AND/OR Graph Search for Genetic Linkage Analysis

Radu Marinescu and Rina Dechter
School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum decht er }@ cs. uci . edu

Abstract rather than the AND/OR search tree, using a flexible caching
. mechanism that can adapt to memory limitations.
AND/OR search spacdsave recently been introduced as a The caching scheme is based amtextsand is similar

unifying framework for advanced algorithmic schemes for

graphical models. The main virtue of this representation to good and no-good recording and recent schemes appear-

is its sensitivity to the structure of the model, which can ing in Rec_ursive Conditioning (Darwic_he 2.001) and VaIue_d
translate into e)>/<ponential time savings for search algorithms. ~ Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
AND/OR Branch-and-BoundOBB) is a new algorithm that ciency of the proposed search methods also depends on the
explores the AND/OR search tree for solving optimization accuracy of the guiding heuristic function, which is based
tasks in graphical models. In this paper we extend the al- on the mini-bucket approximation of Variable Elimination
gorithm to explore an AND/OR seararaph by equipping (Dechter & Rish 2003). We focus our empirical evaluation
it with a context-based adaptive caching scheme similar to on the task of finding the Most Probable Explanation in be-
good and no-good recording. The efficiency of the new graph |ief networks (Pearl 1988), and illustrate our results on se
search algorithm is demonstrated empirically on the very gra| henchmarks from the field of genetic linkage analysis.
gihsallenglng benchmarks that arise in genetic linkage analy- The paper is organized as follows. Section 2 provides
' background on belief networks, AND/OR search trees and
the AOBB algorithm. In Section 3 we introduce the AND/OR
Introduction searchgraph and AOBB with caching. In Section 4 we de-

. _ .. scribe two context-based caching schemes. Section 5 gives
Graphical models such as belief networks or constraint ¢qme experimental results and Section 6 concludes.

networks are a widely used representation framework for
reasoning with probabilistic and deterministic infornoati Preliminaries
These models use graphs to capture conditional independen-_
cies between variables, allowing a concise representafion Belief Networks
the knowledge as well as efficient graph-based query pro- Belief Networksprovide a formalism for reasoning about
cessing algorithms. Optimization tasks such as finding the partial beliefs under conditions of uncertainty. They age d
most likely state of a belief network or finding a solution fined by a directed acyclic graph over nodes representing
that violates the least number of constraints can be defined variables of interest.
within this framework and th_ey are typically tackled with pepviTion 1 (belief network) A belief network is a
e|t1h_(;rsearchormferencealgonthms (Deqhter 2003). quadrupleB = (X, D, G, P), whereX = {X,,..., X, } is

e AND/OR search space for graphical models (Dechter 5 cet of random variablesD = {Di,...,D,} is the set
& Mateescu 2006) is a new framework for search that is ¢ tne corresponding discrete-valued domaigsis a di-
sensitive to the independencies in the model, often result- (octeq acyclic graph ove®’ andP = {p,, ...,p, }, where
ing in exponentially reduced complexities. It is based on)~ _ P(Xilpa(X:)) (pa(X:) are the parénté ofX; in G)
a pseudo-tree that captures independencies in the graphica jenoteconditional probability tablegCPTs). The belief net-
model, resulting in a search tree exponential in the depth of .k represents a joint probability distribution ovéf hav-
the pseudo-tree, rather than in the number of variables. ing the product formPs(z) = [[, P(zi|pa,), Where

search method that explores the AND/OR search tree for z — (;, . z.) and wherers denotes the restriction of a

solving optimization tasks in graphical models (Marinescu ypje s over a subset of variableS. An evidence setis an

& Dechter 2005). In this paper we improve t#&BB instantiated subset of variables. Theoral graphof a belief
scheme significantly by usirgrchingschemes. Namely, we network is the undirected graph obtained by connecting the
extend the algorithm to explore the AND/OR seagrlph parent nodes of each variable and eliminating direction.
Copyright © 2007, American Association for Artificial Intelli- The primary optimization query over belief networks

gence (www.aaai.org). All rights reserved. is finding theMost Probable ExplanatiofMPE), namely,

Figure 1: A fragment of a belief network used in genetic
linkage analysis.

finding a complete assignment to all variables having max-
imum probability, given the evidence. A generalization of
the MPE query idMaximum a Posteriori Hypothes{MAP),
which calls for finding the most likely assignment to a subset
of hypothesis variables, given the evidence.

DEFINITION 2 (MPE task) Given a belief network and ev-

problem consists of finding a joint haplotype configuration
for all members of the pedigree which maximizes the prob-
ability of data.

The pedigree data can be represented as a belief network
with three types of random variablegenetic locivariables
which represent the genotypes of the individuals in the-pedi
gree (two genetic loci variables per individual per locus,
one for the paternal allele and one for the maternal allele),
phenotypevariables, andelectorvariables which are aux-
iliary variables used to represent the gene flow in the pedi-
gree. Figure 1 represents a fragment of a network that de-
scribes parents-child interactions in a simple 2-loci gnal
sis. The genetic loci variables of individualat locus
are denoted by.; ;, and L, j,,,. VariablesX; ;, S; j, and
S;.;m denote the phenotype variable, the paternal selector
variable and the maternal selector variable of individual
at locusj, respectively. The conditional probability tables
that correspond to the selector variables are parameterize
by the recombination ratiof (Fishelson & Geiger 2002).
The remaining tables contain only deterministic informa-
tion. It can be shown that given the pedigree data, the haplo-
typing problem is equivalent to computing the Most Prob-
able Explanation (MPE) of the corresponding belief net-
work (for more details consult (Fishelson & Geiger 2002;
Fishelson, Dovgolevsky, & Geiger 2005)).

AND/OR Search Trees

The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-

plest case, this process defines a search tree (called here OR
search tree), whose nodes represent states in the space of
partial assignments. The traditional search space does not
capture the structure of the underlying graphical model. In

' troducing AND states into the search space can capture the

idencee, the Most Probable Explanation (MPE3sk is to
find an assignmenty, ..., %) such that: P(zg, ..., x2)
mazrx, . x, | r—; P(Xklpa(Xy),e).

The MPE task appears in applications such as diagnosis

abduction and explanation. For example, given data on clin-
ical findings, MPE can postulate on a patient’s probable af-
flictions. In decoding, the task is to identify the most likel

message transmitted over a noisy channel given the observed

output.

DEeFINITION 3 (induced graph, induced width) Given a
graph G, its induced graphelative to an orderingd of the
variables, denoted>*(d), is obtained by processing the
nodes in reverse order of. For each node all its earlier

neighbors are connected, including neighbors connected by

previously added edges. Given a graph and an ordering
of its nodes, thevidth of a node is the number of edges
connecting it to nodes lower in the ordering. Timeluced
width of a graph, denote@*(d), is the maximum width of
nodes in the induced graph.

Genetic Linkage Analysis

In human genetic linkage analysis (Ott 1999), tiaplo-
typeis the sequence of alleles at different loci inherited by
an individual from one parent, and the two haplotypes (ma-
ternal and paternal) of an individual constitute this indHv
ual’s genotype When genotypes are measured by standard
procedures, the result is a list of unordered pairs of alele
one pair for each locus. Thmaximum likelihood haplotype

structure decomposing the problem into independent sub-
problems by conditioning on values (Freuder & Quinn 1985;
Dechter & Mateescu 2006). The AND/OR search space is
defined using a backbomseudo-tree

DEFINITION 4 (pseudo-tree) Given an undirected graph
G = (V,FE), a directed rooted tred" = (V, E’) defined
on all its nodes is callegseudo-tred any arc ofG which is
not included inE’ is a back-arc, namely it connects a node
to an ancestor iff".

Given a belief networl8 = (X, D, P), its moral graptG
and a pseudo-tre€ of G, the associated AND/OR search
tree St has alternating levels of OR nodes and AND nodes.
The OR nodes are labeled; and correspond to the vari-
ables. The AND nodes are labeléd;, ;) and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangementof G. The root of the AND/OR
search tree is an OR node, labeled with the rodf of

The children of an OR nod&’; are AND nodes labeled
with assignmentsX;, «;), consistent along the path from
the rOOt,thh(X,’,Ii) = (<X1, I1>, ey <X¢_17l‘i_1>). The
children of an AND nodeX;, z;) are OR nodes labeled
with the children of variableX; in T. In other words, the
OR states represent alternative ways of solving the prablem

P(CIA) P(AIF) P(F)

P(DIB,C) P(BIA,E) P(EIF)

@

Figure 2: AND/OR search spaces

whereas the AND states represent problem decomposition AND/OR Branch-and-Bound Tree Search

into independent subproblems, all of which need be solved.

When the pseudo-tree is a chain, the AND/OR search tree AND/OR Branch-and-Bound AOBB) was introduced in

coincides with the regular OR search tree.

A solution subtreeSolg, of S is an AND/OR subtree
such that: (i) it contains the root &fr; (i) if a nonterminal
AND noden € Sy is in Solg, then all its children are in
Sols,.; (iii) if a nonterminal OR node: € Sr is in Solp
then exactly one of its children is iflolg,, .

Example 1 Figures 2(a) and 2(b) show a belief network and
its pseudo-tree together with the back-arcs (dotted lines)
Figure 2(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtree i

highlighted.

The AND/OR search tree can be traversed by a depth-first
search algorithm that is guaranteed to have a time complex-
ity exponential in the depth of the pseudo-tree and can use

linear space (Dechter & Mateescu 2006). The arcs fdom
to (X;,z;) are annotated by appropridtbelsof the func-
tions inP. The nodes ibr can be associated withalues

defined over the subtrees they root.

DEFINITION 5 (label) Thelabel I(X;,z;) of the arc from

the OR nodeX; to the AND nod€X;, «;) is defined as the
product of all the conditional probability tables whose peo
includesX; and is fully assigned alongath(X;, ;).

DEFINITION 6 (value) Thevaluev(n) of a noden € Sr
is defined recursively as follows: (i) it = (X, ;) is
a terminal AND node them(n) = I(X;,z;); (i) if n =
(X;,z;) is an internal AND node then(n) = I(X;, ;) -
[T esuceqn) v("); (iii) if n = X; is an internal OR node
thenv(n) = maz, coycen)v(n’), Wheresuce(n) are the
children ofn in Sp.

Clearly, the value of each node can be computed recur-

sively, from leaves to root.

ProPOSITION1 Given an AND/OR search treSr of a
belief networkB = (X, D,P), the valuev(n) of a node

n € St is the most probable explanation of the subprob-

lem rooted atq, subject to the current variable instantiation
along the path from root ta. If n is the root of S, then
v(n) is the most probable explanation Bf

(Marinescu & Dechter 2005) as a depth-first Branch-and-
Bound that explores an AND/OR search tree for solving op-
timization tasks in graphical models. In the following we
review briefly the algorithm.

At any stage during search, a nodealong the current
path roots a currenpartial solution subtreg denoted by
Ssor(n), which must be connected, must contain its root
and will have drontier containing all those nodes that were
generated and not yet expanded. Furthermore, there exists
astaticheuristic functiorm(n) overestimating/(n) that can
be computed efficiently when nodeis first generated.

Given the current partially explored AND/OR search tree
S, theactive pathAP(t) is the path of assignments from
the root of S to the current tip nodé. Theinside context
in(AP) of AP(t) contains all nodes that were fully evalu-
ated and are children of nodes @®(¢). Theoutside con-
textout(AP) of AP(t), contains all the frontier nodes that
are children of the nodes o#P(¢). Theactive partial sub-
tree APT (n) rooted at a nodee € AP(¢) is the subtree
of Ss01(n) containing the nodes aAP(t) betweenn andt
together with their OR children. Aynamic heuristic evalu-
ation functionof a noden relative to. AP7 (n) which over-
estimatesv(n) is defined as follows (for more details see
(Marinescu & Dechter 2005)).

DEFINITION 7 (dynamic heuristic evaluation function)

Given an active partial treeAP7 (n), the dynamic
heuristic evaluation functionof n, fn(n), is de-
fined recursively as follows: (i) ifAP7T(n) consists
only of a single noden, and if n € in(AP) then
fn(n) = v(n) else fr(n) = h(n); (i) if n = (X;, ;)
is an AND node, having OR childrem,,...,m; then
fu(n) = min(h(n), (X, 2:) - [Ty fu(ma)); (i) if
n = X; is an OR node, having an AND chile, then

fr(n) = min(h(n), fa(m)).

AOBB traverses the AND/OR search tree in a depth-first
manner and calculates apper boundn v(n) of any node
n on the active path, by using,(n). It also maintains an
lower boundon v(n) which is the current best solution sub-
tree rooted at. If fi(n) < lb(n) then the search is termi-
nated below the tip node of the active path.

AND/OR Search Graphs

The AND/OR search tree may contain nodes that root identi-
cal subtrees (i.e. their root nodes values are identich@s&
are calledunifiable When unifiable nodes are merged, the

search tree becomes a graph and its size becomes smaller. A

depth-first search algorithm can explore the AND/OR graph
using additional memory. The algorithm can be modified to
cachepreviously computed results and retrieve them when

the same nodes are encountered again. Some unifiable nodes

can be identified based on thewmntexts

DEFINITION 8 (context) Given a belief network and the
corresponding AND/OR search trég- relative to a pseudo-
treeT", thecontextof any AND nodéX;, z;) € Sr, denoted
by context(X;), is defined as the set of ancestorsXfin
T, including X, that are connected to descendantsXof

Itis easy to verify that the context of; d-separates (Peatrl
1988) the subproblerRx, below X, from the rest of the net-
work. Namely, itis possible to solvByx, for any assignment
of context(X;) and record its optimal value, thus avoiding
to solve Py, again for the same assignment. Tdentext-
minimal AND/OR graph is obtained by merging all the con-
text unifiable AND nodes. The size of the largest context is
bounded by the induced width* of the moral graph (ex-
tended with the pseudo-tree extra arcs) over the ordering
given by the depth-first traversal @f (i.e. induced width
of the pseudo-tree). Therefore, the time and space com-
plexity of a search algorithm traversing the context-mialim
AND/OR graph iO(exp(w*)) (Dechter & Mateescu 2006).

For illustration, consider the context-minimal graph in
Figure 2(d) of the pseudo-tree from Figure 2(b). Its size
is far smaller that that of the AND/OR tree from Figure 2(c)

Algorithm 1. Graph AND/OR Branch-and-Bound.

function: AOBB,(st, X, D, P)
if ¥ = 0thenreturnO;
ese
X, < Sel ect Var (X);
U(Xz) «— 0;
foreach x; € D; do
st — st U (X;,);
v +— ReadCache(X;,z;) ;
if v % NULL then
tmp — v- | abel (X;,z;) ;
if —=Fi ndCut (X;,x;,in,out,tmp) then
| v(X:) — maz(v(Xs), tmp);
continue;
h(X;,z:) — UB(X,D,P);
foreach k = 1..¢q do
h(Xk) «— UB(Xk,'Dk,'Pk))
Updat eCont ext (out, X, h(X%)) ;

if =Fi ndCut (Xi,Ii,in,OUt,h(Xi,Ii)) then
v(Xi, i) 1,
foreach k = 1..q do

Lval HA@Bg(St/,Xk,Dk,Pk) ;

© 0N U~ WN PR

PR
N B O

N
o 0o~ W

NN PR
P O © 00

U(Xi,l‘i) — v(Xi,;rz-) -val;
Wi teCache(X;,v(Xi,:));
U(Xi7$i) — U(Xl,xl)l abel (Xz,ilfl))
Updat eCont ext (in, v(X;,z;));
| v(Xi) — maz(v(X;),v(Xs, 2:));

NN NN
a B~ w N

N
o

| return v(X;);

When expanding the AND nodgX;;, z;), AOBB, succes-
sively updates thdynamic heuristic functiorfy, (m) for ev-

(16 nodes vs. 54 nodes). The contexts of the nodes can beery ancestor node: along the active path and terminates

read from the pseudo-tree, as followsintext(A) = {A},
context(B) = {B,A}, context(C) = {C,B}, context(D) =
{D}, context(E) = {E,A} andcontext(F) = {F}.

AND/OR Branch-and-Bound Graph Search

In this section we extendOBB to traverse an AND/OR

search graph by equipping it with a caching mechanism.
Figure 1 shows the graphOBB,, algorithm. The follow-

ing notation is used(X’, D, P) is the problem with which

the procedure is calledt is the current partial solution sub-

tree being exploredi (resp. out) is the inside (resp. out-

side) context of the active path. The algorithm assumes that

variables are selected according to a pseudo-tree.

If the setX’ is empty, then the result is trivially computed
(line 1). Else AOBB, selects a variabl&; (i.e. expands the
OR nodeX;) and iterates over its values (line 5) to compute
the OR valuev(X;). The algorithm attempts to retrieve the
results cached at the AND nodes (line 7). If a valid cache en-
try v is found for the current AND nodgX;, z;) then the OR
valuev(X;) is updated (line 11) and the search continues
with the next value inX;’s domain. Otherwise, the problem
is decomposed into a set @fndependent subproblems, one
for each childX; of X; in the pseudo-tree. Procedudd
computes the static heuristic functib(n) for every node in
the search tree.

the current search path if, for some, f;,(m) < Ib(m).
Else, the independent subproblems are sequentially solved
(line 21) and the solutions are accumulated by the AND
valuev(X;, z;) (line 23). After trying all feasible values of
variable X;, the most probable solution to the subproblem
rooted byX; remains inv(X;), which is returned (line 31).

TheMini-Bucket Heuristics

In this section we describe briefly a general scheme for gen-
erating static heuristic estimatés$n), based on the Mini-
Bucket approximation. The scheme is parameterized by the
Mini-Bucketi-bound, which allows for a controllable trade-
off between heuristic strength and its overhead.

Mini-Bucket EliminatiolMBE) (Dechter & Rish 2003) is
an approximation algorithm designed to avoid the high time
and space complexity @ducket EliminationBE) (Dechter
1999), by partitioning large buckets into smaller subsets,
called mini buckets each containing at most (called -
bound) distinct variables. The mini-buckets are then pro-
cessed separately. The algorithm outputs not only a bound
on the optimal solution cost, but also the collection of aug-
mented buckets, which form the basis for the heuristics gen-
erated. The complexity is time and spa@&xp(i)).

In the past, (Kask & Dechter 2001) showed that the inter-
mediate functions generated by the Mini-Bucket algorithm

B(F): [P(FIA.C)]
B(D): [P(DIB,C)]
B(C): [P(CIA) [| N (A,C)], [°(B.C)]
B(E): [P(EIAB)]
B(B): [P(BIA) || AS(A,B), A°(B)]
B(A): [P(A) || AB(A), AS(A)]

(b)

Figure 3: Schematic execution of MBE(2).

MBE(:) can be used to compute a heuristic function, that

overestimates the most probable extension of the current

partial assignment in a regular OR search tree. More re-
cently, (Marinescu & Dechter 2005) extended the idea to
AND/OR search spaces as well.

Assume that a belief networks = (X, D,P) with
pseudo-tred’ is being solved byAOBB search, where the
active path ends with some OR nodlg. Consider also the
augmentedbucket structuré B(X,), ..., B(X,,)} of B, con-
structed along the ordering resulted from a depth-firsetrav
sal of T'. For each possible value assignméit = x;, the
static mini-bucket heuristic estimatgz ;) of the most prob-
able solution rooted byX; can be computed as the prod-
uct of the original conditional probability tables in butke
B(X;) and the intermediate functiong’ that were gener-
ated in bucket®(X},) and reside in buckeB (X ;) or below,
where X, is a descendant of ; in T (more details in (Kask
& Dechter 2001; Marinescu & Dechter 2005)).

Example 2 Figure 3(b) shows the augmented bucket struc-
ture generated by MBE£2) for the pseudo-tree displayed in
Figure 3(a), along the orderingA, B, E,C, D, F); square
brackets denote the choice of partitioning. Assume that
during search, the active path of the current partial so-
lution subtree is(A a,B = b) and the tip node is
the OR node”. The static mini-bucket heuristic estimate
h(C = ¢) = P(c|a) - \'(a,c) - AP (b,).

Caching Schemes

In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contextswhich are pre-computed from the pseudo-tree and
use a parameter calledche boundor j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching

The first scheme, calledaive cachingand denoted by
AOBB+C(y), stores nodes at the variables whose context size
is smaller than or equal to the cache boyndt is easy to
see that wher equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.
A straightforward way of implementing the caching
scheme is to have@ache tabldor each variableX,, record-
ing the context. Specifically, lets assume that the context o
Xy is context(Xy) = {X;, ..., Xx} and|context(Xy)| <

j. A cache table entry corresponds to a particular instan-
tiation {z;, ...,z } of the variables incontext(X};) and
records the most probable solution to the subprobigm.

However, some tables might never get cache hits. We call
thesedead-caches In the AND/OR search graph, dead-
caches appear at nodes that have only one incoming arc.
AOBB+C(5) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de-
termined by inspecting the pseudo-tree. Namely, if the con-
text of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a
dead-cache. For example, nofein the AND/OR search
graph from Figure 2(c) is a dead-cache because its context
includes the context of its paredtin the pseudo-tree.

Adaptive Caching

The second scheme, calladaptive cachingnd denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based oradjusted contexts

We will illustrate the idea with an example. Con-
sider the nodeX; with context(Xy) = {Xi, ..., Xk},
where|context(X})| > j. During search, when variables
{X, ..., X;_,} are assigned, they can be viewed as part of a
w-cutset(Pearl 1988). Tha-cutset method consists of enu-
merating all the possible instantiations of a subset of-vari
ables (i.e. cutset), and for each one solving the remaining
easier subproblem withim-bounded space restrictions.

Therefore, once variablgsY;, ..., X;,_;} are instantiated,
the problem rooted ak_;,; can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the value§z;, ..., x,—;}, context(Xy) is
{Xk—j+1,..., Xk} (we call this theadjusted contextf X7),
so it can be stored within thgbounded space restrictions.
However, wherAOBB+AC(j) retracts taX,_; or above, all
the nodes cached at variabig, need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared tAOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted h¥,, AOBB+AC(j)
requiresO(exp(m)) time andO(exp(j)) space, whereas
ACBB+C(j) needD(exp(hy)) time and linear space, where
hy is the depth of the subtree rooted’d} in the pseudo-
tree,m = |context(X})| andm < hy.

Additional dead-caches in the adaptive scheme can also
be identified by inspecting the pseudo-tree. Consider the
nodeX from the previous example and ketc(Xy) be the
ancestors ofX, in the pseudo-tree betwee¥y, and X;,_;,
including Xy. If anc(X}) contains only the variables in the
adjusted context ok, then X}, is a dead-cache.

Preliminary Experiments
In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on
the task of finding the most likely haplotype configuration
of a general pedigree. All our experiments were done on a
2.4GHz Pentium IV with 2GB of RAM.

time (sec)

1400

1200

1000

ped| (W% h) | VEC | SUPERLINK]| (,)) AOMB(j) AOMB+C(i,)) AOMB+AC(I,])
time nodes| time nodes| time nodes
1 | (15,61)| 24.62 131.3| (10, 10) | 0.609 23,787] 0.249 4,723[0.218 4,191
20 | (24,69) 1,304 12.44 | (16, 16) | 480.2 19,118,600 182.0 5,072,650 192.0 5,072,400
23 | (23,38)| 1,144 6,809 | (16, 18) | 16.60 382,351/ 11.33 161,896 11.29 159,377
30 | (26,51) | 26,719 28,740 | (20, 22) | 61.57 925,958 38.85 164,701 38.81 162,061
38 | (17,59) | 15,860 62.18 | (12,12)| 1,212 35,360,600 104.4 1,206,780 124.7 1,156,14Q
50 | (18,58) | 85,637 716.6 | (10, 12)| 83.52 2,312,423 29.72 445,083 | 36.41 444,058

Table 1: Time in seconds and nodes visited to prove optiynfaitgenetic linkage analysis.

pedigree 1

—e— AOMB+C(5,)
0 AOMB*+AC(S,)

6
J-bound

pedigree 30

—e— AOMB+C(16,])
0~ AOMB+AC(16, j)

time (sec)

1600

1400

1200

1000

1400

1200

1000

pedigree 20

pedigree 23

—e— AOMB+C(12, j)

O AOMB*AC(12, j) 130

time (sec)

—e— AOMB*C(12,)
0 AOMB+AC(12, j)

8 10 12 14 16
j-bound

pedigree 38

—e— AOMB+C(12,))
O+ AOMB*AC(12, j)

25000

8 10 12 14 16 18 20
J-bound

pedigree 50

20000

—e— AOMB+C(8, j)
O+ AOMB*AC(S, })

time (sec)
g
time (sec)

15000

time (sec)

10000

5000

0 5 15 20 25 0 2

10
J-bound

6 8
j-bound

10 12 14 0 2 4 6
j-bound

Figure 4: Detailed time results in seconds comparing theenas. adaptive caching for genetic linkage analysis.

We consider two classes of AND/OR Branch-and-Bound
graph search algorithms guided by the pre-compiled mini-
bucket heuristics and using either thaive or adaptive
caching schemes. They are denotedAyvB+C(i,j) and
AOVB+AC(i,j), respectively. The parameteisand j de-
note the mini-bucket-bound (which controls the accuracy

of the heuristic) and the cache bound. The pseudo-trees werey,

generated using the min-fill heuristic, as described in (Mar
nescu & Dechter 2005).

We report the average effort as CPU time (in seconds)
and number of nodes visited, required for proving optimal-
ity of the solution, the induced width (w*) and depth of the
pseudo-tree (h) obtained for the test instances. The best pe
formance points are highlighted. For comparison, we also
report results obtained with the tree version of the alparg
denoted byAOVB(i). The latter was shown to outperform
significantly the OR Branch-and-Bound versid@B{/B) in
various domains (Marinescu & Dechter 2005).

Table 1 displays a summary of the results obtained for
6 hard linkage analysis networksFor comparison, we in-
clude results obtained witheC and SUPERLINK. SUPER
LINK is currently the most efficient solver for genetic link-

Yhttp://bicinfo.cs.technion.ac.il/superlink/

age analysis, is dedicated to this domain, uses a comhinatio
of variable elimination and conditioning, and takes advan-
tage of the determinism in the networkec is our imple-
mentation of the elimination/conditioning hybrid and ig no
sensitive to determinism.

We observe thadQvB+C(7,7) andAOVB+AC(:,j5) are the
est performing algorithms in this domain. The time savings
caused by both naive and adaptive caching schemes are sig-
nificant and in some cases the differences add up to several
orders of magnitude over boteC and SUPERLINK (e.g.
ped- 23, ped- 50). Figure 5 provides an alternative view
comparing the two caching schemes, in terms of CPU time,
for a smalleri-bound of the mini-bucket heuristic. We notice
that adaptive caching improves significantly over the naive
scheme especially for relatively smaHbounds. This may

be important because smgibounds mean restricted space.
At large j-bounds the two schemes are identical.

In summary, the effect of caching (either naive or adap-
tive) is more prominent for relatively weak guiding heuris-
tics estimates. The merit of adaptive caching over naive one
is evident when thg-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav

pedigree 1 pedigree 20 , pedigree 23

—e— AOMB+C(8, j) —e— AOMB+C(12, j) —e— AOMB*C(12, j)
0 AOMB+AC(6,]) ©-- AOMB*AC(12,]) 0~ AOMB*AC(12,])

nodes
nodes
nodes

0 2 4 6 8 00 12 14 16 18 4 2 4 6 8 10 12 14 16 18 20
j-bound j-bound j-bound
pedigree 30

pedigree 38 pedigree 50

—®— AOMB+C(12,j) —@— AOMB+C(16, j) —e— AOMB+C(8, j)
O AOMB+AC(12,j) 0 AOMB+AC(16, j) 0 AOMB+AC(8,])

nodes

odes

nodes
e

0 5 10 15 20 25 0 2 4 6 6
J-bound j-bound J-bound

Figure 5: Detailed number of nodes visited comparing theees. adaptive caching for genetic linkage analysis.

ings for the Branch-and-Bound algorithms. an extension of the AND/OR Branch-and-Bound algorithm
that aims at handling in an efficient manner deterministic re
Progress from August 2006 to June 2007 lationships that may occur in graphical models such asfelie

In this section we summarize the progress made in the past "€tWorks.

year (since August 2006 until June 2007) on solving the Extracting the Determinism From the Belief Network
maximum likelihood haplotype in genetic linkage analysis. The approach we take for handling the determinism in be-
_We first extend the AND/OR Branch-and-Bound algo- jief networks is based on a key technique in the Boolean
rithm by equipping it with a constraint propagation proce- gsatisfiability (SAT) literature, known amit resolutionover
dure that aims at exploiting in an efficient manner the deter- 5 |ogical knowledge base (KB) in the form of propositional
minism present in the belief network ., zero probability clauses ., CNF formula). The CNF formula encodes the

tuplesin the CPTs). determinism in the network and is created based on the zero
Second, since depth-first AND/OR Branch-and-Bound al- cpT entries, as follows.

gorithms were shown to be very effective when exploring
such search spaces, especially when using caching and sinc
best-first strategies are known to be superior to depth-first
when memory is utilized, exploring the best-first control
strategy is called for. The main contribution is in showing
that a recent extension of AND/OR search algorithms from
depth-first Branch-and-Bound to best-first is indeed very ef
fective for computing the MPE in Bayesian networks.
We demonstrate empirically the superiority of the best- SAT Clauses The CNF is augmented with a collection of
first search approach on several linkage analysis networks. 2-CNFs for each variablé&; in the network, calleét-most-
oneclauses, that forbids the assignments of more than one
AND/OR Branch-and-Bound with Constraint value to a variable. Formally,

Propagation DEFINITION 9 (at-most-one clause) Given a variable
In general, when the graphical model's functions express X; € X with domainD; = {z;,, ..., x;, }, its corresponding
both hard constraints and general cost functions, it is ben- at-most-onelauses have the following form:

eficial to exploit the computational power of the constraint

explicitly (Dechter & Larkin 2001; Larkin & Dechter 2003; “Lx; 2., VLx,

Allen & Darwiche 2003; Dechter & Mateescu 2004). The
constraints can be represented explicitly, as in Integesaii
Programming, or are hidden within the cost functions, such In addition, we will add to the CNF a set af-least-one

as the zero probability tuples in belief networks or tke clauses to ensure that each variable in the network is as-
cost tuples in Weighted CSPs. In this section we introduce signed at least one value from its domain:

GAT Variables Given a belief networkP = (X,D,F),
the CNF is defined over the multi-valued variables
{X1,..., X, }. Its propositions ard x, .., wherez; € D;.
The proposition is true iX; is assigned value; € D; and

is false otherwise.

for every pair(z;,,z;,) € D; x D;, wherel <p < ¢ <d.

DEFINITION 10 (at-least-oneclause) Given a variable Algorithm 2; AOBF

X, € X with domainD; € {X,,, ..., X,,}, its correspond- : . —

ing at-least-onelause is of the following form: Data: ?bel'Ef networkP = (X, D,), pseudo-tred’, root
Lx;u;, VLx LV LXi-,iid Result: Most Probable Explanation ?.

o) N g
The remaining clauses are generated from the zero prob- * - Create explicit graphiz, consisting solely of the start

. . des. Set = h(s).
ability tuples in the network’'s CPTs. g_ouﬁf” s?slfé%)eled és())LVEDdo:

iy Tig "

N

DEFINITION 11 (no-good clauses) Given a conditional 3 (a) Compute gartial solution treeby tracing down the
probability table P(X;|pa(X;)), each entry in the CPT markedarcs inG’ from s and select any nonterminal tip
having P(z;|zpq,) = 0, wherepa(X;) = {Y1,....Y;} are noden.
X;'s parents andr,,, = (v1, ..., y:) is their corresponding 4 (b) Expand node: and add any new successor nogdeo
value assignment, can be translated ta@goodclause of Gr. For each new node; setv(n;) = h(n;). Label
the form: SOLVED any of these successors that are terminal nodes.
5 (c) Create a sef containing nodex.

Ly, .y, V. VoLly, g, V 2 Lx, 6 (d) until S is empty,do:
Constraint Propagation via Unit Resolution The input 7 i. Remove fromS a nodem such thatn has no
to unit resolution is a CNF formula, where each clause descendants i6' still in S.
is a disjunction of literals. Each literal is either positiv =~ 8 ii. Revise the value () as follows:
(L = true) or negative~(L = true)). A clause is satisfied ~ © A. if m is an AND nodethen
whenever at least one of its literals is satisfied. Unit nesol (M) = 1L, esuce(m) V(). If all the successor
tion is a linear time method for deriving logical implicati® g(())dfstaée labeled SOLVED, then label nade

of ¢ based on setting the values of some variables, allow-
ing one to efficiently detect variable assignments which are
inconsistent withp. The basic concept of unit resolution is

B. if m is an OR nodehen
v(M) = MATrm ;e suce(m) (L(m, m;) - v(m;)) and
mark the arc through which this maximum is

that when all but one literal in a clause have been falsified, achieved. If the marked successor is labeled
then literalL must be satisfied in order to satisfy the clause. SOLVED, then labeh, SOLVED.

Unit resolution is a very important part of any SAT solver, 11 iii. If m has been marked SOLVED or if the revised
where a major portion of the solver’s run time is spent doing valuev(m) is different than the previous one, then add
it (Moskewiczet al. 2001). Our use of unit resolution within to S all those parents of: such thatn is one of their
AND/OR Branch-and-Bound search is for detecting partial successors through a marked arc.

instantiations of the variables along the current path fleen 2 3-return o(s).
root that are guaranteed to have zero probabilities, armd the
skipping these instantiations.

AOBB Search with Unit Resolution In the AND/OR
Branch-and-Bound algorithm unit resolution is imple-
mented a ookahead function which is called upon the
expansion of the current AND nodé&;, ;).

When the algorithm expands the current AND node
(X, x;) inthe forward step, the corresponding litefal, .,
is set totrue. The assertion is then propagated throughout
the knowledge base via unit resolution. If a logical con-
tradiction is encountered, then the AND node is marked as
dead-end, and the search continues with the bottom-up cost
revision step. During unit resolution, if a negative litera
—(Lx,.«; = true), corresponding to the uninstantiated vari-
able X; of the current subproblem, is satisfied, then value
x; can be safely removed from¥;'s domain, thus demon-
strating the ability of the algorithm to prune future donsain
Whenever the algorithm backtracks to the previous level, it

Best-First Search Best-first search is a search algorithm
which optimizes breath-first search by expanding the node
whose heuristic evaluation function is the best among all
nodes encountered so far. Its main virtue is that it never
expands nodes whose cost is beyond the optimal one, unlike
depth-first search algorithms, and therefore is superior
among memory intensive algorithms employing the same
heuristic evaluation function (Dechter & Pearl 1985).

Best-First AND/OR Graph Search Our best-first
AND/OR graph search algorithm, denoted B¢BF, that
traverses the context-minimal AND/OR search graph is
described in Algorithm 2. It specializes Nilsson&0*
algorithm (Nilsson 1980) to AND/OR spaces in graphical
models, in particular to finding the MPE in belief networks.

also retracts any instantiation recorded by unit resatutio The algorithm maintains a frontier of partial solution see
found so far, and interleaves forward expansion of the best

BEST-FIRST AND/OR SEARCH partial solution tree with a cost revision step that updates

In this section we direct our attention tobast-firstrather estimated node values. First, a top-down, graph-growing

than depth-first control strategy for traversing the contex operation §t ep 2. a) finds the best partial solution tree
minimal AND/OR graph and describe a best-first AND/OR by tracing down through the marked arcs of the explicit
search algorithm for solving the MPE task in belief net- AND/OR search graplG’.. These previously computed
works. The algorithm uses similar amounts of memory marks indicate the current best partial solution tree from
as the depth-first AND/OR Branch-and-Bound with full each node irG/.. One of the nonterminal leaf nodesof
caching and therefore the comparison is warranted. this best partial solution tree is then expanded, and astati

Effect of Unit Resolution Table 2 shows the re-
sults obtained for 12 linkage analysis networks{1,

18, 20, 23, 25, 30, 33, 37, 38, 39, 42, }56rom
http://bio.cs.technion.ac.il/superlink/ We considered the
AND/OR Branch-and-Bound algorithms with static mini-
bucket heuristics, no caching and with either unit reso-
lution, denoted byAOBB+SAT+SMB(7) , or without con-
straint propagation, denoted b4OBB+SMB(), respec-
tively. We observe that unit resolution is not cost effegtiv
in this case.

AOBB versusAOBF Table 3 displays the results obtained
for the same set of 12 linkage analysis networks. For com-
2. c). Starting with the node just expanded the proce- parison, we include results obtained withiFEERLINK 1.6.
dure revises its value(n) (using the newly computed val- SUPERLINK (Fishelson & Geiger 2002; Fishelson, Dov-
ues of its successors) and marks the outgoing arcs on thegolevsky, & Geiger 2005) is currently one the most efficient
estimated best path to terminal nodes. This revised value solvers for genetic linkage analysis, is dedicated to this d
is then propagated upwards in the graph. The revised cost main, uses a combination of variable elimination and condi-
v(n) is an updated estimate of the most probable explana- tioning, and takes advantage of the determinism in the net-

heuristic estimaté.(n;), overestimating(n;), is assigned
to its successorsf ep 2. b). The successors of an AND
noden = (X;,z;) are X;’s children in the pseudo-tree,
while the successors of an OR node= X; correspond
to X;’s domain values. Notice that when expanding an OR
node, the algorithm does not generate AND children that are
already present in the explicit search gra@gh. All these
identical AND nodes irG/ are easily recognized based on
their contexts, so only pointers to the existing nodes age cr
ated.

The second operation i®OBF is a bottom-up, cost
revision, arc marking, SOLVE-labeling procedurst ép

tion probability of the subproblem rootedrat If we assume

the monotone restriction aly, the algorithm considers only
those ancestors that root best partial solution subtremes co
taining descendants with revised values. The most probable
explanation value of the initial problem is obtained whes th
root nodes is solved.

AOBB versus AOBF Search We describe next the main
differences betweeAOBF and AOBB search.

1 AOBF with the same heuristic function BB is likely
to expand the smallest number of nodes (Dechter & Pearl
1985), but empirically this depends on how quicRigBB
will find an optimal solution.

AOBB is able to improve its heuristic function dynami-
cally during search (Marinescu & Dechter 2005) based
on the explicated portion of the search space, whiBF
may not because it uses only the static functidm),
which can be pre-computed or generated during search.

AOBB can use far less memory avoiding dead-caches for
example (e.g., when the search graph is a tree), while
AOBF has to keep the explicated search graph in memory
prior to termination.

All the above points show that the relative merit of best-
first vs depth-first over context-minimal AND/OR search
spaces cannot be determined by the theory in (Dechter &
Pearl 1985) and empirical evaluation is essential.

Experiments

We consider a class of best-first AND/OR search algorithms
guided by the static mini-bucket heuristics and denoted
by AOBF+SMB(i) respectively. We compare it against
the depth-first AND/OR Branch-and-Bound algorithms with
static mini-bucket heuristics and full caching and dendigd
AOBB+SMB(7) . The parameterrepresents the mini-bucket
i-bound and controls the accuracy of the heuristic. All algo-
rithms traverse the context-minimal AND/OR search graph
and are restricted to a static variable ordering determiryed
the pseudo-tree.

work.

In addition, we also ran 811AM version 2.3.2 and RC-
LINK solvers. 3mIAM? is a public implementation of Re-
cursive Conditioning (Darwiche 2001) which can also be
viewed as an AND/OR graph search algorithm for solving
the MPE task. RC-INK? is also a Recursive Conditioning
based algorithm, however it is specialized for the linkage
analysis domain and it can only compute the probability of
evidence of the belief network that corresponds to the input
linkage network.

In all our experimentsAOBB+SMB(i) , AOBF+SMB(i) ,
SamIAM and SUPERLINK were run on the belief network
output by SYIPERLINK. RC-LINK used its own simplified
belief network (to which we did not have access).

When comparing the AND/OR search algorithms, we ob-
serve thaAOBF+SMB(7) is the best performing algorithm.
For instance, on thp42 linkage instanceAOBF+SMB(14)
is 18 times faster tha\OBB+SMB(14) and explores a
search space 240 times smaller. On some instancegi#,g.,
p23, p30) the best-first search algorithAOBF+SMB(7) is
several orders of magnitude faster thanP&RLINK. The
performance of 8MIAM was very poor on this dataset and
it was able to solve only 2 instances.

Table 4 displays the resuts obtained for the remain-
ing 10 linkage networks from the dataset available at
http://bio.cs.technion.ac.il/superlinkiamely{7, 9, 13, 19,
31, 34, 40, 41, 44, 51 These networks cannot be solved by
either AOBB+SMB(i) or AOBF+SMB(7) , within a 3 hour
time limit for all reportedi-bounds.

On the other hand, RC4NK appears to be the best per-
forming algorithm on this dataset. This can be explained
by its very powerful reduction methods that can produce a
far simpler belief network as compared to the one output by
SUPERLINK.

2Available at http://reasoning.cs.ucla.edu/samiam. We used the
bat cht ool 1.5 provided with the package.
3Available at http:/reasoning.cs.ucla.edulink

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB() AOBB+SMB(i)
ped Superlink | Samlam | AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
(n,d,w*,h) v. 1.6 V. 2.3.2 i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes

pedl 54.73 5.44 24.30 416,326 13.17 206,439 158 24,361 1.84 25,674 1.89 15,156
(299,5,15,61) 24.72 414,239 12.97 205,887 1.59 24,361 1.86 25,674 1.89 15,156
ped38 28.36 out - - 8120.58 85,367,022 - - 3040.60 35,394,461
(582,5,17,59) - - 7663.89 83,808,576 - - 3094.33 35,394,277
ped50 - out - - - - 476.77 5,566,578 104.00 748,792
(479,5,18,58) - - - - 497.30 5,566,344 107.11 748,792

i=10 i=12 i=14 i=16 i=18
ped23 9146.19 out 102.48 1,375,196 87.34 1,149,195 13.08 145,330 3.22 21,351 313 11,132
(310,5,23,37) 105.83 1,375,196 88.50 1,149,195 13.53 145,330 3.25 21,351 3.16 11,132
ped37 64.17 out 273.39 3,191,218| 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(1032,5,21,61) 282.83 3,189,847| 1674.54 25,280,466 1066.79 15,372,724| 131.56 953,061

i=12 i=14 i=16 i=18 i=20
ped18 139.06 157.05 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184,5,21,119) - - 2199.44 28,651,103| 285.03 2,555,078 103.89 682,175 20.41 7,689
ped20 14.72 out - - - - 38.75 311,385 96.02 555,872
(388,5,23,42) - - - - 40.49 311,385 100.20 555,872
ped25 - out - - - - - - 8415.18 45,825,494 1894.17 11,709,153
(994,5,29,53) - - - - - - 7514.83 45,824,181 1972.51 11,710,927
ped30 13095.83 out | 5563.22 63,068,960 1397.14 15,336,772 1811.34 20,275,620 550.57 5,535,261 82.25 588,558
(1016,5,25,51) 5728.35 63,068,960 1409.02 15,336,548 1857.48 20,275,620/ 577.82 5,535,261 84.38 588,558
ped33 - out | 2335.28 32,444,818 806.12 11,403,812 62.91 807,071 67.92 701,030 76.47 320,279
(581,5,26,48) 2378.66 32,444,818 820.73 11,403,812 63.99 807,071 69.39 701,030 77.20 320,279
ped39 322.14 out - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280
(1272,5,23,94) - - - - 4242.59 52,804,044/ 405.08 2,171,470 145.03 407,280
ped42 561.31 out - - - - - -
(448,5,25,76) - - - - - -

Table 2: CPU time in seconds and number of nodes visited feingpgenetic linkage analysis networks. Time limit 3 haurs

ped n w* RC-LINK Samlam | Superlink AOBB+SMB(i) AOBF+SMB(i)
d h v. 2.3.2 v. 1.6 i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14
1 299 15 t 24.50 5.44 54.73 4.19 2.17 0.39 0.65 1.36 1.30 2.17 0.26 0.87 1.54
61 # 69,751 33,908 4,576 6,306 4,494 7,314 13,784 1,177 4,016 3,11
38 582 17 t 425.40 out 28.36 5946.44 1554.65 2046.95 272.69 nfa out 134.41 216.94 103.17 n/4
59 # 34,828,046 8,986,648 11,868,672 1,412,976 348,723 583,401 242,429
50 479 18 t 26411.60 out - 4140.29 2493.75 66.66 52.11 n/a 7853 36.03 12.75 38.52 n/a
58 # 28,201,843 15,729,294 403,234 110,302 204,886 104,289 25,507 5,766
i=10 i=12 i=14 i=16 i=18 i=10 i=12 i=14 i=16 i=18
23 310 23 t 3.20 out 9146.19 53.70 49.33 8.77 2.73 3.04 35.49 29.29 10.59 3.59 3.48
37 # 486,991 437,688 85,721 14,019 7,089 185,761 150,214 52,710 11,414 5,790
37 1032 21 t 66.20 out 64.17 39.16 488.34 301.78 67.83 n/ 29.16 38.41 95.27 62.97 n/a
61 # 222,747 4,925,737 2,798,044 82,239 72,868 102,011 223,398 12,296
i=12 i=14 i=16 i=18 i=20 i=12 i=14 i=16 i=18 i=20
18 1184 21 t 5.40 157.05 139.06 - 406.88 52.91 23.83 20.60 out 127.41 42.19 19.85 19.91
119 # 3,567,729 397,934 118,869 2,97p 542,156 171,039 53,961 2,027
20 388 23 t 34.10 out 14.72 7243.43 5560.63 37.28 95.13 n/a out out 33.33 121.091 n/al
42 # 63,530,037 46,858,127 279,804 554,623 144,212 466,817
30 1016 25 t 5.90 out 13095.83 1440.26 597.88 1023.90 151.96 43.83 186.77 58.38 85.53 49.38 33.03
51 # 11,694,534 5,580,555 10,458,174 1,179,236 146,89692,870 253,465 350,497 179,790 37,705
39 1272 23 t 9.90 out 322.14 - - 968.03 61.20 93.19 out out 68.52 41.69 87.63
94 # 7,880,928 313,496 83,714 218,925 79,356 14,479
42 448 25 t 36.20 out 561.31 - - 2364.67 n/a n/a out out 133.19 n/a n/a
76 # 22,595,247 93,831
25 994 29 t 26.70 out - - - - 2041.64 693.74 out out out out 198.49
53 # 6,117,320 1,925,152 468,723
33 581 26 t 3.90 out - 886.05 370.41 26.31 33.11 54.89 out 194.78 24.16 32.55 58.52
48 # 8,426,659 4,032,864 229,856 219,047 83,360 975,617 102,888 101,862 57,598

Table 3: CPU time in seconds and number of nodes visited foetgelinkage analysis. Time limit 3 hours.

RC-LINK Samlam

v.2.3.2

Superlink
v. 1.6 i=12

i=14

AOBB+SMB()

AOBF+SMB())
i=16 =18 =20 | i=12 i=14 =16 =18 =20

1068 39

147

22.90 out

1118 31

107

168.60 out out

13 1077 35

174

98.70 out

19 793 28

155

19.20 out out

31 1183 34

108

144.90 out

34 1160 44

118

3170 out out

40 1030 36

153

57.60 out

41 1062 41

119

13.40

44 811 25

90

121.40

51 1152 a7

106

556.50

R B I N [= P I P P [= P (-

Table 4: Results obtained for the remaining 10 linkage neksioThese networks could not be solved by neithé@BB nor
AOBF, within a 3 hour time limit. Similarly, BPERLINK runs out of memory or time.

Conclusion

In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient

caching mechanism. We investigated two flexible context-

Dechter, R., and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of ath Journal of
ACM 32(3):505-536.

Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for approximating inferenc®CM 2(50):107-153.

based caching schemes that can adapt to the current memory pechter, R. 1999. Bucket elimination: A unifying frame-

restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empir-
ically on several challenging benchmarks from the field of
genetic linkage analysis.

Related Work

AOBB graph search is related to the Branch-and-Bound
method proposed by (Kanal & Kumar 1988) for acyclic
AND/OR graphs and game trees, as well as the pseudo-
tree search algorithm proposed in (Larrosa, Meseguer, &
Sanchez 2002). BTD developed in (Jegou & Terrioux 2004)
can also be interpreted as an AND/OR graph search algo-
rithm with a caching mechanism based on the separators of
the guiding tree-decomposition.

References

Allen, D., and Darwiche, A. 2003. New advances in infer-
ence using recursive conditioninign Uncertainty in Artifi-

cial Intelligence (UAI-20032-10.

Bacchus, F.; Dalmao, S.; and Pittasi, T. 2003. Value elim-
ination: Bayesian inference via backtracking seardh.
Uncertainty in Artificial Intelligence (UAI-2003)0-28.
Darwiche, A. 2001. Recursive conditionindArtificial
Intelligencel26(1-2):5-41.

Dechter, R., and Larkin, D. 2001. Hybrid processing of
beliefs and constraintdn Uncertainty in Artificial Intelli-
gence (UAI-2001112-119.

Dechter, R., and Mateescu, R. 2004. Mixtures of
deterministic-probabilistic networkén Uncertainty in Ar-
tificial Intelligence (UAI-2004)

Dechter, R., and Mateescu, R. 2006. And/or search spaces
for graphical modelsAtrtificial Intelligence

work for reasoningArtificial Intelligence113:41-85.
Dechter, R. 2003Constraint ProcessingMIT Press.

Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigre®ioinformatics

Fishelson, M.; Dovgolevsky, N.; and Geiger, D. 2005.
Maximum likelihood haplotyping for general pedigrees.
Human Heredity

Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in constraint satisfaction prable

In International Joint Conference on Artificial Intelligea
(IJCAI-1985)1076-1078.

Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording for solving max-cspdn European Conference
on Artificial Intelligence (ECAI 2004)96—200.

Kanal, L., and Kumar, V. 1988Search in artificial intelli-
gence.Springer-Verlag.

Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic generation of search heuristics from specification
dependenciedArtificial Intelligence

Larkin, D., and Dechter, R. 2003. Bayesian inference in
the presence of determinisrin Atrtificial Intelligence and
Statistics (AISTAT-2003)

Larrosa, J.; Meseguer, P.; and Sanchez, M. 2002. Pseudo-
tree search with soft constrainteh European Conference

on Artificial Intelligence (ECAI-2002)31-135.

Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical models$n International Joint Confer-
ence on Artificial Intelligence (IJCAI-200224-229.
Mateescu, R., and Dechter, R. 2005. And/or cutset con-

ditioning. In International Joint Conference on Atrtificial
Intelligence (IJCAI-2005230-235.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Design Automation Conference (DAC-2001)

Nilsson, N. J. 1980.Principles of Artificial Intelligence.
Tioga.

Ott, J. 1999. Analysis of Human Genetic Linkagdhe
Johns Hopkins University Press.

Pearl, J. 1988Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann.

