
Artificial 

ELSEVIER Artificial Intelligence 86 ( 1996) 245-267 

Intelligence 

Uncovering trees in constraint networks 
Itay Meiri a, Rina Dechter b,*, Judea Pearl a 

’ Cognitive Systems Laboratory, Computer Science Department, University of California, Los Angeles, CA 
90024, USA 

h Information & Computer Science, University of California, Irvine, CA 92717, USA 

Received October 1994; revised September 1995 

Abstract 

This paper examines the possibility of removing redundant information from a given knowledge 
base and restructuring it in the form of a tree to enable efficient problem-solving routines. We 
offer a novel approach that guarantees removal of all redundancies that hide a tree structure. We 
develop a polynomial-time algorithm that, given an arbitrary binary constraint network, either 
extracts (by edge removal) a precise tree representation from the path-consistent version of the 
network or acknowledges that no such tree can be extracted. In the latter case, a tree is generated 

that may serve as an approximation to the original network. 

1. Introduction 

Redundancy in constraint-based reasoning can be a mixed blessing. On one hand, 

redundant constraints can be used to explicate incompatible assignments that otherwise 
would be tried by a search algorithm. On the other hand, the presence of redundant 
constraints forces search algorithms to make unnecessary tests. The latter case is partic- 
ularly aggravating when problems expressible in tree-structured networks are enriched 
with redundant constraints: when the tree structure is available, the problem can be 
solved in a backtrack-free manner, but if the tree is loaded with redundant information, 
the correct ordering of the search is obscured, which may lead to many deadends and 

to unnecessary consistency checks at each step. 
The problem addressed in this paper is as follows. Given a binary constraint net- 

work, find whether it can be transformed into a tree-structured network without loss of 
information. If the answer is yes, find such a tree; if the answer is no, acknowledge 
failure. 

* Corresponding author. E-mail: dechter@eilat.ics.uci.edu. 

0004-3702/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved 

SSDfOOO4-3702(95)00102-6 



The paper develops a polynomial-time algorithm that for a given binary constraint net- 
work, generates a tree T having the following characteristics. If any tree representation 

can be extracted by deleting edges (i.e., binary constraints) from the path-consistent 
version of the network, T represents the network exactly. However, if no tree repre- 

sentation can he extracted by such deletion. that fact is acknowledged. We show that 
tree extraction by edge-deletion is feasible only when the path-consistent network is 
minimal. Furthermore, when the given path-consistent network is minimal, we can issue 

a stronger guarantee: that if the tree T generated by our algorithm fails to represent the 
network, then no tree representation exists, even allowing for the introduction of edges 

that were absent in the original path-consistent network. In that case, T may serve as an 

approximation to the original network. 
The algorithm works as follows. After enforcing path-consistency, we examine all 

triplets of variables, identify the redundancies that exist in each triplet, and assign 

weights to the edges in accordance with the redundancies discovered. The tree generated, 
T, is a maximum spanning tree relative to these weights, and a (polynomial-time) test 

is then conducted to determine whether the tree represents the network precisely. 
An added feature of the algorithm is that when the tree generated is recognized as an 

approximation, it can be further tightened by adding edges until a precise representa- 
tion is achieved. This technique may be regarded as an alternative redundancy-removal 

scheme, complementing that proposed in 121. offering polynomial complexity and per- 

formance guarantees. 
The general issue of removing redundancies has been investigated in the literature of 

relational databases [ 3, I I] and in the context of constraint networks [ 21. The algorithm 

proposed here is related also to the problem of decomposing a relation [ 31, which will 
be discussed in detail in Section 8. While the method in [3] takes as input an explicit 
relation (i.e., the set of satisfying assignments), the input here consists of an unsolved 

constraint network. 

2. Preliminaries and nomenclature 

We lirst review the basic concepts of constraint satisfaction [ 4,9]. 
A rletwork of hinaq constraints consists of a set of variables {X1, , Xn} and a set 

of binary constraints on the variables. The domain of variable Xi, denoted by Dx, or 
D;, defines the set of values X, may assume. A binary constraint Rii on variables X, 
and X,,, defined by Ri,., C D; x D,, specifies the allowed pairs of values for Xi and 

X.;. If a pair (x, y) is allowed by the constraint Ri,,, we denote Ri,i(X, y) = 1; else, 
R,, (x, y) = 0. Thus R;.i denotes a set of pairs, while R, (x, y) is a predicate that is true 

iff (x,.Y) E 4,. 

A binary constraint Ri, is tighter’ than R:, (or conversely RI, is more relaxed than 
Ri,), denoted by Rij 2 iii, if every pair of values allowed by ‘Rij is also allowed by 
R:,. The most relaxed constraint is the universal constraint, which allows all pairs of the 
Cartesian product. 

’ It should be “at least as tight as” but we use the shorter term “tighter” for convenience. 



I. Meiri al. /Ar@cial Intelligence 86 (1996) 245-267 247 

An assignment of a value to each variable that satisfies all the constraints is called a 
solution. The set of all solutions to network R constitutes a relation, denoted by rel( R) , 
whose attributes are the variables names. Formally, ref( R) = {xi, . . . ,x, ( Vi, j (nixi) E 

Rii}. Two networks with the same variable set are equivalent iff they represent the same 

se; of solutions. 
A binary constraint network is associated with a constraint graph, where node i 

represents variable Xi, and an edge between nodes i and j represents a direct constraint, 

Rii, between them, which is not the universal constraint. Other constraints are induced 

by paths connecting i and j. The constraint induced on i and j by a path of length m 
through nodes io = i, il, . ’ . . ,lm = j, denoted by Rio,i,,,.,,inj, represents the composition of 
the constraints along the path-namely, a pair of values x E Di, and y E Din, is allowed 

by the path constraint if there exists a sequence of values UI E Di,, U,_I E Din,_, such 
that Ri,,i, (x, UI), Ri,,iz( ~1, ~2)). . . , Rin,_,,i,(~nr_~, y) are all evaluated to 1. 

A network whose direct constraints are tighter than any of its induced path constraints 
is called path consistent. Formally, a path P of length m through nodes io, il, . . . , i, 
is path consistent, iff R,,int c Rb,i, ,,,,, in,. Similarly, arc (i, j) is arc consistent if for 

any value x E Di, there exists a value y E Dj such that Rij(x, y). A network is arc 

and path consistent if all its arcs and paths are arc and path consistent, respectively. 
Any network can be converted into an equivalent arc- and path-consistent form in time 
O(n3) 2 [ 10,121. The network resulting from applying arc and path-consistency to R 

is denoted by path(R) . 

Not every relation can be represented by a binary constraint network. The best network 
approximation of a given relation is called the minimal network; its constraints are the 

projections of the relation on all pairs of variables, namely, each pair of values allowed 
by the minimal network participates in at least one solution. Thus, the minimal network 

displays the tightest constraints between every pair of variables. Being a projection of 
the solution set, the minimal network is always arc and path consistent. Montanari [ 121 

showed that the minimal network is unique. An equivalent definition of the minimal 

network is: 

Definition 1 (Montanan’ [ 121). A binary network R is minimal if for any network R’ 

equivalent to R, R is tighter than R’. 

3. Problem statement 

The problem addressed in this paper rests on the notions of tree decomposition and 

tree reducibility. 

Definition 2. A network R is tree decomposable if there exists a tree-structured network 

T on the same set of variables, such that R and T are equivalent (i.e., they represent the 
same relation). T is said to be a tree decomposition of R, and the relation p represented 

’ Actually, the complexity is 0(n3k3), where k is the domain size; however, for simplicity, we assume the 
domain size is constant. 



by R is said to be tree decomposable (by T). A path-consistent network R is trer 
reducible if it contains a tree-structured subnetwork T such that R is decomposable by 

T and, for all Ci.j) t T. T,, = R,,. the constraints in T are transferred from R with no 

alteration. 

The tree-decomposability problem for networks is delincd as follows. Given a net- 
work R, decide whether R is tree decomposable. If the answer is positive, find a tree 

decomposition of R: else, acknowledge Sailure. The tree-reducibility problem is defined 
similarly: Given a network R. decide whether puth( R) is tree reducible. If the answer 

is positive, find a tree reduction of purh( R): else. acknowledge failure. 

This paper provides a complete solution of the tree-reducibility problem and a partial 

solution to the tree-decomposability problem. We frst show that if R is tree reducible, 
path(R) is its minimal network. Subsequently, WC provide an algorithm that finds a tree 

reduction if such exists, or acknowledges failure. In the latter case, we conclude either 
that a tree decomposition does not exist or, if a tree decomposition does exist, that the 
input network must be nonminimal. 

Since the minimal network is known to be an effective representation, namely, a rep- 
resentation from which solutions can frequently (but not always) be extracted in linear 

time, the question is whether we gain very much by uncovering a tree representation 
from the minimal network. In the next three examples, we will demonstrate that rec- 
ognizing a tree structure from the minimal network can sometimes save an exponential 

amount of computation and can always reduce computation by a factor of O(n). First, 
we quote the following: 

Lemma 3 (Ullman [ I.51 ). Giverr CI rwininml network R and u relatim p, deciding 

whether p = rel( R) is NP-l~ard. 

Thus, minimality in itself does not guarantee tractability of certain queries. Nonethe- 
less, from the algorithm we present here, it follows that when the minimal network R 

has a tree representation. deciding whether p = rr/( R) is easy. 

In the next two examples, we demonstrate that tree recognition may amount to expo- 
nential savings in starch time cvcn when the input network is minimal. 

Example 4. Consider a constraint network R”” having 17 + I variables XI. ,X,,, Y 
with domains XI = Xl = = X,, = (0, I. 2). Y = ( I, 2.. . IL+ I, nf2). The constraints 
are: 

Rx,,Y, = {(O,O)CO. I)( I.())(]. lj(2.2)). 

Ry,y,={(l.O)(2,O)...(i I.())(i,l)(i+ l.O)...(r~.O)(n+ i,I)(n+2,2)}. 

The network for four variables K XI , X2, Xi and its set of solutions is given in Fig. I 

It is easy to see that R (‘I) is a minimal network. The network has a tree representation 
in which all the arcs connect to Y. hence any ordering that places Y as the first variable 
will lead to a backtrack-free search. Note, however, that, on the one hand, the number of 



I. Meiri al./Artifcial Intelligence 86 (1996) 245-267 249 

Y 

0 1 0 2 
0 0 1 3 
1 1 1 4 
2 2 2 5 

Fig. I. 

constraints we need to test when extending a partial solution by one more value is O(n), 

while, on the other, when eliminating the redundant arcs, only one constraint is tested 

at each step. More important, though, is the trashing we may encounter if we generate 
solutions in the wrong order (and there is not much to prevent us from selecting a 
“wrong” order of variables if we have no knowledge of the underlying structure of the 
network). 

Assume that the order of the variables is Xi , . . , , X,, , Y. In this case there are 2” -II - 1 
tuples over Xi, . . . , X,, which are consistent relative to Xi,. . . , X, (i.e., they satisfy all 
the constraints over those variables), and all of which are inconsistent with variable Y. 
In the worst case, our search space with this ordering of variables and with increasing 
ordering of value assignment yields 2” - n - 1 deadends. This grim picture could be 
avoided had we uncovered the tree that leads to the preferable variable ordering. The 
following two examples will be used to illustrate our algorithm. 

Example 5. Consider the network R having four variables A, B, C, D, with domains 

DA = {2,3}, DB =(2,X4}, DC = {2,X4}, DD = {2,6}. 

The constraints are indicated explicitly in Fig. 2. 
In any order of search, we will have to test all six constraints. This network is tree 

reducible. The constraints RBc, Rco, and RBD are redundant and can be deleted. By 
recognizing this redundancy, we generate a representation that is much more effective; a 

consistent solution can be recovered by testing three constraints only. We may recognize 
now that the constraints between A and each of B, C, and D stand for the requirement 
that the value of A divides the values of B, C, and D respectively. This example can 
be scaled up to any number of variables, demonstrating again that even when there are 



250 1. Meiri ol./Artijiciul Intelligence 86 (1996) 245-267 

/f4B : {(2.2)(‘.4)(3.3)] 

m,,. 2 {(2,2)(X4)(3,3)} 

/i.l,> = {(X2)(2,6)(3,6)1 

f?H( = ((2.2)(2,4)(4.2)(4.4)(3.3)/ 

I<<.,, z RRII = ((2.2)(2.6)(4.a,(4.6)(~.61] 

Fig. 7. A binary network 

<.,I < I7 , 

Fig. 3. Constraint graphs for Example 5. Note that arc BC, DE in (a) denote universal constraints 

no deadends, uncovering the tree may result in a reduction of constraint testing from 

O(2) to O(n). 

Example 6. Consider network R2 whose variables A, B, C, D, E all have bi-valued do- 

mains (0, I }. The constraints are: 

The constraint graph is given in Fig. 3. 
In this case, the tree T = {AB, AC, AD, AE} is the only tree decomposition of this 

network. 

The rest of the paper is organized as follows. Sections 4, 5, and 6 describe the tree- 
decomposition scheme. Section 7 provides some future extensions to general redundancy 



I. Meiri al. /ArtQicial Intelligence 86 (I 996) 245-267 251 

elimination and approximation, while Section 8 presents related work. Proofs of theorems 
can be found in the Appendix. 

4. Tree-decomposition schemes 

In this section, we present a solution to the tree-decomposition problem under the 
assumption that the starting network is minimal or becomes minimal by enforcing path- 

consistency. Subsequently, we show that this same algorithm solves the tree-reducibility 

problem in general. Tree decomposition comprises two subtasks: searching for a skeletal 
spanning tree, and determining the constraints on each edge of that tree. If the input net- 

work is minimal, the second subtask is superfluous because the constraints must be taken 
unaltered from the corresponding edges in the input network-namely, decomposability 
coincides with reducibility. 

Lemma 7 (Montanari [ 121). Let T be a tree network. Then path(T) is minimal. 

It follows that: 

Corollary 8. If R is a path-consistent network that is not minimal, then R is not tree 
reducible. 

Our problem can therefore be viewed as searching for a tree skeleton through the 

space of spanning trees. Since there are n”-’ spanning trees on n vertices (Cayley’s 

theorem [ 71)) a method more effective than exhaustive enumeration is required. 
The notion of redundancy plays a central role in our decomposition schemes. Consider 

a consistent path P = io, il,. . . , i,. Recall that in the minimal network, the direct 
constraint R$,i., is tighter than the path constraint R,,il,,,,,in,. If the two constraints are 
identical, we say that edge (io, i,) is redundant with respect to path P; it is also said to 

be redundant in the cycle C consisting of nodes {io, il, . . . , im}. If the direct constraint 
is strictly tighter than the path constraint, we say that (io, i,) is nonredundant with 
respect to P (or nonredundant in C) . Another interpretation of redundancy is that any 
instantiation of the variables {io, il, . . . , im} which satisfies the constraints along P is 

allowed by the direct constraint R,,i”,. Conversely, nonredundancy implies that there 

exists at least one instantiation that violates R,,i”,. 

Definition 9. Let T be a tree, and let e = (i, j) $Z T. The unique shortest path in 
T connecting i and j, denoted by Pr( e), is called the supporting path of e (relative 
to T). The cycle CT(e) = Pr(e> U { } e is called the supporting cycle of e (relative 

to T). 

Theorem 10. Let G = (YE) be a minimal network. G is decomposable by a tree T iff 
every edge in E - T is redundant in its supporting cycle. 



Algorithm BFD. 
1 N +~- E; 

2. while there arc redundant edges in N. do 
3. select an edge (J that is redundant in some cycle C, and set 

N - N -~ (c} 

4. if N forms a tree. then G is decomposable by N 

5. else, G is not tree decomposable; 

Fig. 4. BFI>-a lmte-form algorlthrn for tree decomposition 

Theorem IO gives a method of testing whether a network G is decomposable by a 
given tree T. The test takes O(n”) time steps, as there are O(n*) edges in E - T, and 
each redundancy test takes O(n) step. 

Illustration. Consider Example 5. Tree TI = {AB, AC, AD} is a tree decomposition, 
since edges BC. BD. and CD are redundant in triangles {A, B, C}, {A, B, D}, and 

{A, C. D}, respectively. Tree T, = {AD. BD. CD} is not a tree decomposition, since 
edge AB is nonredundant in triangle {A, B, D} (indeed, the tuple (A = 2. B = 3,C = 

3, D = 6) is a solution of T,. hut it is not a solution of the network). 
An important observation about redundant edges is that they can bc deleted from the 

network without affecting the set of solutions; the constraint specified by a redundant 

edge is already induced by other paths in the network. This seems to suggest the 
following decomposition scheme. Repeatedly select an edge redundant in some cycle 
C, delete it from the network, and continue until there are no cycles in the network or 
there are no redundant edges. Algorithm brute;force decomposition (BFD) is depicted 

in Fig. 4. 

Theorem 11. Let C be cl minimal network. Algorithm BFD produces ~1 tree T iff G is 

tree decomposable by T. 

To prove Theorem 1 I, WC must show that if the network is tree decomposable, an) 

sequence of edge removals will generate a tree. A phenomenon that might prevent the 

algorithm from reaching a tree structure is that of a sti’ cycle, namely, one in which 
every edge is nonredundant (e.g.. cycle {B, D, C, E} in Example 6). It can be shown, 
however, that one of the edges in such a cycle must be redundant in another cycle when 
the network is tree decomposable. 

The proof of Theorem I I rests on the lhllowing three lemmas, which also form the 
theoretical basis for Section 5. 

Lemma 12. Let G be CI pnth-cntzsistent tierwork, and let e = (io, i,,, ) be un edge redun- 

dunr in cycle C = {io,il,. ,inr}. If C’ = {io,il.. ,ik,ik+i,. . ,inr} is utz interior cycle 

created by chord (ik, ik ,I ), then e is redundunt in C’. 

Lemma 13. Let G be u minimul network decomposable bJ u tree T, und let e E T be 

a tree edge redundant in some cycle C. Then there exists an edge e’ E C. e’ # T, such 
that e is redundant in the supporting cycle of e’. 



1. Meiri al. /ArtiJCciat intelligence 86 (I 996) 245-267 253 

Lemma 14. Let G be a minimal network decomposable by a tree T. If there exist e E T 
and e’ &’ T such that e is redundant in the supporting cycle of e’, then G is decomposable 

by T’ = T - {e} U {e’}. 

Corollary 15. Let G be a path-consistent ne~ork Aigor~thm BFD produces a tree T 

ifsG is tree reducible. 

Algorithm BFD, although conceptually simple, is highly inefficient. The main draw- 

back is that in Step 3 we might need to check redundancy against an exponential number 
of cycles. In the next section we show a polynomial algorithm that overcomes this diffi- 

culty by looking at cycles of length 3 (e.g., triangles) only. However, when redundancy 

is dete~ined on triangles only (to bound complexity), the order by which such redun- 
dant edges are eliminated is important, as shown in Example 5. Edge AC is redundant 
in triangle ABC, and edge BD is redundant in ABD. However, if we remove both AC 

and BD, the resulting graph has no more triangles and we must stop. Alternatively, if 
we check redundancy on all triangles in advance, we realize that each of AC, BD, and 

BC is redundant in some triangle. However, eliminating all three constraints results in 
a network that does not represent the original relation, which has a tree decomposition. 
Guarding against misguided orderings of redundancy elimination is the essence of the 

algorithm given in the following section. We will provide a rank order of arcs such that 

redundancy elimination in that order is guaranteed to find a tree decomposition if such 

exists. 

5. Tree, triangie, and redundancy labelings 

In this section, we present a new gee-d~omposition scheme (which can be regarded 

as an efficient version of BFD) whereby the criterion for removing an edge is essentially 
precomputed. To guide BFD in selecting redundant edges, we first impose an ordering 
on the edges such that nonredundant edges will always attain a higher ranking than 
redundant ones. Given such an ordering, we could either remove edges of low rank, or 
apply the dual method and construct a tree containing the preferred edges by finding a 
m~imum weight spanning tree (MWST) relative to the given ordering. We focus here 
on the second method. 

We define three types of labelings of edges: tree labeling, redundancy labeling, and 
triangle labeling. A labeling is a tree labeling iff the MWST algorithm produces a 
tree decomposition when one exists. A redundancy labeling is a labeling satisfying 
some condition of redundancy in cycles. We show that the existence of redundancy 
labeling is necessary and sufficient for the existence of tree labeling, and hence for tree 
decomposition. Finally, a triangle labeling is one that captures redundancy in triangles 
only. We show that triangle labeling implies redundancy labeling, and hence a tree 
decomposition. 

Definition 16. Let G = (YE) be a minimal network. A labeling w of G is an assignment 
of weights to the edges, where the weight of edge e E E is denoted by w(e). w is said 



2.54 1. Meiri (11. /Arrificiul Intelligence 86 (1996) 245-267 

Algorithm TD. 
Input: A path-consistent network R. 

Output: A tree reduction of R, if one exists; else, R is not tree reducible. 
I. w - a tree labeling of G: 

2. T- MWST of G w.r.t. u‘: 
3. test whether G is decomposable by T; 

4. if the test fails, G is not tree decomposable; else, return the tree T. 

Fig. 5. TD--a family of tree-decomposition algorithms. 

to be a tree labeling if it satisfies the following condition. If G is tree decomposable, 
then G is decomposable by tree T iff T is an MWST of G with respect to w. 

Finding a tree labeling essentially solves the tree-decomposability problem, simply by 
following the steps of algorithm tree decomposition (‘ID) shown in Fig. 5. TD stands for 
a family of algorithms, where each algorithm is driven by a different labeling w. Steps 

2-4 can be implemented in O(n’): Step 2 can use any MWST algorithm, such as the 

one by Prim, that is 0( n2) (see [ 7) ) ; Steps 3-4, deciding whether G is decomposable 
by T, are 0( n-? ), as explained in Section 4 (Theorem 10). 

We now turn our attention to Step 1, namely, computing a tree labeling. This will be 
done in two steps. We first introduce a necessary and sufficient condition for a labeling 

to qualify as a tree labeling, and then synthesize an O( n’) algorithm that returns a 
labeling w satisfying this condition. As a result, with this labeling the total running time 

of TD is bounded by O(n’). 

Definition 17. Let G = (I(E) be a minimal network. A labeling w of G is called a 
redundancy labeling if it satisfies the following condition. For any tree T and any two 
edges e’ E E - T and e E T such that e is on the supporting cycle Cr(e’) of e’, if G is 

decomposable by T, then 

w(e’) < w(e). (1) 

e is redundant in CT(~‘) whenever w(e’) = w(e). (2) 

Lemma 18. Let w be any labeling of a minimal network G. w is a tree labeling iff w 
is a redundancy labeling. 

Having established this equivalence, the next step is to construct a labeling that 
satisfies conditions ( 1) and (2). 

Definition 19. A labeling w of network G is a triangle labeling if for any triangle 
t = {el , e2, ej} the following conditions are satisfied. 

(i) If el is redundant in t, then 

w(el) < w(e2), w(el) 6 Me?). (3) 



1. Meiri al. /ArtQicial Intelligence 86 (1996) 245-267 25.5 

Fig. 6. Triangle constraints for Example 52. 

(ii) If et is redundant in t and e2 is nonredundant in t, then 

w(el) < w(e2). (4) 

Conditions (3) and (4) will be called triangle constraints. 

Illustration. Consider the minimal network of Example 6. Analyzing redundancies 

relative to all triangles leads to the triangle constraints depicted in Fig. 6. Each node in 
the figure represents an edge of the minimal network, and arc et 4 e2 represents the 

triangle constraint w( et) < w(e2) (for clarity, all arcs from bottom layer to top layer 
were omitted). It so happens that only strict inequalities were imposed in this example. 
A triangle labeling w can be constructed easily by assigning the following weights: 

w(AB) = w(AC) = w(AD) = w(AE) =3, 

w(BD) = w(BE) = w(CD) = w(CE) = 2, 

w(BC) = w(DE) = 1. 

Note that the tree T = {AB, AC, AD, AE}, which decomposes the network, is an MWST 

relative to these weights, a property that we will show to hold in general. 
Clearly, conditions (3) and (4) are easy to verify as they involve only tests on 

triangles. In Lemma 21, we will indeed show that they are sufficient to constitute a 
redundancy labeling, hence a tree labeling. Moreover, a labeling satisfying conditions 
(3) and (4) is easy to create primarily because, by the following Lemma 20, such a 
labeling is guaranteed to exist for any path-consistent (hence for any minimal) network. 
Note that this is by no means obvious, because there might be two sets of triangles 
imposing two conflicting constraints on a pair (a, b) of edges: one requiring w(a) < 

w(b), and the other w(u) > w(b). 

Lemma 20. Any path-consistent network admits a triangle labeling. 



2% 1. Meiri d. /Art(jicrctl Intelliprrt~e 86 (1996) 245-267 

Algorithm TL. 
I}~p~~~ An arc- and path-consistent network R. 
Output: A triangle labeling ~3. 

I. create directed graph Cl = ( VI, El ) with VI = E and El = (I,; 
2. for each triangle t = (ei, e,, en} in G, do 

if edge ~‘i is redundant in t, then add arcs tl, - <J,~ and pi + et to G,; 

3. set 6: = i V,, Ez) as the superstructure of G, ; & = {C, . . , C,, ). 
4. compute a topological ordering ~2 for V2; 
5. for i := I to IV,l. do 
6. for each edge e in C;, do 

\V(PI -- PV(C,,: 
-_ 

Notice that when there is no redundancy, any labeling is a triangle labeling. The idea 

behind triangle labelings is that all redundancy information necessary for tree decom- 
position can be extracted from individual triangles rather than cycles. By Lemma 12, if 

an edge is redundant in a cycle, it must be redundant in some triangle. Contraposit~~~ely, 

if an edge is nonredundant in all triangles, it cannot be redundant in any cycle, and 
thus must be included in any tree decomposition. To construct a tree decomposition, 
we must, therefore, include all those necessary edges (note that they attain the highest 
ranking) and then proceed by preferring edges that are nonr~dundant relative to others. 
The correctness of the next lemma rests on these considerations. 

Lemma 21. Let G be u rnir~irrul network. If‘ bv is u triatgle labeling of G, then it is 
r~1.w a redunduncy labeling. 

We can conclude: 

Theorem 22. Let G be a mir~imul rzetwork. and assume TD uses u triargle labeling ~1 
of G. G is tree decomposable @ TD ,$nds a tree decompositiorl of G. 

Theorem 23. Let G be II pnt~z-coiz.sistent wtwork, arrd assume TD uses ct triangle 
labeling u’ of G. G is tree reducible @ TD finds a tree reductiort of G. 

From here on we will assume that the labeling w computed by TD in Step 1 is a 

triangle labeling. What remains to be shown is that given any minimal network G = 
( v!‘E), a triangle labeling can be formed in O(n”) time. Algorithm triargle labeling 
(TL), shown in Fig. 7, accomplishes this task. 

Let us consider algorithm TL in detail. First, it constructs a graph, Gl, that displays 
the triangle constraints. Each node in G, represents an edge of G, and arc LL --+ u stands 
for a triangle constraint VV( u) 6 ~t’( rl) or )v( 11) < W(U). The construction of GI (Steps 
l-3) takes Ot n’) time, since there are Of!z’) triangles in G, and the time spent for 
each triangle is constant. 



I. Meiri al. /Ar@cial Inrelligence 86 (1996) 245-267 257 

Consider a pair of nodes, u and u, in Cl. It can be verified that if the nodes belong to 
the same strongly connected component (i.e., they lie on a common directed cycle), 3 
their weights must satisfy w(u) = w(u). If they belong to two distinct components but 
there exists a directed path from u to U, their weights must satisfy w(u) < w(u). These 

relationships can be effectively encoded in the superstructure of GI [7]. Informally, 
the superstructure is formed by collapsing all nodes of the same strongly connected 
component into one node, while keeping only arcs that go across components. Formally, 
let G2 = (V2, E2) be the superstructure of G1. Node CL E G2 represents a strongly 

connected component, and a directed arc Ci -+ Cj implies that there exists an edge u + 

u in G1, where u E Ci and u E Cj. Identifying the strongly connected components, and 

consequently constructing the superstructure (Step 4)) takes 0( n3 ) (a time proportional 

to the number of edges in GI [ 71). 
It is well known that the superstructure forms a directed acyclic graph (DAG), and, 

moreover, that the nodes of the DAG can be topologically ordered, namely, they can 
be given distinct weights w such that if there exists an arc i -+ j, then w(i) < w(j). 

This can be accomplished (Step 4) in time proportional to the number of edges, namely 
0(n3). Finally, recall that each node in G2 stands for a strongly connected component, 
Ci, in G1, which in turn represents a set of edges in G. If we assign weight w( Ci) 

to these edges, w will comply with the triangle constraints, and thus will constitute a 

triangle labeling. Since all steps are 0( n3), the entire algorithm is O( n3). 
These considerations are summarized in the following theorem. 

Theorem 24. Given a path-consistent network R, algorithm TL generates a triangle 

labeling of R in O( n3 ) steps. 

Corollary 25. The tree decomposability of a minimal network G can be decided in 

O(n3) steps. Furthermore, if it exists, a tree decomposition of G can be generated in 

O(n3). 

6. Tree decomposition versus tree reduction 

Given an arbitrary network R (not necessarily minimal), we wish to determine 
whether R is tree decomposable. If it were the case that any tree-decomposable net- 

work becomes minimal by enforcing path-consistency, then algorithm TD preceded by 
path-consistency would solve tree decomposability for the general case. This is not 
true, however. There are path-consistent networks that are not minimal and yet are tree 

decomposable. 

Example 26 (Rish [ 131). Consider the following network (see Fig. 8) on four vari- 
ables. 

x= {x,,x2>x3,x4}, Di={1,2,3}, i= 1,2,3, D4 = {1,2,3,4}. 

3 A strongly connected component of a directed graph is a maximal set of node U such that for every pair 

A aad B in U, there is a directed cycle containing A and B. 



Fig. 8. A nonminimal path-consistent networh representing tree-decornposablc relation. 

which represents a tree-decomposable relation having one solution, p = { (Xi = 1, X2 = 
2, X; = 3. X4 = 4)). The network is path consistent but not minimal. 

II‘ we try to apply our algorithm to this network, WC will find no redundancy in 

any triangle or in any cycle. Indeed. the algorithm assumes that the given network is 
minimal, and it will not be able to recognize such redundancy, which is hidden in its 

minimal network. 

As noted at the outset, our tree-reduction algorithm. TD, will decide tree decomposi- 
tion whenever path-consistency produces the minimal network. Theorem 22 leads to the 
following observation. 

Theorem 27. Algorithm TD rlecGle.s tree decorry,osition for the ,fOliowiq classes of 
netwvrks: 

(1) Tree-reducible rletworks. 

(2) Path-corrsistent row-com~ex tletvvorks. 

(3) 1tnplicational coristruints networks. 

(4) Binary (0, I ) networks. 

(5) Distributive rletworks. 

Row-convex networks involve constraint matrices having consecutive sequences of 
l’s [ 161. Distributive networks employ relations for which the composition operation 
is distributive over intersection [ 121. Implicational constraints networks are binary net- 
works where, in each constraint, every value can match none, one, or all of the values 
of the other variable [ I, 8). Implicational constraints networks are a special case of 
row-convex networks that are closed under path-consistency. Since the path-consistent 



1. Meiri al./Arti$cial Intelligence 86 (1996) 245-267 259 

networks listed in (2)-(S) are all globally consistent, the saving that is introduced by 
redundancy elimination is at most O(n) (i.e., testing one constraint rather than O(n) at 

each stage). 

7. Redundancy elimination and approximation 

Another application of TD is redundancy removal. Given a network R (not necessarily 

tree decomposable), it is sometimes desirable to remove as many redundant edges as 
possible. Our scheme provides an effective removal heuristic, alternative to that of 

[2]. In [2], an algorithm called path-redundunc~ is introduced. It eliminates, in some 
sequence, edges that are path redundant relative to a set of paths, If we apply algorithm 
TD first, we can use its weights to guide the order of path-redundancy elimination, 

thus guaranteeing that a tree will be identified if one exists. Alternatively, we can first 

apply TD and then, if the tree generated does not represent the network precisely, add 
nonredundant edges until a precise representation obtains. 

TD can also be used for approximation: given a network R, find a tree network 
that constitutes a good approximation of R. The tree T generated by TD provides an 
upper bound of R, as it enforces only a subset of the constraints. The quality of this 

approximation should therefore be evaluated in terms of the tightness, or specificity, 

of T. 

Conjecture. If R is a minimal network, the tree T generated by TD is most speci$c 
in the following sense: no other tree T’, extracted from the network, satisfies ref(T’) C 

rel(T). 

Although we have not yet found a proof, the conjecture has managed to endure all 

attempts to construct a counterexample. 

8. Related work: decomposing a relation 

The problem of tree d~omposition was solved for general relations. Given a relation 
p, the problem is to determine whether p is tree decomposable. We first describe how 

TD can be employed to solve this problem, and then compare it with the solution 
presented in [ 31. 

We start by generating the minimal network M from p. We do this by projecting p 

on each pair of variables. We then apply TD to solve tree decomposability for M. If M 
is not tree decomposable, p cannot be tree decomposable, because then, there would be 

a tree T satisfying p = ref( T) C ref( M) , violating the minimality of M [ 121, If M is 

decomposable by the generated tree T, we still need to test whether ref (T) = p (note 
that M may not represent p precisely). This can be done by comparing the sizes of the 
two relations: p is decomposable by T iff lpi = [ref(T) 1. Generating M takes O(n*\p]) 
operations, while lref(T) ( can be computed in O(n) time [ 51; thus, the total time of 
this method is 0( n2)p]). 



An alternative solution to the problem was presented in 13 I. It computes for each 
edge a numerical measure, ~1’. based on the frequency with which each pair of values 
appears in the relation. First. the following parameters are computed: 

l n(X, = x,) = number of tuples in p in which variable X, attains value x,. 

l 11(X, = _Y,. X, = s, 1 = number of tuples in p in which both X, = _Y, and X, = .i-,. 
Then. each edge P = (i, j) is assigned the weight 

w(e) = c fI( x,, x, ) log 
11(.4,, 4,) 

I,.\,EX,.X, 
II ( .x, ) rI ( _I-, ) 

It has been shown that this labeling. 1~. is indeed a tree labeling, also requiring O(n’lpl) 

computational steps. 
Of the two schemes, the method presented in this paper has three advantages. First, it 

dots not need the precision required by the log function. Second, it offers a somewhat 

more effective solution in cases where p is not available in advance but is observed 

incrementally through a stream of randomly arriving tuples. Finally, it is conceptually 
more appealing. since the removal of each edge is meaningfully justified in terms of 

being redundant. 

9. Conclusion 

The problem addressed in this paper is best viewed as a task of “knowledge com- 
pilation” 16, 141, in which knowledge specilied in one form is compiled into a more 

manageable form, so as to accommodate a given stream of queries. The compilation task 
treated in this paper concerns the decomposition of a constraint network into a tree-a 

structure known to facilitate tractable answers to a wide spectrum of queries. 
This paper develops a tractable decomposition scheme that requires O(n3) time and 

solves the problem for minimal networks and for any path-consistent network from which 
a tree decomposition can be extracted by deleting edges. The technique is complete for 
several classes of networks for which path-consistency produces the minimal network. 
Row-convex and distributive networks are two such classes. 

The theoretical contribution of this paper lies in delineating the extent to which one 
can generate trees and remove redundancies by examining only triplets of variables. That 
such local examination could be sufficient for certain classes of networks is an intruiging 
finding, and should add to our general understanding of dependency and redundancy in 
constraint networks. 

We can only speculate about the applicability of this method for large, real-life prob- 
lems. The method can certainly be useful for guiding removal of redundancies and 
for generating tree networks that provide upper-bound approximations. However, the 
prospects for uncovering tree structures in real-life databases, while a serious possibility 
in highly structured domains (i.e., temporally indexed relationships), may be rather 
dim; we suspect that, in practice. most networks will not be tree decomposable. In such 
cases, the effectiveness of our technique would rest upon the goodness of the approxi- 



I. Meiri al. /Artificial Intelligence 86 (1996) 245-267 261 

mation provided by the tree generated and on how well the redundancies discovered are 
exploited. 

Acknowledgements 

We thank Irina Rish for Example 26 which resolved a longstanding conjecture. This 

work was supported in part by Air Force Grant #AFOSR 90 0136, National Science 
Foundation Grant #IRI 9200918, National Science Foundation Grant #IRI 9157636, 

Toshiba of America, and a grant from Xerox. 

Appendix A. Proofs of theorems 

Theorem 10. Let G = (VE) be a minimal network. G is decomposable by a tree T iff 

every edge in E - T is redundant in its supporting cycle. 

Proof. Assume G is decomposable by T. Suppose there is an edge (i, j) E E - T that 
is nonredundant relative to its supporting path Pi,. Thus, there exists an instantiation 

of the variables on Pij which satisfies the constraints along Pij, but the pair of values 
(x, y), assigned to variables i and j, is disallowed by Rii. Since the network is arc 
consistent, this instantiation can be extended to a complete solution of T. However, 
since the pair (x, y) is disallowed by Rij, T is not equivalent to G, and thus cannot be 

a tree decomposition; contradiction. 
The other direction is rather obvious. If any edge in E-T is redundant in its supporting 

cycle, it can be deleted from the network without affecting the set of solutions. Thus, T 

is equivalent to G, and it is a tree decomposition. Cl 

Lemma 7. Let T be a tree network, then path(T) is minimal. 

Proof. The reason is that any pair of values allowed by a unique path of tree edges can 
be extended to a full solution and therefore will appear in the minimal network. q 

Lemma 12. Let G be a path-consistent network, and let e = (io, i,) be an edge 

redundant in cycle C = {io, il,. . . , i,,}. Zf C' = {io, il,. . . , ik, ik+l, . . . , i,,} is an interior 

cycle created by choml (ik, ik+[), then e is redundant in C’. 

Proof. From path-consistency, we have 

&,i,+, L &,ik+l,..., i,+,. 

Composition of constraints preserves tightness, thus 

R, ,..., ir,ik+, ,..., i,,, c Rio ,..., ik,ik+l,..., it,, ,..., i,,. 

Since (io, i,,) is redundant in C, we have 

R, 10 ,..., i*,ik,~,..., it+/ ,..., i., C Rio,i.,. _ 

(A.11 

(A.2) 

(A.3) 



262 1. Meiri trl. /Arrifrcrd Itztelli~ence X6 (1996) 245-267 

From (A.2) and (A.3), we obtain 

R/c,. .li.l*,t. .f,,, = R ii).!,,, (A.4) 

From path-consistency. R ,,,,,,,, s1 R ,,,, .!I.!, .,... I and thus C if). i,!)) is redundant in C’. 0 

Lemma 13. Let G he CI mirlimul network decomposable 0~ a tree T. and let e E T be 
n tree edge redundant in some cycle C. Therl there exists an edge e’ E C, e’ @ T, such 

that e is redundant in the supporting c~ci~ qf’ 0’. 

Proof. Assume that the vertices along c’ arc (‘1.. , l‘,,,, where r = (PI, I’,,,) Without 
loss ot‘ generality, we may assume that 1’1 is not a leaf in T (otherwise, reverse the order 
of’ the vertices along C ). Let k be the highest index such that there exists a path PI ,k in 

T from 1’1 to I’L not passing through I’,,,. Note that k > I since 1’1 is not a leaf. 
Consider the path P = P1.h lJ {e} which is entirely contained in T. There exists a path 

in T connecting vertex IS,! ~ 1 to a unique vertex. I’, on P. Clearly I’ = I’,,,; otherwise, there 

would be a path in T from 1’1 to I’,!, 1 not passing through cl,,, violating the assumption 
that 1’1 is the highest such vertex. Therefore. there exists a path in T from l:k+l to c,,. 

Let pk+ I ,,,! denote this path. 

Let e’ = (LIP, c‘k., 1 ). The supporting cycle ot‘ 0’ is 

Cr(e’) = P1.k J ((1’h.l’~. 11) !.I Pk. I,,,~ I..! (e}. (A.5) 

To complete the proof we now show that e is redundant in C,(e’). From Lemma 12, 
since e is redundant in C. it is also redundant in the quadrangle (~~1, I’L, ck+l , L!,,,}. 
However, (~1, /.k) and (~:k_ 1. l’,,, ) arc redundant with respect to their supporting paths, 

PI .i and pk +- I ,Illr respectively. Thus, e is redundant in C,(e’). q 

Lemma 14. Let G be N minimal network decomposable 1~~ N tree T. If there exist 
e E T and e’ $Z T such that e is redundunt in the .supporting cycle of’ e’, then G is 

decomposable /JJ T’ = T - {e} U {e’}. 

Proof. By Theorem IO, we riced to show that every edge is redundant with respect to 
its supporting path relative to T’. Let (i.,j) be any edge in E - T’, and let P be its 
supporting path in T’. Consider an instantiation of the variables on P which satisfies the 
constraints along P. Let x and y be the values assigned to i and j, respectively, by this 
instantiation. We will show that they are also allowed by the direct constraint Ri,,. 

Since the network is arc consistent, we can extend this partial instantiation to include 
the rest of the variables, in accordance with the constraints of T’. Since e is redundant in 
its supporting cycle in T’ (it is redundant in c~(e’) = Cry), the instantiation satisfies 
the direct constraint represented by P. Thus, since T C T’U {e}, the instantiation satisfies 
all the constraints of T. Since T is a tree decomposition, the pair (x,y) is allowed by 

R,,. D 

Theorem 11. Let G be ~1 minimal network. Algorithm BFD produces a tree T iff G is 
decomposable hy T. 



I. Meiri al./Arti$cial Intelligence 86 (1996) 245-267 263 

Proof. Clearly, if BFD produces a tree, it constitutes a tree decomposition. Conversely, 
we will show that if the network is tree decomposable, BFD produces a tree decompo- 
sition. 

We claim that during the execution of BFD, the following invariant is maintained: 
there exists a tree decomposition T such that T C N. 

Initially the invariant holds, since the network is decomposable by some tree T c 
E = N. Now assume that the invariant holds before edge e is deleted from N. e is 
deleted because it is redundant in some cycle C. If e $2 T, then the invariant trivially 
holds after the deletion of e. If e E T, then, according to Lemma 13, there exists an 

edge e’ @’ T such that e is redundant in its supporting cycle. Then, from Lemma 14, 
T’ = T - {e} U {e’} is a tree decomposition of G, and T’ C N. Hence, the invariant 

holds after e is deleted. 
To complete the proof, we need to show that upon termination, N constitutes a tree. 

Suppose N contains a cycle C. Since N always contains a tree decomposition T, there 

is an edge e E C which is redundant in its supporting cycle, and thus can be deleted. 
Therefore, when BFD terminates, N forms a tree. 0 

Lemma 18. Let w be a labeling of a minimal network G. w is a tree labeling iff w is 

a redundancy labeling. 

Proof. If G is not tree decomposable, the theorem trivially holds. Now assume G is tree 
decomposable. We use a well-known fact from graph theory, called the MWSTproperty, 

which says that a tree T is an MWST iff every nontree edge is an edge of minimum 

weight in its supporting cycle. 
If part: Let w be a redundancy labeling of G. We shall show that w is also a tree 

labeling, namely, for any tree T c E, G is decomposable by T iff T is an MWST with 

respect to w. 
Let T C E be a tree decomposition of G. From condition ( 1) and the MWST property, 

we conclude that T is an MWST with respect to w. 

Conversely, let T be an MWST with respect to w. We show that if G is decomposable 
by a tree T’, then it is also decomposable by T. The proof is by induction on k = (T’-TI, 
namely, the number of edges contained in T’ but not in T. 

Clearly, for k = 0, G is decomposable by T = T’. Now assume that if G is decom- 
posable by T’, such that IT’ - Tj = k, then it is also decomposable by T. We have to 

show that if G is decomposable by tree T’, such that IT’ - TI = k + 1, then it is also 

decomposable by T. 
Let T’ be a tree decomposition, where IT’ - TI = k + 1. Let e be an edge in T - T’. 

Clearly, in CTJ (e), its supporting cycle relative to T’, there are edges of T’ - T; let 
E’ denote this set of edges. We first show that there exists an edge e’ E E’ such that 

w(e’> < w(e). 
Consider T - {e}. Deleting e from T divides T into two subtrees T, and T2. At least 

one of the edges in E’ connects a vertex in Tl with a vertex in T2; let e’ denote such an 
edge. We observe that e is in the supporting cycle of e’ relative to T. Then, by applying 
the MWST property to T, w( e’) < w(e). 

Consider again Crt( e). From condition (l), w(e) < w( e’), hence w(e) = w( e’). 



264 1. Meirr rd. /Ar/(Jiicrcd Intelli~mce X6 (1996) 245-267 

From condition (2), we conclude that e’ is redundant in CT’(~). By Lemma 14, 7”’ = 
T’ - {e’} U {e} is a tree decomposition of G. Furthermore, IT” - TI = k. Thus, by the 

induction hypothesis, G is decomposable by T. 
Only if part: Let w be a tree labeling of G. We shall show that w is a redundancy 

labeling. 
Suppose w is not a redundancy labeling. Then there exists a tree decomposition of 

G, T C: E, and a nontree edge e’. having a supporting cycle Cr(e’), for which either 

condition (I ) or condition (2) is violated. There are two cases, depending on which 
condition is violated. 

Case 1. If condition ( I) is violated, then there exists a tree edge e t Cr(e’) such 
that w(e) < w(e’). By the MWST property. T is not an MWST relative to w. However, 
G is decomposable by T, and hence w is not a tree labeling; contradiction. 

Case 2. If condition (2) is violated, then there exists a tree edge e E Cr(e’) such 

that w(e) = w(e’) but e is nonredundant in CT(e’). Clearly, T’ = T - {e} U {e’} is 

an MWST relative to w. However, T’ is not a tree decomposition, since e is nonre- 
dundant in C,!(e) = C,( e’), its supporting cycle in T’. Thus, w is not a tree labeling; 

contradiction. n 

Lemma 20. Any path-consisrenr nerwork admits (I triangle labeling. 

Proof. Suppose not. Therefore. there are two conflicting constraints, namely, there is 
a pair of edges e’. e” E E for which one set of triangle constraints requires w( e’) > 

w( e”), whereas another set of triangle constraints requires w( e’) < w( e”). Together, 
there exists a sequence of edges et = eI , e:. , ek = e”, . . , e,,, = e’ for which the 
triangle constraints require 

<w(el+l) < w(el+z) < t.. < w(e,,,). (A.6) 

Without loss of generality we can rename the edges, and the constraints may be written as 

w(et) < ‘.. < w(e,,,-1) < w(e,,) < Ne,,,,i) (A.7) 

where e,,+l = el, and the strict inequality is last. Let tz, , t ,,,, f,,,+I be the correspond- 
ing sequence of triangles, namely, t, contains edges ei-1 and e, for i = 2,. . . , m + I. 

We now show by induction that for all i. 2 < i 6 m, there exists a cycle C, containing 

el and e;, in which el is redundant. 
For i = 2, triangle t:! contains el and e2, and imposes the constraint w(el ) < w(e2). 

Hence, el is redundant in C2 = t?. 
Now assume that there exists a cycle Ci containing el and e,, in which el is redundant. 

Consider triangle t,~,I It contains both e, and et+, , and, from the triangle constraint, 
e, is redundant in t,+l. Let 131, 112, and ~‘3 be the vertices of t;+l, where e; = (01, cl). 
Clearly, vertices ~‘1 and ~12 lie on C,. There are two cases depending on the location 
of UT. 

Case I : ~:3 is not in C,. Let the third edge of t;+l (besides e; and e;+l ) be c;+l , and 
let C,+, = C; - {e;} U {ei,l,c,, I}. Clearly, el is redundant in C;+l. 



I. Meiri al./Arti$ciat fnteliipnce 86 (19963 241267 265 

Case 2: 1.4 is in Ci. Therefore, ei+t is a chord of Ci, and it divides Cl into two interior 
cycles, Ci, that contains et and ei+i, and Ciz. By Lemma 12, since et is redundant in 
Cl, it is also redundant in Ci+t = Ci,. 

We have now proved that there exists a cycle containing et and e, in which et is 
redund~t. However, et and e, are adjacent (they are both cont~ned in triangle tnrit ) . 
Therefore, from Lemma 12, et is redundant in &+I. Yet, triangle tnr+i imposes the 
constraint w( e,) < w( et), implying that ei is nonredundant in t,+t ; contradiction. Cl 

Lemma 21. Let G be a minimal network. If w is a triangle labeling of G, then it is 
also a redundancy labeling. 

Proof. If G is not tree d~omposable, the theorem trivially holds. Now assume G is 
decomposable by tree T. Let e’ # T and e E T be edges such that e is on Cr( e’), the 
supporting cycle of e’. We need to show: 

(i) w(e’) < w(e). 
(ii) If w( e’) = w(e), then e is redundant in Cr( e’). 
Assume the vertices of Cr( e’) are ui , . . . , u,, where e’ = (01, us) and e = (u,,, u,,+t). 

To simplify notation, we may assume without loss of generality that e # ( u,~-,, u,~) 
(otherwise, we may reverse the order of the vertices along Cr( e’) ). 

(i) Wefirstshowthat w(e’) <w(e).Let ei (i= l,...,m+l) denoteedge (Ui,U,), 
and let Ci be its supporting cycle. Let ti be the unique triangle containing edges ei and 
ei+t. By Lemma 12, ei is redundant in ti, for i = 1, , . , m. Consider the sequence of 
triangles tl , . . . , t,,. In ti, 1 < i 6 m - 1, we have w(ei) < w(ei+i); in triangle t,,, we 
have w(e,,) 6 w(e). Together, we have 

w(e’) = w(ej) 6 w(e2) < -.- 6 w(e,,) < w(e). (A.81 

(ii) Now assume w( e’) = w(e). We can replace the inequalities in (A.8) by equalities 

w(e’) = w(el) = w(e2) = v..= w(e,,> = w(e). (A.9) 

From (A.9)) we conclude that edge ei+i is redundant in triangle ti, for i = I, . . . , m - 1; 
otherwise, we would have w(ei+t ) > w( ei), violating the equality. Similarly, e is 
redundant in t,. 

Finally, to show that e is redundant in Cr (e’) = Cl, we prove by induction on j that 
e is redundant in C,,,_,i, for j = 0,. . . , m - 1. 

For j = 0, we have to show that e is redundant in C,,. e is redundant in t,,, and 
e,,+t is redundant in its supporting cycle &+I, thus e is redundant in C,,. Now assume 
that e is redundant in Cm-j. Since e,_,i is redundant in c,,-l-1, e is also redundant in 
Cm_,i_t , which completes the induction. [7 

Theorem 22. Let G be a minimal network, and assume TD uses a triangle labeling w 
of G. G is tree decomposable iff TD finds a tree decomposition of G. 

Proof. Clear. q 



266 I. Meiri al. /Art$ciui i~ttelli~ence X6 (I 9961 245-267 

Theorem 24. Given a path-consistent network R, algorithm TL generates a triangle 
labeling of R in 0( n3 ) steps. 

Proof. The proof is outlined in the text. 0 

Corollary 25. The tree decu~~posabilit~ qf a i~~~n~i~~l network G can be decided in 

O(n3) steps. Furthermore, if i? exists, a tree decomposition of G can be generated iw 

O(n”). 

Proof. Algorithm TD decides whether a tree decomposition exists, and if it does the 
algorithm generates one (Theorem 221. Since the complexity of generating triangle 
labeling is O(n’) and since the complexity of TD without the weight-generation step is 
also O(n”), the overall complexity is 0(tr3 1. [r_l 

Theorem 27. Algorithm TD is complete ,j?)r the ,fi)llowing networks: 

( I ) Tree-reducible networks. 

(2 ) Row-convex networks. 

(3) Implicational constraints networks. 

(4) ~i~~a~ (0, 1) networks. 
(S ) Distributive ~.et~~f~r~. 

Proof. Parts (2), (31, and (4) follow from the fact that row-convex networks [ 161, 
implicational constraints networks [ I, 81, and distributive networks [ 121 were shown to 
be minimal following the application of path-consistency. Also, we already showed that 
tree-reducible networks that are path consistent are minimal. A tree-reducible network 

R must have an equivalent tree subnet~~ork R’ containing a subset of its edges. Let us 
denote by path{ R) the network resultin g from applying path-consistency to R. Since 
R is tighter than R’, path(K) is tighter than path( R’). Since path( R’) is minima1 and 
since the two networks are equivalent. path(R) is minimal as well. i17 

References 

1 1 j M.C. Cooper, D.A. Cohen and l?G. Jeavons, ~h~ract~~zjn~ tractable constraints. Arrifi hidi. 65 ( 1994) 

347-36 I. 
12 1 A. Dechter and R. Dechter, Removing redundancies in constraint networks, in: I’roceedinp AAAI-87. 

Seattle, WA ( 1987) 10.5-109. 

13 I R. Dechter, Decomposing a relation into a tree of binary relations, .I. Con~pu!. .Qsr. Sci. 41 ( 1990) 

2-24. 

[ 4 1 R. Dechter, Constraint networks, in: Erzc~ylopedic~ of Arrijiciul frzrellipnce (Wiley. New York, 2nd ed.. 

1992) 276-28.5. 

15 I K. Dechter and J. Pearl, Network-based hcunstics for constraint satisfaction problems, Artif: Inrelf. 34 

(1987) f-38. 

16 I K. Dechter and J. Pearl. Structure identitication m relational data, Art$ fnretl. 58 ( 1992) 237-270. 

171 S. Even, Graph Algorithms (Computer Science Press, Rockville, MD, 1979). 

18 ] L.M. Kirousis. Fast parallel constraint satisfaction, Arlif: lntelf. 64 ( 1993) 147-160. 

191 A.K. Mackworth, Constraint satisfaction. in: fkylopedict of Artificiul Intelligerm? (Wiley, New York, 

2nd ed.. 1992) 276-285. 



I. Meiri al. /Artijicial Intelligence 86 (1996) 245-267 267 

[ IO] A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network consistency algorithms 

for constraint satisfaction problems, Art$ Intell. 25 (1985) 65-74. 
[ 111 D. Maier, The Theory of Relarional Databases (Computer Science Press, Rockville, MD, 1983). 

1 121 U. Montanari, Networks of constraints: fundamental properties and applications to picture processing, 

hform. Sci. 7 (1974) 95-132. 

[ 131 I. Rish, Personal communication (April 1995). 

1141 B. Selman and H.A. Kautz, Tractability through theory approximation, AI Tech. Rept., AT&T Bell 

Laboratories, Murray Hill, NJ ( 1992). 

1 151 J. Ullman, Personal communication. 

1161 P. van Beek and A. Dechter, On the minimality and the decomposability of row-convex constraint 

networks, J. ACM 42 ( 1995) 543-561. 


