AND/OR Graph Search for Genetic Linkage Analysis

Radu Marinescu and Rina Dechter
School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum decht er }@ cs. uci . edu

Abstract rather than the AND/OR search tree, using a flexible caching
. mechanism that can adapt to memory limitations.
AND/OR search spacdsave recently been introduced as a The caching scheme is based amtextsand is similar

unifying framework for advanced algorithmic schemes for

graphical models. The main virtue of this representation to good and no-good recording and recent schemes appear-

is its sensitivity to the structure of the model, which can ing in Rec_ursive Conditioning (Darwic_he 2.001) and VaIue_d
translate into e)>/<ponential time savings for search algorithms. ~ Backtracking (Bacchus, Dalmao, & Pittasi 2003). The effi-
AND/OR Branch-and-BoundOBB) is a new algorithm that ciency of the proposed search methods also depends on the
explores the AND/OR search tree for solving optimization accuracy of the guiding heuristic function, which is based
tasks in graphical models. In this paper we extend the al- on the mini-bucket approximation of Variable Elimination
gorithm to explore an AND/OR seararaph by equipping (Dechter & Rish 2003). We focus our empirical evaluation
it with a context-based adaptive caching scheme similar to on the task of finding the Most Probable Explanation in be-
good and no-good recording. The efficiency of the new graph |ief networks (Pearl 1988), and illustrate our results on se
search algorithm is demonstrated empirically on the very gra| henchmarks from the field of genetic linkage analysis.
gihsallenglng benchmarks that arise in genetic linkage analy- The paper is organized as follows. Section 2 provides
' background on belief networks, AND/OR search trees and
the AOBB algorithm. In Section 3 we introduce the AND/OR
Introduction searchgraph and AOBB with caching. In Section 4 we de-

. _ .. scribe two context-based caching schemes. Section 5 gives
Graphical models such as belief networks or constraint ¢qme experimental results and Section 6 concludes.

networks are a widely used representation framework for
reasoning with probabilistic and deterministic infornoati Preliminaries
These models use graphs to capture conditional independen-_
cies between variables, allowing a concise representafion Belief Networks
the knowledge as well as efficient graph-based query pro- Belief Networksprovide a formalism for reasoning about
cessing algorithms. Optimization tasks such as finding the partial beliefs under conditions of uncertainty. They age d
most likely state of a belief network or finding a solution fined by a directed acyclic graph over nodes representing
that violates the least number of constraints can be defined variables of interest.
within this framework and th_ey are typically tackled with pepviTion 1 (belief network) A belief network is a
e|t1h_(;rsearchormferencealgonthms (Deqhter 2003). quadrupleB = (X, D, G, P), whereX = {X,,..., X, } is

e AND/OR search space for graphical models (Dechter 5 cet of random variablesD = {Di,...,D,} is the set
& Mateescu 2006) is a new framework for search that is ¢ tne corresponding discrete-valued domaigsis a di-
sensitive to the independencies in the model, often result- (octeq acyclic graph ove®’ andP = {p,, ...,p, }, where
ing in exponentially reduced complexities. It is based on)~ _ P(Xilpa(X:)) (pa(X:) are the parénté ofX; in G)
a pseudo-tree that captures independencies in the graphica jenoteconditional probability tablegCPTs). The belief net-
model, resulting in a search tree exponential in the depth of .k represents a joint probability distribution ovéf hav-
the pseudo-tree, rather than in the number of variables. ing the product formPs(z) = [[, P(zi|pa,), Where

search method that explores the AND/OR search tree for z — (;, . z.) and wherers denotes the restriction of a

solving optimization tasks in graphical models (Marinescu ypje s over a subset of variableS. An evidence setis an

& Dechter 2005). In this paper we improve t#&BB instantiated subset of variables. Theoral graphof a belief
scheme significantly by usirgrchingschemes. Namely, we network is the undirected graph obtained by connecting the
extend the algorithm to explore the AND/OR seagrlph parent nodes of each variable and eliminating direction.
Copyright © 2006, American Association for Artificial Intelli- The primary optimization query over belief networks

gence (www.aaai.org). All rights reserved. is finding theMost Probable ExplanatiofMPE), namely,

Figure 1: A fragment of a belief network used in genetic
linkage analysis.

finding a complete assignment to all variables having max-
imum probability, given the evidence. A generalization of
the MPE query idMaximum a Posteriori Hypothes{MAP),
which calls for finding the most likely assignment to a subset
of hypothesis variables, given the evidence.

DEFINITION 2 (MPE task) Given a belief network and ev-

problem consists of finding a joint haplotype configuration
for all members of the pedigree which maximizes the prob-
ability of data.

The pedigree data can be represented as a belief network
with three types of random variablegenetic locivariables
which represent the genotypes of the individuals in the-pedi
gree (two genetic loci variables per individual per locus,
one for the paternal allele and one for the maternal allele),
phenotypevariables, andelectorvariables which are aux-
iliary variables used to represent the gene flow in the pedi-
gree. Figure 1 represents a fragment of a network that de-
scribes parents-child interactions in a simple 2-loci gnal
sis. The genetic loci variables of individualat locus
are denoted by.; ;, and L, j,,,. VariablesX; ;, S; j, and
S;.;m denote the phenotype variable, the paternal selector
variable and the maternal selector variable of individual
at locusj, respectively. The conditional probability tables
that correspond to the selector variables are parameterize
by the recombination ratiof (Fishelson & Geiger 2002).
The remaining tables contain only deterministic informa-
tion. It can be shown that given the pedigree data, the haplo-
typing problem is equivalent to computing the Most Prob-
able Explanation (MPE) of the corresponding belief net-
work (for more details consult (Fishelson & Geiger 2002;
Fishelson, Dovgolevsky, & Geiger 2005)).

AND/OR Search Trees

The usual way to do search is to instantiate variables in turn
(we only consider a static variable ordering). In the sim-

plest case, this process defines a search tree (called here OR
search tree), whose nodes represent states in the space of
partial assignments. The traditional search space does not
capture the structure of the underlying graphical model. In

' troducing AND states into the search space can capture the

idencee, the Most Probable Explanation (MPE3sk is to
find an assignmenty, ..., %) such that: P(zg, ..., x2)
mazrx, . x, | r—; P(Xklpa(Xy),e).

The MPE task appears in applications such as diagnosis

abduction and explanation. For example, given data on clin-
ical findings, MPE can postulate on a patient’s probable af-
flictions. In decoding, the task is to identify the most likel

message transmitted over a noisy channel given the observed

output.

DEeFINITION 3 (induced graph, induced width) Given a
graph G, its induced graphelative to an orderingd of the
variables, denoted>*(d), is obtained by processing the
nodes in reverse order of. For each node all its earlier

neighbors are connected, including neighbors connected by

previously added edges. Given a graph and an ordering
of its nodes, thevidth of a node is the number of edges
connecting it to nodes lower in the ordering. Timeluced
width of a graph, denote@*(d), is the maximum width of
nodes in the induced graph.

Genetic Linkage Analysis

In human genetic linkage analysis (Ott 1999), tiaplo-
typeis the sequence of alleles at different loci inherited by
an individual from one parent, and the two haplotypes (ma-
ternal and paternal) of an individual constitute this indHv
ual’s genotype When genotypes are measured by standard
procedures, the result is a list of unordered pairs of alele
one pair for each locus. Thmaximum likelihood haplotype

structure decomposing the problem into independent sub-
problems by conditioning on values (Freuder & Quinn 1985;
Dechter & Mateescu 2006). The AND/OR search space is
defined using a backbomseudo-tree

DEFINITION 4 (pseudo-tree) Given an undirected graph
G = (V,FE), a directed rooted tred" = (V, E’) defined
on all its nodes is callegseudo-tred any arc ofG which is
not included inE’ is a back-arc, namely it connects a node
to an ancestor iff".

Given a belief networl8 = (X, D, P), its moral graptG
and a pseudo-tre€ of G, the associated AND/OR search
tree St has alternating levels of OR nodes and AND nodes.
The OR nodes are labeled; and correspond to the vari-
ables. The AND nodes are labeléd;, ;) and correspond
to value assignments in the domains of the variables. The
structure of the AND/OR tree is based on the underlying
pseudo-tree arrangementof G. The root of the AND/OR
search tree is an OR node, labeled with the rodf of

The children of an OR nod&’; are AND nodes labeled
with assignmentsX;, «;), consistent along the path from
the rOOt,thh(X,’,Ii) = (<X1, I1>, ey <X¢_17l‘i_1>). The
children of an AND nodeX;, z;) are OR nodes labeled
with the children of variableX; in T. In other words, the
OR states represent alternative ways of solving the prablem

P(CIA) P(AIF) P(F)

P(DIB,C) P(BIA,E) P(EIF)

@

Figure 2: AND/OR search spaces

whereas the AND states represent problem decomposition AND/OR Branch-and-Bound Tree Search

into independent subproblems, all of which need be solved.

When the pseudo-tree is a chain, the AND/OR search tree AND/OR Branch-and-Bound AOBB) was introduced in

coincides with the regular OR search tree.

A solution subtreeSolg, of S is an AND/OR subtree
such that: (i) it contains the root &fr; (i) if a nonterminal
AND noden € Sy is in Solg, then all its children are in
Sols,.; (iii) if a nonterminal OR node: € Sr is in Solp
then exactly one of its children is iflolg,, .

Example 1 Figures 2(a) and 2(b) show a belief network and
its pseudo-tree together with the back-arcs (dotted lines)
Figure 2(c) shows the AND/OR search tree based on the
pseudo-tree, for bi-valued variables. A solution subtree i

highlighted.

The AND/OR search tree can be traversed by a depth-first
search algorithm that is guaranteed to have a time complex-
ity exponential in the depth of the pseudo-tree and can use

linear space (Dechter & Mateescu 2006). The arcs fdom
to (X;,z;) are annotated by appropridtbelsof the func-
tions inP. The nodes ibr can be associated withalues

defined over the subtrees they root.

DEFINITION 5 (label) Thelabel I(X;,z;) of the arc from

the OR nodeX; to the AND nod€X;, «;) is defined as the
product of all the conditional probability tables whose peo
includesX; and is fully assigned alongath(X;, ;).

DEFINITION 6 (value) Thevaluev(n) of a noden € Sr
is defined recursively as follows: (i) it = (X, ;) is
a terminal AND node them(n) = I(X;,z;); (i) if n =
(X;,z;) is an internal AND node then(n) = I(X;, ;) -
[T esuceqn) v("); (iii) if n = X; is an internal OR node
thenv(n) = maz, coycen)v(n’), Wheresuce(n) are the
children ofn in Sp.

Clearly, the value of each node can be computed recur-

sively, from leaves to root.

ProPOSITION1 Given an AND/OR search treSr of a
belief networkB = (X, D,P), the valuev(n) of a node

n € St is the most probable explanation of the subprob-

lem rooted atq, subject to the current variable instantiation
along the path from root ta. If n is the root of S, then
v(n) is the most probable explanation Bf

(Marinescu & Dechter 2005) as a depth-first Branch-and-
Bound that explores an AND/OR search tree for solving op-
timization tasks in graphical models. In the following we
review briefly the algorithm.

At any stage during search, a nodealong the current
path roots a currenpartial solution subtreg denoted by
Ssor(n), which must be connected, must contain its root
and will have drontier containing all those nodes that were
generated and not yet expanded. Furthermore, there exists
astaticheuristic functiorm(n) overestimating/(n) that can
be computed efficiently when nodeis first generated.

Given the current partially explored AND/OR search tree
S, theactive pathAP(t) is the path of assignments from
the root of S to the current tip nodé. Theinside context
in(AP) of AP(t) contains all nodes that were fully evalu-
ated and are children of nodes @®(¢). Theoutside con-
textout(AP) of AP(t), contains all the frontier nodes that
are children of the nodes o#P(¢). Theactive partial sub-
tree APT (n) rooted at a nodee € AP(¢) is the subtree
of Ss01(n) containing the nodes aAP(t) betweenn andt
together with their OR children. Aynamic heuristic evalu-
ation functionof a noden relative to. AP7 (n) which over-
estimatesv(n) is defined as follows (for more details see
(Marinescu & Dechter 2005)).

DEFINITION 7 (dynamic heuristic evaluation function)

Given an active partial treeAP7 (n), the dynamic
heuristic evaluation functionof n, fn(n), is de-
fined recursively as follows: (i) ifAP7T(n) consists
only of a single noden, and if n € in(AP) then
fn(n) = v(n) else fr(n) = h(n); (i) if n = (X;, ;)
is an AND node, having OR childrem,,...,m; then
fu(n) = min(h(n), (X, 2:) - [Ty fu(ma)); (i) if
n = X; is an OR node, having an AND chile, then

fr(n) = min(h(n), fa(m)).

AOBB traverses the AND/OR search tree in a depth-first
manner and calculates apper boundn v(n) of any node
n on the active path, by using,(n). It also maintains an
lower boundon v(n) which is the current best solution sub-
tree rooted at. If fi(n) < lb(n) then the search is termi-
nated below the tip node of the active path.

AND/OR Search Graphs

The AND/OR search tree may contain nodes that root identi-
cal subtrees (i.e. their root nodes values are identich@s&
are calledunifiable When unifiable nodes are merged, the

search tree becomes a graph and its size becomes smaller. A

depth-first search algorithm can explore the AND/OR graph
using additional memory. The algorithm can be modified to
cachepreviously computed results and retrieve them when

the same nodes are encountered again. Some unifiable nodes

can be identified based on thewmntexts

DEFINITION 8 (context) Given a belief network and the
corresponding AND/OR search trég- relative to a pseudo-
treeT", thecontextof any AND nodéX;, z;) € Sr, denoted
by context(X;), is defined as the set of ancestorsXfin
T, including X, that are connected to descendantsXof

Itis easy to verify that the context of; d-separates (Peatrl
1988) the subproblerRx, below X, from the rest of the net-
work. Namely, itis possible to solvByx, for any assignment
of context(X;) and record its optimal value, thus avoiding
to solve Py, again for the same assignment. Tdentext-
minimal AND/OR graph is obtained by merging all the con-
text unifiable AND nodes. The size of the largest context is
bounded by the induced width* of the moral graph (ex-
tended with the pseudo-tree extra arcs) over the ordering
given by the depth-first traversal @f (i.e. induced width
of the pseudo-tree). Therefore, the time and space com-
plexity of a search algorithm traversing the context-mialim
AND/OR graph iO(exp(w*)) (Dechter & Mateescu 2006).

For illustration, consider the context-minimal graph in
Figure 2(d) of the pseudo-tree from Figure 2(b). Its size
is far smaller that that of the AND/OR tree from Figure 2(c)
(16 nodes vs. 54 nodes). The contexts of the nodes can be
read from the pseudo-tree, as followsintext(A) = {A},
context(B) = {B,A}, context(C) = {C,B}, context(D)
{D}, context(E) = {E,A} andcontext(F) = {F}.

AND/OR Branch-and-Bound Graph Search

In this section we extendOBB to traverse an AND/OR

search graph by equipping it with a caching mechanism.
Figure 3 shows the graphOBB,, algorithm. The follow-

ing notation is used(X’, D, P) is the problem with which

the procedure is calledt is the current partial solution sub-

tree being exploredi (resp. out) is the inside (resp. out-

side) context of the active path. The algorithm assumes that

variables are selected according to a pseudo-tree.

If the setX’ is empty, then the result is trivially computed
(line 1). Else AOBB, selects a variabl&; (i.e. expands the
OR nodeX;) and iterates over its values (line 5) to compute
the OR valuev(X;). The algorithm attempts to retrieve the
results cached at the AND nodes (line 7). If a valid cache en-
try v is found for the current AND nodgX;, z;) then the OR
valuev(X;) is updated (line 11) and the search continues
with the next value inX;’s domain. Otherwise, the problem
is decomposed into a set @fndependent subproblems, one
for each childX; of X; in the pseudo-tree. Procedudd
computes the static heuristic functib(n) for every node in
the search tree.

function: AOBB,(st, X, D, P)
1 if X = 0thenreturnQ;
2 else
X, < Sel ect Var (X);
v(X;) « 0;
foreach z; € D; do
st — stU(X;,m:);
v+ ReadCache(X;,z;) ;
if v # NULL then
tmp < v- | abel (X;,x;);
if =Fi ndCut (X;,z;,in,out;tmp) then
v(X;) — mazx(v(X;), tmp);
continue;
end
h(X7,”E7) — UB(X,D,P);
foreach k = 1..q do
h(Xy) < UB(Xk, Dy, Pr) ;
Updat eCont ext (out, X, h(X%)) ;
end
if =Fi ndCut (X;,z;,in,out,h(X;,x;)) then
U(XL,JZL) — 1;
foreach k = 1..¢q do
val «—AOBBy(st’,X),Dk,Pr) ;
(X5, x5) — v(X5, x5) - val,;
end
WiteCache(X;v(X;,x:));
U(Xi,aii) — U(Xl,xl)l abel (Xl,il’l))
Updat eCont ext (in, v(X;, z;))
v(X;) — maz(v(Xi), v(Xi, i));
end

w

=
O © o ~N o g b

11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30 end

31 return v(X;);
32 end

Figure 3: Graph AND/OR Branch-and-Bound.

When expanding the AND nodgX;;, z;), AOBB, succes-
sively updates thdynamic heuristic functiorfy, (m) for ev-
ery ancestor node: along the active path and terminates
the current search path if, for some, f;,(m) < 1b(m).
Else, the independent subproblems are sequentially solved
(line 21) and the solutions are accumulated by the AND
valuev(X;, z;) (line 23). After trying all feasible values of
variable X;, the most probable solution to the subproblem
rooted byX; remains inv(X;), which is returned (line 31).

TheMini-Bucket Heuristics

In this section we describe briefly a general scheme for gen-
erating static heuristic estimatés$n), based on the Mini-
Bucket approximation. The scheme is parameterized by the
Mini-Bucketi-bound, which allows for a controllable trade-
off between heuristic strength and its overhead.

Mini-Bucket Eliminatior(MBE) (Dechter & Rish 2003) is
an approximation algorithm designed to avoid the high time
and space complexity @ucket EliminationBE) (Dechter
1999), by partitioning large buckets into smaller subsets,
called mini buckets each containing at most (called i-
bound) distinct variables. The mini-buckets are then pro-
cessed separately. The algorithm outputs not only a bound
on the optimal solution cost, but also the collection of aug-
mented buckets, which form the basis for the heuristics gen-

B(F): [P(FIA.C)]
B(D): [P(DIB,C)]
B(C): [P(CIA) [| N (A,C)], [°(B.C)]
B(E): [P(EIAB)]
B(B): [P(BIA) || AS(A,B), A°(B)]
B(A): [P(A) || AB(A), AS(A)]

(b)

Figure 4: Schematic execution of MBE(2).

erated. The complexity is time and spagé&xzp(i)).

In the past, (Kask & Dechter 2001) showed that the inter-
mediate functions generated by the Mini-Bucket algorithm
MBE(:) can be used to compute a heuristic function, that

ing the context. Specifically, lets assume that the context o
Xy, is context(Xy) = {Xy, ..., X} and|context(X)| <
j. A cache table entry corresponds to a particular instan-
tiation {z;,...,z;} of the variables incontext(X;) and
records the most probable solution to the subprobtem.
However, some tables might never get cache hits. We call
thesedead-caches In the AND/OR search graph, dead-
caches appear at nodes that have only one incoming arc.
AOBB+C(j) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de-
termined by inspecting the pseudo-tree. Namely, if the con-
text of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a
dead-cache. For example, noffein the AND/OR search
graph from Figure 2(c) is a dead-cache because its context
includes the context of its paredtin the pseudo-tree.

overestimates the most probable extension of the current Adaptive Caching

partial assignment in a regular OR search tree. More re-
cently, (Marinescu & Dechter 2005) extended the idea to
AND/OR search spaces as well.

Assume that a belief networl3 = (X, D,P) with
pseudo-tred’ is being solved byAOBB search, where the
active path ends with some OR nodle. Consider also the
augmentedbucket structur¢ B(X,), ..., B(X,,)} of 5, con-
structed along the ordering resulted from a depth-firsetrav
sal of T'. For each possible value assignméfjt= x;, the
static mini-bucket heuristic estimatéz ;) of the most prob-
able solution rooted byX; can be computed as the prod-
uct of the original conditional probability tables in butke
B(X;) and the intermediate functiong that were gener-
ated in bucket®3(X},) and reside in buckd® (X ;) or below,
whereXj, is a descendant of ; in 7" (more details in (Kask
& Dechter 2001; Marinescu & Dechter 2005)).

Example 2 Figure 4(b) shows the augmented bucket struc-
ture generated by MBE£2) for the pseudo-tree displayed in
Figure 4(a), along the orderingA, B, E, C, D, F); square
brackets denote the choice of partitioning. Assume that
during search, the active path of the current partial so-
lution subtree is(A = a,B = b) and the tip node is
the OR node”. The static mini-bucket heuristic estimate
h(C = ¢) = P(c|a) - X' (a,c) - AP (b, ¢).

Caching Schemes

In this section we present two caching schemes that can
adapt to the current memory limitations. They are based on
contextswhich are pre-computed from the pseudo-tree and
use a parameter calledche boundor j-bound) to control
the amount of memory used for storing unifiable nodes.

Naive Caching

The first scheme, calledaive cachingand denoted by
AOBB+C(j), stores nodes at the variables whose context size
is smaller than or equal to the cache boyndt is easy to
see that whern equals the induced width of the pseudo-tree
the algorithm explores the context-minimal AND/OR graph.
A straightforward way of implementing the caching
scheme is to have@ache tabldor each variableX,, record-

The second scheme, calladaptive cachingind denoted by
AOBB+AC(j), is inspired by the AND/OR cutset condition-
ing scheme and was first explored in (Mateescu & Dechter
2005). It extends the naive scheme by allowing caching even
at nodes with contexts larger than the given cache bound,
based oradjusted contexts

We will illustrate the idea with an example. Con-
sider the nodeX} with context(Xyx) = {Xi, ..., Xk}
where|context(Xy)| > j. During search, when variables
{Xi, ..., X)_;} are assigned, they can be viewed as part of a
w-cutsetPearl 1988). Ther-cutset method consists of enu-
merating all the possible instantiations of a subset of-vari
ables (i.e. cutset), and for each one solving the remaining
easier subproblem withim-bounded space restrictions.

Therefore, once variabl€sY;, ..., X;_;} are instantiated,
the problem rooted ak_;,; can be solved as a simpli-
fied subproblem from the cutset method. In the subproblem,
conditioned on the value$z;, ..., x,—;}, context(Xy) is
{Xk—j+1,..., Xk} (we call this theadjusted contextf X7),
so it can be stored within thgbounded space restrictions.
However, wherAOBB+AC(j) retracts taX,_; or above, all
the nodes cached at variabig, need to be discarded.

This caching scheme requires only a linear increase in
additional memory, compared tAOBB+C(j), but it has
the potential of exponential time savings. Specifically,
for solving the subproblem rooted h¥;, AOBB+AC(j)
requiresO(exp(m)) time andO(exp(j)) space, whereas
ACBB+C(j) need(exp(hy)) time and linear space, where
hy is the depth of the subtree rooted’s} in the pseudo-
tree,m = |context(X}y)| andm < hy.

Additional dead-caches in the adaptive scheme can also
be identified by inspecting the pseudo-tree. Consider the
nodeX from the previous example and letc(Xy) be the
ancestors ofX, in the pseudo-tree betwee¥y, and X,_;,
including Xy If anc(X};) contains only the variables in the
adjusted context ok, then X, is a dead-cache.

Preliminary Experiments

In this section we evaluate empirically the performance of
the AND/OR Branch-and-Bound graph search algorithm on

ped| (W% h) | VEC | SUPERLINK]| (,)) AOMB(j) AOMB+C(i,)) AOMB+AC(I,])
time nodes| time nodes| time nodes
1 | (15,61)| 24.62 131.3| (10, 10) | 0.609 23,787] 0.249 4,723[0.218 4,191
20 | (24,69) 1,304 12.44 | (16, 16) | 480.2 19,118,600 182.0 5,072,650 192.0 5,072,400
23 | (23,38)| 1,144 6,809 | (16, 18) | 16.60 382,351/ 11.33 161,896 11.29 159,377
30 | (26,51) | 26,719 28,740 | (20, 22) | 61.57 925,958 38.85 164,701 38.81 162,061
38 | (17,59) | 15,860 62.18 | (12,12)| 1,212 35,360,600 104.4 1,206,780 124.7 1,156,14Q
50 | (18,58) | 85,637 716.6 | (10, 12)| 83.52 2,312,423 29.72 445,083 | 36.41 444,058

Table 1: Time in seconds and nodes visited to prove optiynfaitgenetic linkage analysis.

2 pedigree 1 1600 pedigree 20 140 pedigree 23

—e— AOMB+C(5,) —e— AOMB+C(12, j) —e— AOMB*C(12,)
0 AOMB*+AC(S,) O AOMB*AC(12, j) 130 0 AOMB+AC(12, j)

10 1

1400

1200

time (sec)
time (sec)
time (sec)

1000

6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20
j-bound j-bound j-bound
igre igrt I
1400 pedigree 30 1400 pedigree 38 25000 pedigree 50

—&— AOMB+C(186, j) —8— AOMB+C(12,)) —®— AOMB+C(8,)
1200 O-- AOMB+AC(18, j) 1200 O AOMB+AC(12, j) O~ AOMB+AC(8, j)
20000

1000
1000

15000

time (sec)
g
time (sec)

time (sec)

10000

5000

0 5 15 20 25 0 2 10 12 14 0 2 4

10 6 8 6
J-bound j-bound j-bound

Figure 5: Detailed time results in seconds comparing theenas. adaptive caching for genetic linkage analysis.

the task of finding the most likely haplotype configuration 6 hard linkage analysis networksFor comparison, we in-
of a general pedigree. All our experiments were done on a clude results obtained witiEC and SUPERLINK. SUPER
2.4GHz Pentium IV with 2GB of RAM. LINK is currently the most efficient solver for genetic link-

. age analysis, is dedicated to this domain, uses a comhmnatio
We consider two classes of AND/OR Branch-and-Bound g Y

, : . .~ of variable elimination and conditioning, and takes advan-
graph search algorithms guided by the pre-compiled mini- 50 of the determinism in the networkec is our imple-
b“Ck?t heuristics and using either thaive or a,d.ap“"e mentation of the elimination/conditioning hybrid and ig no
caching schemes. They are denotedAyvB+C(i,j) and sensitive to determinism
AOVB+AC(i,j), respectively. The parameteisand j de- OVB Ol FACH
note the mini-bucket-bound (which controls the accuracy We observe thad i.j) and AQVB+AU.j) are the

I best performing algorithms in this domain. The time savings
of the heu”St'.C) and the_ ca_che bo_uqd. The pseydo-t_rees Werecausgd by botf? nagi]ve and adaptive caching schemes aregsig-
generated using the min-fill heuristic, as described in (Mar hificant and in some cases the differences add up to several
nescu & Dechter 2005). orders of magnitude over botec and SUPERLINK (e.g.

We report the average effort as CPU time (in seconds) Ped- 23, ped-50). Figure 6 provides an alternative view
and number of nodes visited, required for proving optimal- comparing the two caching schemes, in terms of CPU time,
ity of the solution, the induced width (w*) and depth of the for a smalleri-bound of the mini-bucket heuristic. We notice
pseudo-tree (h) obtained for the test instances. The best pe that adaptive caching improves significantly over the naive
formance points are highlighted. For comparison, we also scheme especially for relatively smahbounds. This may

report results obtained with the tree version of the albori be important because smatbounds mean restricted space.
denoted byAOVB(i). The latter was shown to outperform Atlarge j-bounds the two schemes are identical.
significantly the OR Branch-and-Bound versi®B{/B) in In summary, the effect of caching (either naive or adap-
various domains (Marinescu & Dechter 2005). tive) is more prominent for relatively weak guiding heuris-

Table 1 displays a summary of the results obtained for Yhttp://bioinfo.cs.technion.ac.il/superlink/

pedigree 1

pedigree 20

pedigree 23

—e— AOMB+C(8, j)
0 AOMB+AC(6,])

nodes
nodes

—e— AOMB+C(12, j)
©-- AOMB*AC(12,])

—e— AOMB+C(12,)
0~ AOMB+AC(12, j)

nodes

0 2 4 6 8
j-bound j-bound

pedigree 30

10

pedigree 38

16 18 o 2 4 6 8 10 18 20
J-bound

12 14

pedigree 50

—®— AOMB+C(12})
O AOMB+AC(12,))

nodes
nodes

—e— AOMB+C(16,)
0 AOMB+AC(16, j)

—e— AOMB*C(8,)
O AOMB*AC(8,)

nodes
e

0 5 10 15 20 25 0 2 4 6
J-bound j-bound

6
J-bound

Figure 6: Detailed number of nodes visited comparing theees. adaptive caching for genetic linkage analysis.

tics estimates. The merit of adaptive caching over naive one
is evident when thg-bound is much smaller than the in-
duced width and there is a relatively small number of dead-
caches. This translates sometimes into impressive time sav
ings for the Branch-and-Bound algorithms.

Conclusion

In this paper we extended the AND/OR Branch-and-Bound
algorithm to traversing an AND/OR search graph rather than
an AND/OR search tree by equipping it with an efficient
caching mechanism. We investigated two flexible context-
based caching schemes that can adapt to the current memory
restrictions. The efficiency of the new AND/OR Branch-
and-Bound graph search algorithms is demonstrated empir-
ically on several challenging benchmarks from the field of
genetic linkage analysis.

Related Work: AOBB graph search is related to the Branch-
and-Bound method proposed by (Kanal & Kumar 1988)
for acyclic AND/OR graphs and game trees, as well as
the pseudo-tree search algorithm proposed in (Larrosa,
Meseguer, & Sanchez 2002). BTD developed in (Jegou &
Terrioux 2004) can also be interpreted as an AND/OR graph
search algorithm with a caching mechanism based on the
separators of the guiding tree-decomposition.

References
Bacchus, F.; Dalmao, S.; and Pittasi, T. 2003. Value elim-
ination: Bayesian inference via backtracking seardh.
Uncertainty in Artificial Intelligence (UAI'O320-28.
Darwiche, A. 2001. Recursive conditioningArtificial
Intelligencel26(1-2):5-41.

Dechter, R., and Mateescu, R. 2006. And/or search spaces
for graphical modelsUCI-ICS Technical Repart

Dechter, R., and Rish, I. 2003. Mini-buckets: A general
scheme for approximating inferenc#gournal of ACM

Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoningArtificial Intelligence

Dechter, R. 2003Constraint ProcessingMIT Press.
Fishelson, M., and Geiger, D. 2002. Exact genetic linkage
computations for general pedigre@&oinformatics
Fishelson, M.; Dovgolevsky, N.; and Geiger, D. 2005.
Maximum likelihood haplotyping for general pedigrees.
Human Heredity

Freuder, E., and Quinn, M. 1985. Taking advantage of
stable sets of variables in csga.|IJCAI'85 1076—-1078.
Jegou, P., and Terrioux, C. 2004. Decomposition and good
recording for solving max-cspsn ECAI'04 196-200.

Kanal, L., and Kumar, V. 19885Search in artificial intelli-
gence.Springer-Verlag.

Kask, K., and Dechter, R. 2001. A general scheme for au-
tomatic generation of search heuristics from specification
dependenciedArtificial Intelligencel29:91-131.

Larrosa, J.; Meseguer, P.; and Sanchez, M. 2002. Pseudo-
tree search with soft constrainte. ECAI'02 131-135.
Marinescu, R., and Dechter, R. 2005. And/or branch-and-
bound for graphical modeldn IJCAI'05 224—-229.

Mateescu, R., and Dechter, R. 2005. And/or cutset condi-
tioning. In IJCAI'05 230-235.

Ott, J. 1999. Analysis of Human Genetic Linkagédhe
Johns Hopkins University Press.

Pearl, J. 1988Probabilistic Reasoning in Intelligent Sys-
tems.Morgan-Kaufmann.

