
Improving Bound Propagation
Bozhena Bidyuk1 and Rina Dechter2

Abstract. This paper extends previously proposed bound propa-
gation algorithm [11] for computing lower and upper bounds on
posterior marginals in Bayesian networks. We improve the bound
propagation scheme by taking advantage of the directionality in
Bayesian networks and applying the notion of relevant subnetwork.
We also propose an approximation scheme for the linear optimiza-
tion subproblems. We demonstrate empirically that while the result-
ing bounds loose some precision, we achieve 10-100 times speedup
compared to original bound propagation using a simplex solver.

1 Introduction

Using Bayesian networks to model the problems arising in prac-
tical applications requires answering queries regarding the proba-
bility of an outcome given observations, namely, computing poste-
rior marginals. Computing exact posteriors is NP-hard. Computing
bounds on posterior marginals is a special case of approximating
posterior marginals with the desired degree of precision which is also
NP-hard [6, 2]. Previously proposed methods include bounded con-
ditioning [7], search with conflict-counting [14], ”context-specific”
bounds [15],large deviation boundsfor layered networks [8, 9],
bounds for goal directed queries [12], and a scheme bounding exact
computation in bucket elimination [10]. None of the methods domi-
nates the rest as they offer different accuracy and speed trade-offs.

We focus on a recently proposedbound propagation (BdP) al-
gorithm [11], applicable to both Bayesian networks and Markov ran-
dom fields. The algorithm iteratively solves a linear optimization
problem for each variable such that the minimum and maximum of
the objective function correspond to lower and upper bounds on the
variable’s posterior marginals. The lower and upper bounds are ini-
tialized to 0 and 1 respectively. When algorithm solves minimiza-
tion/maximization LP problem, the lower and upper bounds are up-
dated. The bounds are updated repeatedly until they converge. The
performance of the scheme was demonstrated in [11] on the example
of Alarm network, Ising grid, and regular bi-partite graphs.

The performance of bound propagation is tied to the network
structure, namely, the Markov blanket of each variable. Its computa-
tion time increases exponentially with Markov blanket size. Hence,
it is well suited for problems with regular network structure, having
large induced width but bounded Markov blanket size (e.g., grids).

In our work here, we improve the performance ofBdP by exploit-
ing the global network properties, namely, restricting the Markov
blanket of a node to its relevant subnetwork, resulting in substantial
gains in accuracy and speed. Further, since bound propagation yields
linear optimization subproblems that fall into a category of frac-
tional packing and covering problems, known to be hard for simplex

1 Donald Bren School of Information and Computer Science, University Of
California Irvine, CA 92697-3425, USA, email: bbidyuk@ics.uci.edu

2 email: dechter@ics.uci.edu

method, we propose a fast approximate algorithm for solving the LP
problems without using simplex method. Although many schemes
have been developed for approximately solving linear programming
problems [5], they usually solve packing-only or covering-only prob-
lems and do not include the additional constraints present in bound
propagation. Hence, we propose our own solution obtained by relax-
ing the original problem until it can be solved exactly using a greedy
algorithm. We investigate empirically the trade-offs in bounds inter-
val length and time.

2 Background

2.1 Belief Networks

We use upper case letters without subscripts, such asX, to denote
sets of variables and an upper case letter with a subscript, such as
Xi, to denote a single variable. We use a lower case letter with a sub-
script, such asxi, to denote an instantiated variable.D(Xi) denotes
the domain of the variableXi. We will usex to denote an instanti-
ation of a set of variablesx = {x1, ..., xi, ...} andx−i = x\xi to
denotex with elementxi removed.

Definition 1 (belief networks) Let X={X1, ..., Xn} be a set of
random variables over multi-valued domainsD(X1), ...,D(Xn). A
belief network(BN) is a pair(G, P) whereG is a directed acyclic
graph onX and P={P (Xi|pai)} is the set of conditional proba-
bility tables (CPTs) associated with eachXi. The parents of a vari-
able Xi together with its children and parents of its children form
a Markov blanketmai of nodeXi. A network issingly-connected
(also called apoly-tree), if its underlying undirected graph has no
cycles. The queries over singly-connected network can be processed
in time linear in the size of the network [13].

2.2 Bound Propagation

Bound propagation (BdP) [11] is an iterative algorithm that utilizes
the local network structure to formulate a linear optimization prob-
lem. For each variableXi ∈ X the minimum and maximum of
the objective function correspond to the upper and lower bounds on
posterior marginalsP (xi|e). LetY ={Y1, ..., Yk} denote the Markov
blanket of nodeXi. The idea is to compute posterior marginals using
decomposition:

P (xi|e) =
∑

y

P (xi|y, e)P (y|e) (1)

Given its Markov blanket, the probability distribution ofXi is in-
dependent from the rest of the variables in the network so that
P (xi|y, e)=P (xi|y). Hence, we can rewrite Eq. (1) as:

P (xi|e) =
∑

y

P (xi|y)P (y|e) (2)

Here,P (xi|y) is an entry in the probability table ofXi conditioned
on the instantiation of variables in its Markov blanket which can be
computed as follows [13]:

P (xi|pai,∪j(chj ∪ paj)) = αP (xi|pai)
∏

j

P (chj |paj)

whereα is a normalization constant. The probabilitiesP (y|e) are
unknown, but we know that the sum of all probabilities equals 1:

∑

y1,...,yk

P (y1, ..., yk|e) = 1 (3)

Further,∀Yj ∈ Y , ∀yj ∈ D(Yj),
∑

yj ,Yj=yj
P (y|e) = P (yj |e).

Denoting arbitrary lower and upper bounds onP (yj |e) by P L(yj |e)
andP U (yj |e) respectively, we can write:

P
L(yj |e) ≤

∑

y\yj ,Yj=yj

P (y1, ..., yk|e) ≤ P
U (yj |e) (4)

Hence, for each variableXi, we have a linear optimization problem
with the objective functionP (xi|e) defined in Eq. (2) and constraints
defined in Eq. (3) (sum-to-1 constraint) and Eq. (4). For eachy ∈
D(Y), theP (xi|y) is an objective function coefficient andP (y|e) is
a variable. The number of variables is exponential in the size of the
Markov blanket. The number of constraints equals1 +

∑
j
|D(Yj)|

since there are|D(Yj)| constraints for eachYj .

Example 1 Let mai={A, B} where D(A)={0, 1} and D(B)=
{0, 1, 2}. Let P (xi|A, B) be defined as follows:P (xi|0, 0)=0.1,
P (xi|0, 1)=0.2, P (xi|0, 2)=0.3, P (xi|1, 0)=0.4, P (xi|1, 1)=0.5,
and P (xi|1, 2)=0.6. Then, denotingPpq=P (xi|p, q), the objective
function of the LP problem forxi can be defined as follows:

f = 0.1P00 + 0.2P01 + 0.3P02 + 0.4P10 + 0.5P11 + 0.5P12

s.t.P00 + P01 + P02 + P10 + P11 + P12 = 1

P
L(a = 0|e) ≤ P00 + P01 + P02 ≤ P

U (a = 0|e)

P
L(a = 1|e) ≤ P10 + P11 + P12 ≤ P

U (a = 1|e)

P
L(b = 0|e) ≤ P00 + P10 ≤ P

U (b = 0|e)

P
L(b = 1|e) ≤ P01 + P11 ≤ P

U (b = 1|e)

P
L(b = 2|e) ≤ P02 + P12 ≤ P

U (b = 2|e)

Initializing all boundsP L(Xi|e) andP U (Xi|e) to 0 and 1, the al-
gorithm solves the linear minimization and maximization problems
for each valuexi ∈ D(Xi) of each variableXi ∈ X and updates
the bounds.With every iteration, the bounds get closer to the poste-
rior marginals or do not change. The process is iterated until con-
vergence.The variable processing order does not affect the results
although it may affect the number of iterations needed to converge.

Since the number of variables in the LP problems grows exponen-
tially with the size of the Markov blanket, algorithmBdP is feasible
only for networks having bounded Markov blanket size e.g. Ising grid
an regular two-layer networks explored in [11]. Applied to Alarm
network without evidence,BdP obtained small bounds interval for
several nodes but could not obtain good bounds for root nodes 11,12,
13, 14, although their relative subnetworks are singly-connected and,
hence, the posteriors equal the priors. The latter shows the weakness
of BdP in that it may not compute tight bounds even in a singly-
connected network.

3 Improving BdP Performance

In this section we describe how to improve the performance of
BdP by exploiting global network structure and how to obtain quick
bounds using a simple greedy algorithm instead of a simplex solver.

3.1 Exploiting Network Structure

The performance of bound propagation can be improved also by
identifying the irrelevant child nodes and restricting the Markov
blanket ofXi to its relevant subnetwork.

Definition 2 (Relevant Subnetwork) An irrelevant (barren)node of
a nodeXi is a child nodeYj that is not observed and does not have
observed descendants. Therelevant subnetworkof Xi is a subnet-
work obtained by removing all irrelevant nodes in the network.

Removing irrelevant nodes (and their parents) from Markov blan-
ket whenever possible yields a smaller effective Markov blanket and,
thus, a smaller LP problem with fewer variables. Also, if the relevant
subnetwork of nodeXi is singly-connected then its posteriors should
be computed exactly and fixed.

We denote asBdP+ the bound propagation algorithm that takes
advantage of the network structure as described above. Although pro-
posed improvements are straight forward, the gains in accuracy and
speed are significant in practice, as we show empirically.

3.2 Managing Resources

In order to limitBdP demands for memory and time, we can bound
the maximum length of the Markov conditional probability table by
a constantk and, thus, the maximum number of variables in a lin-
ear optimization problem. For variables, whose Markov blanket size
exceeds the maximum, their lower and upper bound values remain
equal to their input values (usually, 0 and 1). The resulting algorithm
BdP (k) is then parametrized byk.

Since the bounds of variableXi are used to define constraints of
the neighboring variables, fixing the bounds ofXi to their input val-
ues will result in a more relaxed LP formulation. Thus, the bounds
of neighboring nodes are likely to be less tight as well, affecting, in
turn, the bounds of their neighbors. Hence, the effect of fixing bounds
of Xi can propagate throughout the network resulting in the overall
larger average bounds interval. Ask increases, the computation time
will increase, but the bounds will become tighter.

3.3 Approximating the LP in Bound Propagation

In this section, we propose an algorithm for solving the linear opti-
mization problem approximately, instead of using a simplex solver.

In large Bayesian networks, we may need to solve linear optimiza-
tion problems thousands of times. Using the simplex method then
becomes impractical time-wise. In general, the linear optimize prob-
lems which are formulated in bound propagation fall into a class of
linear packing and covering problems which are known to be espe-
cially challenging for the simplex method [5]. The standard fractional
packing and covering problem can be defined as follows:

min c
T
x (5)

Ax ≥ l (6)

Bx ≤ m (7)

x ≥ 0 (8)

Without Eq. (7), it is afractional covering problem. Without Eq. (6),
it is a fractional packing problem. TheBdP (andBdP+) linear
optimization problems have both packing and covering components
with the special properties thatA=B andA is a zero-one matrix. Still,
the problem remains hard. Existing approximate algorithms solve ei-
ther packing or covering problem, but not both [5]. The LP formula-
tion in BdP is complicated further by having an additional sum-to-1
constraint. Hence, we resort to solving a relaxed problem.

We considered two relaxations of the LP formulation inBdP .
First, we relaxed the problem to an instance of a fractional knap-
sack packing which can be solved exactly in a greedy fashion [16].
In this case, we maintain the sum-to-1 constraint, but drop the lower
bound constraints completely and replace the upper bounds on sums
of variables with the derived upper bounds on individual variables.
Namely, for each variableP (y|e) participating in|Y | constraints, we
set:

P (y|e) ≤ UBy = min
j

P
U (yj |e) (9)

We obtain an optimal solution to the fractional knapsack packing
by first ordering the variables by their coefficient (from maximum
to minimum for maximization and from minimum to maximum for
minimization) and then assigning each variables its maximum value
until the sum of all values equals 1. The complexity of the algorithm
is O(n log n), wheren is the number of variables, due to the com-
plexity of sorting.

The second relaxation is more constrained. We maintain the sum-
to-1 constraint and and the lower and upper bound constraint per-
taining to one variable in the Markov blanket ofXi. We drop the
remaining lower bounds and use remaining upper bounds to set up-
per bounds on individual variables. Consider the example presented
previously with a Markov blanket consisting of two nodesA andB.
Maintaining the constraints associated with variableA, the resulting
relaxed optimization problem can be expressed as:

f = 0.1P00 + 0.2P01 + 0.3P02 + 0.4P10 + 0.5P11 + 0.5P12

s.t.P00 + P01 + P02 + P10 + P11 + P12 = 1

P
L(a = 0|e) ≤ P00 + P01 + P02 ≤ P

U (a = 0|e)

P
L(a = 1|e) ≤ P10 + P11 + P12 ≤ P

U (a = 1|e)

0 ≤ P00, P10 ≤ P
U (b = 0|e)

0 ≤ P01, P11 ≤ P
U (b = 1|e)

0 ≤ P02, P12 ≤ P
U (b = 2|e)

The domains of the constraints w.r.t. just one Markov variables
Yj are disjoint. Hence, the problem can be treated as an instance of
the fractional packing with multiple knapsacks, each having a sepa-
rate set of packing materials and an individual capacity bound. If it
was not for the sum-to-1 constraint, we could solve each knapsack
packing problem independently. Nevertheless, we can show that the
problem can be solved optimally by a greedy algorithm.

We describe the idea of the algorithm on the example of maxi-
mization problem. Similar to fractional packing with 1 knapsack, we
first order nodes by their objective function coefficient value from the
largest to smallest. We initialize all node values to 0. Then, we make
two passes through the list. The first time, we satisfy all lower bound
requirements. Namely, we increment each node value until either its
upper bound is reached or the lower boundL(yj) of the equation in
which it participates is satisfied. During a second pass, we increment
each variable value until either the variables’ upper bound or the up-
per boundU(yj) of the equation in which it participates is reached or

the sum of all variables equals 1. Since we cannot predict which vari-
ableYj ∈ Y will yield the LP relaxation with the smallest maximum
of the objective function, we repeat computation for eachYj ∈ Y

and pick the smallest maximum of the objective function.
The solution to the minimization problem is the same except nodes

are ordered by their objective function coefficient value from small-
est to largest. We prove formally that the algorithm finds an optimal
solution in [4]. The total complexity isO(|Y |·n log n), n = |D(Y)|.
We call the bound propagation scheme with an approximate LP al-
gorithm asABdP+.

4 Experiments

We compare empirically the performance of the original bound prop-
agation algorithmBdP , modifiedBdP+ that restricts the Markov
blanket of a node to its relevant subnetwork, and a modified bound
propagation scheme using the approximate algorithm for solving lin-
ear programming subproblems, namely,ABdP+.

4.1 Methodology

We measure the quality of the bounds via the average length of the
interval between lower and upper bound:

I =

∑
i

∑
D(xi)

(P U (xi|e) − P L(xi|e))∑
i
|D(xi)|

(10)

We compute approximate posterior marginal as the midpoint be-
tween lower and upper bound in order to show whether the bounds
are well-centered around the posterior marginalP (x|e). Namely:

P̂ (x|e) =
P U (x|e) + P L(x|e)

2
(11)

and then measure average absolute error∆ with respect toP̂ (x|e):

∆ =

∑
i

∑
D(xi)

|P (xi|e) − P̂ (xi|e)|∑
i
|D(xi)|

(12)

We control the time and memory of bound propagation by restrict-
ing the maximum lengthk of a conditional probability table over the
Markov blanket of a variable. The maximum Markov CPT length
tested wask=219 (the size of the CPT with 19 bi-valued variables)
when the computation demands exceeded available memory.

We report all results forBdP , BdP+, and ABdP+ schemes
”upon convergence” or after 20 iterations, whichever occurs first, so
that the computation time is a function ofk and number of iterations
needed to converge. We implemented bounds propagation algorithm
using simplex solver from COIN-OR libraries [1]. The experiments
were conducted on 1.8Ghz CPU with 512 MB RAM.

Our benchmarks are 8 networks from Bayesian Network
Repository (http://www.cs.huji.ac.il/labs/compbio/ Repository/) and
3 networks for pedigree analysis, gen44, gen50, and gen51
(from http://bioinfo.cs.technion.ac.il/superlink/ExpF.html). Bench-
marks’ properties are specified in Table 4.1. In gen44, gen50, and
gen51 evidence is pre-defined. In all other benchmarks, the results
are averaged over 20 instances of each network instantiated with dif-
ferent evidence. In most networks the evidence variables are selected
at random among leaf nodes. In cpcs422b, the evidence is selected at
random among all variables.

Table 1. Benchmarks’ characteristics:N -number of nodes,w∗-induced
width, TBE -exact computation time via bucket elimination.

network N w
∗

TBE

Alarm 37 4 0.01 sec
cpcs54 54 15 1 sec
cpcs179 179 8 2 sec
cpcs360b 360 21 20 min
cpcs422b 422 22 50 min
gen44 873 N/A 47 min
gen50 547 N/A >6 hrs
gen51 1218 N/A > 7 hrs

4.2 Results

4.2.1 BdP vs.BdP+

In Tables 2 and 3 we report the average error, average bounds in-
terval, and computation times forBdP andBdP+ as a function of
k=2m for 14≤m≤19. Each row corresponds to a set of experiments
with a single benchmark with a fixedk. Note that, ask increases, the
computation time of bothBdP andBdP+ increases fast, while the
bounds interval decreases only a little.

Table 2. Average error∆, length of the bounds intervalI, and
computation time forBdP (k) andBdP+(k) in networks without evidence.

BdP(k) BdP+(k)
k I ∆ time I ∆ time

Alarm 16384 0.6369 0.1677 14 0.0753 0.0076 0.1
cpcs54 16384 0.4247 0.0229 24 0.0907 0.0049 0.1

32768 0.4173 0.0224 72 0.0907 0.0049 0.1
262145 0.4154 0.0221 265 0.0907 0.0049 0.1

cpcs179 16384 0.5759 0.2213 30 0.0006 0.00002 0.3
32768 0.5759 0.2213 30 0.0006 0.00002 0.3

cpcs360b 16384 0.1505 0.0649 64 0.0006 0.0002 1.2
32768 0.1485 0.0641 80 0.0006 0.0002 1.2

cpcs422b 16384 0.2339 0.0756 79 0.0082 0.0008 8
32768 0.2329 0.0751 88 0.0082 0.0008 8

Table 3. Average error∆, length of the bounds intervalI, and
computation time forBdP (k) andBdP+(k) in networks with evidence.

BdP(k) BdP+(k)
k I ∆ time I ∆ time

Alarm 16384 0.8276 0.2661 13 0.6376 0.2084 5.3
|E|=3-6 65536 0.8276 0.2661 13 0.6376 0.2084 5.3
cpcs54 16384 0.6021 0.0448 46 0.2638 0.0138 6.6
|E|=2-6 32768 0.5986 0.0445 64 0.2637 0.0138 7.4

65536 0.5957 0.0440 98 0.2637 0.0138 10
131072 0.5954 0.0439 116 0.2635 0.0137 16

cpcs179 16384 0.6034 0.2227 30 0.1525 0.0456 20
|E|=12-24 32768 0.6034 0.2227 30 0.1502 0.0450 24

65536 0.5983 0.2214 90 0.1237 0.0365 130
cpcs360b 16384 0.3375 0.1423 68 0.0637 0.0247 15
|E|=11-23 32768 0.3370 0.1419 85 0.0554 0.0215 24

65536 0.1430 0.3367 120 0.0500 0.0192 36
131072 0.1430 0.3366 128 0.0429 0.0160 80
262144 0.1428 0.3364 190 0.0377 0.0137 130

cpcs422b 16384 0.3373 0.1200 34 0.2140 0.0665 24
|E|=6-11 32768 0.3287 0.1081 80 0.2034 0.0617 74

65536 0.3171 0.1023 317 0.1815 0.0522 256

BdP+ always computes tighter bounds and requires less compu-
tation time thanBdP . The performance gap is wider in the networks
without evidence (Table 2), where the Markov blanket of each node,

restricted to its relevant subnetwork, contains node’s parents only and
BdP+ converges after one iteration when processing nodes in topo-
logical order. For the largest benchmark, cpcs422b, with 422 nodes
andw∗=21, the average bounds interval length is 0.23 forBdP and
0.008 forBdP+. At the same time,BdP computations take 190 sec
while BdP+ only takes 16 sec.

In benchmarks with evidence, reported in Table 3,BdP+ com-
putation time increases but its bounds remain superior toBdP .
Consider the results for cpcs360b network with 360 nodes and|E|
ranging from 11 to 23. Fork=16384, BdP+ computes the aver-
age bounds interval of length 0.06 within 15 seconds.BdP average
bounds interval equals 0.34 and requires 68 seconds. We observed
similar results for other benchmarks.

4.2.2 Approximating LP

cpcs54, |E|=2-8

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.01 0.1 1 10 100

Time (sec)

A
vg

. B
o

u
n

d
s

In
te

rv
al

BdP+

ABdP+-FP1

ABdP+-FPM� � � �� � � � � � � � � � � �
cpcs360b, |E|=11-23

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0.1 1 10 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

BdP+

ABdP+FP1

ABdP+FPM� ��	� ��
� ��	 � ���
Figure 1. Bounds interval forBdP+ andABdP+ optimizing LP by
fractional packing with 1 (ABdP+FP1) and many (ABdP+FPM)

knapsacks. Each data point corresponds to a value of input parameterm that
bounds the maximum Markov table lengthk=2m.

We compare the performance ofBdP+ andABdP+ with two
different approximation schemes,FP1 and FPM . FP1 solves
the fractional packing with 1 knapsack;FPM solves the fractional
packing and covering problem with multiple knapsacks.

The results shown in Figure 1 for cpcs54 and cpcs360b are typical.
The average bounds interval is shown as a function of time which,
in turn, depends on the input parameterk=2m. Hence, each point
on the graph corresponds to a particular value ofm. First, we ob-
serve thatABdP+ with FPM (denotedABdP+FPM) substan-
tially outperformsABdP+ with FP1 (denotedABdP+FP1) in

both benchmarks.FPM incurs negligible amount of computation
overhead but computes considerably tighter bounds.BdP+ outper-
forms bothABdP+ with enough time, butABdP+ is more effi-
cient at the start. For the samek, BdP+ requires an order of magni-
tude more time thanABdP+. In cpcs54, fork=210, ABdP+FPM

computes bounds in<0.01 seconds whileBdP+ requires a few
seconds. We observe similar result in case of cpcs360b. Roughly,
BdP+ requires as much time to compute bounds fork=210 as
ABdP+FPM for k=217-219. As a result,BdP+ begins to outper-
form ABdP+FPM only after≈2 seconds in cpcs54 and only after
10 seconds in cpcs360b. The overall improvement inBdP+ bounds
overABdP+FPM in cpcs54 is minor; the difference between their
average bounds intervals is only about 0.04 which is≈1% of the
interval length. In cpcs360b, theBdP+ bounds interval after 100
seconds is a factor of 2 smaller, but the computation time is an order
of magnitude greater.

Table 4. The # of probabilities in each pedigree network (gen44, gen50,
gen51) with bounds intervalI in different ranges, BdP+ vs. ABdP+FPM.

gen44 gen50 gen51
BdP+ ABdP+ BdP+ ABdP+ BdP+ ABdP+

time 54 0.8 66 8.4 140 0.7
0.5≤ I <1 1312 1324 1114 1114 1428 1432
0.4≤ I <0.5 14 6 6 6 36 36
0.3≤ I <0.4 6 2 8 10 2 0
0.2≤ I <0.3 2 2 6 4 4 2
0.1≤ I <0.2 10 10 6 6 6 6

0.01≤ I <0.1 0 0 10 10 12 12
0.001≤ I <0.01 0 0 2 2 5 5

0≤ I <0.001 14 14 18 18 174 174

In pedigree networks, both schemes performed poorly computing
I<0.5 only for 5-15% of posteriors using maximumk=219. Yet, im-
portantly,ABdP+ obtained similar results toBdP+ in a fraction
of time. Table 4 specifies the number of posterior marginals with
bounds in different ranges obtained by both algorithms. In gen44,
bothBdP+ andABdP+FPM computedI ∈[0,0.001] for 14 val-
ues andI ∈[0.1,0.2] for another 10 values. However,BdP+ re-
quires 54 sec whereasABdP+FPM takes 0.8 sec. In gen50, the re-
sults only differ in that 2 values withBdP+ bounds interval in range
[0.2,0.3] haveABdP+FPM bounds interval in range [0.3,0.4], but
BdP+ takes 66 sec whileABdP+FPM computes bounds in 8.4
sec. Similarly, in gen51, algorithmABdP+FPM computes only 4
values less with the bounds interval in range [0.2,0.4], but completes
computation in 0.7 sec whileBdP+ requires 140 sec.

5 Conclusions and Future Work

In this paper, we proposed two improvements to the bound propa-
gation algorithm [11]. First improvement exploits the directionality
of Bayesian networks, restricting the Markov blanket of a variable
to its relevant subnetwork. Although the idea is straight forward, it
results in substantial improvement in the accuracy of bounds while
the computation time is reduced which we demonstrated empirically.

Second improvement defines an approximation algorithm for the
linear optimization problems in bound propagation scheme. Namely,
we proposed a relaxation of the LP problem and a greedy algorithm
that can solve it exactly. Although the bounds obtained by approxi-
mate LP solver are less accurate, we reduce computation time by an
order of magnitude or more. Hence, bound propagation with approx-
imate LP solver is more practical for real-time on-line applications

where speed is of critical importance while a small loss in accuracy
may be acceptable. An efficient practical strategy may be also to se-
lect a threshold valuek∗ and use the simplex method to solve small
LP problems (Markov blanket size<k∗) and use an approximate
method to solve large LP problems.

We used the proposed bound propagation algorithm with approxi-
mate LP solver as a plug-in in the any-time framework for computing
bounds on posterior marginals [3], where usingBdP+ with simplex
solver was not feasible time-wise. The loss of bounds accuracy was
not significant since the framework focuses on enumerating high-
probability cutset-tuples and only usesABdP+FPM to bound the
remaining probability mass ofP (e). We showed in [3] that any-time
framework withABdP+FPM outperformedBdP+ after explor-
ing a few hundred to a few thousand cutset tuples.

Performance of bound propagation depends on the efficiency of
the linear optimization algorithm. We have looked at only two ap-
proximation schemes. Other approximation algorithms, offering dif-
ferent time/accuracy trade-offs, need to be investigated.

6 Acknowledgments

This work has been partially supported by the NSF grant IIS-
0412854.

REFERENCES
[1] COmputational INfrastructure for Operations Research,

http://www.coin-or.org.
[2] A. M. Abdelbar and S. M. Hedetniemi, ‘Approximating maps forbelief

networks is NP-hard and other theorems’,Artificial Intelligence, 102,
21–38, (1998).

[3] B. Bidyuk and R. Dechter, ‘An anytime scheme for bounding posterior
beliefs’, in In Proc. of 21st National Conf. on AI (AAAI), (2006).

[4] B. Bidyuk and R. Dechter, ‘Improving bound propagation’,Technical
report, UCI, http://www.ics.uci.edu/˜bbidyuk/bp.html, (2006).

[5] D. Bienstock,Potential function methods for approximately solving lin-
ear programming problems: theory and practice, Kluwer Academic
Publishers, 2002.

[6] P. Dagum and M. Luby, ‘Approximating probabilistic inference in
Bayesian belief networks is NP-hard’,Artificial Intelligence, 60(1),
141–153, (1993).

[7] E.J. Horvitz, H.J. Suermondt, and G.F. Cooper, ‘Bounded conditioning:
Flexible inference for decisions under scarce resources’,in Workshop
on Uncertainty in Artificial Intelligence, pp. 181–193, (1989).

[8] M. Kearns and L. Saul, ‘Large deviation methods for approximate prob-
abilistic inference, with rates of convergence’, inProc. of Uncertainty
in AI, pp. 311–319. Morgan Kaufmann, (1998).

[9] M. Kearns and L. Saul, ‘Inference in multilayer networks via large de-
viation bounds’,Advances in Neural Information Processing Systems,
11, 260–266, (1999).

[10] D. Larkin, ‘Approximate decomposition: A method for bounding and
estimating probabilistic and deterministic queries’, inProc. of UAI, pp.
346–353, (2003).

[11] M. A. R. Leisink and H. J. Kappen, ‘Bound propagation’,Journal of
Artificial Intelligence Research, 19, 139–154, (2003).

[12] M. V. Mannino and V. S. Mookerjee, ‘Probability bounds for goal di-
rected queries in Bayesian networks’,IEEE Transactions on Knowl-
edge and Data Engineering, 14(5), 1196–1200, (September/October
2002).

[13] J. Pearl,Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann, 1988.

[14] D. Poole, ‘Probabilistic conflicts in a search algorithm for estimating
posterior probabilities in Bayesian networks’,Artificial Intelligence,
88(1–2), 69–100, (1996).

[15] David Poole, ‘Context-specific approximation in probabilistic infer-
ence’, inProc. of Uncertainty in AI, pp. 447–454, (1998).

[16] R. L. Rivest T. H. Cormen, C. E. Leiserson,Introduction to Algorithms,
MIT Press, 1990.

