
AND/OR Graph Search for Genetic Linkage Analysis

Radu Marinescu and Rina Dechter
School of Information and Computer Science

University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract

AND/OR search spaceshave recently been introduced as a
unifying framework for advanced algorithmic schemes for
graphical models. The main virtue of this representation
is its sensitivity to the structure of the model, which can
translate into exponential time savings for search algorithms.
AND/OR Branch-and-Bound (AOBB) is a new algorithm that
explores the AND/OR search tree for solving optimization
tasks in graphical models. In this paper we extend the al-
gorithm to explore an AND/OR searchgraph by equipping
it with a context-based adaptive caching scheme similar to
good and no-good recording. The efficiency of the new graph
search algorithm is demonstrated empirically on the very
challenging benchmarks that arise in genetic linkage analy-
sis.

Introduction
Graphical models such as belief networks or constraint
networks are a widely used representation framework for
reasoning with probabilistic and deterministic information.
These models use graphs to capture conditional independen-
cies between variables, allowing a concise representationof
the knowledge as well as efficient graph-based query pro-
cessing algorithms. Optimization tasks such as finding the
most likely state of a belief network or finding a solution
that violates the least number of constraints can be defined
within this framework and they are typically tackled with
eithersearchor inferencealgorithms (Dechter 2003).

The AND/OR search space for graphical models (Dechter
& Mateescu 2006) is a new framework for search that is
sensitive to the independencies in the model, often result-
ing in exponentially reduced complexities. It is based on
a pseudo-tree that captures independencies in the graphical
model, resulting in a search tree exponential in the depth of
the pseudo-tree, rather than in the number of variables.

AND/OR Branch-and-Bound algorithm (AOBB) is a new
search method that explores the AND/OR search tree for
solving optimization tasks in graphical models (Marinescu
& Dechter 2005). In this paper we improve theAOBB
scheme significantly by usingcachingschemes. Namely, we
extend the algorithm to explore the AND/OR searchgraph

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

rather than the AND/OR search tree, using a flexible caching
mechanism that can adapt to memory limitations.

The caching scheme is based oncontextsand is similar
to good and no-good recording and recent schemes appear-
ing in Recursive Conditioning (Darwiche 2001) and Valued
Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
ciency of the proposed search methods also depends on the
accuracy of the guiding heuristic function, which is based
on the mini-bucket approximation of Variable Elimination
(Dechter & Rish 2003). We focus our empirical evaluation
on the task of finding the Most Probable Explanation in be-
lief networks (Pearl 1988), and illustrate our results on sev-
eral benchmarks from the field of genetic linkage analysis.

The paper is organized as follows. Section 2 provides
background on belief networks, AND/OR search trees and
theAOBB algorithm. In Section 3 we introduce the AND/OR
searchgraph andAOBB with caching. In Section 4 we de-
scribe two context-based caching schemes. Section 5 gives
some experimental results and Section 6 concludes.

Preliminaries
Belief Networks
Belief Networksprovide a formalism for reasoning about
partial beliefs under conditions of uncertainty. They are de-
fined by a directed acyclic graph over nodes representing
variables of interest.

DEFINITION 1 (belief network) A belief network is a
quadrupleB = (X ,D,G,P), whereX = {X1, ...,Xn} is
a set of random variables,D = {D1, ...,Dn} is the set
of the corresponding discrete-valued domains,G is a di-
rected acyclic graph overX andP = {p1, ..., pn}, where
pi = P (Xi|pa(Xi)) (pa(Xi) are the parents ofXi in G)
denoteconditional probability tables(CPTs). The belief net-
work represents a joint probability distribution overX hav-
ing the product formPB(x̄) =

∏n

i=1 P (xi|xpai
), where

an assignment(X1 = x1, ...,Xn = xn) is abbreviated to
x̄ = (x1, ..., xn) and wherexS denotes the restriction of a
tuplex over a subset of variablesS. An evidence sete is an
instantiated subset of variables. Themoral graphof a belief
network is the undirected graph obtained by connecting the
parent nodes of each variable and eliminating direction.

The primary optimization query over belief networks
is finding theMost Probable Explanation(MPE), namely,

L11p L11m

X11

L21p L21m

X21

L31p L31m

X31

S11p S11m

L12p L12m

X12

L22p L22m

X22

L32p L32m

X32

S12p S12m

Figure 1: A fragment of a belief network used in genetic
linkage analysis.

finding a complete assignment to all variables having max-
imum probability, given the evidence. A generalization of
the MPE query isMaximum a Posteriori Hypothesis(MAP),
which calls for finding the most likely assignment to a subset
of hypothesis variables, given the evidence.

DEFINITION 2 (MPE task) Given a belief network and ev-
idencee, the Most Probable Explanation (MPE)task is to
find an assignment(xo

1, ..., x
o
n) such that:P (xo

1, ..., x
o
n) =

maxX1,...,Xn

∏n

k=1 P (Xk|pa(Xk), e).

The MPE task appears in applications such as diagnosis,
abduction and explanation. For example, given data on clin-
ical findings, MPE can postulate on a patient’s probable af-
flictions. In decoding, the task is to identify the most likely
message transmitted over a noisy channel given the observed
output.

DEFINITION 3 (induced graph, induced width) Given a
graphG, its induced graphrelative to an orderingd of the
variables, denotedG∗(d), is obtained by processing the
nodes in reverse order ofd. For each node all its earlier
neighbors are connected, including neighbors connected by
previously added edges. Given a graph and an ordering
of its nodes, thewidth of a node is the number of edges
connecting it to nodes lower in the ordering. Theinduced
width of a graph, denotedw∗(d), is the maximum width of
nodes in the induced graph.

Genetic Linkage Analysis
In human genetic linkage analysis (Ott 1999), thehaplo-
type is the sequence of alleles at different loci inherited by
an individual from one parent, and the two haplotypes (ma-
ternal and paternal) of an individual constitute this individ-
ual’s genotype. When genotypes are measured by standard
procedures, the result is a list of unordered pairs of alleles,
one pair for each locus. Themaximum likelihood haplotype

problem consists of finding a joint haplotype configuration
for all members of the pedigree which maximizes the prob-
ability of data.

The pedigree data can be represented as a belief network
with three types of random variables:genetic locivariables
which represent the genotypes of the individuals in the pedi-
gree (two genetic loci variables per individual per locus,
one for the paternal allele and one for the maternal allele),
phenotypevariables, andselectorvariables which are aux-
iliary variables used to represent the gene flow in the pedi-
gree. Figure 1 represents a fragment of a network that de-
scribes parents-child interactions in a simple 2-loci analy-
sis. The genetic loci variables of individuali at locusj
are denoted byLi,jp andLi,jm. VariablesXi,j , Si,jp and
Si,jm denote the phenotype variable, the paternal selector
variable and the maternal selector variable of individuali
at locusj, respectively. The conditional probability tables
that correspond to the selector variables are parameterized
by the recombination ratioθ (Fishelson & Geiger 2002).
The remaining tables contain only deterministic informa-
tion. It can be shown that given the pedigree data, the haplo-
typing problem is equivalent to computing the Most Prob-
able Explanation (MPE) of the corresponding belief net-
work (for more details consult (Fishelson & Geiger 2002;
Fishelson, Dovgolevsky, & Geiger 2005)).

AND/OR Search Trees
The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-
plest case, this process defines a search tree (called here OR
search tree), whose nodes represent states in the space of
partial assignments. The traditional search space does not
capture the structure of the underlying graphical model. In-
troducing AND states into the search space can capture the
structure decomposing the problem into independent sub-
problems by conditioning on values (Freuder & Quinn 1985;
Dechter & Mateescu 2006). The AND/OR search space is
defined using a backbonepseudo-tree.

DEFINITION 4 (pseudo-tree) Given an undirected graph
G = (V,E), a directed rooted treeT = (V,E′) defined
on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node
to an ancestor inT .

Given a belief networkB = (X ,D,P), its moral graphG
and a pseudo-treeT of G, the associated AND/OR search
treeST has alternating levels of OR nodes and AND nodes.
The OR nodes are labeledXi and correspond to the vari-
ables. The AND nodes are labeled〈Xi, xi〉 and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangementT of G. The root of the AND/OR
search tree is an OR node, labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled
with assignments〈Xi, xi〉, consistent along the path from
the root,path(Xi, xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled
with the children of variableXi in T . In other words, the
OR states represent alternative ways of solving the problem,

C

BD E

FA

P(C|A) P(A|F) P(F)

P(D|B,C) P(B|A,E) P(E|F)

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(c)

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(d)

Figure 2: AND/OR search spaces

whereas the AND states represent problem decomposition
into independent subproblems, all of which need be solved.
When the pseudo-tree is a chain, the AND/OR search tree
coincides with the regular OR search tree.

A solution subtreeSolST
of ST is an AND/OR subtree

such that: (i) it contains the root ofST ; (ii) if a nonterminal
AND noden ∈ ST is in SolST

then all its children are in
SolST

; (iii) if a nonterminal OR noden ∈ ST is in SolT
then exactly one of its children is inSolST

.

Example 1 Figures 2(a) and 2(b) show a belief network and
its pseudo-tree together with the back-arcs (dotted lines).
Figure 2(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtree is
highlighted.

The AND/OR search tree can be traversed by a depth-first
search algorithm that is guaranteed to have a time complex-
ity exponential in the depth of the pseudo-tree and can use
linear space (Dechter & Mateescu 2006). The arcs fromXi

to 〈Xi, xi〉 are annotated by appropriatelabelsof the func-
tions inP. The nodes inST can be associated withvalues,
defined over the subtrees they root.

DEFINITION 5 (label) The label l(Xi, xi) of the arc from
the OR nodeXi to the AND node〈Xi, xi〉 is defined as the
product of all the conditional probability tables whose scope
includesXi and is fully assigned alongpath(Xi, xi).

DEFINITION 6 (value) Thevaluev(n) of a noden ∈ ST

is defined recursively as follows: (i) ifn = 〈Xi, xi〉 is
a terminal AND node thenv(n) = l(Xi, xi); (ii) if n =
〈Xi, xi〉 is an internal AND node thenv(n) = l(Xi, xi) ·∏

n′∈succ(n) v(n′); (iii) if n = Xi is an internal OR node
then v(n) = maxn′∈succ(n)v(n′), wheresucc(n) are the
children ofn in ST .

Clearly, the value of each node can be computed recur-
sively, from leaves to root.

PROPOSITION1 Given an AND/OR search treeST of a
belief networkB = (X ,D,P), the valuev(n) of a node
n ∈ ST is the most probable explanation of the subprob-
lem rooted atn, subject to the current variable instantiation
along the path from root ton. If n is the root ofST , then
v(n) is the most probable explanation ofB.

AND/OR Branch-and-Bound Tree Search

AND/OR Branch-and-Bound (AOBB) was introduced in
(Marinescu & Dechter 2005) as a depth-first Branch-and-
Bound that explores an AND/OR search tree for solving op-
timization tasks in graphical models. In the following we
review briefly the algorithm.

At any stage during search, a noden along the current
path roots a currentpartial solution subtree, denoted by
Ssol(n), which must be connected, must contain its rootn
and will have afrontier containing all those nodes that were
generated and not yet expanded. Furthermore, there exists
astaticheuristic functionh(n) overestimatingv(n) that can
be computed efficiently when noden is first generated.

Given the current partially explored AND/OR search tree
ST , theactive pathAP(t) is the path of assignments from
the root ofST to the current tip nodet. The inside context
in(AP) of AP(t) contains all nodes that were fully evalu-
ated and are children of nodes onAP(t). Theoutside con-
textout(AP) of AP(t), contains all the frontier nodes that
are children of the nodes onAP(t). Theactive partial sub-
tree APT (n) rooted at a noden ∈ AP(t) is the subtree
of Ssol(n) containing the nodes onAP(t) betweenn andt
together with their OR children. Adynamic heuristic evalu-
ation functionof a noden relative toAPT (n) which over-
estimatesv(n) is defined as follows (for more details see
(Marinescu & Dechter 2005)).

DEFINITION 7 (dynamic heuristic evaluation function)
Given an active partial treeAPT (n), the dynamic
heuristic evaluation functionof n, fh(n), is de-
fined recursively as follows: (i) ifAPT (n) consists
only of a single noden, and if n ∈ in(AP) then
fh(n) = v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, xi〉
is an AND node, having OR childrenm1, ...,mk then
fh(n) = min(h(n), l(Xi, xi) ·

∏k

i=1 fh(mi)); (iii) if
n = Xi is an OR node, having an AND childm, then
fh(n) = min(h(n), fh(m)).

AOBB traverses the AND/OR search tree in a depth-first
manner and calculates anupper boundon v(n) of any node
n on the active path, by usingfh(n). It also maintains an
lower boundonv(n) which is the current best solution sub-
tree rooted atn. If fh(n) ≤ lb(n) then the search is termi-
nated below the tip node of the active path.

AND/OR Search Graphs
The AND/OR search tree may contain nodes that root identi-
cal subtrees (i.e. their root nodes values are identical). These
are calledunifiable. When unifiable nodes are merged, the
search tree becomes a graph and its size becomes smaller. A
depth-first search algorithm can explore the AND/OR graph
using additional memory. The algorithm can be modified to
cachepreviously computed results and retrieve them when
the same nodes are encountered again. Some unifiable nodes
can be identified based on theircontexts.

DEFINITION 8 (context) Given a belief network and the
corresponding AND/OR search treeST relative to a pseudo-
treeT , thecontextof any AND node〈Xi, xi〉 ∈ ST , denoted
by context(Xi), is defined as the set of ancestors ofXi in
T , includingXi, that are connected to descendants ofXi.

It is easy to verify that the context ofXi d-separates (Pearl
1988) the subproblemPXi

belowXi from the rest of the net-
work. Namely, it is possible to solvePXi

for any assignment
of context(Xi) and record its optimal value, thus avoiding
to solvePXi

again for the same assignment. Thecontext-
minimalAND/OR graph is obtained by merging all the con-
text unifiable AND nodes. The size of the largest context is
bounded by the induced widthw∗ of the moral graph (ex-
tended with the pseudo-tree extra arcs) over the ordering
given by the depth-first traversal ofT (i.e. induced width
of the pseudo-tree). Therefore, the time and space com-
plexity of a search algorithm traversing the context-minimal
AND/OR graph isO(exp(w∗)) (Dechter & Mateescu 2006).

For illustration, consider the context-minimal graph in
Figure 2(d) of the pseudo-tree from Figure 2(b). Its size
is far smaller that that of the AND/OR tree from Figure 2(c)
(16 nodes vs. 54 nodes). The contexts of the nodes can be
read from the pseudo-tree, as follows:context(A) = {A},
context(B) = {B,A}, context(C) = {C,B}, context(D) =
{D}, context(E) = {E,A} andcontext(F) = {F}.

AND/OR Branch-and-Bound Graph Search
In this section we extendAOBB to traverse an AND/OR
search graph by equipping it with a caching mechanism.

Figure 1 shows the graphAOBBg algorithm. The follow-
ing notation is used:(X ,D,P) is the problem with which
the procedure is called,st is the current partial solution sub-
tree being explored,in (resp. out) is the inside (resp. out-
side) context of the active path. The algorithm assumes that
variables are selected according to a pseudo-tree.

If the setX is empty, then the result is trivially computed
(line 1). Else,AOBBg selects a variableXi (i.e. expands the
OR nodeXi) and iterates over its values (line 5) to compute
the OR valuev(Xi). The algorithm attempts to retrieve the
results cached at the AND nodes (line 7). If a valid cache en-
try v is found for the current AND node〈Xi, xi〉 then the OR
valuev(Xi) is updated (line 11) and the search continues
with the next value inXi’s domain. Otherwise, the problem
is decomposed into a set ofq independent subproblems, one
for each childXk of Xi in the pseudo-tree. ProcedureUB
computes the static heuristic functionh(n) for every node in
the search tree.

Algorithm 1: Graph AND/OR Branch-and-Bound.
function: AOBBg(st,X,D,P)

if X = ∅ then return 0;1
else2

Xi ← SelectVar(X);3
v(Xi)← 0;4
foreach xi ∈ Di do5

st′ ← st ∪ (Xi, xi);6
v ← ReadCache(Xi,xi);7
if v 6= NULL then8

tmp← v· label(Xi,xi);9
if ¬FindCut(Xi,xi,in,out,tmp) then10

v(Xi)← max(v(Xi), tmp);11
continue;12

h(Xi, xi)← UB(X ,D,P);13
foreach k = 1..q do14

h(Xk)← UB(Xk,Dk,Pk);15
UpdateContext(out, Xk, h(Xk));16

if ¬FindCut(Xi,xi,in,out,h(Xi, xi)) then17
v(Xi, xi)← 1;18
foreach k = 1..q do19

val←AOBBg(st′,Xk,Dk,Pk);20
v(Xi, xi)← v(Xi, xi) · val;21

WriteCache(Xi,v(Xi, xi));22
v(Xi, xi)← v(Xi, xi)·label(Xi,xi);23
UpdateContext(in, v(Xi, xi));24
v(Xi)← max(v(Xi), v(Xi, xi));25

return v(Xi);26

When expanding the AND node〈Xi, xi〉, AOBBg succes-
sively updates thedynamic heuristic functionfh(m) for ev-
ery ancestor nodem along the active path and terminates
the current search path if, for somem, fh(m) ≤ lb(m).
Else, the independent subproblems are sequentially solved
(line 21) and the solutions are accumulated by the AND
valuev(Xi, xi) (line 23). After trying all feasible values of
variableXi, the most probable solution to the subproblem
rooted byXi remains inv(Xi), which is returned (line 31).

The Mini-Bucket Heuristics
In this section we describe briefly a general scheme for gen-
erating static heuristic estimatesh(n), based on the Mini-
Bucket approximation. The scheme is parameterized by the
Mini-Bucket i-bound, which allows for a controllable trade-
off between heuristic strength and its overhead.

Mini-Bucket Elimination(MBE) (Dechter & Rish 2003) is
an approximation algorithm designed to avoid the high time
and space complexity ofBucket Elimination(BE) (Dechter
1999), by partitioning large buckets into smaller subsets,
called mini buckets, each containing at mosti (called i-
bound) distinct variables. The mini-buckets are then pro-
cessed separately. The algorithm outputs not only a bound
on the optimal solution cost, but also the collection of aug-
mented buckets, which form the basis for the heuristics gen-
erated. The complexity is time and spaceO(exp(i)).

In the past, (Kask & Dechter 2001) showed that the inter-
mediate functions generated by the Mini-Bucket algorithm

A

B

E C

D F

(a)

B(F): [P(F|A,C)]

B(D): [P(D|B,C)]

B(C): [P(C|A) || λF(A,C)], [λD(B,C)]

B(E): [P(E|A,B)]

B(B): [P(B|A) || λE(A,B), λC(B)]

B(A): [P(A) || λB(A), λC(A)]

(b)

Figure 3: Schematic execution of MBE(2).

MBE(i) can be used to compute a heuristic function, that
overestimates the most probable extension of the current
partial assignment in a regular OR search tree. More re-
cently, (Marinescu & Dechter 2005) extended the idea to
AND/OR search spaces as well.

Assume that a belief networkB = (X ,D,P) with
pseudo-treeT is being solved byAOBB search, where the
active path ends with some OR nodeXj . Consider also the
augmentedbucket structure{B(X1), ..., B(Xn)} of B, con-
structed along the ordering resulted from a depth-first traver-
sal ofT . For each possible value assignmentXj = xj , the
static mini-bucket heuristic estimateh(xj) of the most prob-
able solution rooted byXj can be computed as the prod-
uct of the original conditional probability tables in bucket
B(Xj) and the intermediate functionsλk that were gener-
ated in bucketsB(Xk) and reside in bucketB(Xj) or below,
whereXk is a descendant ofXj in T (more details in (Kask
& Dechter 2001; Marinescu & Dechter 2005)).

Example 2 Figure 3(b) shows the augmented bucket struc-
ture generated by MBE(i=2) for the pseudo-tree displayed in
Figure 3(a), along the ordering(A,B,E,C,D, F); square
brackets denote the choice of partitioning. Assume that
during search, the active path of the current partial so-
lution subtree is(A = a,B = b) and the tip node is
the OR nodeC. The static mini-bucket heuristic estimate
h(C = c) = P (c|a) · λF (a, c) · λD(b, c).

Caching Schemes
In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contexts, which are pre-computed from the pseudo-tree and
use a parameter calledcache bound(or j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching

The first scheme, callednaive cachingand denoted by
AOBB+C(j), stores nodes at the variables whose context size
is smaller than or equal to the cache boundj. It is easy to
see that whenj equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.

A straightforward way of implementing the caching
scheme is to have acache tablefor each variableXk record-
ing the context. Specifically, lets assume that the context of
Xk is context(Xk) = {Xi, ...,Xk} and |context(Xk)| ≤

j. A cache table entry corresponds to a particular instan-
tiation {xi, ..., xk} of the variables incontext(Xk) and
records the most probable solution to the subproblemPXk

.
However, some tables might never get cache hits. We call

thesedead-caches. In the AND/OR search graph, dead-
caches appear at nodes that have only one incoming arc.
AOBB+C(j) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de-
termined by inspecting the pseudo-tree. Namely, if the con-
text of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a
dead-cache. For example, nodeB in the AND/OR search
graph from Figure 2(c) is a dead-cache because its context
includes the context of its parentA in the pseudo-tree.

Adaptive Caching
The second scheme, calledadaptive cachingand denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based onadjusted contexts.

We will illustrate the idea with an example. Con-
sider the nodeXk with context(Xk) = {Xi, ...,Xk},
where|context(Xk)| > j. During search, when variables
{Xi, ...,Xk−j} are assigned, they can be viewed as part of a
w-cutset(Pearl 1988). Thew-cutset method consists of enu-
merating all the possible instantiations of a subset of vari-
ables (i.e. cutset), and for each one solving the remaining
easier subproblem withinw-bounded space restrictions.

Therefore, once variables{Xi, ...,Xk−j} are instantiated,
the problem rooted atXk−j+1 can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the values{xi, ..., xk−j}, context(Xk) is
{Xk−j+1, ...,Xk} (we call this theadjusted contextof Xk),
so it can be stored within thej-bounded space restrictions.
However, whenAOBB+AC(j) retracts toXk−j or above, all
the nodes cached at variableXk need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared toAOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted byXk, AOBB+AC(j)
requiresO(exp(m)) time andO(exp(j)) space, whereas
AOBB+C(j) needsO(exp(hk)) time and linear space, where
hk is the depth of the subtree rooted atXk in the pseudo-
tree,m = |context(Xk)| andm ≤ hk.

Additional dead-caches in the adaptive scheme can also
be identified by inspecting the pseudo-tree. Consider the
nodeXk from the previous example and letanc(Xk) be the
ancestors ofXk in the pseudo-tree betweenXk andXk−j ,
includingXk. If anc(Xk) contains only the variables in the
adjusted context ofXk thenXk is a dead-cache.

Preliminary Experiments
In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on
the task of finding the most likely haplotype configuration
of a general pedigree. All our experiments were done on a
2.4GHz Pentium IV with 2GB of RAM.

ped (w*, h) VEC SUPERLINK (i, j) AOMB(i) AOMB+C(i,j) AOMB+AC(i,j)
time nodes time nodes time nodes

1 (15, 61) 24.62 131.3 (10, 10) 0.609 23,787 0.249 4,723 0.218 4,191
20 (24, 69) 1,304 12.44 (16, 16) 480.2 19,118,600 182.0 5,072,650 192.0 5,072,400
23 (23, 38) 1,144 6,809 (16, 18) 16.60 382,351 11.33 161,896 11.29 159,377
30 (26, 51) 26,719 28,740 (20, 22) 61.57 925,958 38.85 164,701 38.81 162,061
38 (17, 59) 15,860 62.18 (12, 12) 1,212 35,360,600 104.4 1,206,780 124.7 1,156,140
50 (18, 58) 85,637 716.6 (10, 12) 83.52 2,312,423 29.72 445,083 36.41 444,058

Table 1: Time in seconds and nodes visited to prove optimality for genetic linkage analysis.

Figure 4: Detailed time results in seconds comparing the naive vs. adaptive caching for genetic linkage analysis.

We consider two classes of AND/OR Branch-and-Bound
graph search algorithms guided by the pre-compiled mini-
bucket heuristics and using either thenaive or adaptive
caching schemes. They are denoted byAOMB+C(i,j) and
AOMB+AC(i,j), respectively. The parametersi and j de-
note the mini-bucketi-bound (which controls the accuracy
of the heuristic) and the cache bound. The pseudo-trees were
generated using the min-fill heuristic, as described in (Mari-
nescu & Dechter 2005).

We report the average effort as CPU time (in seconds)
and number of nodes visited, required for proving optimal-
ity of the solution, the induced width (w*) and depth of the
pseudo-tree (h) obtained for the test instances. The best per-
formance points are highlighted. For comparison, we also
report results obtained with the tree version of the algorithms
denoted byAOMB(i). The latter was shown to outperform
significantly the OR Branch-and-Bound version (BBMB) in
various domains (Marinescu & Dechter 2005).

Table 1 displays a summary of the results obtained for
6 hard linkage analysis networks1. For comparison, we in-
clude results obtained withVEC and SUPERLINK. SUPER-
LINK is currently the most efficient solver for genetic link-

1http://bioinfo.cs.technion.ac.il/superlink/

age analysis, is dedicated to this domain, uses a combination
of variable elimination and conditioning, and takes advan-
tage of the determinism in the network.VEC is our imple-
mentation of the elimination/conditioning hybrid and is not
sensitive to determinism.

We observe thatAOMB+C(i,j) andAOMB+AC(i,j) are the
best performing algorithms in this domain. The time savings
caused by both naive and adaptive caching schemes are sig-
nificant and in some cases the differences add up to several
orders of magnitude over bothVEC and SUPERLINK (e.g.
ped-23, ped-50). Figure 5 provides an alternative view
comparing the two caching schemes, in terms of CPU time,
for a smalleri-bound of the mini-bucket heuristic. We notice
that adaptive caching improves significantly over the naive
scheme especially for relatively smallj-bounds. This may
be important because smallj-bounds mean restricted space.
At largej-bounds the two schemes are identical.

In summary, the effect of caching (either naive or adap-
tive) is more prominent for relatively weak guiding heuris-
tics estimates. The merit of adaptive caching over naive one
is evident when thej-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav-

Figure 5: Detailed number of nodes visited comparing the naive vs. adaptive caching for genetic linkage analysis.

ings for the Branch-and-Bound algorithms.

Progress from August 2006 to June 2007
In this section we summarize the progress made in the past
year (since August 2006 until June 2007) on solving the
maximum likelihood haplotype in genetic linkage analysis.

We first extend the AND/OR Branch-and-Bound algo-
rithm by equipping it with a constraint propagation proce-
dure that aims at exploiting in an efficient manner the deter-
minism present in the belief network (i.e., zero probability
tuples in the CPTs).

Second, since depth-first AND/OR Branch-and-Bound al-
gorithms were shown to be very effective when exploring
such search spaces, especially when using caching and since
best-first strategies are known to be superior to depth-first
when memory is utilized, exploring the best-first control
strategy is called for. The main contribution is in showing
that a recent extension of AND/OR search algorithms from
depth-first Branch-and-Bound to best-first is indeed very ef-
fective for computing the MPE in Bayesian networks.

We demonstrate empirically the superiority of the best-
first search approach on several linkage analysis networks.

AND/OR Branch-and-Bound with Constraint
Propagation
In general, when the graphical model’s functions express
both hard constraints and general cost functions, it is ben-
eficial to exploit the computational power of the constraints
explicitly (Dechter & Larkin 2001; Larkin & Dechter 2003;
Allen & Darwiche 2003; Dechter & Mateescu 2004). The
constraints can be represented explicitly, as in Integer Linear
Programming, or are hidden within the cost functions, such
as the zero probability tuples in belief networks or the∞
cost tuples in Weighted CSPs. In this section we introduce

an extension of the AND/OR Branch-and-Bound algorithm
that aims at handling in an efficient manner deterministic re-
lationships that may occur in graphical models such as belief
networks.

Extracting the Determinism From the Belief Network
The approach we take for handling the determinism in be-
lief networks is based on a key technique in the Boolean
Satisfiability (SAT) literature, known asunit resolutionover
a logical knowledge base (KB) in the form of propositional
clauses (i.e., CNF formula). The CNF formula encodes the
determinism in the network and is created based on the zero
CPT entries, as follows.

SAT Variables Given a belief networkP = 〈X ,D,F〉,
the CNF is defined over the multi-valued variables
{X1, ...,Xn}. Its propositions areLXi,xi

, wherexi ∈ Di.
The proposition is true ifXi is assigned valuexi ∈ Di and
is false otherwise.

SAT Clauses The CNF is augmented with a collection of
2-CNFs for each variableXi in the network, calledat-most-
oneclauses, that forbids the assignments of more than one
value to a variable. Formally,

DEFINITION 9 (at-most-one clause) Given a variable
Xi ∈ X with domainDi = {xi1 , ..., xid

}, its corresponding
at-most-oneclauses have the following form:

¬LXi,xip
∨ ¬LXi,xiq

for every pair(xip
, xiq

) ∈ Di × Di, where1 ≤ p < q ≤ d.

In addition, we will add to the CNF a set ofat-least-one
clauses to ensure that each variable in the network is as-
signed at least one value from its domain:

DEFINITION 10 (at-least-one clause) Given a variable
Xi ∈ X with domainDi ∈ {Xi1 , ...,Xid

}, its correspond-
ing at-least-oneclause is of the following form:

LXi,xi1
∨ LXi,xi2

... ∨ LXi,xid

The remaining clauses are generated from the zero prob-
ability tuples in the network’s CPTs.
DEFINITION 11 (no-good clauses) Given a conditional
probability table P (Xi|pa(Xi)), each entry in the CPT
havingP (xi|xpai

) = 0, wherepa(Xi) = {Y1, ..., Yt} are
Xi’s parents andxpai

= (y1, ..., yt) is their corresponding
value assignment, can be translated to ano-goodclause of
the form:

¬LY1,y1
∨ ... ∨ ¬LYt,yt

∨ ¬LXi,xi

Constraint Propagation via Unit Resolution The input
to unit resolution is a CNF formulaϕ, where each clause
is a disjunction of literals. Each literal is either positive
(L = true) or negative(¬(L = true)). A clause is satisfied
whenever at least one of its literals is satisfied. Unit resolu-
tion is a linear time method for deriving logical implications
of ϕ based on setting the values of some variables, allow-
ing one to efficiently detect variable assignments which are
inconsistent withϕ. The basic concept of unit resolution is
that when all but one literalL in a clause have been falsified,
then literalL must be satisfied in order to satisfy the clause.

Unit resolution is a very important part of any SAT solver,
where a major portion of the solver’s run time is spent doing
it (Moskewiczet al. 2001). Our use of unit resolution within
AND/OR Branch-and-Bound search is for detecting partial
instantiations of the variables along the current path fromthe
root that are guaranteed to have zero probabilities, and then
skipping these instantiations.

AOBB Search with Unit Resolution In the AND/OR
Branch-and-Bound algorithm unit resolution is imple-
mented alookahead function which is called upon the
expansion of the current AND node〈Xi, xi〉.

When the algorithm expands the current AND node
〈Xi, xi〉 in the forward step, the corresponding literalLXi,xi

is set totrue. The assertion is then propagated throughout
the knowledge base via unit resolution. If a logical con-
tradiction is encountered, then the AND node is marked as
dead-end, and the search continues with the bottom-up cost
revision step. During unit resolution, if a negative literal
¬(LXj ,xj

= true), corresponding to the uninstantiated vari-
ableXj of the current subproblem, is satisfied, then value
xj can be safely removed fromXj ’s domain, thus demon-
strating the ability of the algorithm to prune future domains.
Whenever the algorithm backtracks to the previous level, it
also retracts any instantiation recorded by unit resolution.

BEST-FIRST AND/OR SEARCH
In this section we direct our attention to abest-firstrather
than depth-first control strategy for traversing the context-
minimal AND/OR graph and describe a best-first AND/OR
search algorithm for solving the MPE task in belief net-
works. The algorithm uses similar amounts of memory
as the depth-first AND/OR Branch-and-Bound with full
caching and therefore the comparison is warranted.

Algorithm 2: AOBF
Data: A belief networkP = 〈X, D, F 〉, pseudo-treeT , root

s.
Result: Most Probable Explanation ofP.

1. Create explicit graphG′

T , consisting solely of the start1
nodes. Setv(s) = h(s).
2. until s is labeled SOLVED,do:2

(a) Compute apartial solution treeby tracing down the3

markedarcs inG′

T from s and select any nonterminal tip
noden.
(b) Expand noden and add any new successor nodeni to4

G′

T . For each new nodeni setv(ni) = h(ni). Label
SOLVED any of these successors that are terminal nodes.
(c) Create a setS containing noden.5
(d) until S is empty,do:6

i. Remove fromS a nodem such thatm has no7

descendants inG′

T still in S.
ii. Revise the valuev(m) as follows:8

A. if m is an AND nodethen9
v(m) =

Q

mj∈succ(m) v(mj). If all the successor
nodes are labeled SOLVED, then label nodem
SOLVED.
B. if m is an OR nodethen10
v(m) = maxmj∈succ(m)(l(m, mj) · v(mj)) and
mark the arc through which this maximum is
achieved. If the marked successor is labeled
SOLVED, then labelm SOLVED.

iii. If m has been marked SOLVED or if the revised11
valuev(m) is different than the previous one, then add
to S all those parents ofm such thatm is one of their
successors through a marked arc.

3. return v(s).12

Best-First Search Best-first search is a search algorithm
which optimizes breath-first search by expanding the node
whose heuristic evaluation function is the best among all
nodes encountered so far. Its main virtue is that it never
expands nodes whose cost is beyond the optimal one, unlike
depth-first search algorithms, and therefore is superior
among memory intensive algorithms employing the same
heuristic evaluation function (Dechter & Pearl 1985).

Best-First AND/OR Graph Search Our best-first
AND/OR graph search algorithm, denoted byAOBF, that
traverses the context-minimal AND/OR search graph is
described in Algorithm 2. It specializes Nilsson’sAO∗

algorithm (Nilsson 1980) to AND/OR spaces in graphical
models, in particular to finding the MPE in belief networks.

The algorithm maintains a frontier of partial solution trees
found so far, and interleaves forward expansion of the best
partial solution tree with a cost revision step that updates
estimated node values. First, a top-down, graph-growing
operation (step 2.a) finds the best partial solution tree
by tracing down through the marked arcs of the explicit
AND/OR search graphG′

T . These previously computed
marks indicate the current best partial solution tree from
each node inG′

T . One of the nonterminal leaf nodesn of
this best partial solution tree is then expanded, and a static

heuristic estimateh(ni), overestimatingv(ni), is assigned
to its successors (step 2.b). The successors of an AND
noden = 〈Xj , xj〉 are Xj ’s children in the pseudo-tree,
while the successors of an OR noden = Xj correspond
to Xj ’s domain values. Notice that when expanding an OR
node, the algorithm does not generate AND children that are
already present in the explicit search graphG′

T . All these
identical AND nodes inG′

T are easily recognized based on
their contexts, so only pointers to the existing nodes are cre-
ated.

The second operation inAOBF is a bottom-up, cost
revision, arc marking, SOLVE-labeling procedure (step
2.c). Starting with the node just expandedn, the proce-
dure revises its valuev(n) (using the newly computed val-
ues of its successors) and marks the outgoing arcs on the
estimated best path to terminal nodes. This revised value
is then propagated upwards in the graph. The revised cost
v(n) is an updated estimate of the most probable explana-
tion probability of the subproblem rooted atn. If we assume
the monotone restriction onh, the algorithm considers only
those ancestors that root best partial solution subtrees con-
taining descendants with revised values. The most probable
explanation value of the initial problem is obtained when the
root nodes is solved.

AOBB versus AOBF Search We describe next the main
differences betweenAOBF andAOBB search.

1 AOBF with the same heuristic function asAOBB is likely
to expand the smallest number of nodes (Dechter & Pearl
1985), but empirically this depends on how quicklyAOBB
will find an optimal solution.

2 AOBB is able to improve its heuristic function dynami-
cally during search (Marinescu & Dechter 2005) based
on the explicated portion of the search space, whileAOBF
may not because it uses only the static functionh(n),
which can be pre-computed or generated during search.

3 AOBB can use far less memory avoiding dead-caches for
example (e.g., when the search graph is a tree), while
AOBF has to keep the explicated search graph in memory
prior to termination.

All the above points show that the relative merit of best-
first vs depth-first over context-minimal AND/OR search
spaces cannot be determined by the theory in (Dechter &
Pearl 1985) and empirical evaluation is essential.

Experiments

We consider a class of best-first AND/OR search algorithms
guided by the static mini-bucket heuristics and denoted
by AOBF+SMB(i) respectively. We compare it against
the depth-first AND/OR Branch-and-Bound algorithms with
static mini-bucket heuristics and full caching and denotedby
AOBB+SMB(i). The parameteri represents the mini-bucket
i-bound and controls the accuracy of the heuristic. All algo-
rithms traverse the context-minimal AND/OR search graph
and are restricted to a static variable ordering determinedby
the pseudo-tree.

Effect of Unit Resolution Table 2 shows the re-
sults obtained for 12 linkage analysis networks:{1,
18, 20, 23, 25, 30, 33, 37, 38, 39, 42, 50} from
http://bio.cs.technion.ac.il/superlink/. We considered the
AND/OR Branch-and-Bound algorithms with static mini-
bucket heuristics, no caching and with either unit reso-
lution, denoted byAOBB+SAT+SMB(i), or without con-
straint propagation, denoted byAOBB+SMB(i), respec-
tively. We observe that unit resolution is not cost effective
in this case.
AOBB versus AOBF Table 3 displays the results obtained
for the same set of 12 linkage analysis networks. For com-
parison, we include results obtained with SUPERLINK 1.6.
SUPERLINK (Fishelson & Geiger 2002; Fishelson, Dov-
golevsky, & Geiger 2005) is currently one the most efficient
solvers for genetic linkage analysis, is dedicated to this do-
main, uses a combination of variable elimination and condi-
tioning, and takes advantage of the determinism in the net-
work.

In addition, we also ran SAM IAM version 2.3.2 and RC-
L INK solvers. SAM IAM 2 is a public implementation of Re-
cursive Conditioning (Darwiche 2001) which can also be
viewed as an AND/OR graph search algorithm for solving
the MPE task. RC-LINK 3 is also a Recursive Conditioning
based algorithm, however it is specialized for the linkage
analysis domain and it can only compute the probability of
evidence of the belief network that corresponds to the input
linkage network.

In all our experiments,AOBB+SMB(i), AOBF+SMB(i),
SAM IAM and SUPERLINK were run on the belief network
output by SUPERLINK. RC-LINK used its own simplified
belief network (to which we did not have access).

When comparing the AND/OR search algorithms, we ob-
serve thatAOBF+SMB(i) is the best performing algorithm.
For instance, on thep42 linkage instance,AOBF+SMB(14)
is 18 times faster thanAOBB+SMB(14) and explores a
search space 240 times smaller. On some instances (e.g.,p1,
p23, p30) the best-first search algorithmAOBF+SMB(i) is
several orders of magnitude faster than SUPERLINK. The
performance of SAM IAM was very poor on this dataset and
it was able to solve only 2 instances.

Table 4 displays the resuts obtained for the remain-
ing 10 linkage networks from the dataset available at
http://bio.cs.technion.ac.il/superlink/, namely{7, 9, 13, 19,
31, 34, 40, 41, 44, 51}. These networks cannot be solved by
eitherAOBB+SMB(i) or AOBF+SMB(i), within a 3 hour
time limit for all reportedi-bounds.

On the other hand, RC-LINK appears to be the best per-
forming algorithm on this dataset. This can be explained
by its very powerful reduction methods that can produce a
far simpler belief network as compared to the one output by
SUPERLINK.

2Available at http://reasoning.cs.ucla.edu/samiam. We used the
batchtool 1.5 provided with the package.

3Available at http://reasoning.cs.ucla.edu/rclink

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
ped Superlink SamIam AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
(n,d,w*,h) v. 1.6 v. 2.3.2 i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
ped1 54.73 5.44 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156
(299,5,15,61) 24.72 414,239 12.97 205,887 1.59 24,361 1.86 25,674 1.89 15,156
ped38 28.36 out - - 8120.58 85,367,022 - - 3040.60 35,394,461
(582,5,17,59) - - 7663.89 83,808,576 - - 3094.33 35,394,277
ped50 - out - - - - 476.77 5,566,578 104.00 748,792
(479,5,18,58) - - - - 497.30 5,566,344 107.11 748,792

i=10 i=12 i=14 i=16 i=18
ped23 9146.19 out 102.48 1,375,196 87.34 1,149,195 13.08 145,330 3.22 21,351 3.13 11,132
(310,5,23,37) 105.83 1,375,196 88.50 1,149,195 13.53 145,330 3.25 21,351 3.16 11,132
ped37 64.17 out 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(1032,5,21,61) 282.83 3,189,847 1674.54 25,280,466 1066.79 15,372,724 131.56 953,061

i=12 i=14 i=16 i=18 i=20
ped18 139.06 157.05 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184,5,21,119) - - 2199.44 28,651,103 285.03 2,555,078 103.89 682,175 20.41 7,689
ped20 14.72 out - - - - 38.75 311,385 96.02 555,872
(388,5,23,42) - - - - 40.49 311,385 100.20 555,872
ped25 - out - - - - - - 8415.18 45,825,494 1894.17 11,709,153
(994,5,29,53) - - - - - - 7514.83 45,824,181 1972.51 11,710,927
ped30 13095.83 out 5563.22 63,068,960 1397.14 15,336,772 1811.34 20,275,620 550.57 5,535,261 82.25 588,558
(1016,5,25,51) 5728.35 63,068,960 1409.02 15,336,548 1857.48 20,275,620 577.82 5,535,261 84.38 588,558
ped33 - out 2335.28 32,444,818 806.12 11,403,812 62.91 807,071 67.92 701,030 76.47 320,279
(581,5,26,48) 2378.66 32,444,818 820.73 11,403,812 63.99 807,071 69.39 701,030 77.20 320,279
ped39 322.14 out - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280
(1272,5,23,94) - - - - 4242.59 52,804,044 405.08 2,171,470 145.03 407,280
ped42 561.31 out - - - - - -
(448,5,25,76) - - - - - -

Table 2: CPU time in seconds and number of nodes visited for solving genetic linkage analysis networks. Time limit 3 hours.

ped n w* RC-LINK SamIam Superlink AOBB+SMB(i) AOBF+SMB(i)
d h v. 2.3.2 v. 1.6 i=6 i=8 i=10 i=12 i=14 i=6 i=8 i=10 i=12 i=14

1 299 15 t 24.50 5.44 54.73 4.19 2.17 0.39 0.65 1.36 1.30 2.17 0.26 0.87 1.54
61 # 69,751 33,908 4,576 6,306 4,494 7,314 13,784 1,177 4,016 3,119

38 582 17 t 425.40 out 28.36 5946.44 1554.65 2046.95 272.69 n/a out 134.41 216.94 103.17 n/a
59 # 34,828,046 8,986,648 11,868,672 1,412,976 348,723 583,401 242,429

50 479 18 t 26411.60 out - 4140.29 2493.75 66.66 52.11 n/a 78.53 36.03 12.75 38.52 n/a
58 # 28,201,843 15,729,294 403,234 110,302 204,886 104,289 25,507 5,766

i=10 i=12 i=14 i=16 i=18 i=10 i=12 i=14 i=16 i=18
23 310 23 t 3.20 out 9146.19 53.70 49.33 8.77 2.73 3.04 35.49 29.29 10.59 3.59 3.48

37 # 486,991 437,688 85,721 14,019 7,089 185,761 150,214 52,710 11,414 5,790
37 1032 21 t 66.20 out 64.17 39.16 488.34 301.78 67.83 n/a 29.16 38.41 95.27 62.97 n/a

61 # 222,747 4,925,737 2,798,044 82,239 72,868 102,011 223,398 12,296
i=12 i=14 i=16 i=18 i=20 i=12 i=14 i=16 i=18 i=20

18 1184 21 t 5.40 157.05 139.06 - 406.88 52.91 23.83 20.60 out 127.41 42.19 19.85 19.91
119 # 3,567,729 397,934 118,869 2,972 542,156 171,039 53,961 2,027

20 388 23 t 34.10 out 14.72 7243.43 5560.63 37.28 95.13 n/a out out 33.33 121.91 n/a
42 # 63,530,037 46,858,127 279,804 554,623 144,212 466,817

30 1016 25 t 5.90 out 13095.83 1440.26 597.88 1023.90 151.96 43.83 186.77 58.38 85.53 49.38 33.03
51 # 11,694,534 5,580,555 10,458,174 1,179,236 146,896692,870 253,465 350,497 179,790 37,705

39 1272 23 t 9.90 out 322.14 - - 968.03 61.20 93.19 out out 68.52 41.69 87.63
94 # 7,880,928 313,496 83,714 218,925 79,356 14,479

42 448 25 t 36.20 out 561.31 - - 2364.67 n/a n/a out out 133.19 n/a n/a
76 # 22,595,247 93,831

25 994 29 t 26.70 out - - - - 2041.64 693.74 out out out out 198.49
53 # 6,117,320 1,925,152 468,723

33 581 26 t 3.90 out - 886.05 370.41 26.31 33.11 54.89 out 194.78 24.16 32.55 58.52
48 # 8,426,659 4,032,864 229,856 219,047 83,360 975,617 102,888 101,862 57,593

Table 3: CPU time in seconds and number of nodes visited for genetic linkage analysis. Time limit 3 hours.

ped n w* RC-LINK SamIam Superlink AOBB+SMB(i) AOBF+SMB(i)
d h v. 2.3.2 v. 1.6 i=12 i=14 i=16 i=18 i=20 i=12 i=14 i=16 i=18 i=20

7 1068 39 t 22.90 out -
4 147 #

9 1118 31 t 168.60 out out
7 107 #

13 1077 35 t 98.70 out -
3 174 #

19 793 28 t 19.20 out out
5 155 #

31 1183 34 t 144.90 out -
5 108 #

34 1160 44 t 31.70 out out
5 118 #

40 1030 36 t 57.60 out -
7 153 #

41 1062 41 t 13.40 out -
5 119 #

44 811 25 t 121.40 out -
4 90 #

51 1152 47 t 556.50 out -
5 106 #

Table 4: Results obtained for the remaining 10 linkage networks. These networks could not be solved by neitherAOBB nor
AOBF, within a 3 hour time limit. Similarly, SUPERLINK runs out of memory or time.

Conclusion
In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient
caching mechanism. We investigated two flexible context-
based caching schemes that can adapt to the current memory
restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empir-
ically on several challenging benchmarks from the field of
genetic linkage analysis.

Related Work
AOBB graph search is related to the Branch-and-Bound
method proposed by (Kanal & Kumar 1988) for acyclic
AND/OR graphs and game trees, as well as the pseudo-
tree search algorithm proposed in (Larrosa, Meseguer, &
Sanchez 2002). BTD developed in (Jegou & Terrioux 2004)
can also be interpreted as an AND/OR graph search algo-
rithm with a caching mechanism based on the separators of
the guiding tree-decomposition.

References
Allen, D., and Darwiche, A. 2003. New advances in infer-
ence using recursive conditioning.In Uncertainty in Artifi-
cial Intelligence (UAI-2003)2–10.
Bacchus, F.; Dalmao, S.; and Pittasi, T. 2003. Value elim-
ination: Bayesian inference via backtracking search.In
Uncertainty in Artificial Intelligence (UAI-2003)20–28.
Darwiche, A. 2001. Recursive conditioning.Artificial
Intelligence126(1-2):5–41.
Dechter, R., and Larkin, D. 2001. Hybrid processing of
beliefs and constraints.In Uncertainty in Artificial Intelli-
gence (UAI-2001)112–119.
Dechter, R., and Mateescu, R. 2004. Mixtures of
deterministic-probabilistic networks.In Uncertainty in Ar-
tificial Intelligence (UAI-2004).
Dechter, R., and Mateescu, R. 2006. And/or search spaces
for graphical models.Artificial Intelligence.

Dechter, R., and Pearl, J. 1985. Generalized best-first
search strategies and the optimality of a*.In Journal of
ACM 32(3):505–536.
Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for approximating inference.ACM2(50):107–153.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning.Artificial Intelligence113:41–85.
Dechter, R. 2003.Constraint Processing. MIT Press.
Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigrees.Bioinformatics.
Fishelson, M.; Dovgolevsky, N.; and Geiger, D. 2005.
Maximum likelihood haplotyping for general pedigrees.
Human Heredity.
Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in constraint satisfaction problems.
In International Joint Conference on Artificial Intelligence
(IJCAI-1985)1076–1078.
Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording for solving max-csps.In European Conference
on Artificial Intelligence (ECAI 2004)196–200.
Kanal, L., and Kumar, V. 1988.Search in artificial intelli-
gence.Springer-Verlag.
Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic generation of search heuristics from specification
dependencies.Artificial Intelligence.
Larkin, D., and Dechter, R. 2003. Bayesian inference in
the presence of determinism.In Artificial Intelligence and
Statistics (AISTAT-2003).
Larrosa, J.; Meseguer, P.; and Sanchez, M. 2002. Pseudo-
tree search with soft constraints.In European Conference
on Artificial Intelligence (ECAI-2002)131–135.
Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical models.In International Joint Confer-
ence on Artificial Intelligence (IJCAI-2005)224–229.
Mateescu, R., and Dechter, R. 2005. And/or cutset con-
ditioning. In International Joint Conference on Artificial
Intelligence (IJCAI-2005)230–235.

Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.; and
Malik, S. 2001. Chaff: Engineering an efficient sat solver.
In Design Automation Conference (DAC-2001).
Nilsson, N. J. 1980.Principles of Artificial Intelligence.
Tioga.
Ott, J. 1999. Analysis of Human Genetic Linkage. The
Johns Hopkins University Press.
Pearl, J. 1988.Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann.

