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Abstract

Sampling from belief networks which have a
substantial number of zero probabilities is prob-
lematic. MCMC algorithms like Gibbs sam-
pling do not converge and importance sampling
schemes generate many zero weight samples that
are rejected, yielding an inefficient sampling pro-
cess (the rejection problem). In this paper, we
propose to augment importance sampling with
systematic constraint-satisfaction search in order
to overcome the rejection problem. The result-
ing SampleSearchscheme can be made unbiased
by using a computationally expensive weight-
ing scheme. To overcome this an approximation
is proposed such that the resulting estimator is
asymptotically unbiased. Our empirical results
demonstrate the potential of our new scheme.

1 Introduction

In this paper, we investigate importance sampling algo-
rithms for approximating the belief updating task, when
the belief network has a substantial amount of deter-
minism, namely a substantial number of zero proba-
bilities. The main motivation for our study is a re-
cent work on mixed networks [Dechter and Larkin, 2001,
Dechter and Mateescu, 2004] which allows augmenting
probabilistic networks with constraints. The constraint rep-
resentation allows one to leverage constraint-based tech-
niques to speed up exact and approximate inference. In pre-
vious work [Gogate and Dechter, 2005] a restricted form of
constraint propagation was used to speed up importance
sampling. In this paper, we go beyond constraint propa-
gation and explore advanced constraint based search tech-
niques.

Also, even when the constraints are not expressed
explicitly, often they are hidden in the probabilis-
tic functions, in the form of zero probabilities. In-
deed, it is well known [Cheng and Druzdzel, 2000,

Yuan and Druzdzel, 2006] that the quality of approxima-
tion of importance sampling techniques deteriorate in the
presence of zero probabilities due to the generation of
a large number of samples having zero weights (the re-
jection problem). With the exception of the work on
adaptive sampling schemes [Cheng and Druzdzel, 2000,
Yuan and Druzdzel, 2006], the rejection problem has been
largely ignored. In [Gogate and Dechter, 2005], we
showed that a restricted form of constraint propagation can
be used to reduce the amount of rejection. In presence of
a small number of zeros, this method worked quite well.
However, when the belief network has a substantial num-
ber of zero probabilities, we observed that earlier methods
may fail to generate even a single sample having non-zero
weight.

Therefore, in this paper we present an alternative approach
that guarantees that all samples generated have non-zero
weight. In this scheme, when a sample is supposed to be
rejected, the algorithm continues instead with systematic
search until a non-zero weight sample is generated. How-
ever the resulting SampleSearch scheme has two problems:
(a) search introduces bias and (b) search introduces com-
putational overhead.

To remove the bias we present two weighting schemes.
The first weighting scheme guarantees unbiasedness but re-
quires a substantial amount of computation. The second
scheme is a linear time procedure that approximates the
first scheme such that the resulting estimates are asymp-
totically unbiased.

To demonstrate the cost-effectiveness of SampleSearch,
we conducted a preliminary experimental study on various
benchmarks. Our aim was to evaluate the impact of search
on the performance of traditional importance sampling
methods like likelihood weighting [Fung and Chang, 1990]
and advanced importance sampling schemes like IJGP-
sampling [Gogate and Dechter, 2005]. We found that Sam-
pleSearch outperforms pure sampling when a substantial
amount of determinism is present in the belief network.

The rest of the paper is organized as follows. In the next



section we present some preliminaries. In section 3, we
present background on importance sampling and the rejec-
tion problem. In section 4, we present the SampleSearch
scheme and in section 5 we characterize its sampling dis-
tribution. Experimental results are presented in section 6
and we end with a short summary in section 7.

2 Belief Networks with Zero Probabilities

We represent sets by bold capital letters and members of a
set by capital letters. An assignment of a value to a variable
is denoted by a small letter while bold small letters indicate
an assignment to a set of variables.

Definition 2.1. (belief networks)A belief network (BN)is
a graphical modelP = 〈Z,D,P〉, whereZ = {Z1, . . . ,Zn}
is a set of random variables over multi-valued domains
D = {D1, . . . ,Dn}. Given a directed acyclic graphG over
Z, P= {Pi}, wherePi = P(Zi |pa(Zi)) are conditional prob-
ability tables (CPTs) associated with eachZi . The set
pa(Zi) is the set of parents of the variableZi in G. A be-
lief network represents a probability distribution overZ,
P(Z) = ∏n

i=1P(Zi |pa(Zi)). An evidence setE = e is an in-
stantiated subset of variables.

Definition 2.2 (belief updating). Given a belief network
P and evidenceE = e, thebelief updatingtask is to com-
pute the posterior marginal probabilityP(Zi = zi |e). By
definition,

P(Zi = zi |e) =
∑Z\(E∪Zi) ∏n

j=1P(Z j |pa(Z j))|E=e,Zi=zi

∑Z\E ∏n
j=1P(Z j |pa(Z j))|E=e

(1)

The notationh(Z)|E=e stands for a functionh over Z \E
with the assignmentE = e. In this work, we focus on belief
networks whose CPTs have a substantial number of zero
probabilities. We can extract the ”zeros” in the CPTs and
express them as hard constraints using the constraint net-
work framework.

Definition 2.3 (constraint network). A constraint net-
work (CN) is defined by a 3-tuple,R = 〈Z,D,C〉, where
Z is a set of variablesZ = {Z1, . . . ,Zn}, associated with a
set of discrete-valued domains,D = {D1, . . . ,Dn}, and a
set of constraintsC = {C1, . . . ,Cr}. Each constraintCi is a
relationRSi defined on a subset of variablesSi ⊆ Z. The
relation denotes all compatible tuples of the cartesian prod-
uct of the domains ofSi . A solution is an assignment of
values to all variablesz = (Z1 = z1, . . . ,Zn = zn), zi ∈ Di ,
such thatz belongs to the natural join of all constraints i.e.
z ∈ RS1 ./ . . . ./ RSr . The constraint satisfaction problem
(CSP) is to determine if a constraint network has a solution,
and if so, to find one. When we writeR (z), we mean that
z satisfies all constraints inR .

In the following example, we show how constraints can be
extracted from CPTs,

Figure 1: An example Belief Network.

Example 2.4. Figure 1 presents a belief network over
6 binary variables. The CPTs associated withC and G
have zero probabilities. The constraint that can be ex-
tracted from the CPT ofC is RA,C = {(0,0),(1,0),(1,1)}
while the CPT ofG yields the constraint relationRD,F,G =
{(0,0,0)(0,1,0),(1,0,1),(1,1,0)}.

3 Importance Sampling and Rejection

Importance sampling is a general simulation technique
commonly used to evaluate the following sum:M =
∑x∈X f (x) for some real functionf . The idea is to generate
samplesx1, . . . ,xN from a proposal distributionQ (satisfy-
ing f (x) > 0⇒ Q(x) > 0) and then estimateM as follows:

M = ∑
x∈X

f (x) = ∑
x∈X

f (x)
Q(x)
Q(x)

(2)

M̂ =
1
N

N

∑
i=1

w(xi) , where w(xi) =
f (xi)
Q(xi)

(3)

w is often referred to as the sample weight.

To solve the belief updating task by importance sampling,
we compute the numerator and the denominator of equation
1 by importance sampling. To compute the numerator, we
use the substitution:

f (X) =
n

∏
j=1

P(Z j |pa(Z j))|E=e,Zi=zi
, X = Z \E∪Zi (4)

and to compute the denominator, we use the substitution:

f (X) =
n

∏
j=1

P(Z j |pa(Z j))|E=e , X = Z \E (5)

When the numerator and denominator are evaluated using
different estimators, they may converge to their expected
values at different sample sizes resulting in abiased esti-
mate. However, when the sample size is large enough, the
bias can be ignored [Rubinstein, 1981].



Several choices are available in the literature on be-
lief networks for the proposal distributionQ(X) rang-
ing from the prior distribution as in likelihood weight-
ing [Fung and Chang, 1990] to more sophisticated alterna-
tives such as IJGP-Sampling [Gogate and Dechter, 2005]
and EPIS-BN [Yuan and Druzdzel, 2006] where the output
of a belief propagation algorithm is used to compute the
proposal distribution.

As in prior work [Fung and Chang, 1990,
Cheng and Druzdzel, 2000], we assume that that
the proposal distribution is expressed in a fac-
tored product form dictated by the belief network:
Q(X) = ∏n

i=1Qi(Xi |X1, . . . ,Xi−1) = ∏n
i=1Qi(Xi |Y i) , where

Y i ⊆ {X1, . . . ,Xi−1}, Qi(Xi |Y i) = Q(Xi |X1, . . . ,Xi−1) and
|Y i |< c for some constantc.

WhenQ is given in a product form , we can generate a full
sample fromQ as follows. Fori = 1 to n, sampleXi = xi

from the conditional distributionQ(Xi |X1 = x1, . . . ,Xi−1 =
xi−1) and setXi = xi . This is often referred to as anordered
Monte Carlo sampler.

A sample (x1, . . . ,xn) generated by the ordered Monte
Carlo sampler is rejected whenf (x1, . . . ,xn) = 0. In the
following we assume that all zero probabilities inf are rep-
resented using a set of constraint relationsR and therefore
a rejected sample would imply that one or more constraints
in R are violated.

Definition 3.1 (Globally Consistent sample).A partial
sample(x1, . . . ,xi) is globally consistent if it can be ex-
tended to a full solutionx = (x1, . . . ,xi ,xi+1, . . . ,xn) of R .

3.1 The Rejection Problem

Given a positive belief network P (Z) =
∏n

i=1P(Zi |Z1, . . . ,Zi−1) and an empty evidence set,
all full samples generated by the ordered Monte Carlo
sampler along the orderingZ1, . . . ,Zn are guaranteed to be
consistent (logic sampling [Pearl, 1988]).

However, in presence of both zero probabilities and evi-
dence the ordered Monte Carlo sampler may generate sam-
ples which are inconsistent (the rejection problem) because
the sample may conflict with the evidence and zero prob-
abilities. In general, if we have a belief network repre-
sentingP with zeros in the belief network which are mod-
eled as constraintsR , we would have no rejection if we
sample from the modified proposal distributionQR(x) =
Q(x|R (x)). The problem is that computingQ(x|R (x)) is
NP-hard.

In earlier work [Gogate and Dechter, 2005], we pro-
posed to use a restricted form of constraint prop-
agation to overcome the rejection problem. Given
a partial sample (x1, . . . ,xp), constraint propagation
prunes values in the domains of future variables
Xp+1, . . . ,Xn which are inconsistent with(x1, . . . ,xp).

Constraint propagation thus reduces the number of
inconsistent samples generated by the ordered Monte
Carlo sampler (see [Dechter and Mateescu, 2004,
Gogate and Dechter, 2005]).

However, we observed recently
[Gogate and Dechter, 2006] that when a substantial
number of zero probabilities are present or when there
are many evidence variables, constraint propagation is
not effective in that few/no consistent samples will be
generated. Therefore in this paper, we propose to augment
constraint propagation with search so that all samples
generated by the sampler are consistent.

4 Overcoming the Rejection Problem by
using the Backtrack-free Distribution

As pointed out earlier, if we sample from the distribution
QR = Q(x|R (x)), we would have no rejection. Because we
sample along an orderingO= 〈x1, . . . ,xn〉 using the ordered
Monte Carlo sampler, we defineQR relative toO, which we
refer to as thebacktrack-free distribution.

Definition 4.1 (Backtrack-free distribution ). Given a
distributionQ(X) = ∏N

i=1Qi(Xi |X1, . . . ,Xi−1), an ordering
O = 〈x1, . . . ,xn〉 and a set of constraintsR , the backtrack-
free distributionQR is the distribution:

QR(x) =
n

∏
i=1

QR
i (xi |x1, . . . ,xi−1) (6)

whereQR
i (xi |x1, . . . ,xi−1) is given by:

QR
i (xi |x1, . . . ,xi−1) =

Qi(xi |x1, . . . ,xi−1)
1−∑x′i∈Bi

Qi(x′i |x1, . . . ,xi−1)
(7)

whereBi = {x′i ∈ Di |(x1, . . . ,xi−1,x′i) is not globally con-
sistent relative toR } andxi /∈ Bi . Note that by definition,
f (x) = 0⇒QR(x) = 0 and vice versa.

The backtrack-free distribution can be constructed as fol-
lows. Assume that we have a yes/no oracle which takes
a partial assignment as input and answers a yes when
it can be extended to a globally consistent full sample
and no otherwise. We first initializeQR

i (xi |x1, . . . ,xi−1) =
Qi(xi |x1, . . . ,xi−1) for all i. Then, for each conditional
distributionQR

i (Xi |X1 = x1, . . . ,Xi−1 = xi−1) and for each
value xi of Xi , we check if (x1, . . . ,xi−1,xi) can be ex-
tended to a globally consistent full sample using the
oracle. If the oracle answers no, we setQR

i (Xi =
xi |X1 = x1, . . . ,Xi−1 = xi−1) = 0 and normalizeQR

i (Xi |X1 =
x1, . . . ,Xi−1 = xi−1). Clearly, by design all samples gener-
ated from the backtrack-free distributionQR will have non-
zero weight and therefore we will have no rejection. How-
ever, in practice makingQ backtrack-free (generatingQR

from Q) may be costly and so in the following we describe
a scheme that attempts to overcome this computational is-
sue.



5 The SampleSearch scheme

In this section we show how to incorporate systematic
search into the ordered Monte Carlo sampler so that all full
samples are solutions ofR . We will sketch our ideas us-
ing the most basic form of systematic search: chronolog-
ical backtracking, noting it can be extended to any back-
tracking search method (see [Dechter, 2003]). In our ex-
periments we use one such advanced search scheme called
RELSAT [Bayardo and Schrag, 1997].

An ordered Monte Carlo sampler samples variables in the
order〈X1, . . . ,Xn〉 from the proposal distributionQ and re-
jects a partial or full sample(x1, . . . ,xi) if it violates any
constraints inR (R models zero probabilities inf ). Upon
rejecting a (partial or full) sample, the sampler starts sam-
pling anew from the first variable in the ordering. In-
stead, we propose the following modification. We can set
Qi(Xi = xi |x1, . . . ,xi−1) = 0 (to reflect that(x1, . . . ,xi) is not
consistent), normalizeQi and re-sampleXi from the nor-
malized distribution. The newly sampled value may be
consistent in which case we can proceed to variableXi+1

or it may be inconsistent. If we repeat the process we
may reach a point whereQi(Xi |x1, . . . ,xi−1) is 0 for all val-
ues ofXi . In this case,(x1, . . . ,xi−1) is inconsistent and
therefore we need to change the distribution atXi−1 by set-
ting Qi−1(Xi−1 = xi−1|x1, . . . ,xi−2) = 0, normalize and re-
sampleXi−1. We can repeat this process until a globally
consistent full sample that satisfies all constraints inR is
generated. By construction, this process always yields a
globally consistent full sample.

Our proposed SampleSearch scheme is described in Fig-
ure 2. It is a depth first backtracking search (DFS) over
the state space of consistent partial assignments searching
for a solution to a constraint satisfaction problemR , whose
value selection is guided byQ. The first phase is a forward
phase in which the variables are sampled in sequence and a
current partial sample (or assignment) is extended by sam-
pling a valuexi for the next variableXi using the current dis-
tributionQ′

i . If for all valuesxi ∈Di , Q′
i(xi |x1, . . . ,xi−1) = 0,

then SampleSearch backtracks to the previous variableXi−1

(backward phase) and updates the distributionQ′
i−1 associ-

ated withXi−1 by settingQ′
i−1(xi−1|x1, . . . ,xi−2) = 0 and

normalizingQ′
i−1. SampleSearch employs a series of mu-

table value domainsD′
i and conditional distributionsQ′

i
whereD′

i holds the subset of variables not examined yet
andQ′

i is the normalized distribution ofQi(Xi |x1, . . . ,xi−1)
overDi .

Example 5.1. Figure 3 provides an example of a com-
plete search tree of SampleSearch for the given proposal
distributionQ and the specified set of constraintsR . The
grounded nodes are pruned due to the constraints. Sam-
pleSearch explores the search tree in a DFS-manner until a
non-grounded leaf node is visited.

Algorithm SampleSearch
Input: The proposal distributionQ = ∏n

i=1Qi(Xi |X1, . . . ,Xi−1),
hard constraintsR that represent zeros in the target function
f (X).
Output : A samplex = (x1, . . . ,xn)

• i=1, D′i = Di (copy domains),Q′1(X1) = Qi(X1) (copy dis-
tribution),x = /0

• while 1≤ i ≤ n

1. If D′i is not empty
(a) SampleXi = xi from Q′i and remove it fromD′i .
(b) IF (x1, . . . ,xi) violates any constraint inR

i. setQ′i(Xi = xi |x1, . . . ,xi−1) = 0 and normalize
Q′i

ii. Goto step 1.
(c) x = x ∪ xi , i = i + 1, D′i = Di ,

Q′i(Xi |x1, . . . ,xi−1) = Qi(Xi |x1, . . . ,xi−1).
2. else

(a) x = x\xi−1.
(b) setQ′i−1(Xi−1 = xi−1|x1, . . . ,xi−2) = 0 and nor-

malizeQ′i−1(Xi−1|x1, . . . ,xi−2)
(c) seti = i−1

• If i = 0, return inconsistent,Else returnx

Figure 2: Algorithm SampleSearch

5.1 The Sampling Distribution of SampleSearch

Let I = ∏n
i=1 Ii(Xi |X1, . . . ,Xi−1) be the sampling distri-

bution of SampleSearch. It turns out thatI equals the
backtrack-free distributionQR derived fromQ andR .

THEOREM 5.2 (Main Result). SampleSearch generates
independently and identically distributed samples from the
backtrack-free probability distributionQR, i.e. ∀ i QR

i = Ii .

Figure 3: An Example Search Tree



Proof. SampleSearch is a systematic search procedure.
Namely, once it explores a partial assignment(x1, ...,xi−1)
then, if this assignment can be extended to a solution, the
algorithm is guaranteed to return a globally consistent full
sample extending this partial assignment. Otherwise, if
(x1, ...,xi−1) is not part of any solution then SampleSearch
will prove this inconsistency before it will finish generating
a full sample. Consequently,

Proposition 5.3. Given a globally consistent partial sam-
ple(x1, . . . ,xi−1), SampleSearch samples values without re-
placement from the domain of variableXi until a globally
consistent sample(x1, . . . ,xi−1,xi) xi ∈ Di is found.

We can derive the probabilityIi(xi |x1, . . . ,xi−1) of sampling
a globally consistent extensionXi = xi to a globally con-
sistent partial sample(x1, . . . ,xi−1) (if one exists) by con-
sidering all events that generatexi while sampling values
without replacement fromXi (see example 5.4).

Example 5.4. Consider the search tree given in Figure 3.
In the following we will show how to compute the prob-
ability IB(B = 2|A = 0). The events that would lead to
B= 2 i.e. stateS3 being sampled are as follows: (a)〈S3〉 (b)
〈S1,S3〉 (c) 〈S4,S3〉 (d) 〈S1,S4,S3〉 and (e)〈S4,S1,S3〉. The
notation〈S4,S1,S3〉 means that the states were sampled in
the order(S4,S1,S3). Let us now compute the probability
of the event〈S4,S1,S3〉. The probability of samplingS4

from Q(B|A = 0) = (0.3,0.4,0.2,0.1) is 0.1. Because we
sample the domain ofB without replacement,S4 is thrown
away because it is inconsistent and the distribution atB is
changed toQ′(B|A= 0) = (0.3/0.9,0.4/0.9,0.2/0.1). The
probability of samplingS1 viz. B= 1 from Q′ is 4/9. Again
S1 is not replaced and therefore the distribution atB be-
comesQ′′(B|A = 0) = (0.3/0.5,0.2/0.5). The probabil-
ity of samplingS3 viz. B = 2 is 0.4. Thus the probabil-
ity of the event〈S4,S1,S3〉 is 0.1∗ 4/9∗ 0.4 = 0.01778.
By performing similar computations over the remaining
events, one can verify that the probability of samplingS3

is IB(B = 2|A = 0) = 0.33.

Given a globally consistent partial assignmentxi−1 =
(x1, . . . ,xi−1) the domain Di of variable Xi is parti-
tioned into Di = Ri ∪ Bi where Ri = {x1, . . . ,xp} =
{xi ∈ Di |(x1, . . . ,xi) is globally consistent} and Bi =
{x′1, . . . ,x′q}= Di \Ri . The probability of sampling the state
Xi = xi wherexi ∈Ri givenxi−1 = (x1, . . . ,xi−1) is given by:

Ii(Xi = xi |xi−1) =
q+1

∑
j=1

j!

∑
k=1

Pr(π j
k(Bi),xi) (8)

whereπ j
k(Bi) is k-th permutation of thej-th subset ofBi .

The probability of the permutationπ j
k(Bi) = (x′1, . . . ,x

′
j) is

given by:

Pr(π j
k(Bi),xi) =

Q(xi |xi−1)

1−∑ j
s=1Q(x′s|xi−1)

j

∏
s=1

Q(x′s|xi−1)
1−∑s

t=1Q(x′t |xi−1)
(9)

Equation 8 is just a summation over all events that lead toxi

being sampled while Equation 9 computes the probability
of sampling the event〈x′1, . . . ,x′j ,xi〉.
Equations 8 and 9 together provide a possible way of com-
putingI(x) for a samplex.

Because SampleSearch samples values without replace-
ment from the domain ofXi , its distribution can be char-
acterized by a specialization of the non-central hyper-
geometric distribution [Wallenius, 1963] and therefore,

q+1

∑
j=1

j!

∑
k=1

Pr(π j
k(Bi),xi) =

Q(xi |x1, . . . ,xi−1)
1−∑x′i∈Bi

Q(x′i |x1, . . . ,xi−1)
(10)

Proof of Theorem 5.2 follows from Equations 10, 7 and
8.

Given a set of i.i.d. samples(x1 = (x1
1, . . . ,x

1
n), . . . ,xN =

(xN
1 , . . . ,xN

n )) generated by SampleSearch, Theorem 5.2 al-
lows us to estimateM = ∑x∈X f (x) as follows:

M̂ =
1
N

N

∑
i=1

f (x)
QR(x)

=
1
N

N

∑
i=1

f (x)
∏n

j=1QR(xk
j |xk

1, . . . ,x
k
j−1)

(11)

5.2 Approximating I(x)

As pointed out in section 4, we can use an oracle to com-
puteQR(x) for a samplex = (x1, . . . ,xn). The oracle should
be invoked a maximum ofO(n ∗ (d− 1)) times where
d is the maximum domain size andn is the number of
variables. In practice, methods like adaptive consistency
[Dechter, 2003] or a complete backtracking-based search
procedure can be used as a substitute for the oracle. How-
ever, they can be slow and impractical asn andd get larger.
Instead, we can use an approximation ofI(x) to compute
sample weights and still maintain asymptotic unbiasedness.

Definition 5.5 (Asymptotic Unbiasedness).θ̂N is an
asymptotically unbiased estimator ofθ if limN→∞E(θ̂N) =
θ whereE(θ̂N) is the expected value of̂θN.

A simple approximation ofI(x) suggests itself. Be-
causeXi = xi is sampled with probabilityQ′

i(xi |x1, . . . ,xi−1)
in Step 1(a) of SampleSearch, we may use the prod-
uct ∏n

i=1Q′
i(xi |x1, . . . ,xi−1) as an approximation forI(x).

However, this approximation does not guarantee asymp-
totic unbiasedness. We can take this idea a step further to
guarantee asymptotic unbiasedness as we show below.

We can index byj the multiple ways in which the globally
consistent partial sample(x1, . . . ,xi) given (x1, . . . ,xi−1) is
generated. For example,



Example 5.6. Let us assume that a sampleA = 2,B =
0,C = 0 is generated by SampleSearch (see Figure 3).
Given the partial assignmentA = 2, the extensionA =
2,B = 0 can be generated in the following 5 ways (j =
1, . . . ,5) (1) 〈R2〉 (2) 〈R4,R2〉 (3) 〈R5,R2〉, (4) 〈R4,R5,R2〉
and (5)〈R5,R4,R2〉.

The probability with whichXi = xi is sampled in step 1(a)
of SampleSearch is dependent upon the particular way in
whichXi = xi is generated and therefore we can denote the
probabilityQ′

i(xi |x1, . . . ,xi−1) asQ′
i j (xi |x1, . . . ,xi−1), where

j indexes the particular trace that generates(x1, . . . ,xi)
from (x1, . . . ,xi−1). We show that:

LEMMA 5.7. The sampling distribution of SampleSearch
satisfies I(xi |x1, . . . ,xi−1) = maxmj=1Q′

i j (xi |x1, . . . ,xi−1)
wherem is the number of possible ways in whichXi = xi is
sampled given the partial assignment(x1, . . . ,xi−1).

Proof. Q′
i j (xi |x1, . . . ,xi−1) is updated in steps 2(b) and

1(b)(i) of SampleSearch by enforcing the normalization
constraint after detecting inconsistency. This is a mono-
tonic increasing process and therefore the maximum value
of Q′

i j (xi |x1, . . . ,xi−1) will be reached if all values ofXi that
cannot be extended to a solution are sampled by Sample-
Search. Namely,

maxmj=1Q′
i j (xi |x1, . . . ,xi−1) =

Qi(xi |x1, . . . ,xi−1)
1−∑x′i∈Bi

Qi(x′i |x1, . . . ,xi−1)
(12)

whereBi = {x′i ∈Di |(x1, . . . ,xi−1,x′i) is not globally consis-
tent}.
From Equations 12 and 7 the proof follows.

We can rewriteM = ∑x∈X f (x) as:

M = ∑
x∈X

f (x)I(x)
I(x)

= ∑
x∈X

f (x)
I(x)

∏n
i=1 I(xi |x1, . . . ,xi−1)

(13)

and from Lemma 5.7, we get

M = ∑
x∈X

f (x)
I(x)

∏n
i=1maxjQ′

i j (xi |x1, . . . ,xi−1)
(14)

Given a set of i.i.d. samples(x1 = (x1
1, . . . ,x

1
n), . . . ,x

N =
(xN

1 , . . . ,xN
n )) from I(x), we can estimateM as follows:

M =
1
N

N

∑
k=1

f (xk)

∏n
i=1max

Nxi
j=1Q′

i j (x
k
i |xk

1, . . . ,x
k
i−1)

(15)

whereNxi is the number of samples inN that contain the
partial assignment(x1, . . . ,xi). Note that in Equation 15, we

have used∏n
i=1max

Nxi
j=1Q′

i j (x
k
i |xk

1, . . . ,x
k
i−1) as an approxi-

mation ofI(x)

To compute this estimator, we need to store the number
of times eachunique samplex is generated and also the

maximum valuemax
Nxi
j=1Q′

i j (xi |x1, . . . ,xi−1) for each unique
partial assignment(x1, . . . ,xi) that was generated during the
sampling process. This would require an additionalO(N ∗
n∗ d) space whereN is the number of samples,n is the
number of variables andd is the maximum domain size.

To summarize, in this section we have presented two pos-
sible ways of estimating the weights of samples gener-
ated by SampleSearch. Our first alternative involves us-
ing a backtrack-free search space while our second alterna-
tive requires storing all unique assignments generated dur-
ing sampling (buffering). Henceforth, we will refer to the
buffered estimator in equation 15 as themax estimator. We
can show that:

THEOREM5.8 (asymptotic unbiased property).The max
estimator (Equation 15) is asymptotically unbiased.

Proof. Proof follows from Lemma 5.7 and Equation 15.

5.3 Incorporating Advanced Search Techniques in
SampleSearch

Theorem 5.2 is applicable to any search procedure that
is systematic i.e. once the search procedure encounters
an assignment(x1, . . . ,xi), it will either prove that the
assignment is inconsistent or return with a full consis-
tent sample extending(x1, . . . ,xi). Therefore, we can use
any advanced systematic search technique [Dechter, 2003]
instead of naive backtracking within the SampleSearch
scheme and show that:

Proposition 5.9. SampleSearch augmented with any
systematic advanced search technique generates inde-
pendently and identically distributed samples from the
backtrack-free probability distributionQR of Q andR .

While the use of advanced search techniques would not
change the sampling distribution of SampleSearch, the time
required to generate a sample would be heavily dependent
on the search procedure used.

Proposition 5.9 also implies that in principle we can in-
tegrate any systematic CSP/SAT solver that employs ad-
vanced search schemes with sampling through our Sam-
pleSearch scheme. Since the current implementations of
SAT solvers are very efficient, we represent the zero prob-
abilities in the belief network using cnf (SAT) expressions
and use RELSAT [Bayardo and Schrag, 1997] as our SAT
solver.

6 Experimental Results

Competing Techniques: SampleSearch takes as input a
proposal distributionQ. In our study we chose to ex-
periment with the following two proposal distributions:
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Figure 4: CPCS360B networks with 10 zeros

(1) the prior distribution as used in likelihood weighting
and (2) IJGP-Sampling [Gogate and Dechter, 2005] which
uses the output of generalized belief propagation to com-
pute a proposal distribution. Thus, we have4 competing
techniques: (a) Likelihood weighting (LW) (b) Likelihood
weighting with the max buffered estimator (S+LW),(c)
IJGP-Sampling (IJGP-S) and (d) IJGP-Sampling with max
buffered estimator (S+IJGP-S).

Methodology: We experimented with three bench-
mark belief networks (a) The CPCS networks (360b
and 422) [Pradhan et al., 1994] (b) The Munin Network
[Valtorta and Loveland, 1992] and (c) 18x18 Grid Net-
works in which 50% CPTs have one or more zeros (18x18).
All networks contain some deterministic CPT entries ex-
cept the CPCS networks on which we add determinism by
randomly adding zero probabilities. We do not normalize
the CPTs in the CPCS networks after adding zero proba-
bilities. This ensures that we would have rejection. Note
that if we normalize the CPTs and ensure that the CPTs
represent a proper probability distribution, there would be
no rejection by the definition of a belief network. On
Munin and the Grid networks we designate a randomly se-
lected set of nodesE⊆ X as evidence nodes. On each net-
work instance, we compare the distance between the exact
marginals computed by join tree propagation and the ap-
proximate marginals computed by our sampling schemes
using Mean Square error(MSE) - the square of the dif-
ference between the approximate and the exact, averaged
over all values and all variables. We also computed the
Kullback-Leibler Distance (K-L) distance but do not report
it here because both MSE and K-L distance show similar
trends.

6.1 Results on various benchmarks

CPCS benchmarks: Figures 4 and 5 show the results on
CPCS360B instances. Each point in Figures 4 and 5 cor-
responds to an average over 100 instances. We see that
here sampling techniques that do not perform search out-
perform those that perform search when the number of ze-
ros is small (10 zeros, Figure 4 ) while sampling techniques
that perform search outperform those that do not when the
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Figure 7: Munin Network,|E|= 5

number of zeros is large (190 zeros, Figure 5). The re-
sults on CPCS422 networks are similar to the CPCS360
networks and we do not report it here due to lack of space.

Munin benchmarks: Figures 6 and 7 show the results on
the munin instances. Each point in Figures 6 and 7 corre-
sponds to an average over 100 instances. Here, we observe
that likelihood weighting schemes that do not use search
have very high MSE. IJGP-Sampling (IJGP-S) performs
worse than likelihood weighting with search (S+LW) when
|E| = 3 while it is better than likelihood weighting with
search (S+LW) when|E| = 5. This is probably due to the
superior proposal distribution of IJGP-Sampling as com-
pared to likelihood weighting. IJGP-Sampling with search
(S+IJGP-S) is the best performing algorithm.

Grid Networks: The results on 18x18 grid networks with
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50% deterministic nodes are shown in Figures 8 and 9. We
observe that sampling schemes that perform search always
have a lower MSE than those that do not perform search.

7 Discussion and Conclusion

Importance sampling algorithms perform poorly on be-
lief networks with zero probabilities because they gener-
ate a large number of samples that have zero weight (re-
jection). In this paper, we investigated a specific way of
using constraint-based search techniques to solve the rejec-
tion problem by integrating search with an ordered Monte
Carlo sampler yielding the SampleSearch scheme.

Our integration however presents several research issues as
the samples are no longer drawn from the original proposal
distribution. So we characterize the sampling distribution
of SampleSearch and develop two weighting schemes that
can be used in conjunction with SampleSearch to estimate
the target distribution.

We present preliminary but promising empirical evidence
that justifies our hypothesis that combining constraint
based systematic search with an ordered Monte Carlo sam-
pler is practically effective. In particular, we show that as
the amount of deterministic information in the belief net-
works is increased, sampling schemes that employ search
consistently outperform their pure sampling counterparts.

Since the approach described here can be extended to any

systematic constraint-based search technique, it allows us
to immediately leverage various techniques used in the
state-of-the-art SAT and CSP solvers, such as fast con-
straint propagation, no-good/clause learning and caching.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF under award
numbers IIS-0331707 and IIS-0412854.

References

[Bayardo and Schrag, 1997]Bayardo, R. J. and Schrag, R.
(1997). Using csp look-back techniques to solve real-world
sat instances. InAAAI/IAAI, pages 203–208.

[Cheng and Druzdzel, 2000]Cheng, J. and Druzdzel, M. J.
(2000). Ais-bn: An adaptive importance sampling algorithm
for evidential reasoning in large bayesian networks.J. Artif.
Intell. Res. (JAIR), 13:155–188.

[Dechter, 2003]Dechter, R. (2003).Constraint Processing. Mor-
gan Kaufmann.

[Dechter and Larkin, 2001]Dechter, R. and Larkin, D. (2001).
Hybrid processing of beliefs and constraints. InProc. Uncer-
tainty in Artificial Intelligence, pages 112–119.

[Dechter and Mateescu, 2004]Dechter, R. and Mateescu, R.
(2004). Mixtures of deterministic-probabilistic networks and
their and/or search space. InUAI.

[Fung and Chang, 1990]Fung, R. and Chang, K.-C. (1990).
Weighing and integrating evidence for stochastic simulation in
bayesian networks. InIn Proc, UAI-90.

[Gogate and Dechter, 2005]Gogate, V. and Dechter, R. (2005).
Approximate inference algorithms for hybrid bayesian net-
works with discrete constraints.UAI-2005.

[Gogate and Dechter, 2006]Gogate, V. and Dechter, R. (2006).
A new algorithm for sampling csp solutions uniformly at ran-
dom. CP.

[Pearl, 1988]Pearl, J. (1988).Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann.

[Pradhan et al., 1994]Pradhan, M., Provan, G., Middleton, B.,
and Henrion, M. (1994). Knowledge engineering for large be-
lief networks. InUAI-94.

[Rubinstein, 1981]Rubinstein, R. Y. (1981).Simulation and the
Monte Carlo Method. John Wiley & Sons, Inc.

[Valtorta and Loveland, 1992]Valtorta, M. and Loveland, D.
(1992). the complexity of belief network synthesis and refine-
ment.

[Wallenius, 1963]Wallenius, K. (1963).Biased Sampling: The
Noncentral Hypergeometric Probability Distribution. PhD
thesis, Stanford, CA.

[Yuan and Druzdzel, 2006]Yuan, C. and Druzdzel, M. J. (2006).
Importance sampling algorithms for Bayesian networks: Prin-
ciples and performance.Mathematical and Computer Mod-
elling.


