
An anytime scheme for bounding posterior beliefs

Bozhena Bidyuk and Rina Dechter
Donald Bren School of Information and Computer Science

University Of California Irvine
bbidyuk@ics.uci.edu

dechter@ics.uci.edu

Abstract

This report presents an any-time scheme for computing lower and
upper bounds on posterior marginals in Bayesian networks. The
scheme draws from two previously proposed methods, bounded
conditioning [9] and bounds propagation algorithm [16]. Following
the principles of cutset conditioning [18], our method enumerates a
subset of cutset tuples and applies exact reasoning in the network
instances conditioned on those tuples. The probability mass of the
remaining tuples is bounded using a variant of bound propagation.
We show that our new scheme improves on the earlier schemes.

1 Introduction

Computing bounds on posterior marginals is a special case of approximating poste-
rior marginals with the desired degree of precision which is NP-hard. Our bound-
ing framework is based on two previously proposed bounds computation schemes,
bounded conditioning and bound propagation.

Bounded conditioning [9] is founded on the principles of the cutset-conditioning
method [18]. Given a Bayesian network and a subset of variables C={C1, ..., Ck}
(e.g., a loop-cutset), we can obtain exact posterior marginals by enumerating over
all cutset tuples ci ∈ D(C) over all cutset variables using the formula:

P (x|e) =

∑M

i=1 P (x, ci, e)
∑M

i=1 P (ci, e)
(1)

The computation of quantities P (x, ci, e) and P (ci, e) for any assignment c = ci

is linear in the network size if C is a loop-cutset and exponential in w if C is a
w-cutset. The limitation of the cutset-conditioning method is that the number of

cutset tuples, M , grows exponentially with the cutset size. Namely, M =
∏k

i=1 |Di|
where Di is the domain of node Ci ∈ C.

In [9], the authors observed that often a small number of tuples h << M contains

most of the probability mass of P (e) =
∑M

i=1 P (ci, e). Thus, they proposed the
bounded conditioning method which computes the probabilities P (x, ci, e) and
P (ci, e) exactly only for the h tuples, 1 ≤ i ≤ h, while bounding the rest by their
priors. The first h tuples were selected based on their prior probability P (ci).

Bounded conditioning was the first method to offer any-time properties and to
guarantee convergence to the exact marginals with time as h → M . Its effectiveness
was demonstrated in [9] on the example of an Alarm network with 37 nodes and
a loop-cutset of size 5 (M=108). The empirical results demonstrate convergence of
the algorithm with h but also indicate that the width of the bounds interval for a
fixed h decreases as more evidence is added.

Bound propagation scheme, proposed recently in [16], obtains bounds by itera-
tively solving a linear optimization problem for each variable such that the minimum
and maximum of the objective function correspond to lower and upper bounds on
the posterior marginals. The performance of the scheme was demonstrated in [16]
on the example of well-known Alarm network, Ising grid network, and regular bi-
partite graphs.

In our work here, we propose a framework, which we term Any Time Bounds (ATB),
that also builds upon the principles of conditioning. Like bounded conditioning, it
explores fully h cutset tuples, and bounds the rest of the probability mass spread
over the unexplored tuples. The scheme improves over bounded conditioning in
several ways. First, it bound smore accurately the mass of the unexplored tuples in
polynomial time. Second, it uses cutset sampling [5, 6] for finding high-probability
cutset tuples. The any-time framework allows to plugin any scheme for bounding
joint probabilities to bound the probability mass over unexplored tuples. Finally,
utilizing an improved variant of bound propagation algorithm as a plugin within
our any-time framework yields a scheme that achieves greater accuracy than either
bounded conditioning or bound propagation.

Section 3 provides background on the previously proposed methods of bounded con-
ditioning and bound propagation. Section 4 defines our ATB framework. We first
demonstrate how we can bound the probability mass over unexplored tuples in poly-
nomial time and then derive lower and upper bounds on the posterior marginals.
We tie the computation of bounds on posterior marginals to bounding a polyno-
mial number of probabilities P (x, c1:q, e) and P (c1:q, e) where c1:q = {c1, ..., cq} is
an instantiation of a subset of cutset variables. In Section 7, we explore special
cases where we can improve the lower and/or upper bound on posterior marginals
for select variables over ATB bounds. Section 5 discusses the implementation is-
sues concerning bounding of probabilities P (x, c1:q, e) and P (c1:q, e) with bound
propagation plug-in and searching for h high-probability cutset tuples. We perform
empirical evaluation in Section 8 and draw final conclusions in Section 9.

2 Background

Definition 2.1 (belief networks) Let X = {X1, ..., Xn} be a set of random vari-
ables over multi-valued domains D(X1), ..., D(Xn). A belief network (BN) is a pair
(G, P) where G is a directed acyclic graph on X and P = {P (Xi|pai)|i = 1, ..., n}
is the set of conditional probability matrices associated with each Xi. An evidence
e is an instantiated subset of variables E.

Definition 2.2 (Irrelevant Node and Relevant Subnetwork) An irrelevant
node of a node X is a child node Y that is not observed and does not have observed
descendants. The relevant subnetwork of X is a subnetwork obtained by removing
all irrelevant nodes in the network.

3 Background

3.1 Bounded Conditioning

Bounded conditioning is an any-time scheme for computing posterior bounds in
Bayesian networks [9] originating from the loop-cutset conditioning method (see
Eq.(1)). Given a loop-cutset C, evidence E, and some node X in a Bayesian network
B, the method computes exactly P (ci, e) and P (x, ci, e) for h cutset tuples and
bounds the rest using prior distribution. The h tuples are selected based on their
prior weight P (ci). It is implied in the paper that the tuples without evidence are
enumerated and sorted. In general, it can be accomplished without enumerating all
cutset tuples, with or without evidence, using greedy heuristic search.

Let M denote the total number of cutset tuples. In [9], the authors derive bounds
from the following formula:

P (x|e) =

M∑

i=1

P (x|ci, e)P (ci|e) =

h∑

i=1

P (x|ci, e)P (ci|e)+

M∑

i=h+1

P (x|ci, e)P (ci|e) (2)

Setting ∀i > h, P (x|ci, e) = 0 in the above expression yields a lower bound on
P (x|e):

P (x|e) ≥
h∑

i=1

P (x|ci, e)P (ci|e) (3)

The conditional probability P (ci|e) can be obtained by normalizing the joint prob-
abilities P (ci, e):

P (ci|e) =
P (ci, e)

∑h

j=1 P (cj , e) +
∑M

j=h+1 P (cj , e)
(4)

We can obtain a lower bound on P (ci|e) by replacing P (cj , e), j > h, in the denom-
inator of the fraction above with the upper bound value P (cj):

P (ci|e) ≥
P (ci, e)

∑h
j=1 P (cj , e) +

∑M
j=h+1 P (cj)

Replacing P (ci|e) in Eq.(3) with a lower bound yields a lower bound on P (x|e):

PL(x|e) =

h∑

i=1

P (x|ci, e)
P (ci, e)

∑h

j=1 P (cj , e) +
∑M

j=h+1 P (cj)
(5)

Multiplying P (x|ci, e) by the numerator, we have:

PL(x|e) =

∑h
i=1 P (x|ci, e)P (ci, e)

∑h

j=1 P (cj , e) +
∑M

j=h+1 P (cj)
(6)

Finally, since P (x|ci, e)P (ci, e) = P (x, ci, e) and since we no longer need to differen-
tiate between indexes i and j, we can transform the numerator in Eq.(6) to obtain
a more compact lower bound representation:

PL(x|e) =

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
(7)

The upper bound is obtained by setting P (x|ci, e) = 1 for i > h and replacing
P (ci|e) with an upper bound:

P (x|e) ≤

h∑

i=1

P (x|ci, e)PU (ci|e) +

M∑

i=h+1

PU (ci|e) (8)

For i ∈ [1, h], we obtain upper bound P U (ci|e) from Eq.(4) by dropping the∑M

i=h+1 P (ci, e) from denominator. Substituting the resulting upper bound in
Eq.(8) yields:

PU (x|e) ≤

h∑

i=1

P (x|ci, e)
P (ci, e)

∑h

j=1 P (cj , e) +
∑M

j=h+1 P (cj , e)
+

M∑

i=h+1

PU (ci|e) (9)

Factoring P (x|ci, e) into numerator and replacing P (x|ci, e)P (ci, e) with P (x, ci, e)
as we did in the derivation of lower bound, we transform Eq.(9) into:

P (x|e) ≤

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
j=h+1 P (ci, e)

+

M∑

i=h+1

PU (ci|e) (10)

The upper bound PU (ci|e) for i ∈ [h + 1, M] can be obtained through a series of
transformations which we detail in Appendix A yielding the final upper bound on
P (x|e):

PU (x|e) =

∑h
i=1 P (x, ci, e)

∑h

i=1 P (ci, e)
+

M∑

i=h+1

P (ci) +
[
∑M

i=h+1 P (ci)]2

∑h

i=1 P (ci, e)
(11)

It should be noted, that in upper bound derivation in [9], the authors separate the h
tuples into two groups. The first group contains tuples where bounded conditioning
computes exactly both P (ci, e) and P (x|ci, e). The second group contains tuples for
which bounded conditioning only computes exactly P (ci, e) and sets P (x|ci, e) = 1.
If k, k < h, denotes the number of tuples were algorithm computes P (x|ci, e) exactly
while setting PL(x|ci, e) = 0 and PU (x|ci, e) = 1 for the rest of h − k + 1 tuples,
the lower and upper bounds derived in Eq.(7) and Eq.(11) become:

PL′

(x|e) =

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
(12)

PU ′

(x|e) =

∑k

i=1 P (x, ci, e)
∑h

i=1 P (ci, e)
+

∑h

i=k+1 P (ci, e)
∑h

i=1 P (ci, e)
+

M∑

i=h+1

P (ci) +
[
∑M

i=h+1 P (ci)]2

∑h

i=1 P (ci, e)
(13)

Clearly, PL(x|e) ≥ PL′

and PU (x|e) ≤ PU ′

. In the future, we use PL(x|e) in Eq.(7)
PU (x|e) in Eq.(11) as the basis for comparison with ATB bounds.

The bounds expressed in Eq.(7) and Eq.(11) converge to the exact posterior mar-
ginals as h → M . The convergence rate depends on the form of the distribution
P (C|e). The scheme was validated in [9] on the example of Alarm network with 37
nodes. Its loop-cutset contains 5 nodes and number of cutset tuples equals M = 108.
Applied to an instance of the network without evidence, bounded conditioning algo-
rithm produced a small bounds interval, on the order of 0.01 or less, after generating
40 out of 108 cutset instances. However, when processing the same 40 cutset tuples
in each instance, the bounds interval length increased as evidence was added. With
3 and 4 nodes assigned, the bounds interval length rose to ≈ 0.15. Hence, while the

empirical results demonstrated the convergence of bounded conditioning, they also
showed the deterioration in the quality of the bounds as more nodes are observed.

We can add to the analysis of bounded condtioning that the upper bound in Eq.(11)
can become > 1. Dropping the first two summants from Eq.(11), we obtain:

PU (x|e) ≥
[
∑M

i=h+1 P (ci)]2

∑h

i=1 P (ci, e)

And since
∑h

i=1 P (ci, e) ≤
∑M

i=1 P (ci, e) = P (e), we get that:

PU (x|e) ≥
[
∑M

i=h+1 P (ci)]2

P (e)

This shows that PU (x|e), as defined in [9], can become arbitrarily large when P (e) is
small compared to P (ci). For example, if ∃i > h, P (ci) > 0.01 while P (e) = 1E−15,
then PU (x|e) ≥ 1E + 11.

Another limitation of bounded is that prior distribution often offers poor heuris-
tics for finding the tuples with high probability mass which has been observed in
importance sampling.

3.2 Bound Propagation

Bound propagation (BdP) [16] is an iterative algorithm that utilizes the local net-
work structure to formulate a linear optimization problem for each node Xi ∈ X
such that the minimum and maximum of the objective function correspond to the
upper and lower bounds on posterior marginals P (xi|e). Let Y denote Markov
blanket of node Xi markovi = Y = {Y1, ..., Yk}. The idea is to compute posterior
marginals via:

P (x|e) =
∑

y1,...,yk

P (xi|y1, ..., yk)P (y1, ..., yk|e) (14)

where P (x|y1, ..., yk) is an entry in the probability table of X conditioned on the
instantiation of variables in its Markov blanket y1, ..., yk. The joint probabilities
P (y1, ..., yk|e) over the Markov blanket are unknown, but we know that the sum of
all probabilities equals 1:

∑

y1,...,yk

P (y1, ..., yk|e) = 1 (15)

Further, ∀Yj ∈ Y , ∀yj ∈ D(Yj),
∑

y\Yj ,Yj=yj
P (y1, ..., yk|e) = P (yj |e). Denoting

arbitrary lower and upper bounds on P (yi|e) by PL(yi|e) and PU (yj |e) respectively,
we can write:

PL(yj |e) ≤
∑

y\yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU (yj |e) (16)

Hence, for each variable Xi, we have a linear optimization problem with the ob-
jective function P (xi|e), defined in Eq.(14), that is minimized and maximized with
respect to all P (y1, ..., yk|e). For each instance of Markov variables y = {y1, ..., yk},
the P (y1, ..., yk|e) is a variable and P (xi|y1, ..., yk) is the corresponding objective
function coefficient. The number of variables is exponential in the size of the Markov
blanket. The constraints are defined in Eq.(15) (sum-to-1 constraint) and Eq.(16).
For each variable Yj in the Markov blanket of Xi, there will be |D(Yj)| constraints
of type Eq.(16). The total number of constraints equals 1 +

∑
j |D(Yj)|.

To clarify that P (y1, ..., yk|e) are the variables of the optimization problem, we can
denote zy1,...,yk

= P (y1, ..., yk|e). Replacing P (y1, ..., yk|e) with zy1,...,yk
in Eq.(14),

we obtain an objective function:

P (x|e) =
∑

y1,...,yk

P (x|y1, ..., yk)zy1,...,yk

over exponential number of variables zy1,...,yk
. Then, the sum-to-1 constraint in

Eq.(15) tranforms into: ∑

y1,...,yk

zy1,...,yk
= 1

and ∀Yj ∈ Y , ∀yj ∈ D(Yj), we will a constraint of the form:

PL(yj |e) ≤
∑

y\yj ,Yj=yj

z(y1, ..., yk) ≤ PU (yj |e)

Example 1 Let markovi = {A, B}. Let D(A) = {0, 1} and D(B) = {0, 1, 2}. Let
P (xi|A, B) be defined as follows:

P (xi|0, 0) = 0.1

P (xi|0, 1) = 0.2

P (xi|0, 2) = 0.3

P (xi|1, 0) = 0.4

P (xi|1, 1) = 0.5

P (xi|1, 2) = 0.6

Then the objective functiontion of the linear optimization problem can be defined as
follows:

P (x|e) = 0.1P (a = 0, b = 0|e) + 0.2P (a = 0, b = 1|e) + 0.3P (a = 0, b = 2|e)

+ 0.4P (a = 1, b = 0|e) + 0.5P (a = 1, b = 1|e) + 0.5P (a = 1, b = 2|e)

s.t.

P (a = 0, b = 0|e) + P (a = 0, b = 1|e) + P (a = 0, b = 2|e)

+ P (a = 1, b = 0|e) + P (a = 1, b = 1|e) + P (a = 1, b = 2|e) = 1

PL(a = 0|e) ≤ P (a = 0, b = 0|e)+P (a = 0, b = 1|e)+P (a = 0, b = 2|e) ≤ P U (a = 0|e)

PL(a = 1|e) ≤ P (a = 1, b = 0|e)+P (a = 1, b = 1|e)+P (a = 1, b = 2|e) ≤ P U (a = 1|e)

PL(b = 0|e) ≤ P (a = 0, b = 0|e) + P (a = 1, b = 0|e) ≤ P U (b = 0|e)

PL(b = 1|e) ≤ P (a = 0, b = 1|e) + P (a = 1, b = 1|e) ≤ P U (b = 1|e)

PL(b = 2|e) ≤ P (a = 0, b = 2|e) + P (a = 1, b = 2|e) ≤ P U (b = 2|e)

The minimum and maximum of the objective function correspond to the lower and
upper bounds on P (xi|e). Initializing bounds PL(xi|e) and PU (xi|e) to 0 and 1 for
all variables, the algorithm solves linear minimization and maximization problems
for each variable and updates the bounds. The process is iterated until convergence
(namely, until the bounds no longer change). Convergence is guaranteed since with
every iteration, the bounds get closer to the posterior marginals or do not change.
We summarize algorithm in Figure 1.

The inputs to the algorithm are a Bayesian network B over X = {X1, ..., Xn} and
initial values of lower and upper bounds PL(xi|e) and PU (xi|e) for each variable X .

The output of the algorithm are the revised lower and upper bounds P L(xi|e) and
PU (xi|e) for each variable Xi ∈ X . In each iteration, inside the repeat loop, for each
XiinX the algorithm first computes a conditional probability table P (Xi|markovi)
and then solves the linear optimization problem for each value xi ∈ D(Xi). After
computing min and max of the objective function, the lower and upper bounds
PL(xi|e) and PU (xi|e) are updated.

Bound Propagation
Input: A belief network (B) over variables X = {X1, ..., Xn}, evidence E ⊂ X.
Input/Output: lower bounds array LB, upper bounds array UB.
Repeat:
∀Xi ∈ X\E, ∀xi ∈ D(Xi) do:
1. Compute conditional probability table over Markov blanket Y = {Y1, ..., Yk} of Xi:
∀{y1, ..., yk} ∈ D(Y) do:

P (xi|y1, ..., yk)← αP (xi|pai)
Q

j
P (chj |paj)

2. Define constraints of a linear optimization problem:X
Y

P (y1, ..., yk|e) = 1

∀Yj ∈ Y, ∀yj ∈ D(Yj),

P L(yj |e) ≤
X

y\yj,Yj=yj

P (y1, ..., yk|e) ≤ P U (yj |e)

3. Solve the problem using a standard LP simplex algorithm:

P L(xi|e) ← min
X

y1,...,yk

P (xi|y1, ..., yk, e)P (y1, ..., yk|e) (17)

P U(xi|e) ← max
X

y1,...,yk

P (xi|y1, ..., yk, e)P (y1, ..., yk|e) (18)

Until Converged

Figure 1: Bound Propagation (BdP) Algorithm

The paper showed that BdP performed quite well on Ising grid and regular two-
layer networks. In both classes of benchmaks, the size of the variable’s Markov
blanket was fixed due to the default network structure in case of Ising grid and due
to the enforced maximum number of children and maximum number of parents per
node. The algorithm was also tested with the Alarm network without evidence. In
case of Alarm network, BdP obtained small bounds interval for several nodes but
could not obtain good bounds for root nodes 12, 13, 14, 11 although the relative
subnetwork of each of these nodes consists of only the node itself and, hence, the
posteriors equal the priors. The latter is demonstrative of how BdP exploits local
network structure to its advantage while ingoring the global network properties.

In practice, algorithm BdP as presented in [16] is feasible only for networks having
bounded Markov blanket size since the number of variables in the optimization
problem in Figure 1 grows exponentially with the size of the Markov blanket.

4 Architecture for Any-Time Bounds

In this section, we outline our any-time bounding scheme. It builds on the same
principles as bounded conditioning. Namely, given a cutset C and some method

for generating cutset tuples in some order, the probabilities of the first h tuples are
evaluated exactly and the rest are upper and lower bounded.

First, we define our notation. Given a subset of variables C ⊂ X , let o =
{c1, ..., c|C|} denote an ordering of the cutset variables. Let lower-case c =
{c1, ..., c|C|} denote an instantiation of cutset C. Let M = |D(C)| denote the
number of different cutset tuples, namely, the size of the state-space D(C) of cutset
C. Indexing tuples 1 through M , we denote ci, 1 ≤ i ≤ M , a particular tuple in
that ordering. The tuples c and ci will always denote an assignment to all variable
in the cutset. We will use c1:q and ci

1:q to denote a partial instantiation of cutset
variables. Namely, c1:q = {c1, ..., cq}, q < |C|, denotes some assignment to the first
q variables in cutset C. The superindex i in ci

1:q indicates a partular assignment to
the specified subset of cutset variables.

The algorithm computes exactly quantities P (x, ci, e) and P (ci, e) for 1 ≤ i ≤ h

and bounds the sums
∑M

i=h+1 P (x, ci, e) and
∑M

i=h+1 P (ci, e) for i > h. We will
refer to our bounds computation framework as ATB for Any-Time Bounds.

The ATB architecture is founded on two principles. First, given a contant h, it
replaces the sums over the tuples ch+1,...,cM with a sum over a polynomial number
of partially-instantiated cutset tuples, by grouping together tuples sharing variable
value assignments. In particular, we will show how to compute lower and upper
bounds on P (x, c1:q, e) and P (c1:q, e) whose number is bounded polynomially. The
detailes are provided in Section 4.1.

Second, we develop new exressions for lower and upper bounds on posterior mar-
ginals as a function of the lower and upper bounds on the joint probabilities
P (x, c1:q, e) and P (c1:q, e). We assume in our derivation that there is an algorithm
A that can compute probabilities PA(x, c1:q, e) and PA(c1:q, e). We maintain this
assumption throughout unless stated otherwise. To simplify notation, we usually
omit subindex A.

ATB yilelds an upper bound that is guaranteed to be less than 1. The bounding
interval generated is smaller than that generated by bounded conditioning. Thus,
as we will show, we obtain a tighter upper bound formulation than Bounded Con-
ditioning that allows to incorporate any bounds on P (x, c1:q, e) and P (c1:q, e). We
defer the problem of selecting high probability cutset tuples to Section 5 and the
bounding scheme of P (x, c1:q, e) and P (c1:q, e) to Section 5.1.

4.1 Polynomial Processing Time

We obtain the any-time bounding scheme using the cutset conditioning formula as
a starting formula, similar to the wasy bounded conditioning was developed. Given
a Bayesian network B, a cutset C, let M =

∏
Ci∈C |D(Ci)| be the total number of

cutset tuples and let h be the number of generated cutset tuples, 0 < h < M . We
can assume without loss of generality that the generated h tuples are the first h
cutset tuples. Then, for a node X with x′ ∈ D(X), we can re-write Eq.(1) separating
the summation over the generated tuples 1 through h and the rest as:

P (x′|e) =

∑h

i=1 P (x′, ci, e) +
∑M

i=h+1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci, e)
(19)

If C is a loop-cutset, P (x′, ci, e) and P (ci, e), 0 ≤ i ≤ h, can be computed in

polynomial time. The question is how to compute or bound
∑M

i=h+1 P (x′, ci, e) and
∑M

i=h+1 P (ci, e) without enumerating all tuples ci, i > h.

Consider a fully-expanded search tree of depth |C| over the cutset search space
expanded in the order C1,...,Cl. A path from the root to the leaf at depth |C|
corresponds to a cutset tuple. Hence, there is a one-to-one mapping between each
leaf at depth |C| and a fully-instantiated cutset tuple. Assume that we mark all the
tree edges on paths that correspond to the first generated h cutset tuples. Then
the unexpanded tuples ci, h + 1 ≤ i ≤ M , correspond to the unmarked leaves. We
can recursively trim all unmarked leaves until only leaves branching out of marked
nodes remain, thus producing a truncated search tree.

Definition 4.1 (Truncated Search Tree) Given a search tree T covering the
search space H over variables X1,...,Xn, a truncated search tree relative to
a subset S ⊂ D(X1) × ... × D(Xn) of full assignments, S = {x1, ..., xt} where

xj = {xj
1, ..., x

j
n}, obtained by marking the edges and nodes associated with S and

then removing all unmarked edges and nodes except those branching out from marked
nodes.

0 1

C1

1

C2

0 1

C3

0 1

C4

0 2

0 1

C3

0 1

C4

Figure 2: A search tree for cutset C = {C1, ..., C4}.

Therefore, the leaves at depth < |C| in the truncated tree correspond to the
partially-instantiated cutset tuples. A path from the root C1 to a leaf Cq at depth
q is a tuple denoted c1:q = {c1, ..., cq} over those cutset variables which we will
refer to as truncated or partially-instantiated cutset tuples, since only variables C1

through Cq are instantiated while the rest of the variables Cq+1 through C|C| are
not. Full cutset is denoted c1:l.

An example of a truncated search tree is shown in Figure 2. Given a cutset of
size 4, C = {C1, ..., C4}, D(C1) = {0, 1}, D(C2) = {0, 1}, D(C3) = {0, 1, 2},
D(C4) = {0, 1} and four fully-instantiated tuples {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 1, 0},
and {0, 2, 1, 1}, the remaining partially instantiated tuples are {c1 = 0, c2 = 0},
{c1 = 0, c2 = 1, c3 = 1}, {c1 = 0, c2 = 2, c3 = 0}, and {c1 = 1}.

It is easy to see that the number of truncated tuples, denoted M ′, is bounded by
O(h · (d− 1) · |C|), where d is the maximum domain size, since every node Cj in the
path from root C1 to leaf Cl can have no more than (d − 1) emanating leaves.

Proposition 1 If C is a cutset, d bounds the domain size, and h is the number
of generated cutset tuples, the number of partially-instantiated cutset tuples in the
truncated search three is bounded by O(h · (d − 1) · |C|).

We index the partially instantiated tuples from 1 to M ′ and denote the j-th tuple
c
j
1:qj

, 1 ≤ j ≤ M ′, where qj denotes the tuple’s length. Clearly, the probability mass

over the cutset tuples ch+1, ..., cM can be captured via the sum of the truncated
tuples. Namely:

Proposition 2

M∑

h+1

P (ci, e) =

M ′∑

j=1

P (cj
1:qj

, e) (20)

M∑

h+1

P (x′, ci, e) =

M ′∑

j=1

P (x′, c
j
1:qj

, e) (21)

Therefore, we can bound the ungenerated tuples in Eq.(19) by bounding a polyno-
mial number of summands, over the partially-instantiated tuples.

4.2 Bounds

Now that we have addressed the problem of enumerating the rest of the cutset tuples
in polynomial time, we will derive the expressions for bounding the summands in
Eq.(20) and Eq.(21). Replacing the summation over tuples h + 1 through M with
summation over the partially-instantiated tuples 1 through M ′ in Eq.(19), we get:

P (x′|e) =

∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 P (x′, c
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

, e)
(22)

Assume that we have an algorithm A that, for any partial assignment c1:q, can
generate lower and upper bounds PL

A (c1:q, e) and PU
A (c1:q, e) and PL(x, ci

1:qi
, e)

and PU (x, ci
1:qi

, e) s.t. PL
A (c1:q, e) ≤ P (c1:q, e) ≤ PU

A (c1:q, e) and PL
A (x, c1:q, e) ≤

P (x, c1:q, e) ≤ PU
A (x, c1:q , e). In the future derivations, we drop the algorithm’s

name when there is no confusion.

A brute force lower bound expression using Eq.(22) can be obtained by replacing

each P (x′, c
j
1:qj

, e) with its lower bound (reducing numerator) and each P (cj
1:qj

, e)

with its upper bound (increasing denominator) yielding:

P (x′|e) ≥

∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 PL
A(x′, c

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU
A (cj

1:qj
, e)

, PL1

A (x′|e) (23)

However, a tighter boundd can be obtained if we apply additional transformations
to Eq. (22) and prove a helpful lemma. First, we decompose P (cj

1:qj
, e), 0 ≤ j ≤ M ′,

as follows:

P (cj
1:qj

, e) =
∑

x

P (x, c
j
1:qj

, e) = P (x′, c
j
1:qj

, e) +
∑

x 6=x′

P (x, c
j
1:qj

, e) (24)

Replacing P (cj
1:qj

, e) in Eq.(22) with the right-hand size expression in Eq. (24), we

obtain:

P (x′|e) =

∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 P (x′, c
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (x′, c
j
1:qj

, e) +
∑

x 6=x′

∑M ′

j=1 P (x, c
j
1:qj

, e)
(25)

We will use the following two lemmas:

Lemma 4.1 Given positive numbers a > 0, b > 0, δ ≥ 0, if a < b, then: a
b
≤ a+δ

b+δ
.

Lemma 4.2 Given positive numbers a, b, c, cL, cU , if a < b and cL ≤ c ≤ cU ,
then:

a + cL

b + cL
≤

a + c

b + c
≤

a + cU

b + cU

The proof of both lemmas is straight forward. Lemma 4.1 merely states a simple
mathematical fact that is easily obtained by hand by computing the difference be-
tween two values. Lemma 4.2 applies the result of Lemma 4.1 to a particular type
of fraction which, as we will see, occurs often in our bounds derivation. Namely,
Lemma 4.2 says that if the sums in numerator and denominator have some com-
ponent c in common, then replacing c with a larger value in both numerator and
denominator yields a larger fraction. Replacing c with a smaller value in both places
yields a smaller fraction.

Observe now that in Eq.(25) the sums in both numerator and denominator contain

component P (x′, c
j
1:qj

, e). Hence, we can apply Lemma 4.2.

We will obtain a lower bound by replacing summant P (x′, ci
1:qi

, e) in Eq.(22) with
a lower bound in both numerator and denominator:

P (x′|e) ≥

∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 PL
A(x′, c

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PL
A(x′, c

j
1:qj

, e) +
∑

x 6=x′

∑M ′

j=1 P (x, c
j
1:qj

, e)
(26)

and replacing P (x, c
j
1:qj

, e), x 6= x′, with its upper bound:

P (x′|e) ≥

∑h
i=1 P (x′, ci, e) +

∑M ′

j=1 PL
A(x′, c

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PL
A(x′, c

j
1:qj

, e) +
∑

x 6=x′

∑M ′

j=1 PU
A (x, c

j
1:qj

, e)
, PL2

A (x′|e)

(27)
Hence, we have obtained two expressions for lower bound on P (x′|e), PL1 defined
in Eq. (23) and PL2 defined in Eq. (23). In general case, neither bound dominates
the other. In Section 4.3, we will define conditions when we can predict that the
lower bound PL2 is greater than PL1 . In particular, PL2 always dominates PL1 if
|D(X)| = 2.

The upper bound formulation can be obtained in a similar manner. Again, we note
that both numerator and denominator in Eq.(25) contain summants P (x′, c

j
1:qj

, e).

Subsequently, from Lemma 4.2, replacing each P (x′, c
j
1:qj

, e) with a corresponding

upper bound PU
A (x′, c

j
1:qj

, e) in Eq.(25) yields an upper bound on P (x′|e):

P (x′|e) ≤

∑h
i=1 P (x′, ci, e) +

∑M ′

j=1 PU
A (x′, c

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU
A (x′, c

j
1:qj

, e) +
∑

x 6=x′

∑M ′

j=1 P (x, c
j
1:qj

, e)
(28)

The expression above still contains unknowns P (x, c
j
1:qj

, e), x 6= x′. Replacing each

P (x, c
j
1:qj

, e), x 6= x′, with a lower bound (reducing denominator), we obtain an

upper bound PU1 on P (x′|e):

P (x′|e) ≤

∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 PU
A (x′, c

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU
A (x′, c

j
1:qj

, e) +
∑

x 6=x′

∑M ′

j=1 PL
A(x, c

j
1:qj

, e)
, PU1

A (x′|e)

(29)
Unlike the derivation in bounded conditioning, the upper bound above is guaranteed
to be ≤ 1 for any lower and upper bounds on P (x, c

j
1:qj

, e).

The derivation of bounds for cutset nodes is similar to the above. The main differ-
ence in the formulation of the bounds for a cutset node Ck is that the enumeration
is over a subspace of cutset space Z = C\Ck. And since the number of generated
cutset tuples with different values of Ck maybe different, the number of remain-
ing partially-instantiated tuples for different values of Ck maybe different as well.
Hence, we use subindex ck in the number of fully-instantiated tuples hck

and the
number of partially-instantiated tuples M ′

ck
to indicate enumeraiton over the tu-

ples where Ck = ck. We provide details in Appendix B. Here, we only summarize
results. For any node Ck ∈ C, an upper bound on P (c′k|e) can be expressed as
follows:

PU1

A (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

ck

j=1 PU
A (c′k, z

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

ck

j=1 PU
A (c′k, z

j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 PL
A(ck, z

j
1:qj

, e)

(30)
The two expressions for lower bounds, corresponding to PL1(x|e) and PL2(x|e) are:

PL1

A (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PL
A(c′k, z

j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU
A (cj

1:qj
, e)

(31)

PL2

A (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e)

∑h

i=1 P (ci, e) +
∑M ′

c′
k

j=1 PL
A(c′k, z

j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 PU
A (ck, z

j
1:qj

, e)

(32)

Next, we demonstrate the computation of ATB bounds on a simple example.

Example 2 Assume we have a Bayesian network B with cutset C = {C1, ..., C4}.
Assume all cutset nodes have domains of size 2 except for node C3 which has a
domain of size 3. So, D(C1) = D(C2) = D(C4) = {0, 1} and D(C3) = {0, 1, 2}.
The resulting total number of cutset tuples M = 24. Let X be some node in B.
We will demonstrate here the computation of the simple lower and upper bounds
from ATB framework on P (x|e) for some value x′ ∈ D(X). Assume we generate
four, h = 4, cutset tuples: c1 = {0, 1, 0, 0}, c2 = {0, 1, 0, 1}, c3 = {0, 2, 1, 0},
c4 = {0, 2, 1, 1}.

The corresponding truncated search tree is shown in Figure 2. For tuple
{c1

1, c
2
2, c

1
3, c

1
4}, we compute exactly probabilities P (x, 0, 1, 0, 0, e) and P (c1

1, c
2
2, c

1
3, c

1
4).

Similarly, we obtain exact probabilities P (x, c1
1, c

2
2, c

1
3, c

2
4) and P (c1

1, c
2
2, c

1
3, c

2
4) for

the second cutset instance {c1
1, c

2
2, c

1
3, c

2
4}. Since h = 4, the

∑h

i=1 P (x, ci, e) and∑h

i=1 P (ci, e) used in lower and upper bounds computation are instantiated as fol-
lows:

4∑

i=1

P (x′, ci, e) = P (x′, c1, e) + P (x′, c2, e) + P (x′, c3, e) + P (x′, c4, e)

Any-Time Bounds Architecture
Input: A belief network (B), variables X, evidence E ⊂ X, cutset C ⊂ X\E, truncated search
tree T .
Output: lower bound LB1, lower bound LB2, upper bound UB.
Let S1:h denote

Ph

i=1 P (ci, e) and Sx,1:h(xk) denote
Ph

i=1 P (xk, ci, e).
Initialize: S1:h ← 0, ∀Xk ∈ X\C, E, ∀xk ∈ D(Xk), Sx,1:h(xk)← 0.
1. Generate cutset tuples:
For i = 1 to h do:

ci ← GetNextFullyInstantiatedTuple(T)
S1:h ← S1:h + P (ci, e)
∀ck ∈ C: Sx,1:h(ci

k)← Sx,1:h(ci
k) + P (ci, e)

∀Xk ∈ X\C, E, ∀xk ∈ D(Xk): Sx,1:h(xk)← Sx,1:h(xk) + P (xk, ci, e)
End For
2. Traverse partially-instantiated tuples:

Let S1,M′ denote
PM′

j=1 P U (ci, e), LB(xk) and UB(xk) denote
PM′

j=1 P L(xk, ci, e), andPM′

j=1 P U (xk, ci, e).

Initialize: S1,M′ ← 0; ∀Xk∈X\C, E, ∀xk ∈ D(Xk), LB(xk)← 0, UB(xk)← 0.

While (cj
1:qj
← GetNextPartiallyInstantiatedTuple(T)) do:

S1,M′ ← S1,M′ + P U (cj
1:qj

, e)

∀Ck ∈ C, k ≤ qj do:

LB(cj

k)← LB(cj

k) + P L(cj
1:qj

, e)

UB(cj

k)← UB(cj

k) + P U (cj
1:qj

, e)

∀Ck ∈ C, k > qj , ∀ck ∈ D(Ck) do:

LB(ck)← LB(ck) + P L(ck, cj
1:qj

, e)

UB(ck)← UB(ck) + P U (ck, cj
1:qj

, e)

∀Xk ∈ X\C, E, ∀xk ∈ D(Xk) do:

LB(xk)← LB(xk) + P L(xk, cj
1:qj

, e)

UB(xk)← UB(xk) + P U (xk, cj
1:qj

, e)

End While
3. Compute bounds:

LB[k][d] = max

8<: Sx,1:h+LB(xd
k)

S1:h+S
1:M′

Sx,1:h+LB(xd
k)

S1:h+LB(xd
k
)+
P

r 6=d UB(xd
k
)

UB[k][d] =
Sx,1:h + UB(xd

k)

S1:h + UB(xd
k) +

P
r 6=d

LB(xd
k)

Figure 3: Any-Time Bounds Architecture

4∑

i=1

P (ci, e) = P (c1, e) + P (c2, e) + P (c3, e) + P (c4, e)

The remaining partial tree pathes are: c1
1:2 = {0, 0}, c2

1:3 = {0, 1, 1}, c3
1:3 = {0, 2, 1},

and c4
1:1 = {1}. Since these four tuples are partial instantiations of cutset nodes,

we compute bounds on joint probabilities instead of exact values. For example, for
the tuple {0, 0}, we compute bounds on P (x, 0, 0, e) and P (0, 0, e). Hence the sums
over the partially instantiated tuples will have the form:

SU (x) = PU (x, c1
1:2, e) + PU (x, c2

1:3, e) + PU (x, c3
1:3, e) + PU (x, c4

1:1, e)

SL(x) = PL(x, c1
1:2, e) + PL(x, c2

1:3, e) + PL(x, c3
1:3, e) + PL(x, c4

1:1, e)

From Eq.(29) we get:

PU1(x′|e) =

∑4
i=1 P (x′, ci, e) + SU (x′)

∑4
i=1 P (ci, e) + SU (x′) +

∑
x 6=x′ SL(x)

From Eq.(27) we get:

PL2(x′|e) =

∑4
i=1 P (x, ci, e) + SL(x′)

∑4
i=1 P (ci, e) + SL(x′) +

∑
x 6=x′ SU (x)

Thus, we generated 4 cutset tuples and 4 partial cutset tuples. The total number of
tuples processed is M ′ = 4 + 4 = 8 << M = 24.

In summary, we have described a framework for computing bounds in an any-time
fashion which we call ATB for Any-Time Bounds. We provide the complete algo-
rithm for ATB in Figure 3. The upper bound is defined via Eq.(29). The equivalent
upper bound for cutset nodes is defined in Eq.(30). The lower bounds are defined via
Eq.(23) and Eq.(27) since neither of those two bounds is dominant in general case.
The equivalent lower bounds for cutset nodes are defined in Eq.(31) and Eq.(32).
The idea is to generate h cutset tuples and compute exactly the corresponding
P (x, c, e) and P (c, e). If C is a loop-cutset, those quantities can be obtained in
linear time by an inference algorithm (e.g. belief propagation). We use an off-the-
shelf algorithm A to bound P (x, c1:q, e) and P (c1:q, e) in all partially instantiated
cutset tuples in the truncated search tree. Since the number of partially observed
cutset tuples grows polynomially with h, the ATB framework has a polynomial time
complexity:

Theorem 4.1 (Time Complexity) Given an algorithm deriving lower and upper
bounds to any collection of variable instantiation and assuming it takes at most T
time to bound P (c1:qi

, e) and P (x, c1:qi
, e), the ATB takes O(T · h · (d − 1) · |C|)

time to bound partially-instantiated cutset tuples. If N is the problem input size,
the total complexity of ATB is the time of ATB is O(h · N + T · h · (d − 1) · |C|)
where d is the maximum domain size.

Theorem 4.1 follows immediately from Proposition 1.

In the next Section 4.3, we compare expressions for lower bounds in Eq.(23) and

Eq.(27) and define the conditions when lower bound PL2

A cominates.

4.3 Properties of Lower Bounds

We can show that the lower bound PL2

A value in Eq.(27) is larger than the brute

force lower bound PL1

A expression in Eq.(23) under certain conditions. In particular,

PL2

A is guaranteed to dominate PL1

A when node X has domain of size 2.

Theorem 4.2 (Lower Bound Dominance) If PL(x, c
j
1:qj

, e) and PU (x, c
j
1:qj

, e)

are defined as follows:

∀x ∈ D(X), PL(x, c
j
1:qj

, e) = PL(x|cj
1:qj

, e)PL(cj
1:qj

, e)

∀x ∈ D(X), PU (x, c
j
1:qj

, e) = PU (x|cj
1:qj

, e)PU (cj
1:qj

, e)

and

PL(x′|cj
1:qj

, e) = 1 −
∑

x 6=x′

PU (x|cj
1:qi

, e) (33)

then PL1(x′|e) ≥ PL2(x′|e) where PL1(x′|e) and PL2(x′|e) are defined in Eq.(23)
and Eq.(27) respectively.

The proof is straight forward and is provided in Appendix C.

Corollary 1 (Lower Bound Dominance) If D(X) = 2 and PL(x, c
j
1:qj

, e) and

PU (x, c
j
1:qj

, e) are defined as follows:

∀x ∈ D(X), PL(x, c
j
1:qj

, e) = PL(x|cj
1:qj

, e)PL(cj
1:qj

, e)

∀x ∈ D(X), PU (x, c
j
1:qj

, e) = PU (x|cj
1:qj

, e)PU (cj
1:qj

, e)

then PL1(x′|e) ≥ PL2(x′|e) where PL1(x′|e) and PL2(x′|e) are defined in Eq.(23)
and Eq.(27) respectively.

The proof is straight forward and is provided in Appendix C. The corollary follows
from observation that the equality condition in Eq.(33) can be always enforced in
nodes with domains of size 2. If PL(x′|ci

1:qi
, e) < 1 −

∑
x 6=x′ P

U (x|ci
1:qi

, e), then

we can safely increase lower bound so that the equality stands. If P L(x′|ci
1:qi

, e) >

1 −
∑

x 6=x′ PU (x|ci
1:qi

, e), then we can adjust upper bound value.

However, the lower bound PL1 can dominate lower bound PL2 when node’s domain
size is greater than 2. If PL(x′|ci

1:qi
, e) < 1 −

∑
x 6=x′ PU (x|ci

1:qi
, e), we can increase

the lower bound and set PL(x′|ci
1:qi

, e) = 1 −
∑

x 6=x′ PU (x|ci
1:qi

, e) same as in case

of bi-valued variables. However, if PL(x′|ci
1:qi

, e) > 1 −
∑

x 6=x′ PU (x|cj
1:qj

, e), the

PL1 could yield a higher value. Hence, in practice, we should compute both bounds
for nodes with domains of size > 2 and pick the highest value.

Next, we compare the ATB bounds and the bounds obtained in the bounded con-
ditioning [9].

4.4 Comparing ATB bounds and Bounded Conditioning Bounds

In the ATB framework, the lower bounds are defined by expressions in Eq.(23) and
Eq.(27). Let us denote by BF a brute-force algorithm that trivially instantiates

PL(x′, c
j
1:qj

, e) = 0, PU (x′, c
j
1:qj

, e) = 1, and PU (cj
1:qj

, e) = P (cj
1:qj

). Then, from

Eq.(23), we get:

PL1

BF (x′|e) =

∑h

i=1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

)
=

∑h

i=1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)

(34)

Using algorithm BF with lower bound PL2 expressed in Eq.(27), we get:

PL2

BF (x′|e) =

∑h

i=1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

)
=

∑h

i=1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)

(35)
The right hand side in the equations (34) and (35) equals the expression for the

bounded conditioning lower bound in Eq.(7). Namely, PL1

BF (x′|e) = PL1

BF (x′|e) =

PL(x′|e) where PL(x′|e) is obtained via Eq.(7). Clearly, both bounds PL1

BF (x′|e)

and PL2

BF (x′|e) are superior when compared to bounded conditioning as long as we
can compute at least some non-zero lower bounds on PL(x′, ci

1:qi
, e) and/or better

than prior P (c1:q) upper bounds on PU (x, c
j
1:qj

, e) and PU (cj
1:qj

, e).

We can prove in a similar manner that the ATB upper bound P U1(x′|e) is as good
or better than the upper bound obtained via bounded conditioning. Applying the
brute-force algorthm BF, defined above, to bound P (x′, c

j
1:qj

, e), and P (ci
1:qi

, e), we

get from Eq.(29):

PU1

BF (x′|e) =

∑h
i=1 P (x′, ci, e) + +

∑M ′

j=1 P (cj
1:qj

)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

)
=

∑h

i=1 P (x′, ci, e) +
∑M

j=h+1 P (cj)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)

(36)

The expression for PU1

BF gives us the worst-case upper bound that can be obtained by

ATB from Eq.(29). In the next theorem, we prove that the upper bound P U1

BF (x′|e)

is as good or better than the bounded conditioning upper bound. Namely, P U1

A

dominates the bounded conditioning as long as PU
A (x′, c

j
1:qj

, e) ≤ PU (cj
1:qj

):

Theorem 4.3 Given an algorithm A that computes lower and upper bounds
PL

A (x, c
j
1:qj

, e) and PU
A (x, c

j
1:qj

, e) such that ∀j, PU
A (x, c

j
1:qj

, e) ≤ P (cj
1:qj

) then

PU1

A (x|e) ≤ PU (x|e) where PU1

A (x|e) is given in Eq.(29) and PU (x|e) is the bounded
conditioning expression given in Eq.(11).

The proof is provided in Appendix C.

So far, we have assumed that we have an algorithm A for computing bounds on
P (c1:q, e) and P (x, c1:q, e). In the next section, we derive the expressions for ATB
bounds for a special case when the algorithm A can only compute upper bounds on
P (c1:q, e). Our motivation is that even if bounding P (x, c1:q, e) via algorithm A is
possible, it maybe computationally infeasible.

4.5 Weak ATB Bounds Framework (ATBw)

In this section we derive bounds expressions for a weak form of ATB framework,
denoted ATBw. We asumme here that we plug in a bounding scheme A that only
computes upper bound PU (c1:q, e) on P (c1:q, e). We assume that algorithm A either
cannot compute bounds on P (x, c1:q, e) or incurs a lot of computational overhead
doing so. In practice, we may want to avoid this overhead and use the time to
generate more cutset tuples (increase h).

Since A cannot produce non-trivial bounds for P (x, c1:q, e), it instantiates
PL
A(x, c1:q, e) = 0 and, since P (x, c1:q, e) ≤ P (c1:q, e), it instantiates PU

A (x, c1:q , e) =
PU
A (c1:q, e). Plugging in lower bound 0 and upprer bound P (c1:q, e) on P (x, c1:q, e)

into Eq.(23), we get:

PL3

A (x′|e) ,

∑h

i=1 P (x′, ci, e)
∑h

i=1 P (ci, e) +
∑M ′

j=h+1 PU
A (cj

1:qj
, e)

(37)

Similarly, replacing lower and upper bounds on P (x, c1:q, e) with 0 and PU
A (c1:q, e)

in the upper bound expression in Eq. (29), we obtain:

PU3

A (x′|e) ,

∑h
i=1 P (x′, ci, e) +

∑M ′

j=1 PU
A (cj

1:qj
, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 PU
A (cj

1:qj
, e)

(38)

Note that the expressions for lower and upper bounds in Eq.(37) and Eq.(38) above
depend only on the values P (ci, e) and P (x, ci, e) obtained via exact computation
over the first h cutset tuples and the upper bound values PU

A (c1:q, e) for the par-
tially instantiated cutset tuples. Despite simplifications, the framework ATBw is
guaranteed to produce as good or better bounds as those obtained by bounded con-
ditioning. We obtain the proof by plugging into ATBw the brute-force bounding
scheme BF described previously.

The following theorem characterizes the convergence rate of ATBw bounds interval.

Theorem 4.4 Given an algorithm A that can compute an upper bound on
P (c1:q, e), where c1:q is a partial cutset instantiation, given h fully-instantiated cut-
set tuples ci, 1 ≤ i ≤ h, then:

PU3

A − PL3

A ≥

∑h
i=1 P (ci, e)

P (e)

where PL3

A and PU3

A are expressed in Eq.(37) and Eq.(38) respectively.

It is clear that for the same h and for the same plugin algorithm A, the bounds
obtained by ATB framework will be as good or better than those computed by
ATBw. The only advantage ATBw has over ATB is faster computation time. We
investigate in the empirical section the trade-offs between plugging in tighter bounds
into ATB framework and computing more cutset tuples using ATBw framework.

5 Incorporating Bounds Propagation

In Section 4 we defined the Any-Time Bounds framework. Founded on the con-
ditioning principles, the framework computes exactly P (x, c, e) and P (c, e) for h
cutset tuples and then uses precomputed bounds on the probabilities P (x, c1:q, e)
and P (c1:q, e) for the remaining partially instantiated cutset tuples which will be
plugged into the corresponding expressions. The framework does not specify how to
bound the joint probabilities for the partially instantiated cutset tuples. In this sec-
tion, in subsection 5.1, we present a method for bounding probabilities P (x, c1:q, e)
and P (c1:q, e) that is based on bound propagation.

As we mentioned earlier, the performance of bound propagation depends on the
size of the Markov blanket since the size of the corresponding linear optimization
problems grows exponentially with the number of variables in the Markov blanket.
In Section 5.2, we describe a simple optimization which allows to reduce node’s
Markov blanket size and, consequently, improve the performance of BdP by re-
stricting Markov blanket to its relevant subnetwork. We will denote the improved
version of BdP via BdP+.

We can reduce the BdP (and BdP+) computation time further by using solving
linear optimization problem approximately, trading accuracy for speed. We describe
our approximation scheme in Section 5.3.

Although other off-the-shelf bounding schemes exist, such as bounding scheme pro-
posed in [15], we choose bound propagation because it is simpler and because we
expect that it can compute tighter bounds in the context of ATB framework than
standalone. Since instantiating some nodes results in the reduction of the Markov
blanket size of all the neighboring nodes, bound propagation maybe able to compute
tighter bounds within ATB framework when network is additinally conditioned on
c1:q.

5.1 Bounding P (c1:q, e) and P (x, c1:q, e) using BdP

In this section, we show how the ATB framework can be integrated with a spe-
cific off-the-shelf algorithm, bound propagation, that computes bounds on poste-
rior marginals using bounds propagation algorithm which only computes bounds on
conditional probabilities P (x|e) for any variable X for any evidence e.

We cannot plugin bound propagation directly because it only bounds conditional
probabilities. In order to use BdP for computing and cannot be applied directly to
bound P (c1:q, e) and P (x, c1:q, e). In order to use BdP for computing bounds on
joint probabilities, we factorize the joint probability P (c1:q, e) as follows:

P (c1:q, e) =
∏

ej∈E

P (ej |e1, ..., ej−1, c1:q)P (c1:q)

We know how to compute P (c) if c is an assignment to all loop-cutset variables.
We can also compute joint probability P (c1:q) where c1:q = {c1, ..., cq}, q < |C|, is
a partial assignment to loop-cutset variables if c1:q contains the first q cutset nodes
(in topological order) utilizing the notion of irrelevant subnetwork.

Theorem 5.1 If C is a topologically ordered loop-cutset of a Bayesian network and
C1:q = {C1, ..., Cq} is a subset of C, q < |C|, then the relevant subnetwork of C1:q

consisting of loop-cutset nodes in subset C1:q and their ancestors is singly-connected.

Since the relevant subnetwork over c1:q is singly-connected, we can compute joint
P (c1, ..., cq) in linear time using belief updating algorithm.

We can now apply alogorithm BdP to the network (B, c1:q, e) and obtain
bounds on P (e1|c1:q), then on P (e2|e1, c1:q), and in sequence get bounds
PL

BdP (ej |e1, ..., ej−1, c1:q) and PU
BdP (ej|e1, ..., ej−1, c1:q) that include all the evidence.

Thus:

P (c1:q, e) ≥
∏

ej∈E

PL
BdP (ej |e1, ..., ej−1, c1:q)P (c1:q) , PL

BdP (c1:q, e) (39)

P (c1:q, e) ≤
∏

ej∈E

PU
BdP (ej |e1, ..., ej−1, c1:q)P (c1:q) , PU

BdP (c1:q, e) (40)

The joint probability P (x, c1:q, e) can be factorized as:

P (x, c1:q, e) = P (x|c1:q, e)P (c1:q, e)

Using the decomposition above, we can obtain lower and upper bounds on
P (x, c1:q, e) as follows:

PL
BdP (x, c1:q, e) = PL

BdP (x|c1:q, e)P
L
BdP (c1:q, e) (41)

PU
BdP (x, c1:q, e) = PU

BdP (x|c1:q, e)P
U
BdP (c1:q, e) (42)

where PL
BdP (x|c1:q, e) and PU

BdP (x|c1:q, e) are obtained by algorithm BdP directly
and values PL

BdP (c1:q, e) and PU
BdP (c1:q, e) are obtained from Eq.(39) and Eq.(40) .

The cost of computing P (c1:q) is linear in problem size N . Let O(m) bound the
complexity of algorithm BdP. Then, the total cost of bounding P (c1:q, e) is O(N +
m · (1 + |E|)). Therefore, the complexity of ATB when it uses BdP to precompute
input bounds is given next:

Theorem 5.2 Given a Bayesian network B over N variables with maximum do-
main size d, the complexity of ATB with bounds precomputed by algorithm BdP is
O((N + m · (1 + |E|)) · h · (d − 1) · |C|) when complexity of BdP is O(m).

Next, we describe how we can improve the performance of BdP reducing the bounds
interval and the computation time by taking into account the network structure.

5.2 Optimizing BdP

As we have already mentioned, the time and memory requirements of BdP algo-
rithm are dependent on the maximum size of the Markov blanket which, in turn,
determines the maximum linear optimization problem size. In order to limit the
BdP demands for memory and time, we can impose a bound on the maximum size of
the Markov blanket and, thus, the maximum size of the linear optimization problem
that we solve. When the Markov blanket size of a node X exceeds the maximum,
the node’s lower and upper bound values will remain equal to their input values
(usually, 0 and 1). Of course, it will affect the quality of the bounds for neighboring
nodes as well. As we described earlier, each node Yi in the Markov blanket of X
induces a linear constraint of the form:

PL(yj |e) ≤
∑

y\yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU (yj |e) (43)

Clearly, the quality of the bounds on X depends on the tightness of the bounds of
the nodes in its Markov blanket. When the lower and upper bounds P L(yj |e) and
PU (yj |e) are 0 and 1 respectively, then ∀yj ∈ Yi, the constraints expressed in Eq.(43)
become redundant with respect to the sum-to-1 constraint

∑
y P (y1, ..., yk|e) = 1.

The sum of a subset of variables is always non-negative because all variables are
non-negative. It is never greater than 1 because the sum of all variables equals 1.

The performance of the bound propagation algorithm can be improved by identify-
ing the irrelevant child nodes and restricting the Markov blanket of X to its relevant
subnetwork.

Definition 5.1 (Irrelevant Node and Relevant Subnetwork) An irrelevant
node of a node X is a child node Y that is not observed and does not have observed
descendants. The relevant subnetwork of X is a subnetwork obtained by removing
all irrelevant nodes in the network.

Removing irrelevant nodes (and their parents) from Markov blanket whenever pos-
sible results in a smaller Markov blanket size, shorter computation time, and more
accurate bounds which we demonstrate in the empirical section. If the relevant
subnetwork of node X is singly-connected then its posteriors should be computed
exactly and used to initialize the bound propagation bounds for node X . We de-
note as BdP+ the bound propagation algorithm that takes advantage of the network
structure as described above.

Of course, BdP+ optimizations are obvious and do not resolve the problem of
computing bounds for variables whose Markov blanket remains very large even

when restricted to its relevant subnetwork. We propose that we can reduce the
number of nodes with 0/1 output bounds by pluggin BdP+ into ATB framework.
When we assign values to nodes, the size of the Markov blanket of the neighboring
nodes decreases. Thus, in a network that is conditioned on a subset of cutset nodes,
in addition to the evidence nodes E, the size of the Markov blanket of all nodes
neighboring the cutset nodes will become smaller. Alternatively, we can directly
condition on the nodes with large Markov blankets by including them into the cutset
C. For example, the primary heuristics in selecting a minimal loop-cutset is the
degree of a node [3]. We can cut the primary heuristics ties by selecting the node
with larger Markov blanket. More aggressively, we can use Markov blanket size as
the primary heuristics.

5.3 Approximating the LP in Bound Propagation

We have defined a scheme that allows us to bound P (c1:q, e) and P (x, c1:q, e), us-
ing a combination of bound propagation, used to bound conditional probabilities
P (ej |e1, ..., ej−1, c1:q) and P (x|c1:q, e), and exact inference, used to compute P (c1:q).
In this section, we propose an algorithm for solving the linear optimization problem
approximately, instead of using a simplex solver, to reduce the computation time
of the plugin.

When BdP+ scheme is plugged into the ATB framework, we need to bound a large
number of tuples P (x, ci

1:qi
, e). We need to invoke bound propagation algorithm

1+ |E| times to bound one tuple. For every tuple, we need to solve O(|X\E|) linear
optimization problems. Thus, within ATB framework, we need to solve thousands
if not hundreds of thousands of linear optimisation problems via simplex method
which can be impractical timewise. Furthemore, the linear optimize problems for-
mulated in bound propagation algorithm fall into a class of linear packing and
covering problems which are known to be especially challening for simplex method
[7]. We observed some of this behavior in two of our benchmarks, cpcs360b and
cpcs422b. The bound propagation computation time increased by nearly an order
of magnitude when input lower and upper bounds were tight (using ATB output as
input to BdP+) compared to computing with 0/1 input bounds.

The standard fractional packing and covering problem can be defined as follows:

min cT x (44)

s.t. (45)

Ax ≥ l (46)

Bx ≤ m (47)

x ≥ 0 (48)

The problem without Eq. (47) is a fractional covering problem. The problem
without Eq. (46) is a fractional packing problem.

Obviously, the linear optimization problems in BdP+ include both covering and
packing components and have an additional constraint that the sum of all variables
must equal 1. Although a large number of approximation algorithms exist [7], we
only found the methods that solve either packing or covering problem, but not both
and not with the additional sum-to-1 constraint. Therefore, we resort to solving a
relaxed problem.

There are many possibilities for relaxing the constraints of the original problem

and we could not exhaustively experiment with all of them. Therefore, we sought
to find the simplest approach that would yield reasonable bounds. We considered
relaxing the problem to an instance of fractional knapsack packing which can be
solved exactly in a greedy fashion. In the relaxed problem, we maintain the sum-to-1
constraint: ∑

y1,...,yk

P (y1, ..., yk|e) = 1 (49)

but drop the lower bound constraints completely. The upper bound on a sum
of variables is replaced with the upper bound on individual variables that is the
minimum of all the upper bounds on the constraints in the original problem in
which it participates:

P (y1, ..., yk|e) ≤ UBy1,...,yk
= min

y
PU (yi|e) (50)

The fractional knapsack packing is solved exactly by ordering nodes by their cost
from maximum to minimum for maximization and from minimum to maximum for
minimization and then assigning each node the maximum value until the sum of all
node values equals 1. The complexity of computation is O(n log n), where n is the
number of variables, due to the complexity of the sorting algorithm.

The second option is to additionally leave constraints on sums of variables pertaining
to one node in the Markov blanket of X. For example, if we select node Yj ∈ ma(X),
then, in addition to constraints in Eq.(49) and Eq.(50), we keep constraints:

PL(yj |e) ≤
∑

Y \Yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU (yj |e) (51)

for each value yj in the domain of Yj .

The domains of the constraints expressed by Eq.(51) pertaining to just one node
Yj are disjoint. Hence, the problem can be treated as an instance of the fractional
packing with multiple knapsacks, each having an individual capacity bound. If
it was not for the sum-to-1 constraint in Eq.(49), we could solve each knapsack
packing problem independently. Still, the greedy approach works.

Figure 4 defines a bound propagation scheme which solves relaxed LP using a greedy
algorithm. We denote this scheme ABdP+ for approximate BdP+. To conserve
space, we only show in detail the solution to the maximization problem, steps 4.1-
4.4 in Figure 4. First, we order nodes by their objective function coefficient value
from the largest to smallest (step 4.1 in Figure 4) and initialize L(yj) = PL(yj)
and U(yj) = PU (yj) (step 4.2 in Figure 4). Then, we assign each node in order
the largest value that is ≤ L(yj) and satisfies variable’s upper bound (step 4.3 in
Figure 4). Whenever a node is assigned some value zi, the values of the lower bound
L(yj), upper bound U(yj), and sum total s are decremented. We make a second pass
incrementing each node by a maximum value that satisfies all constraints until the
sum of all variables equals 1 (step 4.2 in Figure 4). Again, every time we increment
a node’s value, we decrement the value of the upper bound U(yj) and sum total
s. The sum of all variables equals 1 when s = 0. Since we cannot predict which
node Yj ∈ Y will yield the LP problem with the smallest maximum of the objective
function, we repeat computation, steps 4.1-4.2 in Figure 4, for each Yj ∈ Y , and
pick the smallest value, step 5.

The solution to the minimization problem is the same except nodes are ordered by
their objective function coefficient value, step 4.1, from smallest to largest. The
total complexity is O(|Y | · n log n), n = |D(Y)|.

Approximate BdP+
Input: A belief network (B), ma(X)=U={U1, ..., Um}, ∀u, P (x|u), selected Uj .
Input/Output: lower bounds array LB, upper bounds array UB.
Repeat:
∀Xi ∈ X\E, ∀xi ∈ D(Xi) do:
1. Compute condtional probabilities over Markov blanket Y = {Y1, ..., Yk} of Xi:
∀{y1, ..., yk} ∈ D(Y) do:

P (xi|y1, ..., yk)← αP (xi|pai)
Q

j
P (chj |paj)

2. Initialize: ∀yi ∈ D(Y), let zi = P (yi
1, ..., y

i
k|e) = P (yi, e), ki ← P (x|zi).

3. Define a linear optimization problem:

max /min f =
X

i

kizi

s.t. X
i

zi = 1

∀yj ∈ D(Yj), P L(yj) ≤
X

zi,Yj=yj

zi ≤ P U (yj)

4. Maximize: ∀Yj ∈ Y , fj ← max
P

i
kizi

4.1 Sort zi by ki from largest to smallest.
4.2. Initialize: ∀zi ∈ D(Y), zi ← 0, bi ← minyj∈y P (yj |e), fj ← 0, s← 1.0

∀yj ∈ D(Yj), L(yj)← P L(yj), U(yj)← P U (yj)
4.3. For i← 1 to |D(Y)| do (satisfy lower bounds):

zi ← min{bj , L(yj)}
bi ← bi − zi, s← s− zi, L(yj)← L(yj)− zi, U(yj)← U(yj)− zi

fj ← fj + ki · zi

End For
4.4. For i = 1 to |D(Y)| do (satisfy upper bounds):

if (s = 0) break
δ = min{bj , U(yj), s}
zi ← zi + δ
bi ← bi − δ, s← s− δ, U(yj)← U(yj)− δ
fj ← fj + ki · zi

End For
5. P U (x|e)← minYj∈Y fj

6. Minimize: ∀Yj ∈ Y , fj ← min
P

i
kizi

7. P L(x|e)← maxYj∈Y fj

Until Converged

Figure 4: Greedy algorithm for fractional multiple knapsack problem.

6 Searching for High-Probability Tuples

The problem of generating a subset of high-probability cutset has been investigated
previously in the context of bounded conditioning and, more generally, in the con-
text of solving MPE problem. The search technique include local greedy search
[11] and branch-and-bound search with different types of heuristics (e.g., see [10]).
Another option is to use a stochastic simulation such as Gibbs sampling. This is
the approach we take in the current work.

Given a problem with a set of random variables C = {C1, ..., Cm} and observations
E, we usually apply Gibbs sampling to generate a set of samples {ci} such that
the frequency of a tuple ci reflects its probability mass P (ci|e) in the posterior
distribution P (C|e). Gibbs sampling can also be viewed as a search algorithm
looking for high-probability tuples. It performs a guided random walk in the multi-
dimentional space of all cutset instances.

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

samples

un

iq
ue

 s
am

pl
es

cpcs179

cpcs360b

Figure 5: The number of unique samples generated by a Gibbs sampler sampling
over a loop-cutset is plotted against the total number of samples for two benchmarks,
cpcs179 and cpcs360b. The results are averaged over 20 instances of each benchmark
with different evidence values.

Therefore, we propose to generate cutset tuples using w-cutset sampling [5, 6] that
implements Gibbs sampling over a subset of variables. We tried first an ordered
Gibbs sampler on a cutset selecting all unique cutset instances among samples
generated. It was effective for two of our benchmarks, cpcs179 and cps360b, where
a small number of cutset tuples contained over 99% of the probability mass of
P (e). Figure 6 shows the number of unique samples as a function of h in case of
cpcs179 and cpcs360b networks. The results are averaged over 20 instances of each
benchmark. As we can see, the curves a logarithmic. The algorithm found most of
the high probability tuples quickly and then mostly revisited previously observed
tuples.

However, we found that in other benchmarks, w-cutset sampling often required too
long to find enough ”heavy” tuples. Indeed, this has been observed previously in
[11] where the effectiveness of Gibbs sampler and local greedy search in finding the
MPE solution were compared over 100 samples. The main difference between Gibbs

sampler and greedy local search is that Gibbs sampling picks the new value for a
variable at random from P (Xi|x−i) while greedy local search tends to pick the most
likely value of Xi more often, at least at the beginning of the search. Furthermore,
in [11] it was shown that a combination of Gibbs sampling and greedy local search
is more effective than either method alone. We did not incorporate the local greedy
search technique although it is a promising direction for future improvements to
ATB implementation. We did, however, modified our Gibbs sampler to maximize
the value of the output it produced. We elaborate on the options we investigated
in the next two paragraphs.

In order to obtain a probability P (Ci|c−i) from which we sample a new value for
cutset variable Ci in w-cutse sampling, we compute a joint probability P (ci, c−i)
for each value in domain of Ci and then normalize. Then, the new value of Ci is
chosen and the joint probabilities are discarded. Often, the selected value is not
the most probable one. Hence, some tuples with high probability P (ci, c−i) may be
computed but not used. Since we generated overall a small number of cutset tuples
(a few thousand at the most), it was reasonable to cache all tuples visited. Namely,
every time we computed the joint probability P (ci, c−i), we saved the corresponding
tuple in the search tree (even if value ci was not sampled). When sampling was
completed, we sorted all tuples by their probability value and marked only the h
tuples with the highest probability mass. The rest of the tuples were truncated.

Weight Ratio R

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

h

R-G

R-Gopt

% of P(e) accumulated

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000

h

%P(e)-G

%P(e)-Gopt

Average ATB interval length

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150

Time (sec)

ATB-G

ATB-Gopt

Average ATBw interval length

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0 5 10 15

Time (sec)

ATBw -G

ATBw -Gopt

Figure 6: Performance of plain cutset sampling (G) and optimized for search (Gopt)
in an instance of Barley network measured by the convergence speed of the ratio R
of the probability mass of truncated tuples to the probability mass of h generated
tuples (top left), the percent of the probability mass P (e) covered by the h generated
tuples (top right) as a function of h. We also show the convergence of the average
bounds interval as a function of time for ATB (bottom left) and ATBw (bottom
right) using the two search algorithms.

Since the time necessary for generating one sample was a lot less than the time
needed to bound one partially-instantiated tuple, the above scheme was very time-

effective incurring negligible amount of overhead. Within the same time interval,
we were able to ”pack” more probability mass into h tuples than simply selecting h
unique tuples among samples. We demonstrate this in Figure 6, demonstrating the
performance of the two schemes on an instance of Barley network with 7 evidence
nodes and P (e) = 3E − 06 that shows their typical behavior.

We denote as G (for plain Gibbs) the algorithm for selecting the h unique cutset
tuples from samples generated by ordered Gibbs sampler. We denote the scheme
that is optimized for search as Gopt. The charts contains two metrics which highlight
the efficiency of the search process from different points of view. One parameter is
the ratio R between the upper bound on the probability mass of truncated tuples
and the mass of the generatd cutset tuples:

R =

∑M ′

j=1 P (cj
1:qj

, e)
∑h

i=1 P (ci, e)

The top left chart in Figure 6 shows that R decreases faster when Gopt algorithm
is used. The second parameter is the percent of the probability mass P (e) covered
by the generated tuples, namely:

∑h
i=1 P (ci, e)

P (e)
100%

Again, the percent of P (e) covered grows much faster when h is selected from a
wider range of tuples. The charts on the bottom of Figure 6 show how the method
of selecting h cutset tuples affects the speed of convergence of ATB (bottom left)
and ATBw (bottom right) bounds interval. In both cases, the curve corresponding
to Gibbs sampling with optimized selection of cutset tuples is lower.

We do not directly compare our strategy to the approach in [9] where h tuples are
selected based on their prior weight either via enumeration of all tuples (without
evidence) or some greedy search. Obviously, the effectiveness of the prior distri-
bution as selection heuristics depends on how close the distributions P (C|e) and
P (C) are. This issue has been well-studied in the context of importance sampling.
The convergence speed and quality of approximation depends largely on how long
the algorithm takes to find regions of importance of the target distribution. The
sampling distribution of likelihood weighting, an instance of importance sampling,
is close to prior and it usually performs poorly in benchmarks where P (e) is small
compared to other importance sampling algorithms whose sampling distribution is
closer to the target distribution.

7 Other improvements to ATB Bounds

In this section, we define additional lower and upper bounds which apply in special
cases and can improve over the default ATB bounds. We obtain those bounds uti-
lizing the properties of the posterior estimate based on cutset conditioning formula
Eq.(1) but using only h cutset tuples:

P̂h(x|e) =

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e)
(52)

Note that the computed estimates are normalized:
∑

x P̂ (x|e) = 1. Ordinarily, we

do not use estimator P̂h(x|e) because we can provide no guarantees on the quality
of the estimate. Yet, we can establish conditions in the context of ATB framework

when P̂h(x|e) is a lower or upper bound on P (x|e) if the lower and upper bounds
on P (x, c1:q, e) are obtained via:

PL(x, c1:q, e) = PL(x|c1:q, e)P
L(c1:q, e) (53)

PU (x, c1:q, e) = PU (x|c1:q, e)P
U (c1:q, e) (54)

where PL(c1:q, e) and PU (c1:q, e) are any bounds on P (c1:q, e) and PL(x|c1:q, e)
and PU (x|c1:q, e) are any bounds on P (x|c1:q, e). Furthermore, we introduce a

second estimator P ′(x|e) which we obtain from Eq.(22) replacing both P (cj
1:qj

, e)

and P (x, c
j
1:qj

, e) with their corresponding upper bounds:

P ′(x|e) =

∑h

i=1 P (ci, e) +
∑M ′

j=1 PU (x, c
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU (cj
1:qj

, e)

and define an upper bound based on the value of P ′(x|e) using P̂h(x|e) value to
defined conditions when P ′(x|e) is an upper bound on P (x|e). Empirically, adjusting
upper bound PU1 for Ph or P ′ when applicable allows to reduce the average upper
bound value by 10-20%.

First, we will show that estimator P̂ always falls inside the ATB bounds interval
defined by Eq.(37) and Eq.(38).

Theorem 7.1 (Estimator is Bounded) Given a Bayesian network B with a
cutset C and evidence E and some variable X, then

PL3(x|e) ≤ P̂h(x|e) ≤ PU3(x|e)

where P̂h(x|e) is obtained from Eq. (52) and PL3(x|e) and PU3(x|e) are obtained

resepectively from Eq.(23) and Eq.(29) by setting ∀j, PL(x, c
j
1:qj

, e) = 0 and

PU (x, c
j
1:qj

, e) = PU (cj
1:qj

, e).

The proof is provided in Appendix C.

Obviously, the estimator P̂h converges to P (x|e) as h approaches M . In the limit,

when h = M , P̂ (x|e) = P (x|e). Although the distance between P̂ and P (x|e) may
not decrease monotonously, we can show the convergence in the norm defined in
the next theorem.

Theorem 7.2 (Convergence Rate) Given is a Bayesian network B with a cutset
C and evidence E and variable X. Assume M is the number of cutset state-space
and we have generated h out of M cutset tuples yielding estimator P̂h defined in
Eq.(52). Define:

Lh =

∑M

i=h+1 P (ci, e)
∑M

i=1 P (ci, e)

Then Lh monotonously converges to 0, Lh → 0, as h → M and the distance between
P (x|e) and P̂h(x|e) converges to 0 as fast as Lh:

|P (x|e) − P̂h(x|e)| ≤ Lh

The proof is provided in Appendix C. Note that the value of the norm Lh can be

bounded by replacing the
∑M

i=h+1 P (ci, e) in the numerator and denominator with

its upper bound
∑M ′

i=h+1 P (ci
1:qi

, e) and applying Lemma 4.2, yielding:

Lh ≤

∑M ′

i=h+1 P (ci
1:qi

, e)
∑h

i=1 P (ci, e) +
∑M ′

i=h+1 P (ci
1:qi

, e)

The next theorem defines two conditions under which we can predict the position of

P̂ (x|e) relative to the posterior marginal P (x|e) (namely, specify whether it is less

than or greater than P (x|e)), and thus, use P̂ (x|e) as a lower or an upper bound.

Theorem 7.3 (Using Estimator as a Bound) Given a Bayesian network B
with a cutset C and evidence E and variable X, let M be the number of tu-
ples in state-space of cutset C, h be the number of fully-instantiated tuples in
C, and c

j
1:qj

, j ∈ [1, M ′], denote a partially-instantiated cutset tuple. Define:

a =
∑h

i=1 P (x, ci, e), b =
∑h

i=1 P (ci, e). Then, ∀h ∈ (1, M), P̂h defined in Eq. (52)
has following properties:

1. (a) If ∀j ∈ [1, M ′], PU (x|cj
1:qj

, e) ≤ a
b
, then P (x|e) ≤ P̂ .

2. (b) If ∀j ∈ [1, M ′], PL(x|cj
1:qj

, e) ≥ a
b
, then P (x|e) ≥ P̂ .

The proof is provided in Appendix C.

Since the value P̂ (x|e) is readily available as soon as the first h tuples are generated,
we can monitor conditions (a) and (b) while computing bounds on P (x|ci

1:qi
, e) (

used in Eq.(53) and Eq.(54)). If the conditions are satisified, we can adjust the
upper and lower bounds accordingly. Due to Theorem 7.1, we can guaranteed that
P̂h is as good or a better bound than the bounds obtained in Eq.(23) and Eq.(29)

when ∀j, PL(x, c
j
1:qj

, e) = 0 and PU (x, c
j
1:qj

, e) = PU (cj
1:qj

, e). Next, we define an

alternative upper bound that holds when P̂ (x|e) ≤ PU (x|ci
1:qi

, e) for all i > h.

Theorem 7.4 (Upper Bound) Given is a Bayesian network B with a cutset C
and evidence E and variable X. Define:

a =

h∑

i=1

P (x, ci, e), b =

h∑

i=1

P (ci, e),

δ =

M ′∑

i=h+1

PU (x|ci
1:qi

, e)PU (ci
1:qi

, e), ∆ =

M ′∑

i=h+1

PU (ci
1:qi

, e)

If ∀i > h, a
b

< PU (x|ci
1:qi

, e), then:

P (x|e) ≤
a + δ

b + ∆
+

δ

b + δ

∆

b + ∆

The proof is provided in Appendix C.

The condition of Theorem 7.4 can also be monitored while computing the bounds
PU (x|ci

1:qi
, e). We can apply results of Theorem 7.3 and Theorem 7.4 simultaneously

selecting the tightest bound available.

An alternative application of the result of Theorem 7.4 is to adjust the bound
PU (x|ci

1:qi
, e) so that the theorem condition is satisfied. Namely, if we observe that

a
b

> PU (x|ci
1:qi

, e) when PU (x|ci
1:qi

, e) is computed, then we increase the bound

PU (x|ci
1:qi

, e) = a
b
. Using upper bound PU (x|ci

1:qi
, e) that is ”adjusted” for P̂ (x|e),

we can compute alternative bound from Theorem 7.4.

We have observed empirically that the joint effect of the adjustments from three
theorems above results in average ≈ 10 − 20% reduction of the bounds interval
which we demonstrate for several benchmarks in the empirical section.

8 Experiments

In this section, we compare empirically performance of several bounding schemes.
First, we compare the performance of BdP+ and BdP algorithms. Next, we com-
pare the performance of ATB framework using bound propagation plugin with
different approximation algrotithms for solving linear optimization problems. As
BdP+ is consistently superior to BdP , we then compare performance of BdP+
with conditioning-based schemes, namely, ATB and ATBw algorithms using bound
propagation plugin with using the best of the two approximation algorithms for LP
optimization and boosted bound propagation BBdP+.

8.1 Algorithms

We evaluate empirically performance of our ATB framework implementation de-
scribed in Section 5 using approximation propagation algorithm ABdP+, described
in Section 5.3, as a plugin. Since we always plugin ABdP+ algorithm, we refer to
the resulting algorithm as ATB after the name of the framework. We compare ATB
bounds to the bounds obtained by bound propagation scheme BdP+ defined in Sec-
tion 5 which implements the original bound propagation algorithm but restricts the
Markov blanket of the node to its relevant subnetwork. For reference, we also report
the time and quality of bounds for original bound propagation scheme BdP. We also
show that ATB can be used to ”boost” bound propagation using ATB lower and
upper bounds as input bounds to BdP+ algorithm yielding Boosted BdP+ scheme
(BBdP+).

The empirical results show that ATB bounds usually are well-centered around the
posterior marginals.

We also compare ATB bounds and the bounds obtained by pluggin bound propaga-
tion ABdP+ into ATBw framework to bound P (c1:q, e) while setting PL(x, ci, e) =
0 and PU (x, ci, e) = PU

ABdP+(x, ci, e). We know that for the same h, ATB bounds
are always as good or better compared to ATBw. However, ATBw can process
more tuples in the same amount of time. Hence, we investigate emprically the per-
formance of two schemes as a function of time. We denote the resulting algorithm
ATBw after the name of the framework.

We also computed the bounds generated by ATB framework when we plug in the
brute force bounding algorithm PL(x, ci, e) = 0 and PU (x, ci, e) = P (ci) as is
done by bounded conditioning. Recall that the brute force lower bound, expressed
in Eq. 34, is equivalent to that of bounded conditioning and the upper bound,
expressed in Eq. 36, is at least as good or better (Theorem 4.3). We denote this
instance of ATB as ATB-BF . Thus, by evaluating bounds interval for ATB-BF ,
we obtain the minimum bounded condtioning bounds interval length.

8.2 Methodology

We measure the quality of the bounds via the average length of the interval between
lower and upper bound:

I =

∑
i

∑
D(xi)

(PU (xi|e) − PL(xi|e))∑
i |D(xi)|

We compute approximate posterior marginal as the midpoint between lower and
upper bound in order to show whether the bounds are well-centered around the
posterior marginal P (x|e). Namely:

P̂ (x|e) =
PU (x|e) + PL(x|e)

2
(55)

and then measure average absolute error ∆ with respect to that approximation:

∆ =

∑
i

∑
D(xi)

|P (xi|e) − P̂ (xi|e)|∑
i |D(xi)|

We control the time and memory of bound propagation by restricting the maxi-
mum length of the conditional probability tables over the Markov blanket of a node
(Markov CPT). Whenever a Markov CPT table length of a variable exceeded a
bound k, its lower and upper bounds were appropriately fixed at 0 and 1. In Sec-
tion 8.4.2, we show how performance of BdP+ varies with k on various benchmarks
with and without evidence.

We report BdP+ results for a range of values of k. The maximum Markov CPT
length tested was at k = 219 (the size of the CPT with 19 bi-valued variables) when
the computation demands exceeded available memory. For ATB the maximum
Markov CPT state-space was fixed at minimum value of 1025 in most experiments.

We report all results for BdP , BdP+, and BBdP+ schemes ”upon convergence”
or after 20 interations, whichever occurs first. Usually algorithms converged in less
than 20 iterations. When we compare BdP+ vs. ATB, we allocate ATB the same
amount of time as BdP+ required to converge.

8.3 Benchmarks

Table 1: Complexity characteristics of the benchamrks from UAI repository:
N -number of nodes, w∗-induced width, |LC|-number of nodes in a loop-cutset,
|D(LC)|-loop-cutset state space size, Time(BE)-exact computation time via bucket
elimination, Time(LC)-exact computation time via loop-cutset conditioning.
network N w∗ |LC| |D(LC)| Time(BE) Time(LC)

Alarm 37 4 5 108 0.01 sec 0.05 sec
Barley 48 7 12 >2E+6 50 sec >22 hrs
cpcs54 54 15 6 32768 1 sec 22 sec
cpcs179 179 8 8 32768 2 sec 37 sec
cpcs360b 360 21 26 226 20 min > 8 hrs
cpcs422b 422 22 47 247 50 min > 2E+9 hrs
Munin3 1044 7 30 > 230 8 sec > 1700 hrs
Munin4 1041 8 49 > 249 70 sec > 1E+8 hrs

Our benchmarks are Alarm, cpcs networks (cpcs54, cpcs179, cpcs360b, and
cpcs422b), Barley network, and Munin3 and Munin4 networks from UAI reposi-
tory. The summary of benchmarks and their characteristics is shown in Table 8.3.
In all cases, our conditioning cutset C is the loop-cutset of the network. We find
loop-cutset of the network using mga algorithm of [3]. Evidence nodes and their val-
ues are selected at random. All exact posterior marginals were obtained by bucket
elimination [8] using the min-fill heuristics for ordering variables. The posteriors
for the Alarm network for monitoring patients in intensive care [4], which has only
37 variables and a loop-cutset of size 5, are easy to compute exactly by cutset con-
ditioning or variable elimination. We include the Alarm network for comparison
with previously proposed bounded conditioning and bound propagation schemes.
The Barley network is a part of the decision-support system for growing malting
barley developed in [14]. Barley network is also relatively small. It has only 48 vari-
ables and its induced width is only w∗ = 7. The exact inference in Barley network
takes about 30 seconds by bucket elimination. However, the network has variables
with large domain sizes (up to 67 values) and, as a result, although its loop-cutset
is 12, the loop-cutset tuple space is over 2 million. Enumerating and computing
all cutset tuples, at a rate of about 1000 tuples per second, would take over 22
hours. We have performed experiments with four CPCS networks: cpcs54, cpcs179,
cpcs360b, and cpcs422b. CPCS networks are derived from the Computer-Based
Patient Care Simulation system and based on INTERNIST-1 and Quick Medical
Reference Expert systems [21]. Finally, we have experiemented with Munin3 and
Munin4, the subsets of the Munin network which is a part of the expert system for
computer-aided electromyography [2].

We implemented bounds propagation algorithm using simplex solver from COIN-
OR libraries [1]. The experiments were conducted on 1.8Ghz CPU with 512 MB
RAM.

8.4 Results

8.4.1 Cutset sampling as a Search Algorithm

In cpcs179 and cpcs360b, we were able to accumulate 95%-99% of the probability
mass of P (e) in a small number of tuples generated:

h∑

i=1

P (c, e) > 0.95P (e)

In other networks, including cpcs54 and cpcs422b, the distribution P (C|e) was
nearly uniform and, thus, the generated cutset tuples accounted for < 10% of P (e).

8.4.2 Result for BdP vs. BdP+

In Table 2 and Table 3 we report the average error, average bounds interval length,
and computation times for BdP and BdP+ as a function of maximum Markov
blanket tuple count k. Each row corresponds to a set of experiments with a single
benchmark with a fixed k. Columns 3-5 specify the accuracy and computation time
for BdP , while columns 6-7 specify the accurcay and computation time for BdP+.
We explore the range of values of k = 2m, m ∈ [10, 20]. We report results for all
k until increasing k does not result in any changes in the results or the available
memory is exceeded.

BdP+ always computes tighter bounds and requires less computation time than
BdP . The performance gap is wider in the networks without evidence where the

Table 2: Average error ∆, length of the bounds interval I, and computation time
for BdP and BdP+ as a function of the maximum size of the Markov blanket
state-space T in networkds without evidence.

BdP(k) BdP+(k)

k I ∆ time I ∆ time

Alarm 16384 0.6369 0.1677 14 0.0753 0.0076 0.1
cpcs54 16384 0.4247 0.0229 24 0.0907 0.0049 0.1

32768 0.4173 0.0224 72 0.0907 0.0049 0.1
65536 0.4173 0.0224 72 0.0907 0.0049 0.1
131072 0.4173 0.0224 72 0.0907 0.0049 0.1
262145 0.4154 0.0221 265 0.0907 0.0049 0.1

cpcs179 16384 0.5759 0.2213 30 0.0006 0.00002 0.3
32768 0.5759 0.2213 30 0.0006 0.00002 0.3
65536 0.5759 0.2213 30 0.0006 0.00002 0.3

cpcs360b 16384 0.1505 0.0649 64 0.0006 0.0002 1.2
32768 0.1485 0.0641 80 0.0006 0.0002 1.2

cpcs422b 16384 0.2339 0.0756 79 0.0082 0.0008 8
32768 0.2329 0.0751 88 0.0082 0.0008 8

Markov blanket of each node, restricted to its relevant subnetwork, contains node’s
parents only and BdP+ converges after one iteration when processing nodes in
topological order. The results are reported in Table 2. For the largest benchamrk,
cpcs422b, with 422 nodes and w∗ = 21, the average bounds interval length is 0.23
for BdP and 0.008 for BdP+. At the same time, BdP computations take 190 sec
while BdP+ only takes 16 sec.

The results over benchmarks with evidence are reported in Table 3. Both BdP and
BdP+ bounds interval becomes larger and computation takes longer when some
nodes are assigned. Still, BdP+ remains superior to BdP . Consider the results
for cpcs360b network with 360 nodes, averaged over 20 instances of the network
with number of assigned nodes |E| ranging from 11 to 23. For h = 16384, BdP
computes the average lower and upper bound interval of length 0.0637 and requires
15 seconds. BdP+ computes an average bound interval of 0.3375 and requires
only 68 seconds. We observe similar results for other benchmarks. Note that, as k
increases, the computation time of both BdP and BdP+ increases fast, while the
bounds interval decreases only a little.

8.4.3 Approximating LP using two variants of Fractional Packing

In Figure 8 we compare the performance of ATB framework when plugging in the
bound propagation scheme BdP+ using the two algorithms for approximately solv-
ing the linear optimization problems of BdP+. We defined the linear optimization
problem and described the two approximation schemes in Section 5.3. One algo-
rithm, FP1, is a simple fractional knapsack packing. The second algorithm, FPM ,
solves a more sophisticated fractional packing and covering problem with multiple
knapsacks.

We compare the performance of plain BdP+ algorithm and BdP+ with two dif-
ferent approximation schemes, denoted BdP+-FP1 and BdP+-FPM , in Figure 7
over 20 instances of cpcs360b network. The chart on the left shows that for the
same maximum Markov blanket size, average bounds interval of BdP+ is smaller

Table 3: Average error ∆, length of the bounds interval I, and computation time
for BdP and BdP+ as a function of the maximum size of the Markov blanket
state-space T in networks with evidence.

BdP(k) BdP+(k)

k I ∆ time I ∆ time

Alarm 16384 0.8276 0.2661 13 0.6376 0.2084 5.3
|E|=3-6 65536 0.8276 0.2661 13 0.4401 0.1299 3.0
cpcs54 4097 0.6213 0.0469 12 0.2661 0.0141 3.4
|E|=2-6 8193 0.6093 0.0454 24 0.2643 0.0138 5.4

16384 0.6021 0.0448 46 0.2638 0.0138 6.6
32768 0.5986 0.0445 64 0.2637 0.0138 7.4
65536 0.5957 0.0440 98 0.2637 0.0138 10
131072 0.5954 0.0439 116 0.2635 0.0137 16

cpcs179 1024 0.6036 0.2228 30 0.2216 0.0689 7.2
2048 0.6036 0.2228 30 0.2193 0.0684 7.6
4096 0.6034 0.2227 31 0.1914 0.0589 10
8192 0.6034 0.2227 31 0.1766 0.0550 14
16384 0.6034 0.2227 30 0.1525 0.0456 20

|E|=12-24 32768 0.6034 0.2227 30 0.1502 0.0450 24
65536 0.5983 0.2214 90 0.1237 0.0365 130

cpcs360b 1025 0.3614 0.1532 15 0.1239 0.0516 4.2
|E|=11-23 2049 0.3571 0.1528 18 0.1132 0.0468 4.7

4096 0.3558 0.1522 19 0.0998 0.0408 6
8192 0.3522 0.1504 23 0.0825 0.0330 8
16384 0.3375 0.1423 68 0.0637 0.0247 15
32768 0.3370 0.1419 85 0.0554 0.0215 24
65536 0.1430 0.3367 120 0.0500 0.0192 36
131072 0.1430 0.3366 128 0.0429 0.0160 80
262144 0.1428 0.3364 190 0.0377 0.0137 130

cpcs422b 16384 0.3326 0.1175 90 0.2043 0.0637 32
|E|=6-11 32768 0.3310 0.1167 102 0.1999 0.0617 44

65536 0.3160 0.1092 317 0.1667 0.0467 465

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 5 10 15 20

m

A
vg

 B
o

u
n

d
s

In
te

rv
al

BdP+

ABdP+FPM

ABdP+FP1

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7 8 9

Time (sec)

A
vg

 B
ou

nd
s

In
te

rv
al

BdP+

ABdP+FPM

ABdP+FP1

Figure 7: Bounds interval length for BdP+ algorithm optimizing LP by fractional
packing with 1 (BdP+-FP1) and many (BdP+-FPM) knapsacks, averaged over 20
instances of cpcs360b network, as a function of m, where maximum Markov table
size is bounded by 2m, and time.

than the bounds interval of BdP+-FPM by about 0.2 which, in turn, is smaller
than BdP+-FP1 by 0.2. As the maximum Markov blanket size bound of 2m in-
creases with m, the distance between BdP+-FP1 and BdP+-FPM remains the
same while the distance between BdP+-FP1 and BdP+ increases The chart in
Figure 7, right, shows the performance of the tree schemes as a function of time.
We see that BdP+ can outperform the FP1 and FPM when given enough time to
process large Markov tables. However, in short term, we can obtain more accurate
bounds using BdP+-FPM which outperforms both BdP+-FP1 and BdP+.

Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB-FP1

ATB-FPM

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0

0.1

0.2

0.3

0.4

0 50 100 150 200

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATB-FP1

ATB-FPM

Figure 8: Average bounds length for ATB framework with a bound propagation
plugin optimizing LP by fractional packing with 1 (ATB-FP) and many knapsacks
(ATB-FPM).

We demonstrate the performance of ATB scheme with BdP+-FP1 and BdP+-
FPM plugins, denoting the resulting algorithms ATB-FP1 and ATB-FPM , on
two representative benchmarks, Barley and cpcs422b. The results on other bench-
marks are similar. We report the bounds interval length, obtained using ATB
framework with two variants of BdP+, as a function of time. We control the com-
putation time by the number of generated cutset tuples h. The comptuation time

increases with h. We see in Figure 8 that the ATB-FPM line is consistently lower
than ATB-FP1. We also observe that the difference between the results of the two
schemes becomes smaller with time because the percentage of P (e) covered by h
generated tuples, whose probabilities are computed exactly, increases. This is more
noticable in case of cpcs422b, Figure 4, bottom, because the percentage of P (e)
covered by generated cutset tuples in cpcs422b grows faster with h (and with time)
than in Barley.

8.4.4 Performance of ATBw, ATB, BdP+ and BBdP+

In this section, we compare the results of the various bounding schemes, using
the superior variants discussed in earlier sections. Namely, we report the results
for BdP+ variant of bound propagation that incorporates the relevant subnetwork
properties into computation. We report bounds obtained using ATB and ATBw

frameworks using bound propagation plugin with FPM approximation algorithm.
BBdP+ algorithm is equivalent to BdP+ except it uses the ATB bounds as input.
As we mentioned earlier, we also compute bounds obtain using ATB framework
and Brute Force bounding algorithms (ATB-BF). In all of our experiments, the
ATB-BF bounds interval length, and, subsequently, bounded conditioning bounds
interval, remained > 0.99 for all values h within the time interval tested. Thus, we
do not report ATB-BF results in the tables or charts that follow.

We summarize results for each benchmarks in a tabular format and charts. The
tables report the results for ATBw, ATB, and BBdP+ algorithms as a function
of h. Since BdP+ results do not depend on h, we do not include BdP+ in those
tables. The results for BdP+ were reported in Table 3. We use charts to show the
convergence of the bounds interval length of ATBw, ATB, and BBdP+ algorithms
as a function of h. Separately, we show the convergence of the bounds interval
length of ATBw, ATB, BBdP+, and BdP+ as a function of time.

Results for Alarm network. As noted before, the Alarm network is easy to for
exact computation. We present the results in order to relate to bounds obtained
previously by bounded conditioning [9] and bound propagation [16]. Alarm network
has N = 37 nodes and a loop-cutset of size |LC| = 5 with the cutset state-space of
size k = 108. The exact posterior marginals in Alarm network can be obtained using
bucket elimination or exact cutset conditioning in less than a second. Table 8.4.4
reports the average bounds length I, average error ∆, and average time for ATBw,
ATB, and BBdP+ as a function of the number of explored cutset tuples h.

Table 4: Average error ∆, bounds interval I, and computation time t for BdP+ ,
ATB, and BBdP+ over 20 instances of Alarm network. Parameter h indicates the
number of cutset tuples computed exactly in ATB.

Alarm, N=37, w∗=5, |LC|=8, |DLC |=108, |E|=1-4
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
25 0.51 0.16 0.021 0.41 0.12 0.038 0.35 0.10 3.4
34 0.38 0.12 0.022 0.31 0.09 0.039 0.27 0.08 2.3
40 0.31 0.10 0.025 0.25 0.07 0.044 0.22 0.06 2.1
48 0.20 0.09 0.035 0.24 0.05 0.051 0.15 0.04 1.5
50 0.16 0.06 0.036 0.16 0.04 0.052 0.12 0.03 1.2
54 0.12 0.05 0.044 0.13 0.03 0.059 0.09 0.02 0.86

Recall that for k ≥ 65536 BdP+ obtained an average interval length of 0.44 within 3
seconds. Both ATBw and ATB compute more accurate bounds starting with h = 34

in the second row of Table 8.4.4. For h = 34, the average lengths of ATBw and ATB
bounds are IATBw = 0.38 and IATB = 0.31 respectively. The computation times are
0.022 and 0.039 seconds, an order of magnitude less than BdP+. The corresponding
BBdP+ bounds interval of IBBdP+ = 0.27 is also smaller than that of BdP+ and
it is obtained within 2.3 seconds. As a function of h, BBdP+ is superior to ATB
which is superior to ATBw. However, it is not cost-effective to inverst additional
time in bounding P (x|c1:q , e). For example, while ATBw computes bounds interval

of IATBw = 0.12 within 0.044 seconds, ATB only computes IATB = 0.25 within
the same time (h = 40). This is not suprising because network is very small and
the loop-cutset state-space is very small (108 states). As expected, the bounds
generated by ATBw, ATB, and BBdP+ decrease as h increases. Oddly, BBdP+
computation time decreases as h increases which indicates that simplex algorithm
computes faster with tighter input bounds.

Table 5: Average error ∆, bounds interval I, and computation time t for BdP+
, ATB, and BBdP+ averaged over 20 instances of Barley network. Parameter h
indicates the number of cutset tuples computed exactly.

Barley, N=48, w∗=7, |LC|=12, |DLC | >2E+6, |E|=4-8
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
3036 0.499 0.200 4.7 0.270 0.093 26.3 0.160 0.044 28.4
6201 0.498 0.199 9.4 0.257 0.088 44.9 0.154 0.042 47.1
9012 0.497 0.199 14.0 0.244 0.083 66.3 0.151 0.041 68.5
12047 0.496 0.198 18.5 0.237 0.080 83.2 0.150 0.041 85.4
15210 0.495 0.198 23.2 0.230 0.077 95.3 0.148 0.041 92.2
19206 0.489 0.195 26.3 0.228 0.075 97.6 0.146 0.040 98.5

Results for Barley network. We applied the algorithms over 20 instances of
Barley network with different evidence, picked at random among the input nodes
as defined in [14]. The maximum computation time interval is 100 seconds. Within
100 seconds, we were able to compute ATBw and ATB bounds over h = 2000
cutset tuples, that is less than 0.0002% of over 2 million tuples, which accounted
for ≈ 1% of the weight of P (e). The results are reported in Figure 9. Both ATBw

and ATB bounds interval length decreases as h increases as we show in Figure 9,
top. But the convergence is slow both with time and with h. For example, the
ATBw bounds interval remains close to 0.5 while ATB bounds interval decreases
from 0.27, obtained in 25 seconds, to 0.23. The BBdP+ improves over ATB, but
shows a similar slow anytime convergence. It computes 0.17 bounds interval in 25
seconds which decreases to 0.14 after 90 seconds. The length of bounds interval of
ATBw, ATB, BdP+, and BBdP+ is plotted as a function of time in Figure 9,
bottom. BdP+ converges quickly yielding an average bounds length of 0.23 in less
than 2 seconds but does not improve any more with time. It takes ATB about
70 seconds to achieve the same accuracy. The best anytime method is BBdP+
since its overhead, compared to ATB computation time, is small. Note, that exact
bucket elimination (BE) is superior (takes 50 seconds), but we should compare with
loop-cutset that uses the same amount of space and takes over 22 hours to process
all cutset tuples. The average errors of ATB and ATBw in Table 5 are close to a
half of the interval length and hence, the true posterior marginals tend to be skewed
to one end of the bounds interval. The BBdP+ bounds are better centered since
the average error is about quarter of the bounds interval length.

Results for CPCS networks. Results for cpcs54 are given in Table 6 and Fig-
ure 10, for cpcs179 in Table 7 and Figure 11, for cpcs360b in Table 8 and Figure 12,

Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000 12000 14000

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 9: Results for Barley network as a function of h (top) and a function of time
(bottom), averaged over 20 instances. Exact inference using bucket elimination is
30 seconds. Exact inference using cutset conditioning is > 22 hours.

cpcs54, N=54, |LC|=16, w*=15, |E|=2-6

0.E+00

1.E-01

2.E-01

3.E-01

4.E-01

5.E-01

6.E-01

7.E-01

8.E-01

9.E-01

0 2000 4000 6000 8000 10000 12000

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

cpcs54, N=54, |LC|=16, w*=15, |E|=2-6

0.E+00

1.E-01

2.E-01

3.E-01

4.E-01

5.E-01

6.E-01

7.E-01

8.E-01

0 1 2 3 4 5 6 7 8

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 10: Results for cpcs54 network as a function of h (top) and a function of time
(bottom), averaged over 20 instances. Exact inference using bucket elimination is
1 second. Exact inference using cutset conditioning is 15 seconds.

Table 6: Average error ∆, bounds interval I, and computation time t for BdP+ ,
ATB, and BBdP+ over 20 instances of cpcs54 network. Parameter h indicates the
number of cutset tuples computed exactly in ATB.

cpcs54, N=54, |LC|=15, w∗=15, |DLC |=32678, |E|=2-8
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
513 0.8366 0.0618 0.4 0.5101 2.7E-2 0.9 0.3405 1.1E-2 3.1
1114 0.7765 0.0555 0.7 0.4510 2.3E-2 1.5 0.3245 1.0E-2 3.1
1343 0.7560 0.0535 0.9 0.4363 2.3E-2 1.7 0.3196 9.9E-3 3.3
1581 0.7354 0.0516 1.0 0.4192 2.1E-2 1.9 0.3132 9.4E-3 3.4
1933 0.7060 0.0489 1.3 0.3972 2.0E-2 2.2 0.3037 8.5E-3 3.6
2290 0.6800 0.0466 1.5 0.3820 1.9E-2 2.4 0.2966 7.8E-3 3.9
2609 0.6574 0.0447 1.8 0.3665 1.8E-2 2.7 0.2882 7.3E-3 4.0
3219 0.6175 0.0415 2.1 0.3385 1.6E-2 3.2 0.2715 6.7E-3 4.5
3926 0.5731 0.0380 2.7 0.3054 1.4E-2 3.8 0.2515 6.3E-3 5.2
6199 0.4564 0.0292 4.5 0.2299 9.7E-3 5.9 0.1967 5.9E-3 6.6
7274 0.4086 0.0256 5.4 0.1986 8.0E-3 6.9 0.1725 5.6E-3 7.3

for cpcs422b in Table 9 and Figure 13.

We focus on cpcs54 first, the smallest of CPCS networks, with 54 nodes and induced
width w∗ = 15. Its loop cutset size is 16 and yields 65536 (216) cutset tuples. Exact
inference in cpcs54 by bucket elimination takes less than 1 second. while cutset
conditioning requires 15 seconds.

The average bounds interval length obtained by ATBw is the worst both as a
function of h, Figure 10, top, and as a function of time, Figure 10, bottom. BBdP+
is the best in both cases and offers substantial improvement over ATB in the first 5
seconds of computation. In 6 seconds, ATB and BBdP+ curves become very close.
The BdP+ scheme obtains quickly the bounds interval of 0.26 with the maximum
table size of 4096 and does not improve much as maximum Markov table size is
increased up to the memory limit (see Figure 3). ATB outperforms BdP+ after
5 seconds. The bounds of ATB, ATBw, and BBdP+ appear to be well centered
around the P (x|e) as Table 6 shows.

Results for cpcs179. The results for cpcs179 network, averaged over 20 instances
with difference evidence, are shown in Table 7 and Figure 11. The results for ATB,
ATBw, and BBdP+ as a function of time are similar and speak for themselves.
As a function of time, BdP+ is the worst algorithm. Within the first 20 seconds,
the best algorithm is ATB. The performance of BBdP+ as a function of time at
first is lagging behind both ATBw and ATB. The average BBdP+ computation
time per network instance is 8 seconds. Hence, its first data point on the chart
is at 10 seconds (with ATB time added). However, as ATB bounds improve,
the BBdP+ bounds interval decreases very fast. After 17 seconds, it outperforms
ATBw. Extrapolating the results, we can predict that BBdP+ will outperform
ATB after about 23 seconds.

cpcs360b. The results for cpcs360b are summarized in Table 8 and Figure 12. The
network has loop-cutset of size 26. Since all nodes have domains of size 2, the loop-
cutset state space size is 226, prohibitevely large for complete enumeration. The
exact computation time for cpcs360b by bucket elimination is about 20 minutes
since the induced width is 21. We experimented with 20 instances of the network
number of evidence nodes ranging from 11 to 23.

Table 7: Average error ∆, bounds interval I, and computation time t for BdP+ ,
ATB, and BBdP+ over 20 instances of cpcs179 network. Parameter h indicates
the number of cutset tuples computed exactly in ATB.

cpcs179, N=179, w∗=8, |LC|=8, |DLC |=32768, |E|=12-24
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
417 0.4638 0.1696 1.7 0.1538 0.0347 3.4 0.0740 0.0186 11.0
590 0.3529 0.1283 2.0 0.1039 0.0221 4.2 0.0555 0.0137 12.0
827 0.2592 0.0937 2.5 0.0718 0.0151 4.9 0.0419 0.0105 13.0
989 0.2056 0.0741 2.9 0.0533 0.0109 5.5 0.0325 0.0080 14.0
1128 0.1721 0.0619 3.4 0.0420 0.0086 6.2 0.0272 0.0067 15.0
1250 0.1473 0.0529 3.4 0.0347 0.0072 6.6 0.0232 0.0057 14.0
1634 0.0935 0.0334 4.5 0.0210 0.0045 7.6 0.0146 0.0035 16.4
1878 0.0682 0.0243 5.4 0.0141 0.0031 8.7 0.0105 0.0026 16.5
2107 0.0539 0.0192 6.2 0.0111 0.0025 9.6 0.0084 0.0021 17.3
2282 0.0446 0.0158 7.3 0.0089 0.0020 10.9 0.0068 0.0017 19.2
2416 0.0388 0.0138 7.8 0.0076 0.0017 11.3 0.0060 0.0015 18.9

Table 8: Average error ∆, bounds interval I, and computation time t for BdP+,
ATB, and BBdP+ as a function of the number of generated cutset tuples h averaged
over 20 instances of cpcs360b network with random evidence on leaves.

cpcs360b, N=360, w∗ = 21, |LC| = 26, |E|=11-23
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
56 0.1256 0.0598 2.7 0.0051 9.5E-4 5.3 0.0031 8.4E-4 29.9
94 0.0788 0.0372 4.4 0.0027 4.5E-4 8.6 0.0017 4.1E-4 44.8
142 0.0532 0.0250 5.5 0.0019 3.3E-4 10.2 0.0013 3.1E-4 55.1
205 0.0361 0.0168 7.6 0.0010 1.7E-4 13.5 0.0007 1.6E-4 46.3
263 0.0275 0.0128 9.2 0.0007 1.2E-4 15.1 0.0008 1.3E-4 54.0
306 0.0234 0.0109 10.5 0.0006 9.5E-5 17.6 0.0004 8.9E-5 43.5
381 0.0179 0.0083 13.0 0.0004 5.2E-5 21.6 0.0003 4.9E-5 57.3
485 0.0133 0.0061 16.6 0.0003 4.1E-5 26.5 0.0002 3.8E-5 55.2
586 0.0102 0.0047 20.9 0.0002 3.1E-5 32.5 0.0002 2.8E-5 65.3
686 0.0084 0.0038 24.1 0.0002 2.6E-5 36.2 0.0001 2.4E-5 62.6

cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

1.E-03

1.E-02

1.E-01

1.E+00

0 500 1000 1500 2000 2500 3000

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 11: Results for cpcs179 network as a function of h (top) and a function of
time (bottom), averaged over 20 instances. Exact inference using bucket elimination
is 2 seconds. Exact inference using cutset conditioning is 37 seconds.

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 100 200 300 400 500 600 700 800

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40 50 60

Time (sec)

A
vg

 B
ou

nd
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 12: Results for cpcs360b as a function of h (top) averaged over 20 instances.
Evidence is chosen randomly among leaf nodes only. Exact inference using bucket
elimination is 20 minutes. Exact inference using cutset conditioning is > 8 hours.

We have compared the performance of all four bounding algorithms within 5 to 60
seconds that is only a small fraction of the time necessary to compute posterior
marginals exactly. The convergence of all conditioning-based schemes was very fast
in cpcs360b. At h ≈ 700, the h cutset tuples contained on average about 98% of the
probability mass of P (e). The results are overall similar. ATBw algorithm converges
fast decreasing from I = 0.06 for h = 56 to I = 0.008 for h = 686. However,
ATB and, consequently BBdP+, converged considerably faster. All bounds except
ATBw appear to be well centered around P (x|e).

BBdP+ computation time varied sporadically with h as the input bounds to the
linear optimization problem changed. On average, BBdP+ required considerably
longer to compute 1 instance of the network, minimum of 25 seconds, compared
to plain BdP+ which computed the bounds for the same network instances with
the same maximum Markov table bound in 6 seconds. As we see from cpcs360b
results, we encountered the rare instances in which the linear packing/covering
problems requiring a long time to computing using simplex solver. Indeed, this
is the class of problems that inspire the development of approximate methods for
linear packing/covering problems. As we see, ATBw, ATB, and BBdP+ schemes
outperformed BdP+. The bounds computation in [15], when applied to cpcs360b
benchmark,. achieved average bounds interval length of 0.03 in 10 seconds. Within
the same time, ATB computes an average bounds interval of ≈ 0.001. However,
the comparison may not be on the same instances since the evidence nodes are not
the same.

Table 9: Average error ∆, bounds interval I, and computation time t for BdP+,
ATB, and BBdP+ over 20 instances of cpcs422b network. Parameter h indicates
the number of cutset tuples computed exactly in ATB.

cpcs422b, |E|=6-11
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
256 0.7611 0.3243 12.2 0.2464 9.0E-2 26.1 0.1563 5.2E-2 109.2
379 0.7506 0.3194 15.1 0.2166 7.8E-2 32.0 0.1427 4.8E-2 41.0
561 0.7382 0.3137 16.7 0.2045 7.3E-2 36.6 0.1361 4.5E-2 46.0
862 0.7320 0.3109 19.8 0.1903 6.8E-2 44.0 0.1285 4.3E-2 54.1
1182 0.7215 0.3061 22.1 0.1835 6.5E-2 50.1 0.1253 4.1E-2 60.0
1502 0.7148 0.3031 24.7 0.1775 6.3E-2 56.4 0.1223 4.1E-2 65.7
2427 0.6898 0.2918 31.9 0.1678 5.9E-2 73.2 0.1179 3.9E-2 82.2
3062 0.6791 0.2871 35.9 0.1639 5.7E-2 83.3 0.1156 3.8E-2 92.3
4598 0.6554 0.2765 46.4 0.1530 5.4E-2 110.5 0.1095 3.6E-2 119.3

cpcs422b. The result for the fourth and the largest cpcs network, cpcs422b, are
shown in Table 9 and Figure 13. Cpcs422b is challenging for any inference scheme.
as it has large induced width of w∗ = 22. It has a loop-cutset size |LC| = 47 and
the loop-cutset tuple count is 247. We estimated that enumerating all those tuples
would require over 2E + 9 hours.

ATB consistently outperforms ATBw as a function of h and time and outperforms
BdP+ after 35 seconds. BBdP+ improves considerably over ATB as a function
of h in Figure 13, top. The BBdP+ result for h=1182, I = 0.1253, is the best of
all algorithms for the 60 second time interval. However, the computation time of
the BBdP+ was unpredictable again, similar to cpcs360b, and much longer than
BdP+ algorithm. Hence, we did not plot the bounds interval for BBdP+ as a
function of time in Figure 13, bottom, and refer the reader to the Table 9.

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0.E+00

3.E-01

6.E-01

9.E-01

0 100 200 300 400 500 600

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0.E+00

3.E-01

6.E-01

9.E-01

0 10 20 30 40 50 60

Time (sec)

A
vg

 B
ou

nd
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 13: cpcs422b average bounds length as a function of h (top) and time (bot-
tom), averaged over 20 instances. Exact inference using bucket elimination is 50
minutes. Exact inference using cutset conditioning is > 2E + 9 hours.

The bounds interval obtained by ATB and BdP+ are comparable to the average
interval length of 0.15, obtained within 30 seconds, as reported in [15]. After 30
seconds, both ATB (see Table 9, h = 379) and BdP+ (see Table 3) compute average
bounds interval of length ≈ 0.21. ATB’s’ bounds interval is reduced to 0.15 after
100 seconds (see Table 9, h = 4598). Note also that BBdP+ computes a smaller,
I = 0.12, bound than [15] in 40 seconds.

Table 10: Average error ∆, bounds interval I, and computation time t for BdP+,
ATB, and BBdP+ over 20 instances of Munin3 network. Parameter h indicates
the number of cutset tuples computed exactly in ATB.

Munin3, N=1044, w∗=7, |LC|=30, |E|=257
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
392 0.2931 0.1270 10.0 0.0473 1.8E-2 14.3 0.0458 1.9E-2 23.5
882 0.2277 0.0960 14.9 0.0287 1.1E-2 21.9 0.0279 1.1E-2 32.5
1176 0.2077 0.0865 15.5 0.0272 9.9E-3 21.6 0.0265 1.0E-2 31.7
1568 0.1857 0.0762 18.7 0.0243 8.7E-3 26.6 0.0237 8.8E-3 37.6
1764 0.1831 0.0749 20.1 0.0241 8.6E-3 28.6 0.0235 8.7E-3 42.1
3332 0.1714 0.0696 34.4 0.0187 6.6E-3 47.5 0.0182 6.6E-3 56.5
5096 0.1589 0.0639 50.7 0.0172 6.0E-3 69.4 0.0167 6.0E-3 78.8
5586 0.1543 0.0618 56.5 0.0160 5.5E-3 76.3 0.0156 5.6E-3 85.0

Table 11: Average error ∆, bounds interval I, and computation time t for BdP+,
ATB, and BBdP+ over 20 instances of Munin4 network. Parameter h indicates
the number of cutset tuples computed exactly in ATB.

Munin4, N=1041, w∗=8, |LC|=49, |E|=235
ATBw ATB BBdP+

h I ∆ time I ∆ time I ∆ time
1372 0.7962 0.3637 11.2 0.3621 1.6E-1 20.1 0.2202 9.4E-2 31.4
3087 0.7482 0.3409 17.5 0.2991 1.3E-1 29.7 0.2065 8.8E-2 38.8
4802 0.7321 0.3333 22.8 0.2848 1.2E-1 39.5 0.2020 8.6E-2 57.0
6517 0.7087 0.3221 29.0 0.2651 1.1E-1 51.8 0.1951 8.3E-2 60.7
8232 0.6932 0.3147 33.9 0.2536 1.1E-1 59.7 0.1903 8.1E-2 72.9
16807 0.6440 0.2914 63.6 0.2151 8.8E-2 108.5 0.1726 7.3E-2 121.3
25382 0.6249 0.2823 93.3 0.2025 8.3E-2 160.5 0.1659 7.0E-2 174.1
33957 0.6058 0.2732 122.4 0.1909 7.8E-2 207.8 0.1594 6.7E-2 221.0
42532 0.5917 0.2665 151.6 0.1832 7.4E-2 255.6 0.1548 6.5E-2 265.4

Munin’s benchmarks. Our last two benchmarks are Munin3 and Munin4. The
evidence in each network instance has been pre-defined. Both networks are large,
with 1044 and 1041 nodes. However, their induced widths are relatively small.
The induced width of Munin3 is w∗ = 7 and induced width of Munin4 is w∗ = 8.
Subsequently, exact inference by bucket elimination is fairly easy. As we report in
Table 8.3, the exact computation time of Munin3 is 8 seconds and Munin4 is 70
seconds. The empirical results for each network are summarized in Tables 10 and 11
in Figures 14 and 15.

The behavior of the algorithms in Munin3 and Munin4 is similar and is self-
explanatory. First, we take a look at the charts demonstrating the convergence
of the ATBw, ATB, and BBdP+ bounds interval with h in Figure 14, top, and

Munin3, N=1044, |LC|=30, w*=7, |E|=257

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 500 1000 1500 2000

h

A
vg

 B
ou

nd
s

In
te

rv
al

ATBw

ATB

BBdP+

Munin3, N=1044, |LC|=30, w*=7, |E|=257

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 14: Munin3 average bounds length as a function of h (top) and time (bot-
tom). Exact inference using bucket elimination is 8 seconds. Exact inference using
cutset conditioning is > 1700 hours.

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.3

0.6

0.9

0 5000 10000 15000 20000

h

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BBdP+

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.3

0.6

0.9

0 50 100 150 200 250

Time (sec)

A
vg

 B
o

u
n

d
s

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 15: Munin4 average bounds length as a function of h (top) and time (bot-
tom). Exact inference using bucket elimination is 70 seconds. Exact inference using
cutset conditioning is > 1E + 8 hours.

Figure 15, top. The ATBw algorithm is the worst. Its performance is especially
poor in case of Munin4. After h ≈ 1000, the ATBw bounds interval length remains
close to 0.8. Its performance improves with h very slowly. The ATB bounds in-
terval is an order of magnitude smaller than ATBw for Munin3 but improvement
is more noticeable in Munin4. The bounds in this case appear to be skewed to the
end of the bounds interval for all three schemes since average error is very close to
half of the bounds interval length.

Now, we look at the performance of ATBw, ATB, BBdP+, and BdP+ as a func-
tion of time. BdP+ algorithm computes bounds quickly, in a few seconds, and does
not improve with time. It computes bounds interval of 0.24 for Munin3 and 0.23
for Munin4 within 12 and 15 seconds respectively. In Munin3, ATB outperforms
BdP+ by a wide margin yielding a bounds interval of 0.05 in 12 seconds. BBdP+
performance becomes similar to ATB after 30 seconds. In Munin4, the loop-cutset
size is larger and, subsequently, covergence of ATB is slower. Intially, BdP+ out-
performs ATB. In 15 seconds, ATB computes bounds interval length of 0.37. As
h increases, ATB outperforms BdP+ after 100 seconds. Although BBdP+ incurs
initial comptuation overhead compared to ATB, it consistently outperforms ATB
timewise. BBdP+ outperforms BdP+ after about 25 seconds.

8.5 Summary

Comparison of BdP and BdP+ over all benchmarks in Tables 2 and 3 indicates
that taking advantage of available information about network structure can yield
significant improvements in performance of bound propagation scheme.

Using cutset sampling as a search method proved very effective. We were able to
accumulate over 90% of the weight of P (e) in a few thousand tuples in cpcs179,
cpcs360b, and Munin3. In cpcs422b and Munin4, we accumulated up to 20-30% of
probability mass of P (e) after generating just a few hundred of cutset tuples.

The empirical results confirm our expectations that by combining conditioning and
bound propagation in the ATB framework, we can obtain a bounding scheme that
is superior to the stand-alone bound propagation. Note that bound propagation
plugin solved the linear optimization problem approximately, giving BdP+ an ad-
vantage over ATB at the start. Despite that, in several benchmarks, where the
distribution P (C|e) indeed peaked over just a few cutset tuples, the ATB algo-
rithm outperformed BdP+ by a wide margin. In those benchmarks where the
distribution P (C|e) was closer to uniform, the convergence of ATB bounds was
slower and required 30-100 seconds to achieve the same accuracy as BdP+.

In larger networks, cpcs360b and cpcs422b, ATB obtained a small bounds interval in
a fraction of time needed to compute exact posterior marginals by bucket elimination
or cutset conditioning. It computed average bounds interval of 0.0002 for cpcs360b
and 0.15 for cpcs422b within 36 and 110 seconds respectively. In networks with
smaller induced width, both ATB nor BdP+ were quickly outperformed by bucket
elimination. However, for fair comparison, we have to contrast ATB computation
time to that of cutset conditioning algorithm using linear amount of memory. ATB
produced non-trivial lower and upper bounds in a fruction of time that cutset
conditining requires to enumerate all tuples.

We also demonstrated that in all benchmarks except Alarm network, ATB con-
verges faster with time than ATBw. Namely, in most instances, generating ex-
tra cutset tuples using the time saved by eliminating computation of bounds on
PU

ABdP+(x|cj
1:qj

, e) is not enough to compensate for the slower bounds convergence

rate. Thus, it is usually cost-effective to invest time into bounding P (x, c1:q, e).

Comparison of BdP and BdP+ over all benchmarks in Tables 2 and 3 indicates
that taking advantage of available information about network structure can yield
significant improvements in performance of bound propagation scheme.

The results show that boosting the bound propagation algorithm by using output
ATB bounds as input to BdP+ is cost-effective when bound propagation compu-
tation time in BBdP+ is small compared to the ATB computation time. The
performance of BBdP+ in several benchmarks affected by the sporadic changes in
the computation time of the simplex solver, a problem that has been previously
observed when optimizing fractional packing and covering problem and motivated
the development of fast approximation algorithms.

Overall, we have demonstrated that ATB framework can yield meaningful bounds
interval after processing a few thousand tuples out of the millions of tuples in cutset
domain.

9 Conclusions and Future Work

In this paper, we evaluated empirically the bound propagation algorithm [16] and
defined enhancements that take advantage of network connectivity. We demon-
strated empirically that their implementation improves the bounds and reduces
computation time. We also defined approximation algrithms for solving exactly
the linear optimization subproblems in the bound propagation scheme trading ac-
curacy for speed. Subsequently, we defined an any-time bounding scheme (ATB)
that builds on two previously proposed methods: bounded conditioning [9] and
bound propagation. It generates a subset of cutset tuples, computing exactly their
probabilities, and then uses bound propagation scheme (using an approximate algo-
rithm for solving linear optimization problem) to bound the tails of the distribution
P (c, e) over the un-explored cutset tuples. We showed that the bounds computed
by any-time bounding framework can be used to boost the performance of bound
propagation algorithm by using ATB bounds as input.

Other related work includes the search algorithm for estimating posterior prob-
abilities proposed in [19]. The similarity with our work is that a search tree is
partially-explored while the sum of the remaining probabilities is bounded. In fact,
the bounds posterior marginals obtained in [19] are similar to BCE bounds derived
in this paper. However, in [19] the search tree corresponds to the state space of the
whole network and hence, it is exponential in the network size. Instead of bounding
the sum of probabilities on partially instantiated tuples directly, they ”update” the
bounding function when a conflict is discovered (tuple with probability 0). The
ATB framework subsumes both bounded conditioning and the search algorith in
[19] offering a unifying approach to bounding that combines search and exact infer-
ence over part of the search space (corresponding to the enumeration of the first h
cutset tuples) and bounds in some way the sum of probabilities over the rest of the
search space. In bounded conditioning, the rest of the probability mass is bounded
via prior and in [19] it is refined via counting of the conflicts.

One of the alternative approaches for computing bounds was proposed in [20] where
”context-specific” bounds were obtained from simplifying the conditional probabil-
ity tables. The method performs a variant of bucket elimination where intermediate
tables are collapsed by grouping some probability values together. However, since
the method was validated only on a small car diagnosis network with 10 variables,
it is hard to draw conclusions about its effectiveness. In [15], the bounds are also
obtained by simplifying intermediate probability tables in the variable elimination
order but, instead of grouping probabilities, the author solves an optimization prob-

lem to find a table decomposition that minimizes the error. A specialized large devi-
ation bounds approach for layered networks is proposed in [13, 12] and an elaborate
bounding scheme with non-linear objective function was proposed in [17].

It is hard to compare all of the above methods side by side as they exploit different
Bayesian network properties in order to compute bounds. However, only bounded
condition and ATB offer any-time properties where we can improve our bounds by
investing more time and exploring more cutset instances. The main improvement
in ATB over bounded conditioning is that 1) we compute much tighter bounds
on P (c, e) than prior P (c) used by bounded conditioning; 2) we compute upper
bounds using P (x, c, e) that is often a lot smaller than P (c, e). It is also worth
noting that our approach offers a complete framework for computing bounds where
any bounding algorithm can be used to bound P(c,e) and P(x,c,e) for partially-
instantiated tuples.

9.1 Future Work

There are many options for improving the performance of ATB with bound propa-
gation plugin. Performance of bound propagation depends on the efficiency of the
linear optimization algorithm. We have looked at only two approximation schemes
which computed bounds fast but at the cost of loosing a lot of accuracy. Other
approximation algorithms can be tried offering different time/accuracy trade-offs.
Bound propagation algorithm can be also improved by exploiting further the under-
lying network structure. Tighter constraints could be defined for linear optimization
problems by recognizing the nodes in Markov blanket that are independent from
the others. Then, in the extreme case where all nodes are independent, we would
have the number of constraints equal to the number of variables yielding tighter
bounds that are easy to compute. Performance of ATB framework with other plu-
gin schemes also should be investigated.

Appendix A Analysis of Bounded Conditioning

In [9], the lower and upper bounds are computed first for case of evidence e where all
tuples ci are explored (bounding from complete state) and then for case of adding
new evidence f where only a subset of tuples is explored (bounding from incomplete
state). We will disregard here evidence e and bounding from complete state because
our objective is to avoid ever exploring all tuples, with or without evidence. Also,
to maintain the same notation used throughout this paper, we will denote new
evidence with e, not f as in [9]. Thus, we consider a simple case where we are given
a Bayesian network, a cutset C, evidence e, and some means of selecting h cutset
tuples out of total M. Following the rules of bounding from incomplete state in [9]
while disregarding evidence e in [9], we have following lower and upper bounds:

PL(x|e) =
h∑

i=1

P (x|ci, e)wL
i (56)

PU (x|e) =
h∑

i=1

P (x|ci, e)wU
i +

j∑

i=h+1

wU
i +

M∑

i=j+1

wU ′

i (57)

Since the sum
∑j

i=h+1 wU
i in PU (x|e) corresponds in [9] to summing over tuples

where we compute P (ci, e) but not P (x, ci, e) and we do not allow this situation
to occur (if we took the trouble of computing P (ci, e), it makes sense to compute
P (x|ci, e) and obtain the P (x, ci, e) = P (x|ci, e)P (ci, e)), then we set h=j and sim-
plify:

PL(x|e) =
h∑

i=1

P (x|ci, e)wL
i (58)

PU (x|e) =
h∑

i=1

P (x|ci, e)wU
i +

M∑

i=h+1

wU ′

i (59)

The weights in the above expressions are defined as follows:

wL
i =

P (ci|e)
∑h

k=1 P (ck|e) +
∑M

k=h+1 P (ck)
=

P (ci, e)
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck)
(60)

wU
i =

P (ci|e)
∑h

k=1 P (ck|e)
=

P (ci, e)
∑h

k=1 P (ck, e)
(61)

wU ′

i =
P (ci)

∑h

k=1 wL
k + (1 −

∑M

k=h+1 wU
k)

(62)

We can simplify computation of wU ′

i observing that actually:

M∑

k=h+1

wU
k =

∑h

k=1 P (ck, e)
∑h

k=1 P (ck, e)
= 1

and then substituting wL
i with its expanded form, we obtain:

wU ′

i =
P (ci)

∑h

k=1 wL
k + 1 − 1

=
P (ci)

∑h

k=1 wL
k

=
P (ci)(

∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck))
∑h

k=1 P (ck, e)

Substituting weight formulas in the bounds expressions, we obtain:

PL(x|e) =

h∑

i=1

P (x|ci, e)
P (ci, e)

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck)

=

∑h

i=1 P (x|ci, e)P (ci, e)
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck)

=

∑h
i=1 P (x, ci, e)

∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck)

PU (x|e) =

h∑

i=1

P (x|ci, e)wU
i +

M∑

i=h+1

wU ′

i

=

h∑

i=1

P (x|ci, e)
P (ci, e)

∑h

k=1 P (ck, e)
+

M∑

i=h+1

P (ci)(
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck))
∑h

k=1 P (ck, e)

=

∑h

i=1 P (x|ci, e)P (ci, e)
∑h

k=1 P (ck, e)
+

∑M
i=h+1 P (ci)(

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck))

∑h
k=1 P (ck, e)

=

∑h

i=1 P (x, ci, e)
∑h

k=1 P (ck, e)
+

∑M

i=h+1 P (ci)(
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck))
∑h

k=1 P (ck, e)

=

∑h
i=1 P (x, ci, e)

∑h

k=1 P (ck, e)
+

M∑

i=h+1

P (ci) +

∑M
k=h+1 P (ck)

∑h

k=1 P (ck, e)

Appendix B Bounding posteriors of cutset nodes

So far, we only considered computation of posterior marginals for variable X ∈
X\C, E. Now we focus on computing bounds for a cutset node Ck ∈ C. Let
c′k ∈ D(C) be some value in domain of Ck. Then, we can compute exact posterior
marginal P (ck|e) using Bayes formula:

P (c′k|e) =
P (c′k, e)

P (e)
=

∑M
i=1 δ(c′k, ci)P (ci, e)
∑M

i=1 P (ci, e)
(63)

where δ(c′k, ci) is a Dirac delta-function so that δ(c′k, ci) = 1 iff ci
k = c′k and

δ(c′k, ci) = 0 otherwise. To simplify notation, let Z = C\Z. Let Mk denote the
number of tuples in state-space of Z. Then we can re-write the numerator as:

M∑

i=1

δ(c′k, ci)P (ci, e) =

Mk∑

i=1

P (c′k, zi, e)

and the denominator can be decomposed as:

M∑

i=1

P (ci, e) =
∑

ck∈D(Ck)

Mk∑

i=1

P (c′k, zi, e)

Then, we can re-write the expression for P (c′k|e) as follows:

P (c′k|e) =

∑Mk

i=1 P (c′k, zi, e)
∑

ck∈D(Ck)

∑Mk

i=1 P (ck, zi, e)
(64)

Let hck
be the number of full cutset tuples where ci

k = ck. Then, we can decompose
the numerator in Eq.(64) as follows:

Mk∑

i=1

P (c′k, zi, e) =

hc′
k∑

i=1

P (c′k, zi, e) +

Mk∑

i=hc′
k
+1

P (c′k, zi, e)

Similary, we can decompose the sums in the denominator:

∑

ck∈D(Ck)

Mk∑

i=1

P (ck, zi, e) =
∑

ck∈D(Ck)

hck∑

i=1

P (ck, zi, e) +
∑

ck∈D(Ck)

Mk∑

i=hck
+1

P (ck, zi, e)

After decomposition, the Eq.(64) takes on the form:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑Mk

i=hc′
k
+1 P (c′k, zi, e)

∑
ck∈D(Ck)

∑hck

i=1 P (ck, zi, e) +
∑

ck∈D(Ck)

∑Mk

i=hck
+1 P (ck, zi, e)

(65)

Now, for conciseness, we can group together all fully instantiated tuples in the
denominator:

∑

ck∈D(Ck)

hck∑

i=1

P (ck, zi, e) =

h∑

i=1

P (ci, e)

Then, Eq.(65) transforms into:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑Mk

i=hc′
k
+1 P (c′k, zi, e)

∑h

i=1 P (ci, e) +
∑

ck∈D(Ck)

∑Mk

i=hck
+1 P (ck, zi, e)

(66)

Now, we can replace each sum
∑Mk

i=hc′
k
+1 over unexplored cutset tuples with a sum

over the partially-instantiated cutset tuples. Denoting as M ′
ck

= Mk − hck
+ 1 the

number of partially instantiated cutset tuples for Ck = ck, we obtain:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑

ck∈D(Ck)

∑M ′
ck

j=1 P (ck, z
j
1:qj

, e)
(67)

In order to obtain lower and upper bounds formulation, we will separate the sum
of joint probabilities P (c′k, z

j
1:qj

, e) where Ck = c′k from the rest:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj

, e)

(68)
In the expression above, probabilities P (ck, zi, e) and P (ci, e) are computed exactly
since they correspond to full cutset instantiations. Probabilities P (ck, zi

1:qi
, e), how-

ever, will be bounded since only partial cutset is observed. Observing that both
numerator and denominator have component P (c′k, zi

1:qi
, e) and replacing it with an

upper bound PU (c′k, zi
1:qi

, e) in both numerator and denominator, we will obtain an
upper bound on P (c′k|e) due to Lemma 4.2:

P (c′k|e) ≤

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PU (c′k, z
j
1:qj

, e)

∑h

i=1 P (ci, e) +
∑M ′

c′
k

j=1 PU (c′k, z
j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj

, e)

(69)

Finally, replacing P (ck, z
j
1:qj

, e), ck 6= c′k, with a lower bound (also increasing frac-

tion value), we obtain:

P (c′k|e) ≤

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

ck

j=1 PU (c′k, z
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

ck

j=1 PU (c′k, z
j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 PL(ck, z
j
1:qj

, e)
= PU1

c

(70)
The lower bound derivation is similar. Taking Eq.(66) as the basis, we first group
together all partially-instantiated tuples:

∑

ck∈D(Ck)

Mk∑

i=hck
+1

P (ck, zi, e) =

M∑

i=h+1

P (ci, e)

transforming Eq.(66) into:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑Mck

i=hc′
k
+1 P (c′k, zi, e)

∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci, e)
(71)

Now, replacing the summation of unexplored fully-instantiated tuples in Eq(69)
with summation over corresponding partially-instantiated tuples, we obtain:

P (c′k|e) =

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 P (c′k, z
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

, e)
(72)

We obtain lower bound by replacing P (cj
1:qj

, e) in the denominator with an upper

bound and P (c′k, z
j
1:qj

, e) in the numerator with a lower bound yielding:

P (c′k|e) ≥

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU (cj
1:qj

, e)
= PL1

c (73)

We can obtain a different lower bound if we start with Eq.(68) and replace
P (c′k, zi

1:qi
, e) in numerator and denominator with a lower bound. Lemma 4.2 guar-

antees that the resulting fraction will be a lower bound on P (c′k|e):

P (c′k|e) ≥

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e)

∑h

i=1 P (ci, e) +
∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj

, e)

(74)

Finally, replacing P (ck, z
j
1:qj

, e) in Eq.(74) with a corresponding upper bound, we

obtain the second lower bound PL2

c :

P (c′k|e) ≥

∑hc′
k

i=1 P (c′k, zi, e) +
∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e)

∑h
i=1 P (ci, e) +

∑M ′

c′
k

j=1 PL(c′k, z
j
1:qj

, e) +
∑

ck 6=c′
k

∑M ′
ck

j=1 PU (ck, z
j
1:qj

, e)

= PL2

c

(75)

The lower bounds PL1

c and PL2

c are respective cutset equivalents of the lower bounds
PL1 and PL2 obtained in Eq.(23) and Eq.(27). Hence, the result of Theorem 4.2
and Corollary 4.2 apply.

With respect to computing bounds on P (c′k, z1:q, e) in Eq.(70) and Eq.(75) in prac-
tice, we distinguish two cases. We demonstrate them on the example of upper
bound.

In the first case, each partially instantiated tuple c1:q that includes node Ck, namely
k ≤ q, can be decomposed as c1:q = z1:q

⋃
c′k so that:

PU (c′k, z1:q, e) = PU (c1:q, e)

The second case concerns the partially instantiated tuples c1:q that do not include
node Ck, namely k > q. In that case, we compute upper bound by decomposing:

PU (c′k, z1:q, e) = PU (ck|c1:q)P
U (c1:q, e)

Appendix C Proofs

Theorem 4.2 (Lower Bounds) Given a Bayesian network B with a cutset C
and evidence E, let X be some variable in B and x′ be a value in the domain of
X. Let PL(x|ci

1:qi
, e) and PU (x|ci

1:qi
, e) denote some bounds on P (x|ci

1:qi
, e). Let

PL(ci
1:qi

, e) and PU (ci
1:qi

, e) denote some bounds on P (ci
1:qi

, e). Assume PL1(x′|e)

and PL2(x′|e) are obtained from Eq.(23) and Eq.(27) where PL(x, ci
1:qi

, e) and

PU (x, ci
1:qi

, e) are defined as follows:

∀x ∈ D(X), PL(x, ci
1:qi

, e) = PL(x|ci
1:qi

, e)PL(ci
1:qi

, e)

∀x ∈ D(X), PU (x, ci
1:qi

, e) = PU (x|ci
1:qi

, e)PU (ci
1:qi

, e)

If PL(x′|ci
1:qi

, e) = 1 −
∑

x 6=x′ PU (x|ci
1:qi

, e) then PL1(x′|e) ≥ PL2(x′|e). Proof.
The numerators are the same. Hence, we only need to compare denominators. Let
D1 denote denominator in PL

1 and D2 denote denominator in PL
2 . Each denomina-

tor contains a
∑h

i=1 P (ci, e) component which will cancel out in D1−D2. Therefore,
the difference is:

D1 − D2 =
M ′∑

i=h+1

PL(x′, ci
1:qi

, e) +
∑

x 6=x′

M ′∑

i=h+1

PU (x, ci
1:qi

, e) −
M ′∑

i=h+1

PU (ci
1:qi

, e)

=
M ′∑

i=h+1

[PL(x′, ci, e) +
∑

x 6=x′

PU (x, ci
1:qi

, e) − PU (ci
1:qi

, e)]

=

M ′∑

i=h+1

[PL(x′|ci, e)PL(ci
1:qi

, e) +
∑

x 6=x′

PU (x|ci
1:qi

, e)PU (ci, e) − PU (ci
1:qi

, e)]

=
∑

i=h+1

[PL(x′|ci
1:qi

, e)PL(ci, e) − PU (ci
1:qi

, e)(1 −
∑

x 6=x′

PU (x|ci
1:qi

, e))]

By theorem condition, PL(x′|ci
1:qi

, e) = 1 −
∑

x 6=x′ PU (x|ci
1:qi

, e). Therefore:

D1 − D2 =

M ′∑

i=h+1

[PL(x′|ci
1:qi

, e)PL(ci
1:qi

, e) − PU (ci
1:qi

, e)PL(x′|ci
1:qi

, e)]

=

M ′∑

i=h+1

PL(x′|ci
1:qi

, e)(PL(ci
1:qi

, e) − PU (ci
1:qi

, e)) ≤ 0

Thus, D1 < D2. Then, PL
1 ≥ PL

2 . �

Theorem 4.3 If ∀j, PU (x, c
j
1:qj

, e) ≤ P (cj
1:qj

) then PU1(x|e) ≤ PU (x|e) where

PU1(x|e) is given in Eq.(29) and PU (x|e) is the bounded conditioning upper bound

given in Eq.(11). Proof. Setting PL(x, c
j
1:qj

, e) = 0, x 6= x′, in Eq.(29) and, hence,

reducing the denominotaor, we obtain:

PU1(x′|e) ≤

∑h
i=1 P (x′, ci, e) +

∑M ′

j=1 PU (x′, c
j
1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 PU (x′, c
j
1:qj

, e)

By assumption, PU (x′, c
j
1:qj

, e) ≤ P (cj
1:qj

). Setting the upper bound on

P (x′, c
j
1:qj

, e) to its maximum value P (j
1:qj

) in equation above yields:

PU1(x′|e) ≤

∑h
i=1 P (x, ci, e) +

∑M ′

j=1 P (cj
1:qj

)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj
1:qj

)
(76)

=

∑h

i=1 P (x, ci, e) +
∑M

i=1 P (cj)
∑h

i=1 P (ci, e) +
∑M

i=1 P (cj)
, PU3(x′|e) (77)

The bound PU3(x′|e) in Eq.(77) represents the maximum value of PU1(x′|e) under

the assumption that PU (x′, c
j
1:qj

, e) ≤ P (cj
1:qj

). We will show next that the maxi-

mum value of PU1(x′|e) is always less or equal to the bounded conditioning upper
bound.

Rewrite PU3(x|e) as a sum of fractions:

PU3(x|e) =

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
+

∑M

i=h+1 P (ci)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)

The first summant in PU3(x|e) is smaller then the first summant in eq.(11):
∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
≤

∑h
i=1 P (x, ci, e)

∑h

i=1 P (ci, e)

The second summant in P̂U (x|e) is smaller then the second summant in eq.(11):

∑M
i=h+1 P (ci)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

≤

M∑

i=h+1

P (ci)

The theorem follows. �

Theorem 5.1 If C is a topologically ordered loop-cutset of a Bayesian network and
C1:q = {C1, ..., Cq} is a subset of C, q < |C|, then the relevant subnetwork of C1:q

consisting of loop-cutset nodes in subset C1:q and their ancestors is singly-connected.
Proof. First, we prove that the relevant subnetwork of any loop-cutset Cq is singly-
connected when all loop-cutset preceeding Cq in the ordering are assigned. Proof
by contradiction. Assume Cq is observed. If the relevant subnetwork of node Cq is
not singly-connected, then there is a loop L with a sink S s.t. either S is observed
or S has an observed descendant among C1, ..., Cq−1 or Cq is a descendant of S
(otherwise S would be irrelevant). Let Ci, 1 ≤ i ≤ q denote the node for which S is
the ancestor (or S = Ci). By definition of loop-cutset, ∃Cm ∈ L s.t. Cm 6= S and
Cm ∈ C. Then, Cm is ancestor of Ci. Since cutset is topologically ordered and all
cutset nodes preceeding Ci are observed, then Cm must be observed, thus, breaking
the loop. Contradiction. Applying the above result recursively, we have: relevant
subnetwork of C1 is singly-connected, relevant subnetwork of C2, conditioned on on
C1, is singly-connected, and so on. The theorem follows. �

Theorem 4.4 Given an algorithm A that can compute an upper bound on
P (c1:q, e), where c1:q is a partial cutset instantiation, given h fully-instantiated
cutset tuples ci, 1 ≤ i ≤ h, then:

PU3

A − PL3

A ≥

∑h

i=1 P (ci, e)

P (e)

where PL3

A and PU3

A are expressed in Eq.(37) and Eq.(38) respectively. Proof. Let
q denote the fraction of the probability mass covered by the explored cutset tuples:

q =

∑h

i=1 P (ci, e)

P (e)

Then, the bounds interval PU
A −PL

A is always lower bounded by 1− q. We begin by
computing the bounds interval:

PU
A − PL

A =

∑M ′

j=1 PU
A (ci, e)

∑h

i=1 P (ci, e) +
∑M ′

j=1 PU
A (cj , e)

We replace
∑M ′

j=1 PU
A (ci, e) in both numerator and denominator with exact proba-

bility sum
∑M ′

j=1 P (cj , e), yielding a lower bound on the bounds interval length:

PU
A − PL

A ≥

∑M ′

j=1 P (ci, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (ci, e)
(78)

Since, the
∑M ′

j=1 P (cj , e) =
∑M

i=h+1 P (ci, e), then the Eq. (78) transforms into:

PU
A − PL

A ≥

∑M

i=h+1 P (ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci, e)
(79)

Replacing the sums in denominator in Eq. (78) with P (e) and replacing∑M

i=h+1 P (ci, e) in the numerator with P (e) −
∑h

i=1 P (ci, e), we get:

PU
A − PL

A ≥
P (e) −

∑h

i=1 P (ci, e)

P (e)
=

P (e) − qP (e)

P (e)
= 1 − q (80)

�

Theorem 7.1 (Estimator is Bounded) Given Bayesian network B with a cutset
C and evidence E and some variable X, then

PL3(x|e) ≤ P̂h(x|e) ≤ PU3(x|e)

where P̂h(x|e) is obtained from Eq. (52) and PL3(x|e) and PU3(x|e) are ob-

tained resepectively from Eq.(23) and Eq.(29) by setting ∀j, PL(x, c
j
1:qj

, e) = 0

and PU (x, c
j
1:qj

, e) = PU (cj
1:qj

, e). Proof. The relationship between P̂ (x|e) and

PL3(x|e) is obvious:

P̂ (x|e) =

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e)
≥

∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 PU (ci, e)
= PL(x|e)

To prove the relationship between P̂ (x|e) and PU3(x|e), we first simplify notation.

Let a =
∑h

i=1 P (xi, c
i, e), b =

∑h

i=1 P (ci, e), δ =
∑M

i=h+1 PU (x, ci, e). Using this

notation, we have P̂ (x|e) = a
b

and PU (x|e) = a+δ
b+δ

by definition. Then:

P̂ (x|e) =
a

b
≤

a + δ

b + δ
= PU (x|e)

due to Lemma 4.2. �

Theorem 7.2 (Convergence Rate) Given is a Bayesian network B with a cutset
C and evidence E and variable X. Assume M is the number of cutset state-space

and we have generated h out of M cutset tuples yielding estimator P̂h defined in
Eq.(52), subindexed with h to indicate that it is a function of h. Define:

Lh =

∑M

i=h+1 P (ci, e)
∑M

i=1 P (ci, e)

Then Lh monotonously converges to 0, Lh → 0, as h → M and the distance
converges in the norm Lh:

|P (x|e) − P̂h(x|e)| ≤ Lh

Proof. Define additionally:

a =
h∑

i=1

P (x, ci, e), δ =
M∑

i=h+1

PU (x, ci, e), sx =
M∑

i=h+1

P (x, ci, e), s =
M∑

i=h+1

PU (ci, e)

where PU (x, ci, e) and PU (ci, e) are any upper bounds on P (x, ci, e) and P (ci, e).
Then, by definition:

P (x|e) =
a + sx

b + s
, Ph(x|e) =

a

b

Then:

P (x|e) − Ph(x|e) =
a + sx

b + s
−

a

b
=

ab + as − bsx − ab − as

b(b + s)
=

bsx − as

b(b + s)

Factoring out b and s in the numerator, we obtain:

P (x|e) − Ph(x|e) = (
sx

s
−

a

b
)

bs

b(b + s)
= (

sx

s
−

a

b
)

s

b + s

Taking the absolute value of the left and righ sides of the equality, we obtain:

|P (x|e) − Ph(x|e)| = |
sx

s
−

a

b
|

s

b + s

Since both sx

s
≤ 1, and a

b
≤ 1, then | sx

s
− a

b
| ≤ 1. Applying this result to the

equation above we get:

|P (x|e) − Ph(x|e)| ≤
s

b + s
= Lh

Thus, we have proved that |P (x|e)−Ph(x|e)| ≤ Lh. Next, we show that Lh monoto-
nously converges to 0 as h → M .

Clearly, in the limit, LM = 0. It is also obvious that Lh monotonously decreases
as h increases since the numerator decreases as h increaes while the denominator
remains unchanged. �

Theorem 7.3 (Using Estimator as a Bound) Given a Bayesian network B
with a cutset C and evidence E and variable X, let M be the number of tu-
ples in state-space of cutset C, h be the number of fully-instantiated tuples in
C, and c

j
1:qj

, j ∈ [1, M ′], denote a partially-instantiated cutset tuple. Define:

a =
∑h

i=1 P (x, ci, e), b =
∑h

i=1 P (ci, e). Then, ∀h ∈ (1, M), P̂h defined in Eq. (52)
has following properties:

1. (a) If ∀j ∈ [1, M ′], PU (x|cj
1:qj

, e) ≤ a
b
, then P (x|e) ≤ P̂ .

2. (b) If ∀j ∈ [1, M ′], PL(x|cj
1:qj

, e) ≥ a
b
, then P (x|e) ≥ P̂ .

Proof. Let sx =
∑M

i=h+1 P (x, ci, e), s =
∑M

i=h+1 P (ci, e) Using this notation, ATP
estimator is given by:

P̂ (x|e) =
a

b
, (x|e) =

a + sx

b + s

The estimator P̂ (x|e) can fall in either side of P (x|e). Estimate distance:

P (x|e) − P̂ (x|e) =
a + sx

b + s
−

a

b
=

ab + sxb − ab − as

b(b + s)
=

sxb − as

b(b + s)
=

sx − a
b
s

b + s
(81)

It is clear that the sign in the P (x|e) − P̂ (x|e) depends on the sign of numerator
D = sx − a

b
s. Let us expand the sums:

D = sx −
a

b
s =

M∑

i=h+1

P (x, ci, e) −
a

b

M∑

i=h+1

P (ci, e) (82)

=

M∑

i=h+1

P (x|ci, e)P (ci, e) −
a

b

M∑

i=h+1

P (ci, e) (83)

=

M∑

i=h+1

[P (x|ci, e) −
a

b
]P (ci, e) (84)

=

M ′∑

j=1

[P (x|cj
1:qj

, e) −
a

b
]P (cj

1:qj
, e) (85)

(86)

Thus, if PU (x|cj
1:qj

, e) < a
b
, 1 ≤ j ≤ M ′, then P (x|cj

1:qj
, e) < a

b
and subsequently

D ≤ 0 and P (x|e) ≤ P̂ (x|e). Namely, P̂ (x|e) is an upper bound on P (x|e).

If PL(x|cj
1:qj

, e) ≥ a
b
, 1 ≤ j ≤ M ′, then P (x|cj

1:qj
, e) ≥ a

b
and subsequently D ≥ 0

and P (x|e) ≥ P̂ (x|e). Namely, P̂ (x|e) is a lower bound on P (x|e). �

Theorem 7.4 (Adjusting Upper Bound) Assume given is a Bayesian net-
work B with a cutset C and evidence E and X is some variable in B. Let
a =

∑h

i=1 P (x, ci, e), b =
∑h

i=1 P (ci, e). Let δ =
∑M ′

i=1 PU (x|ci
1:qi

, e)PU (ci
1:qi

, e).

Let ∆ =
∑M ′

i=1 PU (ci
1:qi

, e). If ∀i ∈ [1, M ′], a
b

< PU (x|ci
1:qi

, e), then:

P (x|e) ≤
a + δ

b + ∆
+

δ

b + δ

∆

b + ∆

Proof. Let sx =
∑M

i=h+1 P (x, ci, e), s =
∑M

i=h+1 P (ci, e). Then:

P (x|e) ≤
a + sx

b + s

Define:

Ph(x|e) =
a + δ

b + ∆
Compute the difference:

P (x|e) − Ph(x|e) =
a + sx

b + s
−

a + δ

b + ∆
(87)

=
ab + a∆ + sxb + sx∆ − ab − as − δb − δs

(b + s)(b + ∆)
(88)

=
a∆ + sxb + sx∆ − as − δb − δs

(b + s)(b + ∆)
(89)

=
sx∆

(b + s)(b + ∆)
+

a∆ + sxb − as − δb

(b + s)(b + ∆)
−

δs

(b + s)(b + ∆)
(90)

=
sx∆

(b + s)(b + ∆)
−

as + δb − a∆ − sxb

(b + s)(b + ∆)
−

δs

(b + s)(b + ∆)
(91)

Next, we prove that:
as + δb − a∆ − sxb

(b + s)(b + ∆)
> 0 (92)

The denominator is clearly positive. We show that numerator is positive too. Con-
sider:

γ = as + δb − a∆ − sxb = [δb − a∆] − [sxb − as]

= [b
M∑

j=h+1

PU (x|cj , e)PU (cj , e) − a

M∑

j=h+1

PU (cj , e)]

− [b

M∑

j=h+1

P (x|cj , e)P (cj , e) − a

M∑

j=h+1

P (cj , e)]

=

M∑

j=h+1

[bPU (x|cj , e)PU (cj , e) − aPU (cj , e)] −

M∑

j=h+1

[bP (x|cj , e)P (cj , e) − aP (cj , e)]

=

M∑

j=h+1

[bPU (x|cj , e) − a]PU (cj , e) −

M∑

j=h+1

[bP (x|cj , e) − a]P (cj , e)

=

M∑

j=h+1

b[PU (x|cj , e) −
a

b
]PU (cj , e) − b[P (x|cj , e) −

a

b
]P (cj , e)

= b

M∑

j=h+1

[PU (x|cj , e) −
a

b
]PU (cj , e) − [P (x|cj , e) −

a

b
]P (cj , e)

= b

M ′∑

j=1

[PU (x|cj
1:qj

, e) −
a

b
]PU (cj

1:qj
, e) − [P (x|cj

1:qj
, e) −

a

b
]P (cj

1:qj
, e)

It is given that a
b
≤ PU (x|cj

1:qj
, e) and, thus, PU (x|cj

1:qj
, e) − a

b
≥ 0.

Assume a
b

≤ P (x|cj
1:qj

, e). Then, P (x|cj
1:qj

, e) − a
b

≥ 0. Since PU (x|cj
1:qj

, e) ≥

P (x|cj
1:qj

, e) and PU (cj
1:qj

, e) ≥ P (cj
1:qj

, e), then:

PU (x|cj
1:qj

, e) ≥ P (x|cj
1:qj

, e)

PU (x|cj
1:qj

, e) −
a

b
≥ P (x|cj

1:qj
, e) −

a

b

(PU (x|cj
1:qj

, e) −
a

b
)PU (cj

1:qj
, e) ≥ (P (x|cj

1:qj
, e) −

a

b
)P (cj

1:qj
, e)

Thus, if a
b

< P (x|cj
1:qj

, e), PU (x|cj
1:qj

, e), then every summant is positive and γ ≥ 0.

Assume P (x|cj
1:qj

, e) ≤ a
b
≤ PU (x|cj

1:qj
, e). Then, a

b
− P (x|cj

1:qj
, e) ≥ 0. Rewriting

γ as:

γ = b

M∑

j=h+1

[PU (x|cj
1:qj

, e) −
a

b
]PU (cj

1:qj
, e) + [

a

b
− P (x|cj

1:qj
, e)]P (cj

1:qj
, e)

we see that every summant is positive and, thus, the γ is positive.

Thus, if a
b

≤ PU (x|cj
1:qj

, e), then inequality Eq.(92) holds. Then, dropping the

negative addands from the Eq.(91), we obtain:

P (x|e) − Ph(x|e) ≤
δ

b + δ

∆

b + ∆
=

a + δ

b + ∆
+

δ

b + δ

∆

b + ∆

We obtain the result of the theorem moving Ph(x|e) to the right hand side of the
expression above. �

References

[1] Computational infrastructure for operations research. www.coin-or.org.

[2] Munin - an expert emg assistant. In John E. Desmedt, editor, Computer-Aided
Electromyography and Expert Systems, ch. 21. Elsevier Science Publishers, Am-
sterdam, 1990.

[3] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to
optimal junction trees. In Uncertainty in AI, pages 81–89, 1996.

[4] I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The alarm monitoring
system: A case study with two probabilistic inference techniques for belief
networks. In Second European Conferece on AI and Medicine, Berlin, 1989.
Springer–Verlag, 1989.

[5] B. Bidyuk and R. Dechter. Cycle-cutset sampling for bayesian networks. In
Sixteenth Canadian Conf. on AI, pages 297–312, 2003.

[6] B. Bidyuk and R. Dechter. Empirical study of w-cutset sampling for bayesian
networks. In Uncertainty in AI, pages 37–46, 2003.

[7] D. Bienstock. Potential function methods for approximately solving linear pro-
gramming problmes: theory and practice. Kluwer Academic Publishers, 2002.

[8] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113:41–85, 1999.

[9] E.J. Horvitz, H.J. Suermondt, and G.F. Cooper. Bounded conditioning: Flex-
ible inference for decisions under scarce resources. In Workshop on Unertainty
in Artificial Intelligence, pages 181–193, 1989.

[10] K. Kask and R. Dechter. Branch and bound with mini-bucket heuristics. In
International Joint Conference on Artficial Intelligence (IJCAI’99), pages 426–
433, 1999.

[11] K. Kask and R. Dechter. Stochastic local search for bayesian networks. In
D. Heckerman and J. Whittaker, editors, Workshop on AI and Statistics ’99,
pages 113–122. Morgan Kaufmann Publishers, 1999.

[12] M. Kearns and L. Saul. Large deviation methods for approximate probabilistic
inference, with rates of convergence. In In Uncertainty in AI, pages 311–319.
Morgan Kaufmann, 1998.

[13] M. Kearns and L. Saul. Inference in multilayer networks via large devia-
tion bounds. Advances in Neural Information Processing Systems, 11:260–266,
1999.

[14] K. Kristensen and I.A. Rasmussen. The use of a bayesian network in the
design of a decision support system for growing malting barley without use of
pesticides. Computers and Electronics in Agriculture, 33:197–217, 2002.

[15] D. Larkin. Approximate decomposition: A method for bounding and estimat-
ing probabilistic and deterministic queries. In UAI’2003, 2003.

[16] M. A. R. Leisink and H. J. Kappen. Bound propagation. Journal of Artificial
Intelligence Research, 19:139–154, 2003.

[17] Michael V. Mannino and Vijay S. Mookerjee. Probability bounds for goal
directed queries in bayesian networks. IEEE Transactions on Knowledge and
Data Engineering, 14(5):1196–1200, September/October 2002.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
1988.

[19] D. Poole. Probabilistic conflicts in a search algorithm for estimating posterior
probabilities in bayesian networks. Artificial Intelligence, 88(1–2):69–100, 1996.

[20] David Poole. Context-specific approximation in probabilistic inference. In
Proceedings of Uncertainty in Artificial Intelligence (UAI-98), pages 447–454,
1998.

[21] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering
for large belief networks. In Proc. Tenth Conf. on Uncertainty in Artificial
Intelligence, 1994.

