Approximate Counting by Sampling the Backtrack-free Search Space

Vibhav Gogate and Rina Dechter

Donald Bren School of Information and Computer Science,
University of California, Irvine, CA 92697,
{vgogate,dechter} @ics.uci.edu

Abstract

We present a new estimator for counting the number of so-
lutions of a Boolean satisfiability problem as a part of an
importance sampling framework. The estimator uses the re-
cently introduced SampleSearch scheme that is designed to
overcome the rejection problem associated with distributions
having a substantial amount of determinism. We show here
that the sampling distribution of SampleSearch can be charac-
terized as the backtrack-free distribution and propose several
schemes for its computation. This allows integrating Sample-
Search into the importance sampling framework for approxi-
mating the number of solutions and also allows using Sample-
Search for computing a lower bound measure on the number
of solutions. Our empirical evaluation demonstrates the su-
periority of our new approximate counting schemes against
recent competing approaches.

Introduction

In this paper we present a search-based sampling algorithm
for approximating the number of solutions of a Boolean Sat-
isfiability problem. Solution counting is a well known #P-
complete problem and has many applications in fields such
as verification, planning and automated reasoning.

Earlier approaches to counting solutions are based on
either extending systematic search-based SAT/CSP solvers
such as DPLL (Bayardo & Pehoushek 2000), or variable-
elimination algorithms which are known to be time and
space exponential in the treewidth of the problem. When the
treewidth is large variable-elimination was approximated by
the mini-bucket algorithm (Dechter & Rish 2003) or by gen-
eralized belief propagation (Gogate & Dechter 2005).

A relatively new approach ApproxCount introduced by
(Wei & Selman 2005) uses a combination of random walk
and Markov Chain Monte Carlo (MCMC) sampling to
compute an approximation of the exact solution count.
ApproxCount was shown to scale quite well with prob-
lem size yielding good approximations on many prob-
lems. ApproxCount was recently modified to produce lower
bounds on the exact solution counts by using a simple appli-
cation of the Markov inequality (Gomes et al. 2007).

We present an alternative approximation which instead of
using MCMC sampling uses importance sampling (Geweke

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1989). However, a straight-forward application of impor-
tance sampling may lead to poor performance. The problem
is that when the underlying probability distribution is not
strictly positive, many of the generated samples may have
zero probability and will be rejected, leading to an ineffi-
cient sampling process.

With the exception of the work on adaptive sampling
schemes (Cheng & Druzdzel 2000; Yuan & Druzdzel 2006),
the rejection problem has been largely ignored in the Statis-
tics community. Recently, (Gogate & Dechter 2005) showed
that a restricted form of constraint propagation can be used
to reduce the amount of rejection. If the SAT problem is
loosely constrained, this method worked quite well yielding
relatively small error. However, when the underlying SAT
problem is hard, it was observed that the method fails to
generate even a single sample having non-zero weight.

More recently (Gogate & Dechter 2000) initiated a new
approach. They try to circumvent the rejection problem by
systematically searching for a non-zero weight sample until
one is found. Only then, the generation of a new sample is
initiated. We call this class of sampling schemes which com-
bine backtracking search with sampling as SampleSearch.
SampleSearch which was originally presented for the task
of random solution generation is extended here in several
ways. First our focus is on solution counting. Second, we
provide the theoretical foundations for this scheme which
were missing in (Gogate & Dechter 2006), proving it to be
an “importance sampling” scheme with its desirable theoret-
ical guarantees. In particular, importance sampling requires
that the underlying sampling distribution from which the al-
gorithm samples, be known. We characterize the sampling
distribution of SampleSearch as the backtrack-free distribu-
tion. Third, we propose an approximation of the backtrack-
free distribution when it is hard to compute, while still main-
taining the property of asymptotic unbiasedness (Rubinstein
1981). Fourth, we modify SampleSearch to yield a lower
bound measure on the number of solutions in a similar way
to (Gomes et al. 2007). We present empirical evaluation of
our new scheme against state-of-the-art methods and show
that our new scheme outperforms the ApproxCount scheme
(Wei & Selman 2005) on most instances and that our new
lower-bounds are more accurate than that of (Gomes et al.
2007) on most instances.

Background

We represent sets by bold capital letters and members of a
set by capital letters. An assignment of a value to a variable
is denoted by a small letter while bold small letters indicate
an assignment to a set of variables.

For the rest of the paper, let |X| = n be the propositional
variables. A variable assignment X = x, x = (x1,...,%,) as-
signs a value in {0, 1} to each variable in X. We use the no-
tation X; to mean the negation of a value assignment x;. Let
F =F N...\F, be a formula in conjunctive normal form
(cnf) with clauses Fi,...,F,, defined over X and let X =x
be a variable assignment. If X = x satisfies all clauses of
F, then X =x is a model or a solution of F. We define
F(x) =l if x is a solution of F and F (x) = 0 otherwise. Let
S = {X=x|F(x) = 1} be the set of models of formula F.
The counting task is to compute |S|.

Importance Sampling

Given a function g(x) defined over the domain €, impor-
tance sampling (Rubinstein 1981) is a common technique
used to estimate the sum: M =Y, .o g(X). Given a proposal
distribution Q(x) over the domain Q, we can rewrite the M
as:

8(x) 8(x)
M= O(x) =Eo(5)
X& (x) 2 o)
where EQ(%) denotes the expected value of the random
variable % with respect to the distribution Q. The idea in

importance sampling is to generate independently and iden-
tically distributed (i.i.d.) samples (x!,...,x") from the pro-
posal distribution Q(x) such that g(x) > 0 = Q(x) > 0 and

then estimate M as follows:
o lghex) 1 n_ 8(x)
M=— =— Y w(x'), where w(x') = . 1
V& om ~NE"Y) o
w(x') is referred to as the importance weight. It can be
shown that the expected value Eg(M) = M (Rubinstein
1981).

Another practical requirement of importance sampling is
that Q(x) is easy to sample from. Therefore as in (Cheng &
Druzdzel 2000), we assume that the proposal distribution is
expressed in a product form, Q(x) =TT | Qi(xi|x1, ..., xi—1)
so that we can generate an i.i.d. sample x along the ordering
O = (Xy,...,X,) as follows. For 1 <i < n, Sample X; = x;
from Q;(x;|xy,...,xi—1)-

Estimating Solution Counts using Importance Sampling
Let F be a formula defined over a set of variables X and
Q be the space of all possible variable-value assignments.
We can rewrite the solution counting task as the sum: |S| =
Y «ca F(x). Given a proposal distribution Q(x) over Q such
that F(x) >0 = Q(x) > 0 'and i.i.d. samples (x',...,x")
generated from Q(x), we can estimate the number of solu-
tions as follows:
N i
V- l F (X) _ 1
N5 o

N[1w(xi)7 where w(x') = o) 2)

™=

INote that throughout the paper we assume that Q satisfies
F(x)>0=0Q(x)>0

It can be shown that E(M) = |S| (Rubinstein 1981).

The Rejection Problem

It is known that a straight-forward application of importance
sampling may lead to very poor approximations (Gogate
& Dechter 2005) and we explain why below. In the dis-
cussion on importance sampling, we assumed the presence
of a proposal distribution Q(x) which satisfies the condi-
tion F(x) > 0 = Q(x) > 0. In other words, Q(x) can be
greater than zero even if F (x) is zero. This may be problem-
atic because if the probability of generating a non-solution
(i.e. a sample from {x|F(x) = 0}) substantially dominates
the probability of generating a solution (i.e. a sample from
{x|F(x) = 1}), a large number of samples generated from
0 will have zero weight. These zero weight samples would
not contribute to the sum in Equation 2, thereby effectively
getting rejected (the rejection problem). In earlier work,
(Gogate & Dechter 2005) proposed to address the rejec-
tion problem by enforcing bounded relational consistency.
However, unless one enforces global consistency using an
algorithm such as adaptive consistency, whose complexity
is bounded exponentially by the treewidth, inconsistent so-
Iutions may still be generated and the rejection problem still
exists.

To overcome the rejection problem, we (Gogate &
Dechter 2006) recently proposed to augment sampling with
search, yielding the SampleSearch scheme. Instead of re-
turning with a sample that is inconsistent, SampleSearch
progressively revises the inconsistent sample via backtrack-
ing search until a solution is found. Since the focus here is
on SAT problems, we use here the conventional backtrack-
ing procedure for SAT which is the DPLL algorithm (Davis,
Logemann, & Loveland 1962).

SampleSearch with DPLL works as follows (see Al-
gorithm 1). It takes as input a formula F, an order-
ing O = (X,...,X,) of variables and a distribution Q =

"1 Qi(xilx1,...,xi—1) along that ordering. Given a partial
assignment (xy,...,x;_1) already generated, the next variable
in the ordering X; is selected and its value X; = x; is sampled
from the conditional distribution Q;(x;|x1,...,x;—1). Then
the algorithm applies unit-propagation with the new unit
clause X; = x; created over the formula F. If no empty clause
is generated, then the algorithm proceeds to the next vari-
able. Otherwise, the algorithm tries X; = X;, performs unit
propagation and either proceeds forward (if no empty clause
generated) or it backtracks. On termination, the output of

Algorithm 1 SampleSearch SS(F,Q,0)
Input: a cnf formula F, a distribution Q and Ordering O
Output: A solution x = (x1,...,X,)
1: UnitPropagate(F)
: if there is an empty clause in F then Return 0
: if all variables are assigned a value then Return 1
: Select the earliest variable X; in O not yet assigned a value
p = Generate a random real number between 0 and 1
: Value Assignment: Given partial assignment (x1,...,x;,_1)
if p < Q,'(Xi = O|x1 . ,X,'_l) then set X; = Oelseset X; = 1
7: Return SS((F Ax;),0,0) V SS((F AX7),Q,0)

DU AW

SampleSearch is a solution of F (assuming F has a solu-
tion).

Analysis

In order to use SampleSearch within the importance sam-
pling framework for estimating solution counts, we need to
know the probability with which each sample (solution) is
generated (see Equation 2). Therefore, in this section, we
show that SampleSearch generates i.i.d. samples from a dis-
tribution which we characterize as the backtrack-free distri-
bution (to be defined next).

Because SampleSearch samples from a distribution Q and
outputs samples which are solutions of F', the sampling dis-
tribution denoted by QF satisfies QF (x|F(x) = 1) > 0 and
OF (x|F(x) = 0) = 0. We next define the components QF,
namely

Definition 1 (The Backtrack-free distribution). Given a dis-

tribution Q(x) = [T, Qi(xi|x1,...,xi—1), an ordering O =

(Xi,...,X,) and a formula F, the backtrack-free distribution

QF is factored into QF (x) = [T’ OF (xi|x1,...,xi—1) where

Qf (xi|x1,. .., xi—1) is defined as follows:

1. OF (xilx1, ..., xi—1) = O if (x1,...,X_1,%;) cannot be ex-
tended to a solution of F.

2. OF (xilx1,...,xi—1) = Lif (x1,...,xi1,X;) can be extended
to a solution but (xi,...,x;—1,X;) cannot.

3. OF (xilx1,..ooxic1) = Qilxilxt,...,xi—1) if both
(x1,...,%i—1,%) and (x1,...,x;,_1,%;) can be extended to a

solution of F'.

THEOREM 1. Given a distribution Q, the sampling distribu-
tion of SampleSearch is the backtrack-free distribution QF .

Proof. Let I(x) = [T\, Li(xi|x1,...,xi—1) be the fac-
tored sampling distribution of SampleSearch (F,Q,0).
We will prove that for any arbitrary partial assignment
(1o Ximxi), Lixlxn, . oxic) = OF (xilxr, .. xicr).
We consider three cases corresponding to the definition of
the backtrack-free distribution (see Definition 1):

Case (1): (xi,...,xi—1,x;) cannot be extended to a solu-
tion. Since, all samples generated by SampleSearch are so-
lutions of F, I;(x;|x1,...,xi—1) = 0= OF (xi|x1,...,xi—1).

Case (2): (x1,...,x;_1,x;) can be extended to a so-
lution but (xi,...,x;—1,X;) cannot be extended to a solu-
tion. Since SampleSearch is a systematic search proce-
dure, if it explores a partial assignment (xj,...,x;) that
can be extended to a solution of F, it is guaranteed to
return a full sample (solution) extending this partial as-
signment. Otherwise, if (xj,...,x) is not part of any so-
Iution of F then SampleSearch will prove this inconsis-
tency before it will finish generating a full sample. Con-
sequently, if (x1,...,x;_1,%;) is sampled first, a full assign-
ment (a solution) extending (xi,...,x;) will be returned and
if (x1,...,%) is sampled first, SampleSearch will detect that
(x1,...,Xi—1,X;) cannot be extended to a solution and even-
tually explore (xi,...,xj_1,x;). Therefore, in both cases
if (x1,...,x—1) is explored by SampleSearch, a solution
extending (xi,...,x;_1,x;) will definitely be generated i.e.

Ii(xi|x1,...,x,-,1) =1= Qf(x,'|x1,...,x,;1).

Case (3): Both (xj,...,x;_1,%;) and (x1,...,x;_1,X;) can
be extended to a solution. Since SampleSearch is a sys-
tematic search procedure, if it samples a partial assign-
ment (xj,...,x;_1,%) it will return a solution extending
(x1,...,xi—1,X;) without sampling (xi,...,x;—1,x;). There-
fore, the probability of sampling x; given (xj,...,xi_1)
equals Q;(x;|xy,...,x;—1) (from Steps 5 and 6 of Algorithm
1) which equals QF (xi|x1,...,xi—1). O

Note that the only property of backtracking search that we
have used in the proof is its systematic nature. Therefore, if
we replace naive backtracking search by any systematic SAT
solver such as minisat (Sorensson & Een 2005), the above
theorem would hold. The only modifications we have to
make are: (a) use static variable ordering 2, (b) use value or-
dering based on the proposal distribution Q. Consequently,

Corollary 1. Given a Formula F, a distribution Q and
an ordering O, any systematic SAT solver replacing DPLL
in SampleSearch will generate i.i.d. samples from the
backtrack-free distribution QF .

If we can compute the sampling distribution QF, we
will be able to estimate the solution counts as follows.
Let (x',...,x") be a set of i.i.d. samples generated by
SampleSearch, then as dictated by Equation 2, the number
of solutions can be estimated by:

— 1 ¥ F(x)
M= — - 3
N,-:ZIQF(X’) 3)

Because, all samples generated by SampleSearch are so-
lutions, Vi, F(x') = 1, we get

_ 1 X
M= N Z OF (x))

Proposition 1. (Geweke 1989; Rubinstein 1981) Let S =
{X =x|F(x) = 1} be the set of models of Formula F, then
the expected value E(M) = |S].

Computing QO (x) given a sample x = (x1,...,x,)

In this subsection, we describe an exact and an approximate
scheme to compute QF (x).

Exact Scheme Since (xi,...,x;,...,x,) was generated,
clearly (xi,...,x;) can be extended to a solution and all we
need is to determine if (xj,...,%;) can be extended to a solu-

tion (see Definition 1). To that end, we can run any complete

SAT solver on the formula (F Ax; A ... Axj—1 AX;). If the

solver proves that (F Axj A...Ax;_] AX;) is consistent, we

set OF (xi|x1,...,xi—1) = Qi(xi|x1,...,xi_1). Otherwise, we

set OF (x;|x1,...,x;_1) = 1. Then, once OF (x;|x,...,xi_1)

is computed for all i, we can compute QF (x) using QF (x) =
?:1 Qf(x,~|x1, cen ,x,'_l).

ZWe can also use some restricted dynamic variable orderings
and still maintain correctness of Theorem 1

Approximating Qf (x) Since computing QF (x) requires
O(n) invocations of a complete SAT solver per sample, as
n gets larger, SampleSearch is likely to be slow. Instead,
we propose an approximation of Qf (x) denoted by A (x)
while still maintaining the essential statistical property of
asymptotic unbiasedness (Rubinstein 1981).

Definition 2 (Asymptotic Unbiasedness). 51; is an asymp-
totically unbiased estimator of 8 if limy_,.. E(6y) = 0
Note that to compute Q (x), we have to determine

whether (xj,...,x;_1,X;) can be extended to a solution.
While generating a sample x, SampleSearch may have
already determined that (x,...,x;_1,%;) cannot be ex-

tended to a solution and we can use this information
uncovered by SampleSearch to yield an approximation
as follows. If SampleSearch has itself determined that
(x1,...,xi—1,X;) cannot be extended to a solution while gen-
erating x, we set Al-F (xilx1,...,xi—1) = 1, otherwise we set
AiF(xi|x1,...,x,',1) = Qi(xi|x1,...,x;—1). Finally, we com-
pute AF(x) = [T, AF (xi|x1,...,xi_1). However, this ap-
proximation does not guarantee asymptotic unbiasedness.
We can take this intuitive idea a step further and guarantee
asymptotic unbiasedness.

We can store (cache) each solution (x,...,x,) and all par-
tial assignments (xj,...,X;) that were proved to be inconsis-
tent during each independent execution of SampleSearch,
which we refer to as search-traces. After executing
SampleSearch N times, (i.e. once we have our required
samples) we use the stored N traces to compute the ap-
proximation Af,(x) for each sample as follows (the ap-
proximation is indexed by N to denote dependence on

N). For each partial sample (xy,...,x;) if (x1,...,%;) was
found to be inconsistent during any of the N executions
of SampleSearch, we set Aﬁl_(x,-|x1,...,x,;1) = 1, other-
wise we set it to Q;(x;|x1,...,x;—1). Finally, we compute
AR (x) =TT AR, (il - xic).

It is clear that as N grows, more inconsistencies will be
discovered by SampleSearch and as N — oo, all inconsis-
tencies will be discovered making Ak (x) equal to OF (x).
Consequently,

Proposition 2 (Asymptotically Unbiased Property).
limy AL (x) = OF (x).

Example 1. Figure 1 shows the probability tree associated
with a given distribution Q. Each arc from a parent node to
the child node is labeled with the probability of generating
the child node given the assignment on the path from the root
node to the parent node. The probability tree is also the com-
plete search tree for the formula shown. Let us assume that
SampleSearch has generated three traces as shown in Fig-
ure 2. Note that in our example, we have 3 samples but only
two distinct solutions (A=0,B=1,C=1) and (A=1,B=1,C=1).
One can verify that QF (x) of Traces 1, 2 and 3 is 0.8, 0.8
and 0.06 respectively. On the other hand, the approximation
AF (x) of Traces 1,2 and 3 is 0.8, 0.8 and 0.036 respectively.

Lower Bounding the Solution Counts

Definition 3 (Markov Inequality). For any random variable
Xand p > 1, Pr(X > pE[X]) < 1/p

Importance Sampling Distribution Q@ Clauses

Q=Q(A)*Q(B|A)'Q(C|A,B) (AVBVC)and (AVRB YV~ C)and
_ _ _ (AV-rBVCland(rAVBVr-C)

Q(A)=(0.8,0.2) Q(B|A)=Q(B)=(0.4,0.6) and (-AVEBVC)

Q(C|A, B)=Q(C)=(0.7,0.3)

Figure 1: An example Probability (Search) Tree for the
shown Formula and assuming an importance sampling dis-
tribution Q. Leaf nodes marked with X are not solutions.

TRACE 1 TRACE 2 TRACE 3

Figure 2: DPLL-Traces of SampleSearch. The grounded
nodes were proved inconsistent.

(Gomes et al. 2007) show how a simple application of
the Markov inequality can be used to obtain probabilistic
lower bounds on the counting task. Using the same ap-
proach, we present a small modification of SampleSearch,
SampleSearch — LB for obtaining lower bounds on the exact
solution counts (see Algorithm 2). SampleSearch — LB gen-
erates k samples using SampleSearch and returns the mini-

mum m (minCount in Algorithm 2) over the k-samples.

Algorithm 2 SampleSearch — LB(F,Q,0,k, 0. > 1)

1: minCount < 2"

2: fori=1tokdo ‘

3: Generate a sample x' using SampleSearch(F,Q,0O)
) . 1 . _ 1

4: IF minCount > o) THEN minCount = o)

5: end for

6: Return minCount

o

THEOREM 2 (Lower Bound). With probability of at least
1— l/Otk, SampleSearch — LB returns a lower bound on the
number of models of Formula F

Proof. Consider an arbitrary sample x'. From Theorem

IS|. Therefore, by
QFI(X,> > alS)) < 1/a.
Since, the generated k samples are independent, the prob-
ability Pr(mznl lQF(x’) > alS|) < 1/a* and therefore

Pr(min*_, (—#—) <|S|) > 1—1/ak. O

1 and Proposition 1, E(=r— Qﬁ 5) =

Markov inequality, we have Pr(

O(QF Xl)

Experimental Evaluation
Competing Techniques

SampleSearch takes as input a proposal distribution Q. The
performance of importance sampling based algorithms is
highly dependent on the proposal distribution (Cheng &
Druzdzel 2000; Yuan & Druzdzel 2006). It was shown
that computing the proposal distribution from the output
of a generalized belief propagation scheme of Iterative
Join graph propagation (IJGP) yields good empirical per-
formance than other available choices (Gogate & Dechter
2005). Therefore, we use the output of IJGP to compute the
initial proposal distribution Q. The complexity of IJGP is
time and space exponential in a parameter i also called as
i-bound. We tried i-bounds of 1, 2 and 3 and found that the
results were not sensitive to the i-bound used in this range
and therefore we report results for i-bound of 3. The prepro-
cessing time for computing the proposal distribution using
IJGP (i = 3) was negligible (< 2 seconds for the hardest in-
stances).

As pointed out earlier, we can replace DPLL in Algo-
rithm 1 with any SAT solver. We chose to use minisat as
our SAT solver because currently it is the best performing
SAT solver (Sorensson & Een 2005). Henceforth, we will
refer to minisat based SampleSearch as SampleMinisat.

We experimented with three versions of SampleMinisat
(a) SampleMinisat-exact in which the importance weights
are computed using the exact backtrack-free distribution Q
(b) SampleMinisat-app in which the importance weights
are computed using the approximation A% of OF and (c)
SampleMinisat-LB for lower bounding (see Algorithm 2).

We compare SampleMinisat-exact and SampleMinisat-
app with a WALKSAT-based approximate solution count-
ing technique, ApproxCount (Wei & Selman 2005) while
we compare the lower-bound returned by SampleMinisat-
LB with a lower-bounding technique SampleCount recently
presented in (Gomes et al. 2007).

Results

We conducted experiments on a 3.0 GHz Intel P-4 machine
with 2GB memory running Linux. Table 1 summarizes our
results. We tested our approach on the benchmark formu-
las used in (Gomes et al. 2007). These problems are from
six domains: circuit synthesis, random k-cnf, Latin square,
Langford, Ramsey and Schur’s Lemma. An implementa-
tion of WALKSAT-based model counter ApproxCount (Wei
& Selman 2005) is available on the first author’s web-site
while the implementation of SampleCount is not publicly
available. Therefore, we use the results reported in (Gomes
et al. 2007) which were performed on a faster CPU. We ter-
minated each algorithm after 12 hrs if it did not terminate by
itself (indicated by a Timeout in Table 1).

In all our experiments with SampleMinisat-LB, we set
k=7 and a = 2 giving a correctness confidence of 1 —
1 /27 ~ 99% (see Theorem 2). The results reported in
(Gomes et al. 2007) also use the 99% confidence level. In
all our experiments for determining the average count us-
ing SampleMinisat-app and SampleMinisat-exact, we set the
number of samples N to 2000. The ApproxCount implemen-
tation was run with default settings and the pickeven heuris-
tic which was shown to perform better than other heuristics.

From Table 1 (columns 3 and 4), we see that
SampleMinisat-LB scales well with problem size and pro-
vides good high-confidence lower-bounds close to the true
counts. On most instances SampleMinisat-LB provides bet-
ter lower bounds than SampleCount.

The performance of SampleMinisat-exact and
SampleMinisat-app is substantially more stable than
ApproxCount in that the error between the exact count
(when it is known) and the approximate count is much
larger for ApproxCount than both SampleMinisat-exact and
SampleMinisat-app (see Table 1, columns 5, 6 and 7).

We notice that (a) the solution counts produced by
SampleMinisat-exact and SampleMinisat-app are similar
and (b) the time required by SampleMinisat-app is substan-
tially lower than SampleMinisat-exact indicating that the im-
provement achieved using a potentially better but costly ex-
act estimator is minor.

Note that all SampleMinisat implementations were not
able to compute approximate counts (indicated by Timeout
in Table 1) for 3bitadd_32 and Ramsey-23-4-5 instances.
These instances are beyond the reach of a backtracking
(DPLL) solver like SampleMinisat even for finding a single
solution within the 12hr time bound. On the other hand, both
SampleCount and ApproxCount use WALKSAT for gener-
ating solutions which solves these instances quite easily.

Summary and Conclusion

We presented an approach that uses importance sampling
to count the number of solutions of a SAT formula. How-
ever, a straight-forward application of importance sampling
on a deterministic problem such as satisfiability may lead to
very poor approximations because a large number of sam-
ples having zero weight are generated (rejection). To ad-
dress the rejection problem, we developed a new scheme
of SampleSearch which is a DPLL-based randomized back-
tracking procedure.

We characterize the sampling distribution of
SampleSearch and develop two weighting schemes
that can be used in conjunction with SampleSearch to
estimate solution counts. We also introduced a minor
modification to SampleSearch which can be used to lower-
bound the number of solutions using the Markov inequality.
We present promising empirical evidence showing that
SampleSearch based counting schemes are competitive
with state-of-the-art methods.

Acknowledgements

This work was supported in part by the NSF under award
numbers [IS-0331707 and 11S-0412854. We would like to

Problems Exact SampleCount SampleMinisat SampleMinisat | SampleMinisat ApproxCount
(Gomes et al. 2007) Lower Bound Exact Approximate [(Wei & Selman 2005)
Models Models Time| Models Time ||| Models Time| Models Time| Models Time
Circuit
2bitcomp6 2.10E+29| > 2.40E+28 29 |[>7.79E+28 5 [||2.08E+29 345 [1.15SE+29 2 |7.40E+29 32
3bitadd_32 - > 5.9E+1339 1920| Timeout 43200}|| Timeout 43200| Timeout 43200|8.7E+1256 6705
Random
wiff-3-3.5 1.40E+14| > 1.60E+13 240 (> 2.32E+13 4 |||1.45E+14 145 |[1.59E+14 5 |1.30E+15 15
wit-3.1.5 1.80E+21| > 1.00E+20 240 |> 1.55E+20 20 |||{1.58E+21 128 |1.89E+21 2 |9.90E+21 13
wff-4.5.0 - > 8.00E+15 120 |>2.30E+16 28 [||{1.09E+17 191 [1.35E+17 3 |7.00E+14 8
Latin-square
I1s8-norm 5.40E+11| > 3.10E+10 1140|> 1.03E+11 55 [[|2.22E+11 168 [4.84E+11 41 |3.00E+12 70
1s9-norm 3.80E+17| > 1.40E+15 1920 |> 1.45E+16 102 |[|9.77E+16 212 |1.42E+17 66 |1.47E+18 48
Is10-norm 7.60E+24| > 2.70E+21 2940 > 1.41E+23 179 |||3.44E+24 354 |1.24E+25 91 | 1.00E+27 97
Is11-norm 5.40E+33| > 1.20E+30 4140 (> 1.26E+31 314 |(||3.38E+34 527 |1.24E+35 93 | 1.53E+37 104
Is12-norm - > 6.90E+37 3000 |> 1.81E+38 640 [||9.58E+38 1356 [1.11E+40 131 | 1.67E+49 1034
Is13-norm - > 3.00E+49 4020 |> 5.58E+51 1232 (||1.82E+52 3200 |4.36E+53 183 | 1.81E+63 1300
Is14-norm - > 9.00E+60 2640 |> 6.07E+61 2244 |||3.56E+62 9202 |4.07E+62 242 | 1.57E+80 3000
Is15-norm - > 1.10E+73 3360 |> 5.34E+79 3903 [||1.50E+78 27829(2.67E+78 333 | 1.89E+99 7837
Is16-norm - > 6.00E+85 4080 |> 3.29E+92 3950 [||8.40E+92 18292(1.20E+93 453 [1.15SE+131 9638
Langford
Langford-12-2 |1.00E+05| > 4.30E+03 1920 [> 1.10E+04 340 |[|1.40E+05 1003 2.12E+05 8 |4.80E+05 109
Langford-15-2 |3.00E+07| > 1.00E+06 3600 (> 6.50E+06 543 |||1.35E+07 1729 (1.42E+07 25 |8.60E+11 231
Langford-16-2 [3.20E+08| > 1.00E+06 3900 |> 2.50E+07 501 |(|6.70E+08 3092 |2.50E+09 39 |8.60E+11 929
Langford-19-2 |2.10E+11| > 3.30E+09 3720 [> 1.20E+11 892 |||5.80E+10 5202 [2.90E+12 248 | 1.80E+14 828
Langford-20-2 |2.60E+12| > 5.80E+09 3240 (> 6.90E+11 982 |||1.90E+13 5001 [4.50E+13 578 | 1.80E+16 2372
Langford-23-2 3.70E+15| > 1.60E+11 5100 |> 1.50E+14 1342 {|(9.90E+16 3903 [2.10E+17 750 |9.90E+25 7562
Langford-24-2 - > 4.10E+13 4800 |> 9.80E+14 1522 [||6.01E+16 7360 |1.77E+18 650 | 1.80E+28 7383
Langford-27-2 - > 5.20E+14 6660 |> 1.50E+16 1089 |||5.50E+19 20840|7.20E+19 1030 | 3.80E+32 18910
Langford-28-2 - > 4.00E+14 7020 [> 3.40E+16 3622 |[|8.60E+21 39260|3.70E+22 1239 | 1.10E+30 28200
Ramsey-20-4-5 - >330E+35 210 [> 3.03E+36 560 [[|1.12E+37 1452 [6.00E+39 50 |2.38E+31 134
Ramsey-23-4-5 - > 1.40E+31 3180| Timeout 43200||| Timeout 43200| Timeout 43200| 3.50E+14 24784
Schur-5-100 - > 1.30E+17 1200 |> 1.75E+15 339 |||7.70E+15 3120 [6.03E+16 104 |7.80E+10 17759

Table 1: Results on benchmarks used in (Gomes et al. 2007). Timeout indicates that the method did not generate any answer
within 43200s. Time is in seconds. A ’-’ in the exact column indicates that the solution count is not known. The best results for
lower-bounding and approximate counting (when the exact count is known) are highlighted in each row.

thank Ashish Sabharwal for providing some benchmarks
used in this paper.

References

Bayardo, R., and Pehoushek, J. 2000. Counting models
using connected components. In AAAI 157-162. AAAI
Press / The MIT Press.

Cheng, J., and Druzdzel, M. J. 2000. Ais-bn: An adap-
tive importance sampling algorithm for evidential reason-
ing in large bayesian networks. J. Artif. Intell. Res. (JAIR)
13:155-188.

Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communications
of the ACM 5:394-397.

Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for bounded inference. J. ACM 50(2):107-153.

Geweke, J. 1989. Bayesian inference in economet-
ric models using monte carlo integration. Econometrica
57(6):1317-39.

Gogate, V., and Dechter, R. 2005. Approximate inference

algorithms for hybrid bayesian networks with discrete con-
straints. UAI-2005.

Gogate, V., and Dechter, R. 2006. A new algorithm for
sampling csp solutions uniformly at random. CP.

Gomes, C.; Hoffmann, J.; Sabharwal, A.; and Selman, B.
2007. From sampling to model counting. IJCAL
Rubinstein, R. Y. 1981. Simulation and the Monte Carlo
Method. New York, NY, USA: John Wiley & Sons, Inc.
Sorensson, N., and Een, N. 2005. Minisat v1.13-a sat
solver with conflict-clause minimization. In SAT 2005.
Wei, W., and Selman, B. 2005. A new approach to model
counting. In SAT.

Yuan, C., and Druzdzel, M. J. 2006. Importance sampling
algorithms for Bayesian networks: Principles and perfor-
mance. Mathematical and Computer Modelling.

