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Abstract

Sampling from belief networks which have a
substantial number of zero probabilities is prob-
lematic. MCMC algorithms like Gibbs sam-
pling do not converge and importance sampling
schemes generate many zero weight samples that
are rejected, yielding an inefficient sampling pro-
cess (the rejection problem). In this paper, we
propose to augment importance sampling with
systematic constraint-satisfaction search in order
to overcome the rejection problem. The result-
ing SampleSearchcheme can be made unbiased
by using a computationally expensive weight-
ing scheme. To overcome this an approximation
is proposed such that the resulting estimator is
asymptotically unbiased. Our empirical results
demonstrate the potential of our new scheme.

Introduction

Yuan and Druzdzel, 2006] that the quality of approxima-
tion of importance sampling techniques deteriorate in the
presence of zero probabilities due to the generation of
a large number of samples having zero weights (the re-
jection problem). With the exception of the work on
adaptive sampling schemes [Cheng and Druzdzel, 2000,
Yuan and Druzdzel, 2006], the rejection problem has been
largely ignored. In [Gogate and Dechter, 2005], we
showed that a restricted form of constraint propagation can
be used to reduce the amount of rejection. In presence of
a small number of zeros, this method worked quite well.
However, when the belief network has a substantial num-
ber of zero probabilities, we observed that earlier methods
may fail to generate even a single sample having non-zero
weight.

Therefore, in this paper we present an alternative approach
that guarantees that all samples generated have non-zero
weight. In this scheme, when a sample is supposed to be
rejected, the algorithm continues instead with systematic

search until a non-zero weight sample is generated. How-

ever the resulting SampleSearch scheme has two problems:
(a) search introduces bias and (b) search introduces com-

In this paper, we investigate importance sampling algo
rithms for approximating the belief updating task, when
the belief network has a substantial amount of deter-To remove the bias we present two weighting schemes.

minism, namely a substantial number of zero proba-The firstweighting scheme guarantees unbiasedness but re-
bilities. The main motivation for our study is a re- quires a substantial amount of computation. The second

cent work on mixed networks [Dechter and Larkin, 2001,scheme is a linear time procedure that approximates the
Dechter and Mateescu, 2004] which allows augmentindirst scheme such that the resulting estimates are asymp-
probabilistic networks with constraints. The constraint rep-totically unbiased.

resentation allows one to leverage constraint-based teck+—0 demonstrate the cost-effectiveness of SampleSearch
niques to speed up exact and approximate mfeyence. In P'e conducted a preliminary experimental study on various
vious work [Gogate and Dechter, 2005] a restricted form Ofbenchmarks. Our aim was to evaluate the impact of search

constr_amt propa_lgatlon was used to speed up |_mportancgn the performance of traditional importance sampling
sampling. In this paper, we go beyond constraint propa-

. . ethods like likelihood weighting [Fung and Chang, 1990]
gation and explore advanced constraint based search tecEr—KJI advanced importance sampling schemes like 1JGP-
niques.

sampling [Gogate and Dechter, 2005]. We found that Sam-
Also, even when the constraints are not expressegleSearch outperforms pure sampling when a substantial
explicitly, often they are hidden in the probabilis- amount of determinism is present in the belief network.

tic functions, in the form of zero probabilities. In-
deed, it is well known [Cheng and Druzdzel, 2000,

‘putational overhead.

The rest of the paper is organized as follows. In the next
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section we present some preliminaries. In section 3, we
present background on importance sampling and the reje«
tion problem. In section 4, we present the SampleSearc
scheme and in section 5 we characterize its sampling dis
tribution. Experimental results are presented in section ¢
and we end with a short summary in section 7.
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I Belief Network I

2 Belief Networks with Zero Probabilities

We represent sets by bold capital letters and members of a
set by capital letters. An assignment of a value to a variable
is denoted by a small letter while bold small letters indicate
an assignment to a set of variables.

Definition 2.1. (belief networks) A belief network (BNjs

a graphical modef = (Z,D,P), whereZ = {Z,...,Zn}

is a set of random variables over multi-valued domain
D ={Dy,...,Dn}. Given a directed acyclic grapB over
Z,P={R}, whereR = P(Z]|pa(z)) are conditional prob-
ability tables (CPTs) associated with eagh The set
pa(z) is the set of parents of the variatdein G. A be-
lief network represents a probability distribution oy 3
P(Z) =M1 P(Z|pa(Z)). An evidence seE = eis an in-
stantiated subset of variables.

Figure 1: An example Belief Network.

Example 2.4. Figure 1 presents a belief network over
6 binary variables. The CPTs associated wittand G
have zero probabilities. The constraint that can be ex-
Sracted from the CPT of is Rac = {(0,0), (1,0), (1,1)}
while the CPT ofG yields the constraint relatioRp Fc =
{(0,0,0)(0,1,0),(1,0,1),(1,1,0)}.

Importance Sampling and Rejection

Importance sampling is a general simulation technique

Definition 2.2 (belief updating). Given a belief network
 and evidencé& = e, thebelief updatingtask is to com-
pute the posterior marginal probabili§(Z, = z|e). By
definition,

Y 2\(euz) Mj-1P(Zjlpa(Z))) e=ezi=7
>2\eMj=1P(Zjlpa(Z)))e=e

P(Z =zle) = @)

The notationh(Z) e stands for a functiom over Z \ E
with the assignmeri = e. In this work, we focus on belief

commonly used to evaluate the following sunil =
Y xex f(x) for some real functiorf. The idea is to generate
samplesct, ..., xN from a proposal distributio (satisfy-
ing f(x) > 0=-Q(x) > 0) and then estimat®! as follows:

M :X;f(x) :X;f(x)ggs

f(x)
Q(x)

)

Vi = ltiw(xi) , where Wx') = ®)

networks whose CPTs have a substantial number of zero )
probabilities. We can extract the "zeros” in the CPTs andW is often referred to as the sample weight.

express them as hard constraints using the constraint nefy solve the belief updating task by importance sampling,

work framework.

Definition 2.3 (constraint network). A constraint net-
work (CN) is defined by a 3-tupleR = (Z,D,C), where
Z is a set of variableZ = {Z;,...,Z,}, associated with a
set of discrete-valued domain®,= {Dj,...,Dn}, and a
set of constraint€ = {Cy,...,C;}. Each constraint; is a
relationRg defined on a subset of variabl€sC Z. The

we compute the numerator and the denominator of equation
1 by importance sampling. To compute the numerator, we
use the substitution:

n

t(X) = [1PZilpa(Z))e-ez—s - X=Z\EUZ (4)
=1

relation denotes all compatible tuples of the cartesian prodand to compute the denominator, we use the substitution:
uct of the domains 0§;. A solution is an assignment of
values to all variableg = (Z; = z,...,Z, = z), 7z € Dj,
such thatz belongs to the natural join of all constraints i.e.
z € Rg, ... Rg.. The constraint satisfaction problem
(CSP) is to determine if a constraint network has a solution,
and if so, to find one. When we writg (z), we mean that When the numerator and denominator are evaluated using
z satisfies all constraints i . different estimators, they may converge to their expected
values at different sample sizes resulting ibiased esti-
In the following example, we show how constraints can bemate However, when the sample size is large enough, the
extracted from CPTs, bias can be ignored [Rubinstein, 1981].

F(X) = [1P@IPaZ)ee. X=Z\E  (5)
Dl j i))|E



Several choices are available in the literature on beConstraint propagation thus reduces the number of
lief networks for the proposal distributio@(X) rang- inconsistent samples generated by the ordered Monte
ing from the prior distribution as in likelihood weight- Carlo sampler (see [Dechter and Mateescu, 2004,
ing [Fung and Chang, 1990] to more sophisticated alternaGogate and Dechter, 2005]).

tives such as 1JGP-Sampling [Gogate and Dechter, 200
and EPIS-BN [Yuan and Druzdzel, 2006] where the outpu
of a belief propagation algorithm is used to compute th
proposal distribution.

owever, we observed recently
Gogate and Dechter, 2006] that when a substantial
number of zero probabilities are present or when there
are many evidence variables, constraint propagation is
As in prior work [Fung and Chang, 1990, not effective in that few/no consistent samples will be
Cheng and Druzdzel, 2000], we assume that thagenerated. Therefore in this paper, we propose to augment
the proposal distribution is expressed in a fac- constraint propagation with search so that all samples
tored product form dictated by the belief network: generated by the sampler are consistent.
Q(X) = MLy Qi(Xi[Xa,..., %i-1) = M1 Qi(X|Yi) , where
Yi © X, Xicad, QUOGIYG) = Q(XK[Xe,.... Xi-1) and 4 Overcoming the Rejection Problem by
[Yil < cfor some constart using the Backtrack-free Distribution
WhenQ is given in a product form , we can generate a full
sample fromQ as follows. Fori = 1 to n, sampleX; = X As pointed out earlier, if we sample from the distribution

from the conditional distributio®@(X[X1 = x1,...,X—1=  QR=Q(x|® (X)), we would have no rejection. Because we
X—1) and sef = x;. This is often referred to as amdered  sample along an orderir@= (xy, ..., %) using the ordered
Monte Carlo sampler Monte Carlo sampler, we defii@R relative toO, which we

A sample (xa.....x,) generated by the ordered Monte refer to as thdacktrack-free distribution

Carlo Samp'er is rejected thr(xl’.”7xn) =0. In the Definition 4.1 (BathraCk-free distribution ) Given a
following we assume that all zero probabilitiesfimre rep- ~ distribution Q(X) = [, Qi(%|Xq, ..., Xi~1), an ordering
resented using a set of constraint relatighand therefore O = (X1,...,%n) and a set of constraintg, the backtrack-
a rejected sample would imply that one or more constraint§ree distributionQR is the distribution:

in R are violated. . noo

Definition 3.1 (Globally Consistent sample).A partial Q(x) = il:lQi (Xifxa, . %) ©)
sample(xy,...,X) is globally consistent if it can be ex- o

tended to a full solutiod = (X1, ...,%,Xi+1,...,X) Of R.. whereQR(xi[x1,...,X-1) is given by:

R Qi(%i[xa, - --,Xi-1)
i R(XIX0, ... X 1) = 7

3.1 The Rejection Problem Qr(Xi[xa, ..., Xi-1) 1= See, QXKL % 1) (7
Given a positive belief  network P(Z) = = whereB; = {X € Dj|(x1,...,%_1,X) is not globally con-

Mt1P(Z|Z1,...,Z-1) and an empty evidence set, gistent relative tak } andx; ¢ B;. Note that by definition,
all full samples generated by the ordered Monte Carlof (y) — 0 = QR(x) = 0 and vice versa.
sampler along the orderirgy, ..., Z, are guaranteed to be
consistent (logic sampling [Pearl, 1988]). The backtrack-free distribution can be constructed as fol-
. - .lows. Assume that we have a yes/no oracle which takes
However, in presence of both zero probabilities and evi- ; : .
a partial assignment as input and answers a yes when
dence the ordered Monte Carlo sampler may generate sam- .
) . : . It can be extended to a globally consistent full sample
ples which are inconsistent (the rejection problem) because : o 2 B
; . - and no otherwise. We first initializ@ (X X1, . .., Xi—1) =
the sample may conflict with the evidence and zero prob- . o
. . Qi(%|xq,...,%—1) for all i. Then, for each conditional
abilities. In general, if we have a belief network repre- = "~ R
- . k . - distribution Q7 (Xi|X1 = X1,...,%i—1 = X_1) and for each
senting® with zeros in the belief network which are mod- .
. ST value x; of X;, we check if(xy,...,X_1,%) can be ex-
eled as constraint®, we would have no rejection if we tended to a alobally consistent full samole using the
sample from the modified proposal distributi@¥(x) = 9 Y P 9

- . . oracle. If the oracle answers no, we s@f(xi =
SI(DX\;’;%)) The problem is that computin@(x| R (x)) is X|Xe = X0,.... % 1= 1) —0and normalizeR (X |X: —

X1,...,%-1=X_1). Clearly, by design all samples gener-
In earlier work [Gogate and Dechter, 2005], we pro- ated from the backtrack-free distributi@® will have non-
posed to use a restricted form of constraint prop-zero weight and therefore we will have no rejection. How-
agation to overcome the rejection problem.  Givenever, in practice makin@ backtrack-free (generatingR
a partial sample (x¢,...,Xp), constraint propagation from Q) may be costly and so in the following we describe
prunes values in the domains of future variablesa scheme that attempts to overcome this computational is-
Xot1,--., % which are inconsistent with(Xy,...,Xp). sue.



5 The SampleSearch scheme Algorithm SampleSearch

Input: The proposal distributio® = 3 Qi(Xi[X1, ..., Xi—1),
hard constraint®® that represent zeros in the target function
f(X).

In this section we show how to incorporate systematig Output: A samplex  (xo...... )

search into the ordered Monte Carlo sampler so that all full
samples are solutions &f. We will sketch our ideas us- e i=1, D{ = D; (copy domains)Q; (X1) = Qi(Xy) (copy dis-
ing the most basic form of systematic search: chronologt tribution),x = 0

ical backtracking, noting it can be extended to any back
tracking search method (see [Dechter, 2003]). In our ext _
periments we use one such advanced search scheme called 1. If Bf is not empty

e Whilel1<i<n

RELSAT [Bayardo and Schrag, 1997]. (2) Sample; =X from Qf and remove it fronD;.
(b) IF (xq,...,x) violates any constraint i}

An ordered Monte Carlo sampler samples variables in the i. setQ(X =x[xq,...,X—1) = 0and normalize
order(Xy,...,Xn) from the proposal distributio® and re- - Q
jects a partial or full sampléxy,...,x) if it violates any ii. Gotostep1. _

L i () x = x U X i =i+ 1 D = D
constraints iR (® models zero probabilities ifi). Upon QX x N )= QXX . .) I
rejecting a (partial or full) sample, the sampler starts samf 5 olse P o A=) = XA 0 AL

pling anew from the first variable in the ordering. In-
stead, we propose the following modification. We can set
Qi(X =Xi|x1,...,%i—1) = 0 (to reflect tha(xy, ..., ) is not

(@) X=X\X_1.
(b) setQ_;(Xi—1 =Xi—1/X1,...,Xi—2) = 0 and nor-
malizeQ[_; (Xi—1[x1, ..., Xi—2)

consistent), normaliz€; and re-sample from the nor- () seti—i—1
malized distribution. The newly sampled value may be _ _ _
consistent in which case we can proceed to varixble e If i =0, return inconsistent,Else retuxn

or it may be inconsistent. If we repeat the process w
may reach a point whei®; (Xi|X4, . ..,%_1) is O for all val-
ues ofX;. In this case|(xs,...,X_1) is inconsistent and
therefore we need to change the distributioXat by set-
ting Qi—1(Xi—1 = Xi—1|X1,...,X—2) = 0, normalize and re-
sampleX_1. We can repeat this process until a globally
consistent full sample that satisfies all constraintRiris
generated. By construction, this process always yields
globally consistent full sample.

Figure 2: Algorithm SampleSearch

5.1 The Sampling Distribution of SampleSearch

get I = MLy li(X[X1,...,X—1) be the sampling distri-
ution of SampleSearch. It turns out tHaequals the
backtrack-free distributio@R derived fromQ andR..

Our proposed SampleSearch scheme is described in qu_ 52 (Main Result). S leS h
ure 2. It is a depth first backtracking search (DFS) over. HEOREM 5.2 (Main Result). SampleSearch generates

the state space of consistent partial assignments search@éjependemly and identically (_jlstrl|buge(_j samplis from the
for a solution to a constraint satisfaction probl&nwhose cktrack-free probability distributio@™, i.e.Vi Q" = ;.
value selection is guided . The first phase is a forward

phase in which the variables are sampled in sequence and a

current partial sample (or assignment) is extended by san o @ 0

pling a value; for the next variablé; using the current dis- ' . -
tributionQ,. If for all valuesx; € Di, Q{ (X[, ...,X-1) =0, @ @

then SampleSearch backtracks to the previous varible

(backward phase) and updates the distribu@n, associ- " o 0 01 03 o 0
ated withX,_; by settingQ_;(%_1/x1,...,x_2) =0and s/ /v

normalizingQ ;. SampIeSearch employs a series of mu- (=) @ @@ @ @ () (=) @ @ @@

table value domain®; and conditional distribution§)
whereD{ holds the subset of variables not examlned yet

andQ is the normalized distribution a; (Xi[x1,...,Xi—1) ®® @@ @ @ @@ @ @ @@

0 07 03 AN 07/ \o3 07/ N3 \3Ng

over Di . Proposal Distribution Q Constraints

Q=Q(A)"Q(BIA)*QCIAB) B, 4=1-B
Example 5.1. Figure 3 provides an example of a com- qw-010702) B=3—~C#0, B=3—~C#
plete search tree of SampleSearch for the given proposi QBi=QBr03040201) A-1-B#, A-2-B#
distributionQ and the specified set of constrairRs The QEIAB=QC)=(0209)

grounded nodes are pruned due to the constraints. Sam-
pleSearch explores the search tree in a DFS-manner until a _
non-grounded leaf node is visited. Figure 3: An Example Search Tree



Proof. SampleSearch is a systematic search procedure.
Namely, once it explores a partial assignmeat ..., X_1)

Ny j )
then, if this assignment can be extended to a solution, thepr(r(B;),x) = Qj(x.\x.,l) QS(X/S|X'*,1)
algorithm is guaranteed to return a globally consistent full 1-3yL  Q(xxi—1) o1 L 21 Q¢ [Xi-1)
sample extending this partial assignment. Otherwise, if ©)

pEquation 8 s just a summation over all events that leagl to
being sampled while Equation 9 computes the probability
of sampling the evenfxy, ..., X, ).

(X1,...,X—1) is not part of any solution then SampleSearc
will prove this inconsistency before it will finish generating
a full sample. Consequently,

Equations 8 and 9 together provide a possible way of com-
Proposition 5.3. Given a globally consistent partial sam- putingl (x) for a samplex.

ple(xs,...,X_1), SampleSearch samples values without re- .

placement from the domain of variable until a globally Because SampleSearch samples values without replace-

consistent sampléx Xi_1,%) % € Dj is found ment from the domain 0K;, its distribution can be char-
gy —1 | | .

acterized by a specialization of the non-central hyper-
geometric distribution [Wallenius, 1963] and therefore,

We can derive the probability(x;|x1, . ..,%—1) of sampling

a globally consistent extensiofy = x to a globally con- 4+ 1! i Q(Xi[X1, .-, Xi-1)
sistent partial sampléxy, ..., x—1) (if one exists) by con- Z Z 1o Yxes QX[Xa, ..., Xi—1)
sidering all events that generatewhile sampling values < '
without replacement fronX; (see example 5.4).

(10)

Proof of Theorem 5.2 follows from Equations 10, 7 and

O
Example 5.4. Consider the search tree given in Figure 3.

In the following we will show how to compute the prob-
ability 1g(B = 2|/A = 0). The events that would lead to
B=2i.e. stateS; being sampled are as follows: (&) (b)
(S1,S8) (€) (Su, Ss) (d) (St 1, Se) and (€)(St, S1, ). Th
notation(&4, S, S3) means that the states were sampledin . 1 N f(x) f(x)

the order(S4,S1,Ss). Let us now compute the probability M= N 2, OR(x) N_Z L QRO A 1) (11)
of the event(Sy,S;,S3). The probability of samplingy ==t I

from Q(BJA = 0) = (0.3,0.4,0.2,0.1) is 0.1. Because we o

sample the domain @& without replacement, is thrown ~ 9-2  Approximating I (x)

away because it is inconsistent and the distributioB &t
changed t&Y (B|JA=0) = (0.3/0.9,0.4/0.9,0.2/0.1). The
probability of sampling3, viz. B=1from Q' is 4/9. Again

S is not replaced and therefore the distributionBabe-
comesQ’(BJA = 0) = (0.3/0.5,0.2/0.5). The probabil-
ity of samplingS; viz. B= 2 is 0.4. Thus the probabil-
ity of the event(S,5,Ss) is 0.1x4/9x0.4 = 0.01778

By performing similar computations over the remaining
events, one can verify that the probability of sampli&g
islg(B=2/A=0)=0.33

Given a set of i.i.d. sample&! = (x,...,%3),...,xN =
(x),...,xN)) generated by SampIeSearch, Theorem 5.2 al-
lows us to estimat® = S,x f(X) as follows:

As pointed out in section 4, we can use an oracle to com-
puteQR(x) for a samplex = (xq, .. ., %n). The oracle should
be invoked a maximum oBD(nx (d — 1)) times where
d is the maximum domain size amdis the number of
variables. In practice, methods like adaptive consistency
[Dechter, 2003] or a complete backtracking-based search
procedure can be used as a substitute for the oracle. How-
ever, they can be slow and impracticahesndd get larger.
Instead, we can use an approximation ©f) to compute
sample weights and still maintain asymptotic unbiasedness.

Definition 5.5 (Asymptotic Unbiasedness).éﬁ is an
asymptotically unbiased estimator®ff limy_. E(Oy) =
6 whereE(6y) is the expected value 6.

Given a globally consistent partial assignmeqt; =
(X1,...,%-1) the domainD; of variable X is parti-
tioned into D; = R UB; where Rj = {x1,...,X} =
{% € Dj|(X1,...,%) is globally consistert and B; =
{x1,---,X4} = Di\Ri. The probability of sampling the state
X =x; wherex € R; givenxj_1 = (X1,...,X_1) iS given by:

A simple approximation ofl(x) suggests itself. Be-

causeX; =X is sampled with probabilit@{ (x;[x1, .. ., Xi—1)

in Step 1(a) of SampleSearch, we may use the prod-

Gl |t uct [T, @ (%i|x1,...,X—1) as an approximation folr(x).

(X = Xi|Xi_1) Z z j 8) However, this approximation does not guarantee asymp-
“& totic unbiasedness. We can take this idea a step further to

guarantee asymptotic unbiasedness as we show below.

whereTy(B;) is k-th permutation of thg-th subset oBi.  We can index byj the multiple ways in which the globally

The probability of the permutation(B;) = (Xq,---,Xj) is  consistent partial sample, ..., ) given (xa,...,%i-1) is

given by: generated. For example,



Example 5.6. Let us assume that a sample= 2B = maximum valuena%\ljl i (%i[X1, - ..,%—1) for each unique
0,C = 0 is generated by SampleSearch (see Figure 3)partial assignmeri, .. .,x ) that was generated during the
Given the partial assignmem = 2, the extensiom’A = sampling process. This would require an additicDéN x
2,B =0 can be generated in the following 5 ways . d) space wherd is the number of samples, is the
1....5) (1) (Ry) (2) (Rs,Re) (3) (Rs,Ra), (4) (Ra,Rs,R2)  number of variables andlis the maximum domain size.

and (5)(Rs, Rs, Ro). o .

To summarize, in this section we have presented two pos-
The probability with whichX; = x; is sampled in step 1(a) sible ways of estimating the weights of samples gener-
of SampleSearch is dependent upon the particular way iated by SampleSearch. Our first alternative involves us-
which X; = x; is generated and therefore we can denote théng a backtrack-free search space while our second alterna-
probability Qf (i [X1, - .., Xi—1) asQ{j (Xi|X1,-..,%-1), where tive requires storing all unique assignments generated dur-
j indexes the particular trace that generates...,X;) ing sampling (buffering). Henceforth, we will refer to the
from (xq,...,%_1). We show that: buffered estimator in equation 15 as thax estimatarWe

LEMMA 5.7. The sampling distribution of SampleSearch ¢&n show that:

satisfies 1(Xi|xq1,...,%-1) = ma>§”:1Q{j (XX -, Xi—1) THEOREM5.8 (asymptotic unbiased property). The max
wherem is the number of possible ways in whih=x; is  estimator (Equation 15) is asymptotically unbiased.
sampled given the partial assignméRrt, ..., Xi_1).

) ) Proof. Proof follows from Lemma 5.7 and Equation 15.
Proof. Qi’j (Xi|X1,...,%-1) is updated in steps 2(b) and O
1(b)(i) of SampleSearch by enforcing the normalization
constraint after detecting inconsistency. This is a mono-, . . .
tonic increasing process and therefore the maximum valug'3 éncorp;orsatmg:dvanced Search Techniques in
of Qjj (Xi[xa, ..., %i—1) will be reached if all values oX; that amplesearc

cannot be extended to a solution are sampled by Samplégqrem 5.2 is applicable to any search procedure that

Search. Namely, is systematic i.e. once the search procedure encounters
) Qi(Xi|X1,- .. %i-1) an assignmentxs,...,X), it will either prove that the
maXL, Qjj (Xi[Xq,. .., Xi—1) = 1—Syes QXX Xi_1) assignment is inconsistent or return with a full consis-
X B AT '(12) tent sample extendinfxy, ...,%). Therefore, we can use
any advanced systematic search technique [Dechter, 2003]
instead of naive backtracking within the SampleSearch
scheme and show that:

whereB; = {X € Dj|(Xa,...,X_1,X) is not globally consis-
tent}.

From Equations 12 and 7 the proof follows. - Proposition 5.9. SampleSearch augmented with any
systematic advanced search technique generates inde-

We can rewriteM = 3 vex f(x) as: pendently and identically distributed samples from the

£ ()1 (X I(x backtrack-free probability distributio®R of Q and %..
-3 A @
xe Xe =1 b Aind While the use of advanced search techniques would not
and from Lemma 5.7, we get change the sampling distribution of SampleSearch, the time
required to generate a sample would be heavily dependent
1(x) (14)  ©onthe search procedure used.

M= f(X) = -
N omaxQ (XX, ..., X
X;( Miza max Qi - x-1) Proposition 5.9 also implies that in principle we can in-

Given a set of i.i.d. samplest = (xt,...xd), ... xN = tegrate any systematic CSE/SAT so!ver that employs ad-
(x?,...,x,’}‘)) from 1 (x), we can estimat®! as follows: vanced search schem_es with sampllng_ through our Sam-
pleSearch scheme. Since the current implementations of
1 N f(xk) SAT solvers are very efficient, we represent the zero prob-
M= N n Ny; KK K (15)  abilities in the belief network using cnf (SAT) expressions
K=1 iz maxX 2y Q) (XX, - -, XCq) and use RELSAT [Bayardo and Schrag, 1997] as our SAT
solver.

whereNy, is the number of samples N that contain the
partial assignmeriis, . ..,X;). Note that in Equation 15, we

Ny .
have usediL, max, Qf; (X|x,...,X ;) as an approxi-
mation ofl (x)

6 Experimental Results

Competing Techniques: SampleSearch takes as input a
To compute this estimator, we need to store the numbeproposal distributionQ. In our study we chose to ex-
of times eachunique sampl« is generated and also the periment with the following two proposal distributions:
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Figure 4: CPCS360B networks with 10 zeros Figure 5: CPCS360B networks with 190 zeros

(1) the prior distribution as used in likelihood weighting Munin Network, NumEvidence=3

and (2) IJGP-Sampling [Gogate and Dechter, 2005] which
uses the output of generalized belief propagation to com-
pute a proposal distribution. Thus, we haveompeting &
techniques: (a) Likelihood weighting (LW) (b) Likelihood
weighting with the max buffered estimator (S+LW),(c)
IJGP-Sampling (IJGP-S) and (d) IJGP-Sampling with max 0.0001

10 20 30 40 50 60 70 80 90

buffered estimator (S+IJGP-S). Time in Seconds
Methodology: We experimented with three bench- ZICRS e Sw -
mark belief networks (a) The CPCS networks (360b _ _

and 422) [Pradhan et al., 1994] (b) The Munin Network Figure 6: Munin NetworkE| = 3

[Valtorta and Loveland, 1992] and (c) 18x18 Grid Net-
works in which 50% CPTs have one or more zeros (18x18).

Munin Network, NumEvidence=5

All networks contain some deterministic CPT entries ex- 1
cept the CPCS networks on which we add determinism by
randomly adding zero probabilities. We do not normalize " e

the CPTs in the CPCS networks after adding zero proba=
bilities. This ensures that we would have rejection. Note
that if we normalize the CPTs and ensure that the CPTs

0.01 ¢

0.001

represent a proper probability distribution, there would be 10 20 =0 40 5 60 70 80 90
no rejection by the definition of a belief network. On Timein Seconds

Munin and the Grid networks we designate a randomly se- SRS e RV -
lected set of nodes C X as evidence nodes. On each net-

work instance, we compare the distance between the exact Figure 7: Munin Network|E| =5

marginals computed by join tree propagation and the ap-
proximate marginals computed by our sampling schemes
using Mean Square erro(MSE) - the square of the dif- number of zeros is large (190 zeros, Figure 5). The re-
ference between the approximate and the exact, averagedlts on CPCS422 networks are similar to the CPCS360
over all values and all variables. We also computed thenetworks and we do not report it here due to lack of space.

Kullback-Leibler Distance (K-L) distance but do not report Munin benchmarks: Figures 6 and 7 show the results on

Ittr:rfc:: because both MSE and K- distance show Slrnllarthe munin instances. Each point in Figures 6 and 7 corre-

sponds to an average over 100 instances. Here, we observe
. that likelihood weighting schemes that do not use search
6.1 Results on various benchmarks have very high MSE. IJGP-Sampling (IJGP-S) performs
- worse than likelihood weighting with search (S+LW) when
CPCS benchmarks: Figures 4 and 5 show the results on |E| = 3 while it is better than likelihood weighting with

CPCS360B instances. Each point in Figures 4 and 5 co _ L
responds to an average over 100 instances. We see th%{’:tamh (S+LW) whefE| = 5. This is probably due to the

X . Uperior proposal distribution of IJGP-Sampling as com-
here sampling techniques that do not perform search out- o S . -
ared to likelihood weighting. IJGP-Sampling with search
perform those that perform search when the number of z€;, . . .
. X ) . . S+IJGP-S) is the best performing algorithm.
ros is small (10 zeros, Figure 4 ) while sampling technique
that perform search outperform those that do not when th&rid Networks: The results on 18x18 grid networks with



18x18 Grid, 50% deterministic nodes, NumEvidence=10 Systematic constraint-based search technique, it allows us

to immediately leverage various techniques used in the
o1ld = = = = & state-of-the-art SAT and CSP solvers, such as fast con-
o oo1 ] straint propagation, no-good/clause learning and caching.
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