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Abstract. This paper extends previously proposed bound propaimethod, we propose a fast approximate algorithm for solving the LP
gation algorithm [11] for computing lower and upper bounds onproblems without using simplex method. Although many schemes
posterior marginals in Bayesian networks. We improve the boundave been developed for approximately solving linear programming
propagation scheme by taking advantage of the directionality irproblems [5], they usually solve packing-only or covering-only prob-
Bayesian networks and applying the notion of relevant subnetworklems and do not include the additional constraints present in bound
We also propose an approximation scheme for the linear optimizapropagation. Hence, we propose our own solution obtained by relax-
tion subproblems. We demonstrate empirically that while the resulting the original problem until it can be solved exactly using a greedy
ing bounds loose some precision, we achieve 10-100 times speedafgorithm. We investigate empirically the trade-offs in bounds inter-
compared to original bound propagation using a simplex solver.  val length and time.

1 Introduction 2 Background

Using Bayesian networks to model the problems arising in prac-2'l Belief Networks

tical applications requires answering queries regarding the probaale use upper case letters without subscripts, suck a® denote

bility of an outcome given observations, namely, computing postesets of variables and an upper case letter with a subscript, such as
rior marginals. Computing exact posteriors is NP-hard. ComputingX;, to denote a single variable. We use a lower case letter with a sub-
bounds on posterior marginals is a special case of approximatingcript, such as:;, to denote an instantiated variabe(X;) denotes
posterior marginals with the desired degree of precision which is alsthe domain of the variablé&’;. We will usez to denote an instanti-
NP-hard [6, 2]. Previously proposed methods include bounded coration of a set of variables = {z1,...,z,...} andz_; = T\z; to
ditioning [7], search with conflict-counting [14], "context-specific’ denotez with elementz; removed.

bounds [15],large deviation boundg$or layered networks [8, 9],
bounds for goal directed queries [12], and a scheme bounding exa

computation in bucket elimination [10]. None of the methods domi- " ) . ) ) )
nates the rest as they offer different accuracy and speed trégde-of belief network(BN) is a pair (G, P_) whereG is a dlre_gted acyclic
graph onX and P={P(X;|pa;)} is the set of conditional proba-

We focus on a recently proposedund propagation (BdP) al- i~ ’ . .
gorithm [11], applicable to both Bayesian networks and Markov ran-Dility tables (CPTs) associated with eadfy. The parents of a vari-

dom fields. The algorithm iteratively solves a linear optimization 201€ Xi together with its children and parents of its children form
problem for each variable such that the minimum and maximum oft Markov blanketmna; of node.;. A network issingly-connected
the objective function correspond to lower and upper bounds on thi!SC called apoly-tree), if its underlying undirected graph has no
variable’s posterior marginals. The lower and upper bounds are inicycles. The queries over singly-connected network can be pracesse
tialized to 0 and 1 respectively. When algorithm solves minimiza-In time linear in the size of the network [13].

tion/maximization LP problem, the lower and upper bounds are up-

dated. The bounds are updated repeatedly until they converge. TRb2 Bound Propagation

performance of the scheme was demonstrated in [11] on the examp@ound propagation (BdP) [11] is an iterative algorithm that utilizes

of ¢Larm n;:‘twork, IS'”% gb”d' adnd regular pl-pgrtlt_e(gj)raph;. the local network structure to formulate a linear optimization prob-
e performance of bound propagation Is tied to the networe, - ror each variabl;, € X the minimum and maximum of

s_truc@ure,_namely, the Markoy blank_et of each variable. I_ts computat-he objective function correspond to the upper and lower bounds on
tion time increases exponentially with Markov blanket size. Hence,posterior marginal®(z;|e). LetY={v; Y} denote the Markov

it is well suited for problems with regular network structure, having blanket of nodeX;. The idea is to compute posterior marginals using
large induced width but bounded Markov blanket size (e.g., grids). decomposition:

In our work here, we improve the performance®i P by exploit-
ing the global network properties, namely, restricting the Markov P(xile) = ZP(M@, e)P(yle) 1)
blanket of a node to its relevant subnetwork, resulting in substantial 7
gains in accuracy and speed. Further, since bound propagation yields, . \1arcoy blanket, the probability distribution of; is in-

linear optimization subproblems that fall into a category of frac- . )
tional packing and covering problems, known to be hard for simplexdeperldeni fromjhe rest of the varlab_les in the nfetwork so that
P(x;|y,e)=P(z:|y). Hence, we can rewrite Eq. (1) as:

Pefinition 1 (belief networks) Let X={Xi,.., X} be a set of
random variables over multi-valued domaibg X1 ), ..., D(X,). A
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Here, P(z;[7) is an entry in the probability table of; conditoned 3 Improving BdP Performance
on the instantiation of variables in its Markov blanket which can be

computed as follows [13]: In this section we describe how to improve the performance of

BdP by exploiting global network structure and how to obtain quick
P(xilpai, Uj(ch; Upa;)) = aP(z:|pas) H P(ch;lpa;) bounds using a simple greedy algorithm instead of a simplex solver.

J

. L o 3.1 Exploiting Network Structure
wherea is a normalization constant. The probabiliti®gy|e) are

unknown, but we know that the sum of all probabilities equals 1: ~ The performance of bound propagation can be improved also by
identifying the irrelevant child nodes and restricting the Markov
Z P(yi,...,ykle) =1 3) blanket ofX; to its relevant subnetwork.
e Definition 2 (Relevant Subnetwork) Anirrelevant (barrenjode of
Further,VY; € Y, Vy; € D(Y;), Zg. Yoy P(gle) = P(y;le). a nodeX; is a child nodeY; that is not observed and does not have
I observed descendants. Traevant subnetworbkf X; is a subnet-

Denoting arbitrary lower and upper bounds (y;|e) by P* (y;e) work obtained by removing all irrelevant nodes in the network.

andPY (y;|e) respectively, we can write:

L U Removing irrelevant nodes (and their parents) from Markov blan-
P=(yjle) < Z Plys,oyele) < P (yile) (4 etwhenever possible yields a smaller effective Markov blanket and,

Y\Y;, Y5 =; thus, a smaller LP problem with fewer variables. Also, if the relevant
subnetwork of nod&; is singly-connected then its posteriors should
be computed exactly and fixed.

We denote a®3d P+ the bound propagation algorithm that takes
advantage of the network structure as described above. Although pro-
gosed improvements are straight forward, the gains in accuracy and
speed are significant in practice, as we show empirically.

Hence, for each variabl&;, we have a linear optimization problem
with the objective functiorP(z;|e) defined in Eq. (2) and constraints
defined in Eq. (3) (sum-to-1 constraint) and Eq. (4). For each
D(Y), the P(x;|y) is an objective function coefficient adel7|e) is
a variable. The number of variables is exponential in the size of th
Markov blanket. The number of constraints equials Zy. |D(Y;)|
since there argD(Y;)| constraints for each;. '

3.2 Managing Resources

Example 1 Let ma;={A, B} where D(A)={0,1} and D(B)= imi ‘ .
{0,1,2). Let P(x:|A, B) be defined as followsP(x;|0,0)=0.1, In order to limit BdP demands for memory and time, we can bound

P(2]0,1)=0.2, P(z:]0,2)=0.3, P(xi|1,0)=0.4, P(x;|1,1)=0.5, the maximum length of the Mar_kov conditional probgbility t_able py

and P(z;]1,2)=0.6. Then, denoting®,,=P(z:|p, q), the objective & constant and, thus, the maximum number of variables in a lin-

function of the LP problem far; can be defined as follows: ear optimization problem. For variables, whose Markov blanket size
exceeds the maximum, their lower and upper bound values remain

f =0.1Py + 0.2P1 + 0.3FPy2 + 0.4P10 + 0.5P11 + 0.5P12 equal to their input values (usually, 0 and 1). The resulting algorithm
BdP(k) is then parametrized by.
st. Py + Po1+ Poo+ Pio+Pi1+Piao=1 Since the bounds of variabl€; are used to define constraints of
. v the neighboring variables, fixing the boundsXf to their input val-
PY(a=0le) < Poo+ Por+ P2 <P (a=0le) ues will result in a more relaxed LP formulation. Thus, the bounds
PL(a =1le) < Pio+Pii+Pi2< PU(a =1le) of neighboring nodes are likely to be less tight as well, affecting, in
PE(b=0le) < Poo+ P < PY(b=0le) turn, the bounds of their neighbors. Hence, the effec_t of fixing bsund
I - T of X; can propagate throughout the network resulting in the overall
Pi(b=1le) < Pu+Pu<P (b=lle) larger average bounds interval. Asncreases, the computation time
P*(b=2le) < Pu+Pi2<PY(b=2) will increase, but the bounds will become tighter.

Initializing all boundsP* (X;|e) andPY (X;|e) to 0 and 1, the al- . . .
gorithm solves the linear minimization and maximization problems3-3 Approximating the LP in Bound Propagation
for each valuer; € D(X;) of each variableX; € X and updates |, this section, we propose an algorithm for solving the linear opti-
the bounds.With every iteration, the bounds get closer to the posténization problem approximately, instead of using a simplex solver.
rior marginals or do not change. The process is iterated until con- |, large Bayesian networks, we may need to solve linear optimiza-
vergence.The variable processing order does not affect thésresujgp, problems thousands of times. Using the simplex method then
although it may affect the number of iterations needed to converge.pecomes impractical time-wise. In general, the linear optimize prob-
Since the number of variables in the LP problems grows exponensms which are formulated in bound propagation fall into a class of
tially with the size of the Markov blanket, algorithid P is feasible  |inear packing and covering problems which are known to be espe-
only for networks having bounded Markov blanket size e.g. Ising gridgially challenging for the simplex method [5]. The standard fractional

an regular two-layer networks explored in [11]. Applied to Alarm packing and covering problem can be defined as follows:
network without evidence3d P obtained small bounds interval for

several nodes but could not obtain good bounds for root nodd11, minc’ T (5)
13, 14, although their relative subnetworks are singly-connected and, AT > 1 (6)
hence, the posteriors equal the priors. The latter shows the weakness T

of BdP in that it may not compute tight bounds even in a singly- Bz = m @
connected network. r > 0 (8)



Without Eq. (7), itis dractional covering problem. Without Eq. (6), the sum of all variables equals 1. Since we cannot predict which vari-
it is a fractional packing problem. TheBdP (and BdP+) linear  ableY; € Y will yield the LP relaxation with the smallest maximum
optimization problems have both packing and covering componentsf the objective function, we repeat computation for edghe Y
with the special properties thdt=B and A is a zero-one matrix. Still, and pick the smallest maximum of the objective function.
the problem remains hard. Existing approximate algorithms solve ei- The solution to the minimization problem is the same except nodes
ther packing or covering problem, but not both [5]. The LP formula- are ordered by their objective function coefficient value from small-
tion in BdP is complicated further by having an additional sum-to-1 est to largest. We prove formally that the algorithm finds an optimal
constraint. Hence, we resort to solving a relaxed problem. solution in [4]. The total complexity i©(|Y|-nlogn),n = |D(Y)|.

We considered two relaxations of the LP formulationBaP. We call the bound propagation scheme with an approximate LP al-
First, we relaxed the problem to an instance of a fractional knapgorithm asABdP+-.
sack packing which can be solved exactly in a greedy fashion [16].
In this case, we maintain the sum-to-1 constraint, but drop the lower .
bound constraints completely and replace the upper bounds on suls  EXperiments
of variables with the derived upper bounds on individual variables.

Namely, for each variabl®(7e) participating inY | constraints, we W& compare empirically the performance of the original bound prop-
set: agation algorithmBd P, modified Bd P+ that restricts the Markov

P(gle) < UBy = min PU(yj|€) © blanket qf a node to its_relevant subn_etwork, anc_i a modified_bognd
J propagation scheme using the approximate algorithm for solving lin-

We obtain an optimal solution to the fractional knapsack packingéar Programming subproblems, namely3dP+-.
by first ordering the variables by their coefficient (from maximum
to minimum for maximization and from minimum to maximum for
minimization) and then assigning each variables its maximum valuél'l Methodology
until the sum of all values equals 1. The complexity of the algorithm
is O(nlogn), wheren is the number of variables, due to the com-
plexity of sorting.

We measure the quality of the bounds via the average length of the
interval between lower and upper bound:

The secor]d relaxation is more constrained. We maintain the sum- Y ZD( (PY(xs]e) — PE(xile))
to-1 constraint and and the lower and upper bound constraint per- T== i) (10)
taining to one variable in the Markov blanket &f;. We drop the > 1D (i)

remaining lower bounds and use remaining upper bounds to set u;\)g " imat teri inal th idooint b
per bounds on individual variables. Consider the example presente € computé approximaté postérior marginal as theé midpoint be-

previously with a Markov blanket consisting of two nodésnd . tween lower and upper bound in order to show whether the bounds

Maintaining the constraints associated with variat|ehe resulting are well-centered around the posterior margifigh|e). Namely:

relaxed optimization problem can be expressed as: R PY(zle) + P~ (z]e)

P(ele) = (11)
f=0.1Py +0.2Po1 + 0.3Po2 + 0.4P10 + 0.5P11 + 0.5P12 2
S.t.Poo + Po1 + Po2 + Pio+ Pii+ Pz =1 and then measure average absolute elrenith respect taP(z|e):
Pl(a=0e) Poo + Po1 + Pos < PY(a = 0e) A > i 2 pay [P@ile) — P(xile)| a2
P (a = 1le) 1le) > 1D(wi)

P007P10 S PU(b = 0|€
Po1, Pii < PY(b=1le
Po2, Pia < PY(b=2e

We control the time and memory of bound propagation by restrict-
ing the maximum lengtk of a conditional probability table over the
Markov blanket of a variable. The maximum Markov CPT length
tested was:=2'° (the size of the CPT with 19 bi-valued variables)

The domains of the constraints w.r.t. just one Markov variableswhen the computation demands exceeded available memory.

Y; are disjoint. Hence, the problem can be treated as an instance of We report all results foBdP, BdP+, and ABdP+ schemes

the fractional packing with multiple knapsacks, each having a sepa®upon convergence” or after 20 iterations, whichever occurs fiost, s
rate set of packing materials and an individual capacity bound. If ithat the computation time is a function bfind number of iterations
was not for the sum-to-1 constraint, we could solve each knapsachkeeded to converge. We implemented bounds propagation algorithm
packing problem independently. Nevertheless, we can show that thesing simplex solver from COIN-OR libraries [1]. The experiments
problem can be solved optimally by a greedy algorithm. were conducted on 1.8Ghz CPU with 512 MB RAM.

We describe the idea of the algorithm on the example of maxi- Our benchmarks are 8 networks from Bayesian Network
mization problem. Similar to fractional packing with 1 knapsack, we Repository (http://www.cs.huji.ac.il/labs/compbio/ Repository/) and
first order nodes by their objective function coefficient value from the3 networks for pedigree analysis, gen44, gen50, and gen51
largest to smallest. We initialize all node values to 0. Then, we makéfrom http://bioinfo.cs.technion.ac.il/superlink/ExpF.html). Bench-
two passes through the list. The first time, we satisfy all lower boundnarks’ properties are specified in Table 4.1. In gen44, gen50, and
requirements. Namely, we increment each node value until either itgen51 evidence is pre-defined. In all other benchmarks, the results
upper bound is reached or the lower bouid);) of the equation in  are averaged over 20 instances of each network instantiated with dif-
which it participates is satisfied. During a second pass, we incremeriérent evidence. In most networks the evidence variables are sklecte
each variable value until either the variables’ upper bound or the upat random among leaf nodes. In cpcs422b, the evidence is selected at
per boundJ (y, ) of the equation in which it participates is reached or random among all variables.

IANIA A CIN A
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Table 1. Benchmarks’ characteristicd/-number of nodesy*-induced
width, T's g-exact computation time via bucket elimination.

[network | N | w* | Tgg |
Alarm 37 4 | 0.01sec
cpcs54 54 15 1sec
cpcsl79 179 8 2 sec
cpcs360b|| 360 21 20 min
cpcsd22b|| 422 22 50 min
gend4 873 | N/A 47 min
gen50 547 | N/A >6 hrs
gen51 1218 | N/A | > T7hrs

4.2 Results

4.2.1 BdP vs.BdP+

restricted to its relevant subnetwork, contains node’s parents only and
BdP+ converges after one iteration when processing nodes in topo-
logical order. For the largest benchmark, cpcs422b, with 422 nodes
andw™=21, the average bounds interval length is 0.23fa#P and
0.008 forBdP+. At the same timeBd P computations take 190 sec
while BdP+ only takes 16 sec.

In benchmarks with evidence, reported in TableB3,P+ com-
putation time increases but its bounds remain superioB#P.
Consider the results for cpcs360b network with 360 nodes| &ihd
ranging from 11 to 23. Fok=16384, BdP+ computes the aver-
age bounds interval of length 0.06 within 15 secorfgldP average
bounds interval equals 0.34 and requires 68 seconds. We observed
similar results for other benchmarks.

4.2.2 Approximating LP

In Tables 2 and 3 we report the average error, average bounds in-
terval, and computation times f@dP and BdP+ as a function of

k=2™ for 14<m<19. Each row corresponds to a set of experiments cpcs5a, |E|=2-8 e BdP+
with a single benchmark with a fixéd Note that, a& increases, the 0.46 ' s ABAP+-FP1
computation time of bottBd P and Bd P+ increases fast, while the = 0.44 4 ABAP+-FPM
bounds interval decreases only a little. 2 042 ?“*ﬂ-—-—-n—‘
[ E
= o4 i—h !/
Table 2. Average errorA, length of the bounds intervd| and T 038
computation time folBd P(k) and Bd P+(k) in networks without evidence. 3 036 \\ I[ q_=10 m=18
. . =7
o 034 m=10 m=17
BdP(K) BdP+(K) 2"
k 7] Atime 7] ATtime < 032
Alarm 16384 | 0.6369| 0.1677| 14| 0.0753| 0.0076] 0.1 03 ‘ ‘ ‘
cpcs54 16384 | 0.4247| 0.0229| 24| 0.0907| 0.0049| 0.1 0.01 0.1 1 10 100
32768 | 0.4173| 0.0224| 72| 0.0907| 0.0049| 0.1 Time (sec)
262145| 0.4154| 0.0221| 265| 0.0907| 0.0049| 0.1
cpcsl79 || 16384 | 0.5759| 0.2213| 30 | 0.0006| 0.00002| 0.3
32768 | 0.5759| 0.2213| 30| 0.0006( 0.00002| 0.3
Cpcs360h| 16384 | 0.1505] 0.0649] 64 | 0.0006| 0.0002]| 1.2 cpcs360b, [E[=11-23 —=—BdP+
32768 | 0.1485| 0.0641| 80| 0.0006| 0.0002| 1.2 0.18 —— ABdP+FP1
cpcs422bl| 16384 | 0.2339| 0.0756| 79| 0.0082| 0.0008 8 = 0.16 A —— ABdP+FPM
32768 | 0.2329| 0.0751| 88| 0.0082| 0.0008 8 g 0.14
£ 012 | f 's(ﬂo
© 010
_ S 0.08 1 V i
Table 3. Average error), length of the bounds intervdl| and 2 0.06 \V \.\.\.
computation time folBd P(k) and Bd P+(k) in networks with evidence. 2 0.04 m=10 =19 H=17
< 0.02
BdP(k) BdP+(k) 0.00 ‘ ‘
k 1] A Ttime 1] A Ttime 01 1 10 100
Alarm 16384 | 0.8276] 0.2661] 13| 0.6376] 0.2084] 5.3 Time (sec)
|E|=3-6 65536 | 0.8276| 0.2661| 13| 0.6376| 0.2084| 5.3
cpcsh4 16384 | 0.6021| 0.0448| 46| 0.2638| 0.0138| 6.6
|B|=2-6 32768 | 0.5986) 0.0445 64/ 0.2637) 0.0138) 7.4 Figure 1. Bounds interval fol3d P+ and A BdP+- optimizing LP by
65536 | 0.5957| 0.0440| 98| 0.2637| 0.0138| 10 : . .
fractional packing with 1A BdP+F P1) and many A BdP+F P M)
131072| 0.5954| 0.0439| 116 0.2635| 0.0137| 16 K ks. Each dat int ds | i that
Ccpcsi79 || 16384 | 0.6034] 0.2227| 30 0.1525| 0.0456] 20 napsac S'b(;"‘ucn dsatr?epn(ile;]xi(rftzrne]sl\rll)gpkosv?a{tj)ll;aléjne OhZ'anrm &
|E|=12-24|| 32768 | 0.6034| 0.2227| 30| 0.1502| 0.0450| 24 gt ’
65536 | 0.5983| 0.2214| 90| 0.1237| 0.0365| 130
cpcs360b || 16384 | 0.3375| 0.1423| 68| 0.0637| 0.0247| 15
|E|=11-23|| 32768 | 0.3370| 0.1419| 85| 0.0554| 0.0215| 24 We compare the performance B8dP+ and ABdP+ with two
f35155762 8~ﬁ§8 8-2222 gg 8-8328 8-8%2(2) gg different approximation schemegP1 and FPM. FP1 solves
262144| 01428 03364| 190! 0.0377| 0.0137| 130 the fr_actlonal pack_lng with 1 kna_psacR‘,I_DM solves the fractional
cpcs422b || 16384 | 0.3373| 0.1200| 34 | 0.2140| 0.0665 24 packing and covering problem with multiple knapsacks. .
|E|=6-11 || 32768 | 0.3287| 0.1081| 80 | 0.2034| 0.0617| 74 The results shown in Figure 1 for cpcs54 and cpcs360b are typical.
65536 | 0.3171] 0.1023| 317 0.1815| 0.0522| 256 The average bounds interval is shown as a function of time which,

in turn, depends on the input parameker2™. Hence, each point

BdP+ always computes tighter bounds and requires less compuen the graph corresponds to a particular valuerofFirst, we ob-
tation time thanBd P. The performance gap is wider in the networks serve thatd BdP+ with FPM (denotedABdP+F P M) substan-
without evidence (Table 2), where the Markov blanket of each nodetially outperformsABdP+ with F'P1 (denotedABdP+F P1) in



both benchmarksE’PM incurs negligible amount of computation where speed is of critical importance while a small loss in accuracy
overhead but computes considerably tighter boud&”+ outper-  may be acceptable. An efficient practical strategy may be also to se-
forms bothABdP+ with enough time, buA BdP+ is more effi-  lect a threshold valug* and use the simplex method to solve small
cient at the start. For the sarhgBd P+ requires an order of magni- LP problems (Markov blanket sizek*) and use an approximate
tude more time tham BdP+. In cpcs54, fok=2'°, ABdP+FPM method to solve large LP problems.

computes bounds irt0.01 seconds whild3dP+ requires a few We used the proposed bound propagation algorithm with approxi-
seconds. We observe similar result in case of cpcs360b. Roughlynate LP solver as a plug-in in the any-time framework for computing
BdP+ requires as much time to compute bounds fe22'® as  bounds on posterior marginals [3], where usB@P+ with simplex
ABdP+FPM for k=2'7-2'2, As a result,BdP+ begins to outper-  solver was not feasible time-wise. The loss of bounds accuracy was
form ABdP+F PM only aftera2 seconds in cpcs54 and only after not significant since the framework focuses on enumerating high-
10 seconds in cpcs360b. The overall improveme®diP+ bounds  probability cutset-tuples and only usdsBd P+F P M to bound the
over ABdP+F PM in cpcs54 is minor; the difference between their remaining probability mass d?(e). We showed in [3] that any-time
average bounds intervals is only about 0.04 whicksE% of the  framework with ABdP+F PM outperformedBdP+ after explor-
interval length. In cpcs360b, thBd P+ bounds interval after 100 ing a few hundred to a few thousand cutset tuples.

seconds is a factor of 2 smaller, but the computation time is an order Performance of bound propagation depends on the efficiency of

of magnitude greater.

the linear optimization algorithm. We have looked at only two ap-

proximation schemes. Other approximation algorithms, offering dif-

Table 4. The # of probabilities in each pedigree network (gen44, gen5
gen51) with bounds intervdlin different ranges, BdP+ vs. ABAP+FPM.

_ In pedigree networks, both schemes performed poorly computing;
1<0.5 only for 5-15% of posteriors using maximum2'®. Yet, im-
portantly, ABd P+ obtained similar results t8d P+ in a fraction

of time. Table 4 specifies the number of posterior marginals with
bounds in different ranges obtained by both algorithms. In gen44,[6]
both BdP+ and ABdP+F PM computed! €[0,0.001] for 14 val-

ues andl €[0.1,0.2] for another 10 values. HowevdsdP+ re-

(5]

quires 54 sec whereasBd P+ F PM takes 0.8 sec. In gen50, the re-  [7]
sults only differ in that 2 values witlBd P+ bounds interval in range
[0.2,0.3] haved BdP+F P M bounds interval in range [0.3,0.4], but  [g]

BdP+ takes 66 sec whilel BdP+F PM computes bounds in 8.4
sec. Similarly, in gen51, algorithtA BdP+F PM computes only 4
values less with the bounds interval in range [0.2,0.4], but completeég]
computation in 0.7 sec whilBd P+ requires 140 sec.

[10]

5 Conclusions and Future Work

In this paper, we proposed two improvements to the bound prope{-lll
gation algorithm [11]. First improvement exploits the directionality ;5]
of Bayesian networks, restricting the Markov blanket of a variable
to its relevant subnetwork. Although the idea is straight forward, it
results in substantial improvement in the accuracy of bounds whil 13]
the computation time is reduced which we demonstrated empirically:
Second improvement defines an approximation algorithm for the14;
linear optimization problems in bound propagation scheme. Namely,
we proposed a relaxation of the LP problem and a greedy algorithm
that can solve it exactly. Although the bounds obtained by approxi
mate LP solver are less accurate, we reduce computation time by gy
order of magnitude or more. Hence, bound propagation with approx-
imate LP solver is more practical for real-time on-line applications

ferent time/accuracy trade-offs, need to be investigated.
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