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Abstract

The paper extends the principle of cutset
sampling over Bayesian networks, presented
previously for Gibbs sampling, to likelihood
weighting (LW). Cutset sampling is moti-
vated by the Rao-Blackwell theorem which
implies that sampling over a subset of vari-
ables requires fewer samples for convergence
due to the reduction in sampling variance.
The scheme exploits the network structure
in selecting cutsets that allow efficient com-
putation of the sampling distributions. In
particular, as we show empirically, likeli-
hood weighting over a loop-cutset (abbrevi-
ated LWLC), is time-wise cost-effective. We
also provide an effective way for caching
the probabilities of the generated samples
which improves the performance of the over-
all scheme. We compare LWLC against reg-
ular liklihood-weighting and against Gibbs-
based cutset sampling.

1 Introduction

Stochastic sampling is a popular approach for estimat-
ing answers to Bayesian queries when exact inference
is intractable. Based on the generated samples, we
can obtain estimates that converge to the exact values
as the number of samples increases. However, conver-
gence may be slow in large networks due to increase
in sampling variance. This is the problem we address
in this paper.

Based on Rao-Blackwell theorem, we can reduce sam-
pling variance and speed up convergence by sampling
only a subset of the variables (a cutset). However, the
efficiency of sampling from lower-dimensional spaces is
hindered by the overhead of computing the sampling
distributions. The latter is equivalent to performing
exact inference which is exponential in the induced

width of the network whose instantiated variables (ev-
idence and sampled) are removed.

We defined previously an efficient parametrized Gibbs
cutset sampling scheme, called w-cutset sampling
[2, 3], where the complexity of generating a single
sample is bounded exponentially by w. In this paper,
we extend the cutset sampling principle to likelihood
weighting (LW) [11, 21], which is a form of importance
sampling [21], focusing on sampling from a loop-cutset.
The resulting scheme, which we call LWLC, computes
a sample over a loop-cutset C in O((|C| + |E|) · N),
where E is evidence and N is the size of the input
network. While we present our scheme for LW, it is
applicable to other importance sampling schemes.

While both cutset schemes, one based on Gibbs sam-
pling and one based on likelihood weighting, exploit
the network structure to manage the complexity of ex-
act inference, they compute different sampling distri-
butions. Gibbs sampler draws a new value of variable
Xi from distribution P (Xi|x\xi). Likelihood weight-
ing samples a new value from P (Xi|x1, ..., xi−1). Fur-
thermore, while both schemes benefit from reducing
the size of the sampling space, it is hard to predict
which of the two schemes is superior. The conver-
gence speed of Gibbs sampling depends on the maxi-
mum correlation between the sampled variables. The
convergence of likelihood weighting is affected by the
distance between the sampling and the target distri-
butions and, thus, depends also on the nature of ev-
idence. Finally, Gibbs estimates converge only when
all Markov Chain transition probabilities are positive.

The advantages of cutset-based importance sampling,
also known as Rao-Blackwellised importance sampling,
were demonstrated previously in a few special cases
[9, 8, 1]. Our scheme automates the cutset selection
process based on the Bayesian network structure. We
demonstrate empirically that LWLC is efficient time-
wise and has a lower rejection rate in networks with
determinism. We achieve additional improvements by
caching the probabilities of the generated samples.



Our scheme can be generalized to other importance
sampling schemes.

2 Background

Definition 2.1 (belief networks)
Let X={X1, ...,Xn} be a set of random variables over
multi-valued domains D(X1), ...,D(Xn). A belief net-
work is a pair <G,P> where G is a directed acyclic
graph on X and P={P (Xi|pai)|Xi ∈ X} is the set
of conditional probability tables (CPTs), conditioned
on parents pai of Xi. An evidence e is an instan-
tiated subset of variables E. A network is singly-
connected (also called a poly-tree), if its underly-
ing undirected graph has no cycles. Otherwise, it is
multiply-connected.

Definition 2.2 (loop-cutset) A loop in G is a
subgraph of G whose underlying graph is a cycle. A
vertex v is a sink with respect to a loop L if the two
edges adjacent to v in L are directed into v. Every
loop contains at least one vertex that is not a sink with
respect to that loop. Each vertex that is not a sink with
respect to a loop L is called an allowed vertex with re-
spect to L. A loop-cutset of a directed graph G is a
set of vertices that contains at least one allowed vertex
with respect to each loop in G.

The queries over a singly-connected network can be
processed in time linear in the size of the network [18].
In general, the complexity of queries can be reduced
by restricting G to a relevant subnetwork.

Definition 2.3 (Relevant Subnetwork) A
variable Xi in DAG G over X is irrelevant (barren)
w.r.t. a subset Z⊂X if Xi /∈Z and Xi only has irrele-
vant descendants (if any). The relevant subnetwork of
G w.r.t. a subset Z is the subgraph of G obtained by
removing all variables that are irrelevant w.r.t Z.

2.1 Likelihood Weighting

Likelihood weighting [11, 21] belongs to a family of
importance sampling schemes that draw independent
samples from a trial distribution Q(X). The trial
distribution is different from the target distribution
P (X). Generally, Q(X) is selected so that it is easy
to compute. A typical query in Bayesian networks is
to estimate the posterior marginals P (xi|e) which can
be obtained from the sampling estimates of P (e) and
P (xi, e). Let Y = X\E. Then:

EP [P (e)] =
∑

y

P (y, e) =
∑

y

P (y, e)

Q(y)
Q(y) = EQ[

P (y, e)

Q(y)
]

Consequently, the sampling estimate P̂ (e) of P (e),
based on T samples from Q(X), is obtained by:

P̂ (e) =
1

T

T∑

t=1

P (y(t), e)

Q(y(t))
=

1

T

T∑

t=1

w(t) (1)

where w(t) = P (y(t),e)
Q(y(t))

is the weight of sample y(t). In a

similar manner, but counting only those samples where
Xi = xi, we can obtain an expression for the sampling
estimate P̂ (xi, e) of P (xi, e) for Xi ∈ X\E by:

P̂ (xi, e) = 1
T

∑T

t=1 w(t)δ(xi, x
(t)) (2)

where δ(xi, x
(t))=1 iff x

(t)
i =xi and δ(xi, x

(t))=0 other-

wise. Since P (xi|e) = P (xi,e)
P (e) , we get:

P̂ (xi|e) =

∑T

t=1 w(t)δ(xi, x
(t))

∑T

t=1 w(t)
= α

T∑

t=1

w(t)δ(xi, x
(t))

(3)
where α is a normalization constant. These sampling
estimates are guaranteed to converge to their target
values as T increases as long as the support for Q(X)
includes all support for P (X). Namely, the condition
∀x ∈ X, P (x) 6= 0 ⇒ Q(x) 6= 0 must hold. Eq. (3)
yields a biased estimate of P̂ (xi|e). However, when the
sample size is large enough, bias can be ignored [10].

Likelihood weighting draws samples from a distribu-
tion Q(X) that is close to the prior distribution. It
begins with a network without evidence and assigns
values to nodes in topological order. First, root nodes
are sampled from their prior distributions. Then, the
values of all other nodes Xi∈X\E are sampled from
the distribution P (Xi|pai). Evidence variables Ei∈E
are assigned their observed value. Thus, the sampling
distribution of likelihood weighting can be described
as follows:

Q(X) =
∏

Xi∈X\E P (Xi|pai) |E=e (4)

We therefore compute the weight w(t) of sample t by:

w(t) =
P (x(t))

Q(x(t))
=

∏
Xi∈X P (x

(t)
i |pa

(t)
i )

∏
Xi∈X\E P (x

(t)
i |pa

(t)
i )

(5)

All factors in the numerator and denominator of the
fraction cancel out except for P (ei|pai), leaving:

w(t) =
∏

Ei∈E P (ei|pa
(t)
i ) (6)

Thus, during sampling, we compute the weight w(t)

of sample t by initializing w(t)←1 and updating

w(t)←w(t) · P (ei|pa
(t)
i ) whenever we encounter an evi-

dence Ei = ei. The posterior marginals estimates are
obtained by plugging the sample weights in Eq.(3).



The convergence of importance sampling schemes can
be slow when Q(X) is very different from P (X). Con-
sequently, many importance sampling schemes focus
on finding an improved sampling distribution by either
changing the variable sampling order [12] or updating
the sampling distribution based on previously gener-
ated samples [21, 5, 22]. We can also improve conver-
gence by reducing the dimensionality of the sampling
space as implied by Rao-Blackwell theorem.

3 Rao-Blackwellised Likelihood

Weighting

Give a Bayesian network over a set of variables X with
evidence E⊂X, E=e, let C⊂X\E be a subset of vari-
ables in X, Z=C

⋃
E, and m=|Z|. Let o={Z1, ..., Zm}

be a topological ordering of the variables. We can
define likelihood weighting over Z as follows. Process-
ing variables in order o, we sample value z1 from dis-
tribution P (Z1), z2 from P (Z2|z1), and so on. For
each Zi∈C, we sample a value zi from the distribution
P (Zi|z1, ..., zi−1). If Zi∈E, we assign Zi its observed
value. The sampling distribution Q(C) is:

Q(C) =
∏

Zi∈C

P (Zi|z1, ..., zi−1) |E=e (7)

The weight w(t) of sample t is given by:

w(t) =
P (z(t))

Q(z(t))
=

∏
Zi∈Z P (z

(t)
i |z

(t)
1 , ..., z

(t)
i−1)∏

Zi∈Z\E P (z
(t)
i |z

(t)
1 , ..., z

(t)
i−1)

(8)

After cancelling out the common factors in denomina-
tor and numerator, we get:

w(t) =
∏

Zi∈E P (ei|z
(t)
1 , ..., z

(t)
i−1) (9)

During sampling, the weight (initialized to 1) is up-
dated every time we encounter an evidence variable
Zi ∈ E with observed value ei using:

w(t) ← w(t) · P (ei|z1, ..., zi−1) (10)

The main difference between likelihood weighting over
cutset C and sampling over all variables X is in
computing the sampling distributions. In the latter
case, the distribution P (Xi|x1, ..., xi−1) = P (Xi|pai)
is readily available in the conditional probability
table of Xi. However, the sampling distribution
P (Zi|z1, ..., zi−1) for LWLC needs to be computed.

Consider the special case when C ∪ E is a loop-
cutset. In this case, we can compute the probability
P (z)=P (c, e) in linear time and space using Pearl’s
belief propagation algorithm. We can show that we
can also compute P (Zi|z1, ..., zi−1) efficiently if we or-
der the variables in Z topologically and restrict our
attention to the relevant subnetwork of Z1, ..., Zi.

Theorem 3.1 Given Bayesian network over X, evi-
dence E ⊂ X, and cutset C ⊂ X\E, let Z = C ∪ E
be a loop-cutset. If Z is topologically ordered, then
∀Zj ∈ Z the relevant subnetwork of Z1, ..., Zj is singly-
connected when Z1, ..., Zj are observed.

Proof. Proof by contradiction. Assume that the rel-
evant subnetwork of Z1, ..., Zj contains a loop L with
sink S. Then, either S = Zq or S has a descendant
Zq, 1≤q≤j, (otherwise S is irrelevant). By definition
of loop-cutset, ∃Cm∈L s.t. Cm 6=S and Cm ∈ C ⊂ Z.
Threfore, Cm is an ancestor of Zq. Since variables are
topologically ordered and all loop-cutset nodes pre-
ceding Zq are observed, Cm must be observed, thus,
breaking the loop, yielding a contradiction. 2

Conclusion: if C is a loop-cutset, we can compute the
distributions P (Zi|z1, ..., zi−1) for every Zi∈Z over the
relevant subnetwork of Zi in linear time and space.

Therefore, the complexity of computing a new sample
is proportional to the number of variables in Z and the
size of the input N . In summary:

Theorem 3.2 (Complexity) Given a Bayesian net-
work over X, evidence E, and a loop-cutset C⊂X\E,
the complexity of generating one sample using likeli-
hood weighting over a cutset C is O(|Z| · N) where
Z = C ∪ E and N is the size of the input network.

Once a sample c(t) is generated, we apply belief propa-
gation algorithm one more time to obtain the posterior
marginals, P (Xi|c

(t), e), for each remaining variable.
Once T samples are generated, we obtain the poste-
rior marginals estimates, similar to Eq. (3), by:

P̂ (ci|e) = α

T∑

t=1

w(t)δ(ci, c
(t)), ∀Ci ∈ C

P̂ (xi|e) = α

T∑

t=1

w(t)P (xi|c
(t), e), ∀Xi ∈ X\C,E

3.1 Convergence

Likelihood weighting on a loop-cutset (LWLC) has
a higher overhead in computing the distributions
P (Zi|z1, ..., zi−1) for ∀Zi ∈ Z, compared with sam-
pling on a full variable set. However, as mentioned
earlier, it converges faster. In general, importance
sampling convergence rate is affected by the sampling
variance and the distance between the sampling and
the target distributions. The estimates obtained by
sampling from a lower-dimensional space have lower
variance due to Rao-Blackwell theorem. That is:

V ar{
P (Y,C)

Q(Y,C)
} ≥ V ar{

P (C)

Q(C)
}



where P (C) =
∑

y P (Y,C) and Q(C) =
∑

y Q(Y,C)
[9, 16] A proof can be found in [9] and [16]. Conse-
quently, fewer LWLC samples are needed to achieve
the same accuracy as LW.

The information distance between target distribution
P (C|e) and sampling distribution Q(C) in LWLC is
smaller than the distance between P (X|e) and sam-
pling distribution Q(X). We can show this for the
KL-distance [15]:

KL(P (X), Q(X)) =
∑

x

P (x) log
P (x)

Q(x)
(11)

Theorem 3.3 (Reduced Information Distance)
Given a Bayesian network expressing probability distri-
bution P (X), evidence E=e, and a cutset C ⊂ X\E,
let Q(X) and Q(C,E) denote the likelihood weighting
sampling distribution over X and over C,E respec-
tively. Then:

KL(P (C|e), Q(C,E)) ≤ KL(P (X|e), Q(X))

We outline the proof in the Appendix. The details are
available in [4].

3.2 Caching Sampling on a Cutset

Often, we can reduce the computation time of a sam-
pling scheme by caching the generated samples and
their probabilities. Caching LW values is of lim-
ited benefit since it uses probabilities stored in CPTs.
However, in the case of LWLC, caching may compen-
sate in part for the computation overhead. A suitable
data structure for caching is a search-tree over the cut-
set C with a root node C1. As new variable values
are sampled and a partial assignment to the variables
C1, ..., Ci is generated, LWLC traverses the search tree
along the path c1, ..., ci. Whenever a new value of Ci

is sampled, the corresponding tree branch is expanded
and the current sample weight and the sampling dis-
tribution P (Ci|z1, ..., zi−1) are saved in the node Ci.
In the future, when generating the same partial as-
signment c1, ..., ci, LWLC saves on computation by
reading saved distributions from the tree. We will use
LWLC-BUF to denote LWLC sampling scheme that
uses a memory buffer to cache previously computed
probabilities. LWLC-BUF can also update the sam-
pling distributions P (Ci|z1, ..., zi−1) when dead-ends
are discovered. Namely, if the algorithm finds that
a partial instantiation z1, ..., zi, cannot be extended
to a full tuple with non-zero probability, then we set
P (Ci|z1, ..., zi−1) = 0 and normalize the updated dis-
tribution.

4 Experiments

4.1 Methodology

In this section, we compare empirically the perfor-
mance of full likelihood weighting (LW), sampling over
all the variables, against likelihood weighting on a
loop-cutset (LWLC) and buffered likelihood weighting
on a loop-cutset (LWLC-BUF). In networks with pos-
itive distributions, we compare likelihood weighting
side by side with Gibbs sampling (Gibbs) and Gibbs-
based loop-cutset sampling (LCS) [2]. For reference,
we also compare with the estimates obtained by It-
erative Belief Propagation (IBP). Belief propagation
computes the exact posterior marginals in poly-trees
[18]. When applied to networks with loops, it com-
putes approximate marginals when it converges. IBP
is fast and often produces good estimates [17, 20].

The quality of the approximate posterior marginals is
measured by the Mean Square Error (MSE):

MSE =

∑
Xi∈X\E

∑
D(Xi)

[P (xi|e)− P̂ (xi|e)]
2

∑
Xi∈X\E |D(Xi)|

The exact posterior marginals P (Xi|e) are obtained
by bucket-tree elimination [7, 6]. We also measure the
rejection rate R of each sampling scheme.

Table 1: Benchmarks’ characteristics: N -number of
nodes, w∗-induced width, |LC|-loop-cutset size, P (e)-
average probability of evidence (over 30 instances),
TBE-exact computation time by bucket elimination.

N w∗ |LC| P(e) TBE

cpcs360b 360 21 26 5E-8 20 min
cpcs422b 422 22 47 1.5E-6 50 min
Pathfinder1 109 6 9 0.07 1 sec
Pathfinder2 135 4 4 0.06 0.01 sec
Link 724 15 142 0.07 325 sec

Our benchmarks are taken from Bayesian network
repository. They include two subsets of Pathfinder
network, Pathfinder1 and Pathfinder2, Link, and
two CPCS networks, cpcs360b and cpcs422b. The
benchmarks’ properties are summarized in Table 1.
Pathfinder is an expert system for identifying disor-
ders from lymph node tissue sections [13]. Link is a
model for the linkage between two genes [14]. The ex-
act posterior marginals for those networks were easy
to compute by bucket elimination. However, they are
hard for sampling because of the large number of de-
terministic relationships. cpcs360b and cpcs422b are
derived from the Computer-Based Patient Care Sim-
ulation system [19]. They are more challenging for
exact inference because of their large induced widths.
All experiments were performed on a 1.8 GHz CPU.



4.2 Results

4.2.1 Sampling Speed

We generated 30 instances of each network with dif-
ferent random observations among the leaf nodes. In
Table 2, we report the speed of generating samples us-
ing LW, LWLC, and LWLC-BUF sampling schemes.
As expected, LWLC generates far fewer samples than
LW. Notably, the relative speed of LW and LWLC re-
mains the same in the two Pathfinder networks and
in Link network. By the time LW generates 100, 000
samples, LWLC generates 1200 samples. Table 2 also
shows an order of magnitude improvement in the speed
of generating samples by LWLC-BUF in cpcs360b,
Pathfinder1, and Pathfinder2, a factor of 2 improve-
ment in cpcs422b, and no change in the Link network.
The improvement depends on the ratio of unique sam-
ples. The number of unique tuples in Pathfinder net-
works is only ≈1% of the total number of samples and,
thus, 99% of the computation is redundant. However,
in Link network, nearly all samples are unique. Hence,
buffering was not beneficial.

Table 2: Average # of samples generated by LWLC
and LWLC-BUF by the time LW generates 100, 000
samples.

LW LWLC LWLC-BUF

cpcs360b 100000 2400 24000
cpcs422b 100000 25 50
Pathfinder1 100000 1200 12000
Pathfinder2 100000 1200 12000
Link 100000 1200 1200

4.2.2 Rejection Rates

Table 3: Average rejection rates for different bench-
marks: k -# instances, out of 30, where rejection rate
<100%, R - average rejection rate.

LW LWLC LW-BUF
k R(%) k R(%) k R(%)

PF1 30 47 30 6 30 0.01
PF2 28 77 30 26 30 0.05
Link 17 67 30 16 30 16

When target distribution P (X) has many zeros where
sampling distribution Q(X) remains positive, many
samples with weight 0 may be generated which do not
contribute to the sampling estimates. Hence, we call
them “rejected.” This is not an issue in cpcs360b and
cpcs422b where all probabilities are positive. How-
ever, in deterministic networks, many samples may be
rejected, contributing to slow convergence. We will use

the rejection rate R to denote the percentage of sam-
ples of weight 0. When the evidence is rare, we may
need to generate a very large number of samples be-
fore we find a single sample of non-zero weight. When
all samples are rejected, we will say that the rejection
rate is 100% and call the network instance unresolved.

The rejection rates of the three likelihood weighting
schemes over Pathfinder1, Pathfinder2, and Link are
summarized in Table 3. For each benchmark, we re-
port the number of instances k (out of 30), where the
rejection rate <100%. As we can see, LW resolved all
30 instances of Pathfinder1 but only 28 instances of
Pathfinder2 and only 17 instances of Link. LWLC and
LWLC-BUF resolved all network instances.

Table 3 also reports the rejection rate R averaged over
those instances where all three algorithms generated
some samples with non-zero probabilities. As we can
see, LW has high rejection rates in all benchmarks.
The corresponding LWLC rejection rates are a factor
of 3 or more smaller. Although lower rejection rate
alone does not guarantee faster convergence, it helps
compensate for generating fewer samples. The rejec-
tion rate of LWLC-BUF is two orders of magnitude
lower than LWLC in Pathfinder networks but it is the
same as LWLC in Link network (also because most of
the samples are unique).

The rejection rate of LW and LWLC does not change
with time. However, as LWLC-BUF learns zeros of
the target distribution, its rejection rate may decrease
as the number of samples increases. Figure 1 demon-
strates this on the example of Pathfinder networks.

LWLC-BUF Rejection Rates
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Figure 1: LWLC-BUF average rejection rate over 30
network instances in Pathfinder1 and Pahfinder2 as a
function of the number of samples.

4.2.3 Accuracy of the Estimates

The MSE results for PathFinder1, Pathfinder2, and
Link are shown in Figure 2 as a function of time.
The comparative behavior of LW, LWLC, and LWLC-
BUF sampling schemes is similar in all three networks.
LWLC consistenly converges faster than LW and out-



PathFinder 1, N=109, w*=6, |LC|=9, |E|=11
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PathFinder2, N=135, |LC|=4, |E|=17
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Link, N=724, w*=15, |LC|=142, |E|=10
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Figure 2: MSE as a function of time for LW, LWLC,
LWLC-BUF, and IBP over 30 network instances of
Pathfinder1 (top), 28 instances of Pathfinder2 (mid-
dle), and 17 instances of Link (bottom).

performs IBP within 2 seconds. LW outperforms IBP
within 2 seconds in Pathfinder1 and within 8 seconds
in Pathfinder2. However, LW is considerably worse
than IBP in Link network. LWLC-BUF converges
faster than LWLC in Pathfinder1 and Pathfinder2 be-
cause it generates more samples and has a lower rejec-
tion rate. In Link network, their performance is the
same and, thus, we only show the LWLC curve.

The PathFinder2 network was also used as a bench-
mark in the evaluation of AIS-BN algorithm [5], an
adaptive importance sampling scheme. Although we
experimented with different network instances, we can
make a rough comparison. Within 60 seconds, AIS-BN
computes MSE ≈ 0.0005. Adjusting for the difference
in processor speed, the corresponding MSEs of LWLC
and LWLC-BUF are ≈0.004 and ≈0.00008, obtained
in 6 seconds. Hence, AIS-BN and LWLC-BUF pro-
duce comparable results.
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cpcs422b, N=422, |LC|=47, |E|=30
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Figure 3: MSE as a function of time for full Gibbs
sampling (Gibbs), Gibbs loop-cutset sampling (LCS),
LW, LWLC, and IBP in cpcs360b and cpcs422b.

The accuracy of LW and LWLC for cpcs360b and
cpcs422b networks is shown in Figure 3. Overall, re-
sults are similar. The LWLC outperforms LW by a
wide margin in both benchmarks. Since all probabili-
ties are positive, we also show the results for two Gibbs
sampling schemes. Gibbs outperforms full likelihood
weighting. Gibbs-based loop-cutset sampling (LCS)
outperforms LWLC. Figure 4 focuses on the buffered
cutset sampling schemes. Both LWLC-BUF and LCS-
BUF improve substantially over the plain LWLC and
LCS. And again, the Gibbs-based LCS-BUF is better
than LWLC-BUF.

cpcs360b, N=360, |E|=18, |LC|=26, w*=21
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Figure 4: MSE in cpcs360b as a function of time for
LCS and LWLC vs. buffered LCS and LWLC-BUF.



Although Gibbs sampling schemes outperformed like-
lihood weighting methods in cpcs360b and cpsc422b,
where evidence was selected among leaf nodes, the two
methods are likely to switch places when fewer leaf
nodes are observed. In particular, likelihood weighting
outperforms Gibbs sampling in cpcs360b and cpcs422b
without evidence [4].

5 Related Work and Conclusions

In this paper we presented a cutset-based likelihood
weighting. By reducing the dimensionality of the sam-
pling space, we achieve reduction in th esampling vari-
ance and also reduce the information distance (KL-
distance) between the sampling and the target distri-
butions. Therefore, the cutset sampling scheme re-
quires fewer samples to converge.

In the past, Rao-Blackwellised importance sampling
was made efficient by exploiting the properties of the
conditional probability distributions, e.g., when the
distributions for the marginalised variables could be
computed analytically using a Kalman filter [9, 8, 1]
or when the marginalised variables in a factored
HMM became conditionally independent (when sam-
pled variables are observed) due to the numerical
structure of the CPTs [8]. In contrast, our method
bounds the complexity of computing the sampling dis-
tributions by exploiting the structure of the network.

We demonstrated empirically that cutset-based likeli-
hood weighting is time-wise effective. Namely, it com-
putes more accurate estimates than likelihood weight-
ing as a function of time. We improve the convergence
of cutset-based likelihood weighting by caching previ-
ously computed samples. The buffered scheme reduces
the average sample computation time since it does not
re-compute the probabilities of previously generated
tuples and since it allows modifying the cached distri-
butions dynamically.

In this paper, we only updated the saved distribu-
tions when a partially-instantiated cutset tuple could
not be extended to a full cutset tuple with non-zero
probability. However, we can additionally update
cached distributions based on the weight of previously
generated samples as adaptive importance sampling
techniques do. The proposed cutset-based likelihood
weighting can be generalized to other importance sam-
pling schemes.
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Appendix

Here, we outline the proof for Theorem 3.3. To sim-
plify notation, we let KLx = KL(P (Y,C|e), Q(Y,C))
and KLc = KL(P (C|e), Q(C)). By definition:

KLc =
∑

c

P (c|e) lg
P (c|e)

Q(c)
(12)

KLx =
∑

y,c

P (y, c|e) lg
P (y, c|e)

Q(y, c)
(13)

The proof consists of several transformation steps.
First, for KLc, we replace the conditional probability

P (c|e) in the numerator of the fraction with P (c,e)
P (e) .

Then, we replace lg P (c,e)
Q(c)Q(e) with lg P (c,e)

Q(c) − lg P (e)

and open parenthesis, yielding:

KLc =
∑

c

P (c|e) lg
P (c, e)

Q(c)
−

∑

c

P (c|e) lg P (e) (14)

Factoring out lg P (e) from the sum, we sum out∑
c P (c|e)=1 and get:

KLc =
∑

c

P (c|e) lg
P (c, e)

Q(c)
− lg P (e) (15)

We apply similar transformations to KLx and obtain:

KLx =
∑

y,c

P (y, c|e) lg
P (y, c, e)

Q(y, c)
− lg P (e) (16)

To simplify the analysis, we denote:

KL
′
c =

∑

c

P (c|e) lg
P (c, e)

Q(c)
(17)

KL
′
x =

∑

y,c

P (y, c|e) lg
P (y, c, e)

Q(y, c)
(18)

Since KLx-KLc=KL′
x-KL′

c, we continue analysis of
KL′

x and KL′
c only. Using c1:ki

and e1:i−1 to denote
respectively the subsets of cutset variables and evi-
dence variables that precede variable Ei∈E in sam-

pling order, we replace P (y,c,e)
Q(y,c) =

∏
Ei

P (ei|pai) and
P (c,e)
Q(c) =

∏
Ei

P (ei|c1:ki
, e), yielding:

KL
′
c =

∑

c

P (c|e) lg
∏

Ei

P (ei|c1:ki
, e) (19)

KL
′
x =

∑

y,c

P (y, c|e) lg
∏

Ei

P (ei|pai) (20)

Since log of a product equals the sum of logs, we
obtain:

KL′
c =

∑

c

P (c|e)
∑

Ei

lg P (ei|c1:ki
, e) (21)

KL′
x =

∑

y,c

P (y, c|e)
∑

Ei

lg P (ei|pai) (22)

Next, we sum out variables that do not appear under
the log function:

KL
′
c =

∑

Ei

∑

c1:ki

P (c1:ki
|e) lg P (ei|c1:ki

, e)

KL
′
x =

∑

Ei

∑

c1:ki

∑

pai

P (c1:ki
|e)P (pai|c1:ki

, e) lg P (ei|pai)

Using Jensen’s inequality, we get a lower bound on
KL′

x:

KL
′
x ≥

∑

Ei

∑

c1:ki

P (c1:ki
|e) lg

∑

pai

P (ei|pai)P (pai|c1:ki
, e)

Then, we evaluate the difference ∆ = KL′
x − KL′

c
between the two KL-distances:

∆ ≥
∑

Ei

∑
c1:ki

P (c1:ki
|e) lg

∑
pai

P (ei|pai)P (pai|c1:ki
, e)

−
∑

Ei

∑
c1:ki

P (c1:ki
|e) lg P (ei|c1:ki

, e)

=
∑

Ei

∑
c1:ki

P (c1:ki
|e) lg

∑
pai

P (ei|pai)P (pai|c1:ki
,e)

P (ei|c1:ki
,e)

Finally, we show that the value of the expression un-
der the log is ≥1 and, thus, the log value is positive.
Consequently, KLx −KLc = KL′

x −KL′
c ≥ 0.


