A New Algorithm for Sampling CSP Solutions
Uniformly at Random

Vibhav Gogate and Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697
{vgogate,dechté@ics.uci.edu

Abstract. The paper presents a method for generating solutions of a constraint
satisfaction problem (CSP) uniformly at random. Our method relies on express-
ing the constraint network as a uniform probability distribution over its solutions
and then sampling from the distribution using state-of-the-art probabilistic sam-
pling schemes. To speed up the rate at which random solutions are generated, we
augment our sampling schemes with pruning technigues used successfully in the
CSP literature such as conflict-directed back-jumping and no-good learning.

1 Introduction

The paper presents a method for generating solutions to a constraint network uniformly
at random. The idea is to express the uniform distribution over the set of solutions as a
probability distribution and then generate samples from this distribution using monte-
carlo sampling. We develop monte-carlo sampling algorithms that extend our previous
work on monte-carlo sampling algorithms for probabilistic networks [4] in which the
output of generalized belief propagation is used for sampling.

Our experiments reveal that pure sampling schemes, even if quite advanced [4], may
fail to output even a single solution for constraint networks that admit few solutions. So
we propose to enhance sampling with search techniques that aim at finding a consistent
solution fast, such as conflict directed back-jumping and no-good learning.

We demonstrate empirically the performance of our search+sampling schemes by
comparing them with two previous schemes: (a) the WALKSAT algorithm [6] and (b)
the mini-bucket approximation [2]. Our work is motivated by a real-world application
of generating test programs in the field of functional verification (see [2] for details).

2 Preliminaries

Definition 1 (constraint network). A constraint network (CN) is defined by a 3-tuple,
(X,D,C), whereX is a set of variablesX = {X,..., X}, associated with a set of
discrete-valued domain®, = {D;,...,Dn}, and a set of constrain§ = {Cy,...,C }.
Each constrainG; is a pair (S, R;), whereR; is a relationR; C Dg, defined on a subset
of variablesS; C X. R; contains the allowed tuples . A solution is an assignment
of values to variableg = (X; = X1,..., Xy = Xa), X € Dj, such thatV G € C, xg € R;.

Definition 2 (Random Solution Generation Task).Let sol be the set of solutions to
a constraint networl® = (X, D, C). We define a uniform probability distributid®y(x)
relative to®_such that for every assignment= (X1 = x1,...,Xn = Xy) to all the vari-
ables that is a solution, we haw(x € sol) = ﬁ while for non-solutions we have
Pu(x ¢ sol) = 0. The task of random solution generation is to generate positive tuples
from this distribution uniformly at random.

3 Generating Solutions Uniformly at Random

In this section, we describe how to generate random solutions using monte-carlo (MC)
sampling. We first express the constraint netw®kX, D, C) as a uniform probability
distribution? over the space of solution®(X) = a[];Ci(S =s). Here,Ci(s) = 11if

s € R and0 otherwise.a = 1/ 5 []; fi(S) is the normalization constant. Clearly, any
algorithm that samples tuples frofh accomplishes the solution generation task. This
allows us to use the following monte-carlo (MC) sampler to sample ffom

Algorithm Monte-Carlo Sampling
Input: A factored distribution? and a time-boundQutput: A collection of samples frorn?.
Repeat until the time-bound expires

1. FORj=1ton

(@) SampleXj = xj from P(Xj|Xy = Xq,...,Xj_1 =Xj_1)
2. End FOR
3. Ifxg,...,Xnis a solution output it.

Hence forth, we will us@ to denote the conditional distributid®(X;|Xy, ..., Xj_1). In
[2], a method is presented to comp®tén time exponential in tree-width. But the tree-
width is usually large for real-world networks and so we have to use approximations.

4 Approximating P using lterative Join Graph Propagation

Because exact methods for computing the conditional probabiRtiaee impractical
when the tree-width is large, we consider a generalized belief propagation algorithm
called Iterative Join Graph Propagation (IJGP) [3] to compute an approximati@n to
IJGP is a belief-propagation algorithm that takes a factored probability distrib@tion
and a partial assignmeBt= e as input. It then performs message passing on a special
structure called the join-graph. The output of IJGP is a collection of functions which can
be used to approximatB(X;|e) for each variable&; of . If the number of variables in
each cluster is bounded Ipycalled thei-bound), we refer to IJGP as IJGP(i). The time
and space complexity of one iteration of IJGP(i) is bounded exponentially by

IJGP(i) can be used to compute an approxima@asf P by executing it with? and
the partial assignmeity = xq, ..., Xj—1 = Xj_1 as input and then using instead oP in
step 1(a) of algorithm monte-carlo sampling. In this case, IJGP(i) should be executed
times, one for each instantiation of variabdgto generate one full sample. This process
may be slow because the complexity of generahingamples in this way i©(N x* nx

expi)). To speed-up the sampling process, in [4] we pre-computed the approximation
of P by executing IJGP(i) just once, yielding a complexity@(N = n+ exp(i)).

Therefore, in order to be able to have a flexible control between the two extremes
of using IJGP(i) just once, prior to sampling, versus using IJGP(i) at each variable
instantiation, we introduce a control paramepgrmeasured as a percentage, which
allows executing 1IJGP(i) every % of the possible variable instantiation. We call the
resulting technique IJGP(i,p)-sampling.

4.1 Rejection of Samples

Itis important to note that when d@lfs are exact in the algorithm monte-carlo sampling,

all samples generated are guaranteed to be solutions to the constraint network. However,
when we approximatf using IJGP such guarantees do not exist and our scheme will
attempt to generate samples that are not consistent and therefore need to be rejected.
Since the amount of rejection in IJGP(i,p)-sampling can be quite high, we equipped the
basic 1JGP(i,p)-sampling scheme with pruning algorithms common in search schemes
for solving constraint problems. We describe these schemes in the next section.

5 Backjumping and No-good learning to improve
[JGP(i,p)-sampling

Traditional sampling algorithms start sampling anew from the first variable in the order-
ing when an inconsistent assignment (sample) is generated. Instead, the algorithms can
backtrack to the previous variable and sample a new value for the previous variable as
is common in search algorithms. In other words, we could perform backtracking search
instead of pure sampling. Before we sample a new value for the previous variable, we
can update our sampling probability to reflect the discovery of the rejected sample.
Also, instead of using naive backtracking we can use a more advanced approach such
as conflict-directed backjumping and no-good learning. In conflict-directed backjump-
ing, the algorithm backtracks a few levels back, to a variable that can be relevant to the
current variables, instead of the recent previous variable [1]. In no-good learning each
time an inconsistent assignment (sample) is discovered, the algorithm adds the assign-
ment as a constraint (no-good) to the original constraint network so that in subsequent
calls to the search procedure, the same assignment is not sampled. We learn only those
no-goods which are bounded bfthei-bound of IJGP(i)) to maintain constant space.
Once a no-good bounded Ibys discovered, we check if the scope of the no-good
is included in a cluster of the join-graph. If it is, then we insert the no-good in the
cluster and subsequent runs of IJGP utilize this no-good; thereby potentially improving
its approximation. We refer to the algorithm resulting from adding back-jumping search
and no-good learning to 1JGP(i,p)-sampling as IJGP(i,p)-SampleSearch.

6 Experimental Evaluation

We experimented with 5 algorithms (a) IJGP(i,p)-sampling which does not perform
search, (b) MBE(i)-sampling which uses mini-bucket-elimination instead of 1JGP to

Problems Time| IJGP(3,p)-SampleSearch| IJGP(3,p)-SampleSearch|MBE(3)-SampleSeardh
(N,K,C,T) No learning learning

p=0] p=10 p=50 p=100 p=0j p=10 p=50 p=100Q p=0|
KL KL KL KL KL KL KL KL KL
MSE| MSE| MSE| MSE| MSE| MSE| MSE| MSE| MSE
#S #S #S #S #S #S #S #9 #S
100,4,350,4100050.03460.03190.01084 0.011] 0.04030.0173 0.0130.0053 0.134
0.00740.00610.00280.0017 0.00860.00480.00260.0008 0.073
82290 42398 190323 1179210369Q 37923 25631 9872 93823
100,4,370,4100050.02490.02350.02670.015¢ 0.01670.018§0.01430.010¢ 0.107
0.00890.00620.00840.0037 0.00580.00610.00490.0019 0.0332
18894 17883 2983 1092 28344 14894 3329 1981 33895
Table 1. Performance of IJGP(3,p)-sampling and MBE(3)-sampling on random binary CSPs.

approximate? and does not perform backjumping and no-good learning, (c) IJGP(i,p)-
SampleSearch as described in section 5, (d) MBE(i)-SampleSearch which incorpo-
rates backjumping in MBE(i)-sampling as described in section 5 and (e) WALKSAT
(which only works on SAT instances). We experimented with randomly generated bi-
nary constraint networks and SAT benchmarks available from satlib.org. Detailed ex-
periments are presented in the extended version of the paper [5]. Here, we describe
results on 100-variable random CSP instances, on logistics benchmarks and on verifi-
cation benchmarks. For each network, we compute the fraction of solutions that each
variable-value pair participates in i.Bs(X; = x). Our sampling algorithms output a

set of solution sampleS from which we compute the approximate marginal distri-
bution: Py(X; = x) = leg‘” whereNgy is the number of solutions in the s8twith

X; assigned the valug. We then compare the exact distribution with the approxi-
mate distribution using two error measures (accuracy)Mean Square error the
square of the difference between the approximate and the exact akt ¢(h$tance-

Pe(Xi) *log(Pe(xi)/Pa(Xi)) averaged over all values, all variables and all problems. We
also report the number of solutions generated by each sampling technique.
100-variable random CSPsWe experimented with randomly generated 100-variable
CSP instances with domain size and tightness of 4. Here, we had to stay with relatively
small problems in order to compute the exact marginal for comparison. The time-bound
used is indicated by the columifimein Table 1. The results are averaged over 100 in-
stances. We used an i-bound ®fn all experiments. Here, pure IJGP(i,p)-sampling
and pure MBE(i)-sampling ([2]) which do not perform search did not generate any
consistent samples (solutions) and so we report results on IJGP(i,p)-SampleSearch and
MBE(i)-SampleSearch in Table 1. We can see that the accuracy of IJGP(i,p)-SampleSearch
increases and the number of solutions generated decrease as we inc(easela-

ble 1). Thus, we clearly have a trade-off between accuracy and the number of solutions
generated as we change It is clear from Table 1 that our new scheme 1JGP(i,0)-
SampleSearch is better than MBE(i) based solution sampler both in terms of accuracy
and the number of solutions generated. Also, no-good learning improves the accuracy
of IJGP(i,p)-SampleSearch in most cases.

SAT benchmarks: We experimented with logistics and verification SAT benchmarks
available from satlib.org. On all the these benchmarks instances, we had to reduce the
number of solutions that each problem admits by adding unary clauses in order to apply
our exact algorithms. Here, we only experimented with our best performing algorithm

Logistics.a Logistics.d Verificationl Verification2
N=828,Time=1000s N=4713,Time=1000s | N=2654,Time=100005 N=4713,Time=10000s
1JGP(3,10) WALK 1IJGP(3,10) [WALK 1IJGP(3,10) |WALK 1IJGP(3,10) |WALK

No Learri Learn No Learr] Learn No Learr| Learn No Learr| Learn
KL| 0.009780.001930.01233 0.0009 0.00030.000§ 0.00440.0037 0.003 0.01990.0154 0.01]
MSE[0.0011670.000330.00622 0.000730.000410.0002 0.00350.00210.0014 0.0090.008§ 0.0073
#S| 23763 32893 882 10949 19203 2844d 1394 945| 11342 1893 1038 8390
Table 2.KLD, Mean-squared Error and #Solutions for SAT benchmarks

IJGP(i,p)-SampleSearch with i=3 and p=10. From Table 2 we can see that on the logis-
tics benchmarks, 1JGP(3,10)-SampleSearch is slightly better than WALKSAT in terms
of accuracy while on the verification benchmarks WALKSAT is slightly better than
IJGP(3,10)-SampleSearch. WALKSAT however dominates 1JGP(3,10)-SampleSearch
in terms of the number of solutions generated (except Logistics.a).

7 Summary and Conclusion

The paper presents a new class of algorithms for generating random, uniformly dis-
tributed solutions for constraint satisfaction problems. The algorithms that we develop
fall under the class of monte-carlo sampling algorithms that sample from the output
of a generalized belief propagation algorithm and extend our previous work [4]. We

show how to improve upon conventional monte-carlo sampling methods by integrating
sampling with back-jumping search and no-good learning. This has the potential of im-
proving the performance of monte-carlo sampling methods used in the belief network
literature [4], especially on networks having large number of zero probabilities. Our

best-performing schemes are competitive with the state-of-the-art SAT solution sam-
plers [6] in terms of accuracy and thus present a Monte-carlo (MC) style alternative to
random walk solution samplers like WALKSAT [6].

Acknowledgements
This work was supported by the NSF grants [1S-0331707 and 11S-0412854.

References

1. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and cut-
set decompositionArtificial Intelligence 41:273-312, 1990.

2. Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for con-
straint satisfaction problems. WAAI, 2002.

3. Rina Dechter, Kalev Kask, and Robert Mateescu. Iterative join graph propagatidsl In
'02, pages 128-136. Morgan Kaufmann, August 2002.

4. Vibhav Gogate and Rina Dechter. Approximate inference algorithms for hybrid bayesian
networks with discrete constraintgAl-2005 2005.

5. Vibhav Gogate and Rina Dechter. A new algorithm for sampling csp solutions uniformly at
random. Technical report, University of California, Irvine, 2006.

6. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random
walk strategies. IRMAAI, 2004.

