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This paper addresses some long-standing questions negardi
the computational merits of several time-space sensitj@ a
rithms for graphical models. All exact algorithms for grap
ical models, either search or inference based, are time a
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Abstract

We investigate three parameterized algorithmic
schemes for graphical models that can accom-
modate trade-offs between time and space: 1)
AND/OR Adaptive CachingAOC(i)); 2) Variable
Elimination and Conditioning (EC(i)); and 3)
Tree Decomposition with Conditioning’DC(i)).

We show thalAOC(i) is better than the vanilla ver-
sions of bothVEC(i) andTDC(i), and use the guid-
ing principles ofAOC(i) to improve the other two
schemes. Finally, we show that the improved ver-
sions of VEC(i) and TDC(i) can be simulated by
AOC(i), which emphasizes the unifying power of
the AND/OR framework.

Introduction

and small tree depth (e.g., grid-like chains). The immediat
conclusion seems to be that the methods are not comparable.

In this paper we show that by looking at all these schemes
side by side, and analyzing them using the context mini-
mal AND/OR graph data structuf@lateescu and Dechter,
20054, each of these schemes can be improved via the
AND/OR search principle and by careful caching, to the
point that they all become identically good. Specificallg w
show that the new algorithidaptive CachingAOC(i)), in-
spired by the recently proposed AND/OR cutset condition-
ing [Mateescu and Dechter, 20Q5@mproving cutset, and
w-cutset schemes), can simulate any execution of alternat-
ing elimination and conditioning, if the latter is augmehte
with AND/OR search over the conditioning variables, and
can also simulate any execution of separator controllest tre
clustering schemd®echter and Fattah, 20D0if the clusters
are augmented with AND/OR cutset search, rather than regu-
lar search, as was initially proposed.

All the analysis is done assuming that the problem contains
no determinism. When the problem has determinism all these

h schemes become incomparable, as was shoWNateescu

d Dechter, 2003bbecause they exploit the deterministic

space exponentially bounded by the treewidth of the problem{nformation in reversed ordering of variables.

For real life networks with large treewidth, the space limi-

tation can be quite severe, therefore schemes that can trade Preliminaries
space for time are of outmost importance.

In the past ten years, four types of algorithms have
emerged, based on: (1) cycle-cutset anatutset[Pearl,
1988; Dechter, 1990 (2) alternating conditioning and elim-
ination controlled by induced-widthy [Rish and Dechter,
2000; Larrosa and Dechter, 2002; Fishelson and Geigef"
2004; (3) recursive conditioningDarwiche, 200}, which

This section provides the basic definitions.

DEFINITION 1 (graphical model) A graphical modeis a 3-
tuple M = (X,D,F), where: X = {X;,...,X,} is a set
of variables;D = {Dy,...,D,} is the set of their finite do-
ains of valuesF = { f1,...,f.} is a set of real-valued func-
tions defined on variables fro.

was recently recast as context-based AND/OR searcDEFINITION 2 (primal graph) Theprimal graphof a graph-
[Dechter and Mateescu, 20044) varied separator-sets for ical model is an undirected graptG = (X, E), that has

tree decompositionfDechter and Fattah, 20D1The ques-

variables as its vertices and an edge connecting any twe vari

tion is how do all these methods compare and, in particularables that appear in the scope (set of arguments) of the same
is there one that is superior? A brute-force analysis of timgunction.

and space complexities of the respective schemes does ng
settle the question. For example, if we restrict the avilab
space to be linear, the cycle-cutset scheme is exponential
the cycle-cutset size while recursive conditioning is exgo

tial in the depth of the pseudo tree (or d-tree) that drives th

tEFINITION 3 (pseudo tree) A pseudo tre®f a graphG =
I(X,E) is a rooted tre€/ having the same set of nod&s
such that every arc itE is a back-arc in7 (i.e., it connects
nodes on the same path from root).

computation. However some graphs have small cycle-cutséEFINITION 4 (induced graph, induced width, treewidth)
and larger tree depth, while others have large cycle-autsetAn ordered graplis a pair (G, d), whereG is an undirected



graph, andd = (X4,...,X,) is an ordering of the nodes. are AND nodes labeled with assignmef(\$s;, z;). The chil-
Thewidth of a nodein an ordered graph is the number of dren of an AND nod€X;, z;) are OR nodes labeled with the
neighbors that precede it in the ordering. Thédth of an  children of variableX; in the pseudo tre& .

orderingd, denoted byw(d), is the maximum width over all The AND/OR search tree can be traversed by a depth first
nodes. Thénduced width of an ordered graph*(d), isthe  search algorithm, thus using linear space. It was already
width of the induced ordered graph obtained as follows: forshown [Freuder and Quinn, 1985; Bayardo and Miranker,
each node, from last to first i, its preceding neighbors are 1996; Darwiche, 2001; Mateescu and Dechter, 20 €r%:

connected in a clique. THaduced width of a graphw*, is . .
the minimal induced width over all orderings. The induced I HEOREM1 Given a graphical modeM and a pseudo tree
width is also equal to theeewidthof a graph. T of depthm, the size of the AND/OR search tree based on

T is O(n k™), wherek bounds the domains of variables. A
. . graphical model of treewidtly* has a pseudo tree of depth
3 Description of Algorithms at mostw* log n, therefore it has an AND/OR search tree of
In this section we describe the three algorithms that will besizeO (n k¥ 198 7),
compared. They are all parameterized memory intensive al-
gorithms that need to use space in order to achieve the worg
case time complexity of(n k"), wherek bounds domain '
size, andw* is the treewidth of the primal graph. The task
that we consider is one that is #P-hard (e.g., belief updatin
in Bayesian networks, counting solutions in SAT or constrai
networks). We also assume that the model has no determi
ism (i.e., all tuples have a strictly positive probability)

The algorithms we discuss work by processing variable
either byelimination or by conditioning These operations

t The AND/OR search tree may contain nodes that root iden-
cal conditioned subproblems. These nodes are said to be
unifiable When unifiable nodes are merged, the search space
becomes a graph. Its size becomes smaller at the expense of
using additional memory by the search algorithm. The depth
first search algorithm can therefore be modified to cache pre-
I\1/'iously computed results, and retrieve them when the same
nodes are encountered again. Some unifiable nodes can be
Ydentified based on thegontextd Darwiche, 2001 We can

h . t on th imal h of th bl Wh define graph based contexts for both OR nodes and AND
ave an impact on the primal graph of the probiem. €hodes, just by expressing the set of ancestor variablés in

a variable is eliminated, it is removed from the graph along,,qe assignment would completely determine the condi-
with its incident edges, and its neighbors are connected in floned subproblem. However, it can be shown that using
cligue. When it is conditioned, it is simply removed from the caching based on OR contexts’ makes caching based on AND

graph along with its incident edges. ; :
The algorithms we discuss typically depend on a variableContexts redundant, so we will only uSR caching

orderingd = (Xi,...,X,). Search proceeds by instanti- DEFINITION 5 (OR context) Given a pseudo tre§ of an
ating variables fromX; to X,,, while Variable Elimination =~ AND/OR search space, the context of an OR nddede-
processes the variables backwards, frdmto X;. Given  noted bycontext(X) = [X; ... Xj], is the set of ancestors
a graphG and an ordering, an elimination tree, denoted by of X in 7 ordered descendingly, that are connected in the
T (G, d), is uniquely defined by the Variable Elimination pro- primal graph toX or to descendants of .

cess.T (G, d) is also a valid pseudo tree to drive the AND/OR
search. Note however that several orderings can give rise tfg
the same elimination tree.

It is easy to verify that the context &f d-separatefPearl,

89 the subproblem beloi from the rest of the network.
The context minimaAND/OR graph is obtained by merging

3.1 ANDJ/OR Search Space all the context unifiable OR nodes. An example will appear

, _ later in Figure 7. It was already shown tH&ayardo and
The AND/OR search space is a recently introduki2elchter Miranker, 1996: Dechter and Mateescu, 2D04

and Mateescu, 2004; Mateescu and Dechter, 2005b; 2005a
unifying framework for advanced algorithmic schemes forTHEOREM2 Given a graphical modeM, its primal graph
graphical models. Its main virtue consists in exploitinggn G and a pseudo tred, the size of the context minimal
pendencies between variables during search, which can préND/OR search graph based dfiis O(n k*7(%)), where
vide exponential speedups over traditional search methods?-(G) is the induced width off over the depth first traver-
oblivious to problem structure. sal of 7, andk bounds the domain size.

Given a graphical modeW1 = (X, D, F), its primal graph
G and a pseudo treg of G (see Figure 6 for an example 3.2 AND/OR Cutset Conditioning - AOCutset(i)

of a p_seudo tree), the associated AND/OR sea_rch tree has slnpD/OR Cutset Conditioning AOCutset(i)) [Mateescu
ternating levels of OR and AND nodes (see Figure 7 for any,q pechter, 2003as a search algorithm that combines
exampli of OF‘;\ and AND nOd?I_SH hoolegeverathe f'gulr%ghc(’jwﬁND/OR search spaces with cutset conditioning. The con-
a search graph, not a tree). The OR nodes are lab€led yitioning (cutset) variables formstart pseudo tree. The re-

: dj
and correspond to the variables. The AND nodes are Ia.beleﬁ’:aining variables (not belonging to the cutset), have bednd
(Xi, z;), or simplyz;, and correspond to the value assign- .o qitioned context size that can fit in memory.
ments in the domains of the variables. The structure of the

AND/OR search tree is based on the underlying pseudo treBEFINITION 6 (Start pseudo tree) Given a primal graph
7. The root of the AND/OR search tree is an OR node la-and a pseudo treg of G, a start pseudo tre€,;,,; is a con-
beled with the root of/. The children of an OR nod4; nected subgraph of that contains the root of .



Algorithm AOCutset(i) depends on a parameter i that ®u
bounds the maximum size of a context that can fitin memory / (&)
Given a graphical model and a pseudo tfeawe first find a '

start pseudo tre@,;., such that the context of any node not | $**

in T;:qr¢ CONtains at most i variables that are not7in,:. i Dwec EG
This can be done by starting with the root’bfand then in- ‘:";”\[ABDJ
cluding as many descendants as necessary in the start pseL:

tree until the previous condition is mé,;, -, now forms the GIE:!

cutset, and when its variables are instantiated, the renggain .

conditioned subproblem has induced width bounded by i. The}

cutset variables can be explored by linear space (no caching (1)

AND/OR search, and the remaining variables by using full
caching, of size bounded by i. The cache tables need to b
deleted and reallocated for each new conditioned subproble
(i.e., each new instantiation of the cutset variables).

3.3 Algorithm AOC(i) - Adaptive Caching

The cutset principle inspires a new algorithm, based on i
more refined caching scheme for AND/OR search, which we- el
call Adaptive Caching AOC(i) (in the sense that it adapts to |, .
the available memory), that caches some values even at nod

with contexts greater than the bound i that defines the men'™
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ory limit. Lets assume thatontext(X) = [X; ... X;] and
k > 4. During search, when variablés,, ..., X ; are in-

stantiated, they can be regarded as part of a cutset. The prc[B'DF
lem rooted byX;,_;+1 can be solved in isolation, like a sub-

problem in the cutset scheme, after variahlgs..., X; ;

are assigned their current values in all the functions. i th

subproblemeontext(X) = [Xg—it1...Xg], SO it can be

cached within space bounded by i. However, when the searc

retracts toX;_; or above, the cache table fof needs to

be deleted and will be reallocated when a new subprobler!

rooted atX; ;1 is solved.

DEFINITION 7 (i-context, flag) Given a graphical model, a
pseudo tred, a variableX andcontext(X) = [X; ... X},
thei-contextof X is:

) Cf [Keivr-. Xi], if
zcontext(X)—{ context(X), if i

X; is called theflag of i-context(X).

Algorithm AOC(i)
input : M=(X,D,F); G=(X,E);d=(X1,...,Xy); 1
output: Updated belief forX;

1 LetT=T(G,d) I/ create elinination tree
for eachX € X do

2 allocate a table foi-context(X)

3 Initialize search with root of ;

4 while search not finishedo

5 Pick next successor not yet visited // EXPAND;

6 Purge cache tables that are not valid;

7 if value in cachahen

8 retrieve value; mark successors as visited;

9 while all successors visitedo /1 PROPAGATE
10 Save value in cache;

11 Propagate value to parent;

The high level pseudocode f&OC(i) is given here. The
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Figure 3:AOCutset(2) graph (AND/OR Cutset)

context. The difference is in the management of cache ta-
bles. Whenever a variabl¥ is instantiated (when an AND
node is reached), the cache table is purged (reinitializéd w

a neutral value) for any variablg such thatX is the flag

of i-context(Y) (line 6). Otherwise, the search proceeds as
usual, retrieving values from cache if possible (line 7)leee
continuing to expand, and propagating the values up when the
search is completed for subproblem below (line 11). We do
not detail here the alternation of OR and AND type of nodes.

Example 1 We will clarify here the distinction between
AND/OR with full caching, AND/OR Cutset and AND/OR

algorithm works similar to AND/OR search based on full Adaptive Caching. We should note that the scope of a cache



table is always a subset of the variables on the current path
in the pseudo tree. Therefore, the caching method (e.4., ful
caching based on context, cutset conditioning cache, agapt
caching) is an orthogonal issue to that of the search space
decomposition. We will show an example based on an OR
search space (pseudo tree is a chain), and the results will
carry over to the AND/OR search space.

Figure 1 shows a pseudo tree, with binary valued variables,
the context for each variable, and the context minimal graph
If we assume the bound = 2, some of the cache tables
don’t fit in memory. We could in this case us®Cutset(2)
shown in Figure 3, that takes more time, but can execute in
the bounded memory. The cutset in this case is made of vari-
ablesA and B, and we see four conditioned subproblems, the
four columns, that are solved independently from one amothe
(there is no sharing of subgraphs). Figure 2 sho%3C(2),
which falls between the previous two. It uses bounded mem-
ory, takes more time than full caching (as expected), bst les Figure 4: Primal graph and pseudo tree
time thanAOCutset(2)(because the graph is smaller). This
can be achieved because Adaptive Caching allows the sh
ing of subgraphs. Note that the cache tablefbfhas the
scope BG], which allows merging.

a1‘|'rst), while AO is a top-down depth-first search that explores
(and records) the full context minimal graph as well.

3.4 Variable Eliminati q ditioni _ 3.5 Tree Decomposition with Conditioning - TDC
) ariable Elimination and Conditioning - VEC(i) One of the most widely used methods of processing graph-

Variable Elimination and ConditioningV€C) [Rish and ical models, especially belief networks, is tree clusggrin
Dechter, 2000; Larrosa and Dechter, 2D@an algorithm  (also known as join tree or junction tree algorithibauritzen
that combines the virtues of both inference and search. ©ne @and Spiegelhalter, 1988 The work in[Dechter and Fat-

its remarkably successful applications is the geneticaljgk  tah, 2001 presents an algorithm calletirectional join tree
analysis software SuperlinkFishelson and Geiger, 20p2 clustering that corresponds to an inward pass of messages
VEC works by interleaving elimination and conditioning of towards a root in the regular tree clustering algorithm. If
variables. Typically, given an ordering, it prefers thergtfia-  space is not sufficient for the separators in the tree decom-
tion of a variable whenever possible, and switches to condiposition, therlDechter and Fattah, 20Dfroposes the use of
tioning whenever space limitations require it, and corgiiu secondary join trees, which simply combine any two neigh-
in the same manner until all variables have been processetoring clusters whose separator is too big to be stored. The
We say that the conditioning variables forntanditioning  resulting algorithm that uses less memory at the expense of
set or cutset(this can be regarded aswacutsef where thew more time is calledpace based join tree clustering
defines the induced width of the problems that can be han- The computation in each cluster can be done by any suit-
dled by elimination). The pseudocode for the vanilla ver-able method. The obvious one would be to simply enumerate
sion, calledVEC-OR(i) because the cutset is explored by OR all the instantiations of the cluster, which correspondartio
search rather than AND/OR, is shown below: OR search over the variables of the cluster. A more advanced

Algorithm VEC-OR() method advocated bjpechter and Fattah, 20Dis the use

of cycle cutset inside each cluster. We can improve the cycle

input : M =(X,D,F);d=(Xi,...,Xp) cutset scheme first by using an AND/OR search space, and
output: Updated belief forX; second by using Adaptive Caching bounded byather than

1 if (conteat(X,) < i) then simple AND/OR Cutset in each cluster. We call the resulting

2 eliminateX;; methodtree decomposition with conditionif@DC(i)).

3 call VEC-OR(i) on reduced problem

4 e|32;gi;e$hxn € D, do 4 AOC(i) Compared to VEC(i)

5 n = Tn, . . . .

6 call VEC-OR(i) on the conditioned subproblem We will begin by following an example. Consider the graph-

ical model given in Figure 4a having binary variables, the
When there are no conditioning variabl®EC becomes orderingd, = (A, B,E,J, R, H,L,N,O,K,D,P,C, M-

the well known Variable Elimination(E) algorithm. In this £ G), and the space limitatioh= 2. The pseudo tree cor-

caseAOC also becomes the usual AND/OR graph searcHesponding to this ordering is given in Figure 4b. The contex

(AO), and it was showfiMateescu and Dechter, 20Q%hat:  ©f each node is shown in square brackets. _
If we apply VEC alongd; (eliminating from last to first),

THEOREM3 (VE and AO are identical) Given a graphical variablesG, F and M can be eliminated. Howevef; can-
model with no determinism and a pseudo t¢g, traverses  not be eliminated, because it would produce a function with
the full context minimal graph bottom-up by layers (breadthscope equal to its contextABEH LK DP], violating the



Figure 5: Components after conditioning 6n

boundi = 2. VEC switches to conditioning od' and all
the functions that remain to be processed are modified accord Figure 6: Pseudo tree f&1OC(2)
ingly, by instantiating”. The primal graph has two connected
components now, shown in Figure 5. Notice that the pseuda _ _
trees are based on this new graph, and their shape changedlgorithm VEC-AO(i)
from the original pseudo tree. e

Continuing with the orderingP and D can be eliminated 6 call VEC-AO(i) on each connect ed

(one variable from each component), but th€ncannot be conponent of conditioned subproblem separately;
eliminated. After conditioning ot variablesO, N and L N o
can be eliminated (all from the same component), tHeis Let's look at one more condition that needs to be satisfied

conditioned (from the other component) and the rest of théorthe two algorithms to be identical. If we change the order

variables are eliminated. To highlight the conditioning, se N9 tods = (A, B, E, J, R,[H. L, N,0,[K], D, P, F, G,[Ct

we will box its variables when writing the ordering, = (4- > M), (F andG are eliminated after conditioning af), then

,B,E,J,R,H,L,N,0,[K|,D,P,Cl,M,F,G). the pseudo tree is the same as before, and the context minimal
If we take the conditioning sgt K'C] in the order im- graph forAOC is still the one shown in Figure 7. However,

posed on it byl;, reverse it and put it at the beginning of the VEC-AO would require more effort, because the elimination
orderingd; , then we obtain: of G andF is done twice now (once for each instantiation of

(), rather than once as was for orderithg This shortcom-

_ ing can be eliminated by defining a pseudo tree based version
2= <’ ’ ’[A’B’ﬂ]f{ ’L’N’O]K ’D’P] . ’M’F’G> for VEC, rather than one based on an ordering. The final
’ algorithm,VEC(i) is given below (whereVg(X;) is the set
where the indexed squared brackets together with the undesf neighbors ofX; in the graphG). Note that the guiding
lines represent subproblems that need to be solved multipleseudo tree is regenerated after each conditioning.
times, for each instantiation of the index variable. : .

So we started withl; and bound; = 2, then we iden- .AlgorlthmVEC(|) -
tified the corresponding conditioning Séf K C] for VEC,  input : M=(X,D,F); G=(X,E); d=(X1,..., Xs); 1
and from this we arrived at,. We are now going to usé, ~ output: Updated belief forY, o _
to build the pseudo tree that guidd®©C(2), given in Figure Let7 =7(G,d) 1/ create elimination tree;
6. The outer box corresponds to the conditioning’ofThe ~ While 7_not emptydo

inner boxes correspond to conditioning Ahand H, respec- if (3X; leaf in T)A(|Ne (X3)| <)) then eliminate X;
tively. The context of each node is given in square brackets, €lsepick X; leaf from7;

and the2-contextis on the right side of the dash. For exam- for eachz; € D; do

ple, context(J) = [CH-AE], and2-context(J) = [AE]. assigny; = x;;

call VEC(i) on each connected component of
conditioned subproblem
break;

The context minimal graph corresponding to the execution of
AOC(2) is shown in Figure 7.

We can follow the execution of bo#hOC andVEC along
this context minimal graph. After conditioning ar, VEC Based on the previous example, we can prove:

solves two subproblems (one for each valu€dfwhich are o o\ .
; . THEOREM4 (AOC(i) simulates VEC(i)) Given a graphical
the ones shown on the large rectangles. The vanilla versmﬁwdelM: (X, D, F) with no determinism and an execution

VEC-OR is less efficient thadOC, because it uses an OR FVECKH). th ict do tree that quid i
search over the cutset variables, rather than AND/OR. In ou? (i), there exists a pseudo tree that guides an execution

example, the subproblem ot B, E, J, R would be solved of AOC(i) that traverses the same context minimal graph.
eight times byWEC-OR, once for each instantiation 6f, K Proof: The pseudo tree AAOC(i) is obtained by reversing
andH, rather than four times. It is now easy to make the firstthe conditioning set 0¢/EC(i) and placing it at the beginning
improvement to/EC, so that it uses an AND/OR search over of the ordering. The proof is by induction on the number of
the conditioning variables, an algorithm we ¢aEC-AO(i), conditioning variables, by comparing the correspondingco
by changing line 6 o¥/EC-OR to: texts of each variable.
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Basis step.If there is no conditioning variable, Theorem
3 applies. If there is only one conditioning variable. Given
the orderingd = (X4,...,Xj,..., X,), let's sayX; is the
conditioning variable.

a) ConsidertX € {X,1,...,X,}. The function recorded
by VEC(i) when eliminatingX has the scope equal to the
context of X in AOC(i).

b) For X;, both VEC(i) and AOC(i) will enumerate its
domain, thus making the same effort. . N . .

c) After X; is instantiated by/EC(i), the reduced subprob- Figure 8: Tree decompositions: a) #by; b) maximal cliques
lem (which may contain multiple connected components) caonly; ¢) secondary tree far= 2
be solved by variable elimination alone. By Theorem 3
variable elimination on this portion is identical to AND/OR
search with full caching, which is exactiyeC(i) on the re-
duced subproblem.

From a), b) and c) it follows thaEC(i) and AOC(i) are
identical if there is only one conditioning variable.

c)

‘corresponding tel, can be obtained by inducing the graph
alongds (from last to first), and then picking as clusters each
node together with its parents in the induced graph, and con-
necting each cluster to that of its latest (in the orderimg) i
duced parent. Because the induced parent set is equal to the
. ; . context of a node, the method above is equivalent to creating

_ Inductive step.We assume tha?EC(i) andAOC(i) are ) gter for each node in the pseudo tree from Figure 6, and la-
identical for any graphical model if there are at mbsondi- g it with the variable and its context. The result iswho

tioning variables, and have to prove that the same is true fO, Figure 8a. A better way to build a tree decomposition is
k+1 cond|t|qn|ng variables. . to pick only the maximal cliques in the induced graph, and
Ifthe ordering isd = (X3, ..., Xj,..., X,) andX; isthe g ig equivalent to collapsing neighboring subsumedetss
last conditioning variable in the ordering, it follows (Sl&¥  om Figure 8a, resulting in the tree decomposition in Fégur
to the basis step) thaEC(i) andAOC(i) traverse the same g £ we want to rurfDC with boundi = 2, some of the sep-

search space with respect to variab{e§;,,, ..., X}, and  5ra10rs are bigger than 2, so a secondary tree is obtained by
also forX ;. The remaining conditioned subproblem now falls merging clusters adjacent to large separators, obtaifiag t

under the.ir_lductive hypothesis_, which concludes the proofi.aein Figure 8c. TDC(2) now runs by sending messages
Note that it is essential thafEC(i) uses AND/OR over cut- nyards, toward the root. Its execufion, when augmented
set, and is pseudo tree based, otherwi®€(i) is better. T ity AND/OR cutset in each cluster, can also be followed on
the context minimal graph in Figure 7. The separatdiB],
[AR] and[C D] correspond to the contexts 6f, F and M.
: : The root clustefC HABEJDR] corresponds to the part of
5 AOC(i) Compared to TDC(i) the context minimal graph that contains all these variabfes
We will look again at the example from Figures 6 and 7, andthis cluster would be processed by enumeration (OR search),
the orderingd,. It is well known that a tree decomposition it would result in a tree witt2® = 256 leaves. However,



when explored by AND/OR search with adaptive caching theother two. All the analysis was done by using the context
context minimal graph of the cluster is much smaller, as camminimal data structure, which provides a powerful methedol
be seen in Figure 7. By comparing the underlying contexibgy for comparing the algorithms.

minimal graphs, it can be shown that: When the graphical model contains determinism, all the
above schemes become incomparable. This is due to the fact
that they process variables in reverse orderings, and wll e
counter and exploit deterministic information differgntl

THEOREM5 Given a graphical modeM = (X, D, F) with
no determinism, and an execution ™WDC(i), there exists a
pseudo tree that gui_d(_es an executiom\@rC(i) that traverses
the same context minimal graph. Acknowledgments
Proof: Algorithm TDC(i) is already designed to be an im- . )
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