcs of levelC
have been normalized, and the normalization constant was
promoted up to the OR node value. In Figure 8(b) the nor-
malization constants are promoted upwards again by mul-
tiplication into the OR-AND weights. This process does
not change the value of each full assignment, and therefore
produces equivalent graphs. We can see now that some of
the C level (meta) nodes are mergeable. Continuing this
process gives the final AOMDD for the weighted model, in
Figure 8(c).

DEFINITION 9 (weighted AOMDD) A weighted AOMDD
is an AND/OR graph (with meta-nodes), where for each
OR node, the emanating OR-AND arcs have an associated
weight, such that their sum is 1, and the root meta-node
has a weight (the resulting normalization constant). The
terminal nodes are just0 and1.

The following theorem ensures the that the weighted
AOMDD is a canonical representation.

THEOREM 3 Given two equivalent weighted graphical



Network Class (n, d) e (w*, h) Zeros (%) Time (sec) #cm #aomdd Ratio
cpcs54 (54, 2) 5 (12, 20) 0.00 1.02 24,422 23,845 1.02
cpcs179 (179, 4) 5 (7, 13) 0.32 110.24 31,389 9,702 3.24
cpcs360b CPCS (360, 2) 50 (16, 21) 0.68 105.49 159,863 155,670 1.03
cpcs422b (422, 2) 15 (16, 33) 0.78 57.74 429,270 25,754 16.67
c432 (432, 2) 40 (21, 37) 48.98 63.38 345,401 119,109 2.90
c499 (499, 2) 40 (20, 50) 47.76 20.45 106,659 105,921 1.01
s386 ISCAS (172, 2) 10 (17, 30) 48.18 6.27 33,806 4,425 7.64
s953 (440, 2) 120 (29, 51) 45.45 180.60 183,199 46,890 3.91
90-10-1 (100, 2) 10 (10, 31) 42.42 0.78 6,812 3,544 1.92
90-14-1 (196, 2) 10 (16, 60) 45.25 68.16 317,527 73,245 4.34
90-16-1 GRID (256, 2) 20 (18, 66) 43.99 278.05 1,305,719 256,990 5.08
90-24-1 (576, 2) 120 (17, 77) 44.66 102.78 569,282 179,668 3.17
EA3 (711, 5) 0 (14, 46) 37.49 4.55 29,144 15,654 1.86
EA4 (775, 5) 0 (16, 62) 37.34 5.88 21,246 14,653 1.45
EA5 LINKAGE (944, 5) 0 (13, 53) 36.46 6.75 25,973 12,377 2.10
EA6 (1136, 5) 0 (17, 79) 36.60 18.12 43,202 27,960 1.55
bm-05-01 (700, 2) 100 (17, 36) 49.17 105.19 275,445 115,327 2.39
bm-05-02 (1418, 2) 100 (16, 50) 49.44 60.97 143,866 74,818 1.92
mm-03-08-03 PRIMULA (1220, 2) 100 (17, 53) 48.94 748.71 898,631 384,049 2.34
mm-04-08-03 (1418, 2) 300 (17, 49) 47.89 48.44 158,584 50,718 3.13

Table 1: Results for experiments with 20 belief networks from 5 problem classes.

models that accept a common pseudo treeT , normalizing
arc values together with exhaustive application of reduc-
tion rules yields the same AND/OR graphs.

The proof is omitted here for space reasons. We only men-
tion that the proof is by structural induction bottom up over
the layers of the AND/OR graph.

TheAPPLY algorithm needs minimal modifications now to
operate on weighted AOMDDs. The hash functionH2,
which hashes meta-nodes, has to take as extra arguments
the weights of the meta-node. Similarly, when checking
redundancy in line 21, the weights should also be equal for
the node to be redundant, and their common value has to be
promoted by multiplication. When checking isomorphism
in line 23, the corresponding weights are checked via the
hash functionH2. The sameVE schedule can now be used
to compile an AOMDD for a weighted graphical model.

6 Experimental Evaluation

Our experimental evaluation is in preliminary stages, but
the results we have are already encouraging. We ran the
search based compile algorithm, by recording the trace
of the AND/OR search, and then reducing the resulting
AND/OR graph bottom up. In these results we only applied
the reduction by isomorphism and still kept the redundant
meta-nodes.

Table 1 shows the results for 20 belief networks from 5
problem classes: medical diagnosis (CPCS), digital cir-
cuits (ISCAS), deterministic grid networks (GRID), ge-
netic linkage analysis (LINKAGE) as well as relational be-
lief networks (PRIMULA). For each network we chose ran-
domlye variables and set their values as evidence. For each

query we recorded the compilation time in seconds, the
number of OR nodes in the context minimal graph explored
(#cm) and the size of the resulting AOMDD (#aomdd).
In addition, we also computed the compression ratio of the
AOMDD structure asratio = #cm/#aomdd. We also
report the number of variables (n), domain size (d), induced
width (w∗), pseudo tree depth (h), as well as the percentage
of zero probability tuples (zeros (%)) for each test instance.

We see that in a few cases the compression ratio is sig-
nificant (e.g., cpcs422b 16.67%, s386 7.64%). Our fu-
ture work will include the reduction rule by redundancy, as
well as the compilation algorithm by Variable Elimination
schedule.

7 Conclusion and Discussion

We presented the new data structure of weighted AOMDD,
as a target for compilation of weighted graphical models.
It is based on AND/OR search spaces and Binary Deci-
sion Diagrams. We argue that the AOMDD has an intuitive
structure, and can easily be incorporated into other already
existing algorithm (e.g., join tree clustering). We provide
two compilation methods, one based on Variable Elimina-
tion and the other based on search, both being time and
space exponential in the treewidth of the graphical model.
The preliminary experimental evaluation is quite encour-
aging, and shows the potential of the new AOMDD data
structure.

Compiling graphical models into weighted AOMDDs also
extends decision diagrams for the computation of semir-
ing valuations [18], from linear variable ordering into tree-
based partial ordering. This provides an improvement



of the complexity guarantees to exponential in treewidth,
rather than pathwidth.

There are various lines of related research. We only men-
tion here: deterministic decomposable negation normal
form (d-DNNF) [7]; case factor diagrams [14]; compila-
tion of CSPs into tree-driven automata [10]; and the recent
work on compilation [16, 4]. We think that our framework
using AND/OR search graphs has a unifying quality that
helps make connections among seemingly different compi-
lation techniques.

The approach of compiling graphical models into
AOMDDs may seem to go against the current trend in
model checking, which moves away from BDD-based al-
gorithms into CSP/SAT based approaches. However, algo-
rithms that are search-based and compiled data-structures
such as BDDs differ primarily by their choices of time vs
memory. When we move from regular OR search space to
an AND/OR search space the spectrum of algorithms avail-
able is improved for all time vs memory decisions. We be-
lieve that the AND/OR search space clarifies the available
choices and helps guide the user into making an informed
selection of the algorithm that would fit best the particular
query asked, the specific input function and the computa-
tional resources.
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