AND/OR Search Spaces for Graphical Models

Rina Dechter and Robert Mateescu

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425

Abstract

The paper introduces an AND/OR search space perspective fdnigahmodels that in-
clude probabilistic networks (directed or undirected) and constraintankeswin contrast
to the traditional (OR) search space view, the AND/OR search tree dispdays of the
independencies present in the graphical model explicitly and may someticheserthe
search space exponentially. Indeed, most algorithmic advances itndeered constraint
processing and probabilistic inference can be viewed as searchinRfOR search tree
or graph. Familiar parameters such as the depth of a spanning tree, treamddathwidth
are shown to play a key role in characterizing the effect of AND/OR $eg@phs vs. the
traditional OR search graphs. We compare memory intensive AND/OR gegoich with
inference methods, and place various existing algorithms within the AND/QBlssjgace.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks

1 Introduction

Bayesian networks, constraint networks, Markov randomdialtd influence dia-
grams, commonly referred to as graphical models, are ajllages for knowledge
representation that use graphs to capture conditionapamencies between vari-
ables. These independencies allow both the concise repatisa of knowledge
and the use of efficient graph-based algorithms for querggssing. Algorithms
for processing graphical models fall into two general typeference-based and
search-based. Inference-based algorithex, (Variable Elimination, Tree Cluster-
ing) are better at exploiting the independencies captuyetthd underlying graph-
ical model. They provide a superior worst case time guaearde they are time

Email addressesdecht er @ cs. uci . edu (Rina Dechter),
mat eescu@ cs. uci . edu (Robert Mateescu).

Preprint submitted to Elsevier Science 7 November 2006

exponential in the treewidth of the graph. Unfortunatefy anethod that is time-
exponential in the treewidth is also space exponentialerttdewidth or separator
width and, therefore, not practical for models with largeetwidth.

Search-based algorithms.g, depth-first branch-and-bound, best-first search) tra-
verse the model’'s search space where each path represemtisah qr full solu-
tion. The linear structure of search spaces does not rétaimtdependencies repre-
sented in the underlying graphical models and, therefeach-based algorithms
may not be nearly as effective as inference-based algasithmsing this informa-
tion. On the other hand, the space requirements of seagddl@zdgorithms may be
much less severe than those of inference-based algorithdihay can accommo-
date a wide spectrum of space-bounded algorithms, frorafiggace to treewidth
bounded space. In addition, search methods require onlynphcit, generative,
specification of the functional relationship (given in a gedural or functional
form) while inference schemes often rely on an explicit tabtepresentation over
the (discrete) variables. For these reasons, search-laégadthms are the only
choice available for models with large treewidth and witlpiitit representation.

In this paper we propose to use the well-known idea of an AND#&Barch space,
originally developed for heuristic search [1], to genessarch procedures that take
advantage of information encoded in the graphical modeldgveonstrate how the
independencies captured by the graphical model may be osgeltt AND/OR
search trees that are exponentially smaller than the stdws@arch tree (that can
be thought of as an OR tree). Specifically, we show that the gizhe AND/OR
search tree is bounded exponentially by the depth of a spgmseudo tree over the
graphical model. Subsequently, we move from AND/OR seaesstto AND/OR
search graphs. Algorithms that explore the search gragivevcontrolled mem-
ory management that allows improving their time-perforoghy increasing their
use of memory. The transition from a search tree to a seamgphgn AND/OR
representations also yields significant savings compareket same transition in
the original OR space. In particular, we show that the sizB@minimal AND/OR
graph is bounded exponentially by the treewidth, while f& @aphs it is bounded
exponentially by the pathwidth.

Our idea of the AND/OR search space is inspired by searchnadgantroduced
sporadically in the past three decades for constraintfaatisn and more recently
for probabilistic inference and for optimization tasks.eSifically, it resembles
pseudo tree rearrangement [2,3], briefly introduced twades ago, which was
adapted subsequently for distributed constraint satisfa¢4,5] and more recently
in [6], and was also shown to be related to graph-based bagkng [7]. This work

was extended in [8] and more recently applied to optimizatasks [9]. Another
version that can be viewed as exploring the AND/OR graphgpnesented recently
for constraint satisfaction [10] and for optimization [1$]milar principles were in-
troduced recently for probabilistic inference (in alglnit Recursive Conditioning
[12] as well as in Value Elimination [13,14]) and currentlsopide the backbones

of the most advanced SAT solvers [15]. An important contidyuof this paper
is in showing that all these seemingly different ideas candst as simple traver-
sal of AND/OR search spaces. We will also elaborate on tlagiogiship between
this scheme and Variable Elimination [16]. We will also diss the relationship
with Ordered Binary Decision Diagrams (OBDD) [17], disjunetDecomposable
Negational Normal Forms (d-DNNF) and their extension tthamietic circuits for
Bayesian networks [18,19], as well as with the recent worR+-p3].

The structure of the paper is as follows. Section 2 contareBnpinary notations
and definitions. Section 3 describes graphical models.i@edt introduces the
AND/OR search tree that can be traversed by a linear spaoehsalgorithm. Sec-
tion 5 presents the AND/OR search graph that can be travessetemory inten-

sive search algorithms. Section 6 shows how to use the ANJ@Bhs to solve a
reasoning problem, and gives the AND/OR search algorithmedanting and be-
lief updating. Section 7 is dedicated to a detailed compar® AND/OR search
and other new algorithmic advances in graphical models dlsasecompilation

schemes. Finally, Section 8 provides concluding remarKghA proofs are given
in an appendix at the end.

2 Preliminaries

Notations A reasoning problem is defined in terms of a set of variablemga
values on finite domains and a set of functions defined ovesetiariables. We
denote variables or subsets of variables by uppercasesi@tg, X, Y, Z, S, R...)
and values of variables by lower case letterg(z, vy, 2, s). An assignmentX; =
x1,...,X, = x,) can be abbreviated as = ((X1,z1),..., (X,,z,)) Orz =
(x1,...,2,). FOr a subset of variables, Dy denotes the Cartesian product of
the domains of variables . xy and z[Y] are both used as the projection of
x = (xy,...,z,) over asubset’. We will also denote by” = y (or y for short) the
assignment of values to variables in Y from their respediivmains. We denote
functions by letters, g, h etc., and the scope (set of arguments) of the funcfion

by scope(f).

Definition 1 (functional operators) Given a functionh defined over a subset of
variables S, where X € S, functions(miny k), (maxy h), and (> x h) are de-
fined overU = S — {X} as follows: For everyU = u, and denoting by, z)
the extension of tuple by assignmentX = z, (miny h)(u) = min, h(u, x),
(maxy h)(u) = max, h(u,z), and (X x h)(u) = 3, h(u, z). Given a set of func-
tions h4, ..., hy defined over the subsets, . .., S, the product function]L;A;,
and summation functiory_; h;, are defined ovet/ = U;S;. For everyU = u,

(I;h5) (u) = Tk (us,;), and (3,) (u) = ;5 by(us;).

Definition 2 (graph concepts) A directed graplis a pairG = {V, E'}, whereV =

{X1,...,X,} is a set of vertices, and’ = {(X;, X;)|X;, X; € V}is the set
of edges (arcs). IfX;, X;) € E, we say thatX; points toX;. The degree of a
variable is the number of arcs incident to it. For each vat@aly;, pa(X;) or pa;,

is the set of variables pointing t&; in G, while the set of child vertices of;,
denotedch(X;), comprises the variables thaf; points to. The family o, F;,
includesX; and its parent variables. A directed graph is acyclic if ish@o directed
cycles. Arundirected grapis defined similarly to a directed graph, but there is no
directionality associated with the edges.

Definition 3 (induced width) An ordered graphis a pair (G, d) whereG is an
undirected graph, and = X, ..., X, is an ordering of the nodes. Thadth of

a nodeis the number of the node’s neighbors that precede it in tiderng. The
width of an ordering/, is the maximum width over all nodes. Tinduced width

of an ordered graphv*(d), is the width of the induced ordered graph obtained as
follows: nodes are processed from last to first; when nddes processed, all its
preceding neighbors are connected. Tinduced width of a graph, denoted by*,

is the minimal induced width over all its orderings.

Definition 4 (hypergraph) A hypergraphis a pair H = (X,S), whereS =
{S1,...,S,} is a set of subsets &f called hyperedges

Definition 5 (tree decomposition) A tree decompositioof a hypergraphH =
(X,S)isatreeT = (V,E) (V is the set of nodes, also called “clusters”, and
E is the set of edges) together with a labeling functiotmat associates with each
vertexv € V a sety(v) C X satisfying:
(1) For eachS; € S there exists a vertex € V' such thatS; C x(v);
(2) (running intersection propertypr eachX; € X, theseffv € V | X; € x(v)}
induces a connected subtreelaf

Definition 6 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of its largest cluster minusribg, |x(v)| — 1). Thetreewidth

of a hypergraph is the minimum width along all possible treeatepositions. The
pathwidth is the treewidth over the restricted class of chain decontioosi.

It is easy to see that given an induced graph, the set of magligaes (also called
clusters) provide a tree decomposition of the graph, nartieyclusters can be
connected in a tree structure that satisfies the runningsextéon property. It is
well known that the induced width of a graph is identical totreewidth [24]. For
various relationships between these and other graph peessee [25-27].

2.1 AND/OR Search Graphs

AND/OR search spacesAn AND/OR state space representation of a problem is
defined by a 4-tuplésS, O, S, so). S is a set of states which can be either OR or

AND states (the OR states represent alternative ways feingpthe problem while
the AND states often represent problem decomposition inbpoblems, all of
which need to be solved)? is a set of operators. An OR operator transforms an
OR state into another state, and an AND operator transfonm&ND state into

a set of states. There is a set of goal staffgsC S and a start node, € S.
Example problem domains modeled by AND/OR graphs are tagegul games,
parsing sentences and Tower of Hanoi [1].

The AND/OR state space model induces an explicit AND/ORdegiraph Each
state is a node and its child nodes are those obtained bycapldiAND or OR
operators. The search graph includestat node. The terminal nodes (having no
child nodes) are marked as Solved (S), or Unsolved (U).

A solution subtreeof an AND/OR search grap®i is a subtree which: (1) contains
the start nodey; (2) if n in the subtree is an OR node then it contains one of its
child nodes inG and if n is an AND node it contains all its children @; 3. all

its terminal nodes are “Solved” (S). AND/OR graphs can hagest associated
with each arc, and the cost of a solution subtree is a fun¢da) sum-cost) of the
arcs included in the solution subtree. In this case we maly aemlution subtree
with optimal (maximum or minimum) cost. Other tasks thatraeuate all solution
subtrees€.g, counting solutions) can also be defined.

3 Graphical Models

Graphical models include constraint networks defined bagtiats of allowed tu-
ples, (directed or undirected) probabilistic networkdirel by conditional proba-
bility tables over subsets of variables, cost networks @efioy costs functions and
influence diagrams which include both probabilistic fuass and cost functions
(i.e. utilities) [28]. Each graphical model comes with its tygliqueries, such as
finding a solution, or an optimal one (over constraint neksyrfinding the most
probable assignment or updating the posterior probadslgiven evidence, posed
over probabilistic networks, or finding optimal solutior tost networks. The
task for influence diagrams is to choose a sequence of adhahsnaximizes the
expected utility. Markov random fields are the undirectednterparts of proba-
bilistic networks. They are defined by a collection of prabstic functions called
potentials, over arbitrary subsets of variables. The fraonk presented in this pa-
per is applicable across all graphical models that haveetswariables, however
we will draw most of our examples from constraint networkd directed proba-
bilistic networks.

In general, a graphical model is defined by a collection otfiams F', over a set
of variablesX, conveying probabilistic, deterministic or preferentigormation,
whose structure is captured by a graph.

Definition 7 (graphical models) A graphical modelR is a 4-tuple, R =

(X,D,F,Q®), where:

(1) X ={Xy,...,X,} isasetof variables;

(2) D=A{D,,...,D,} is the set of their respective finite domains of values;

3) F ={fi,..., f-} is asetof real-valued functions each defined over a subset
of variablesS; C X, called its scope, and sometimes denoteddaye(f;).

4) ®, fi € {IL fi,» > fi, ™ f:} is a combination operatdr.

The graphical model represents the combination of all itefions:Q;_, f;.

Next, we introduce the notion afmiversalgraphical model which is defined by a
single function.

Definition 8 (universal equivalent graphical model) Given a graphical model
R = (X, D, F,®) the universal equivalent model & is u(R) = (X,D,F =
{®::1 fz}a ®)

Two graphical models arequivalent if they represent the same set of solutions.
Namely, if they have the same universal model.

Definition 9 (cost of a full and a partial assignment) Given a graphical model
R, the cost of a full assignment = (zi,...,z,) is defined byc(z) =
®er f(x[scope(f)]). Given a subset of variables C X, the cost of a partial
assignmeny is the combination of all the functions whose scopes are dedun
Y (Fy) evaluated at the assigned values. Namély) = ® ¢, f(y[scope(f)]).

We can restrict a graphical model by conditioning on a pkagaignment.

Definition 10 (conditioned graphical model) Given a graphical modelR =
(X,D, F,®) and given a partial assignmenf = y, Y C X, the conditional
graphical model isk|, = (X, D|,, F|,, ®), whereD|, = {D; € D, X; ¢ Y} and
Fly ={fly=y, f € F,andscope(f) € Y'}.

Consistency.For most graphical models, the functions range has a speaiaé
“0” that is absorbing relative to the combination operatce.g, multiplication).
Combining anything with “0” yields a “0”. The “0” value express the notion of
inconsistent assignments. It is a primary concept in caimgtnetworks but can also
be defined relative to other graphical models that have al&hent.

Definition 11 (consistent partial assignment, solution)Given a graphical model
having a “0” element, a partial assignment is consistentsf ¢ost is non-zero. A
solution is a consistent assignment to all the variables.

Flat functions. Each function in a graphical model having a “0” element ezpes

I The combination operator can also be defined axiomatically [29].

implicitly a constraint. Thdlat constraint of functiony; is a constraini?; over its
scope that includes all and only the consistent tuples.ithgaper, when we talk
about a constraint network, we refer also to the flat congtraetwork that can
be extracted from the general graphical model. When all thegsignments are
consistent we say that the graphical modetrectly positive

Unless otherwise noted, we assume that functions are esqur@sa tabular explicit
form, having an entry for every combination of values frora ttomains of their
variables. Therefore, the specification of such functisexponential in their scope
size (the base of the exponent is the maximum domain sizegtiBes, or clauses,
can be expressed as functions as well, associating a vali@® of “1” for each
tuple, depending on whether or not the tuple is in the ratafoo satisfies a clause).
The combination operator takes a set of functions and gerseenew function
whose scope is the union of the input functions scopes.

Definition 12 (primal graph) Theprimal graphof a graphical model is an undi-
rected graph that has variables as its vertices and an edgeects any two vari-
ables that appear in the scope of the same function.

Reasoning problems, queriesThere are various queries/tasks that can be posed
over graphical models. We refer to all @ssoning problemdn general, a reason-
ing problem is a function from the graphical model to someotetiements, most
commonly, the real numbers. We need one more functionabbpemarginaliza-

tion, to express most of the common queries.

Definition 13 (reasoning problem) A reasoning problermover a graphical model
is defined by a marginalization operator and a set of sub#atstherefore a triplet,

P = (R,y,{%,...,Z}), whereR = (X, D, F,®) is a graphical model and
Z ={7Z,..., 7} is aset of subsets of variables ®f If S is the scope of function

fandY C X Yy fe{dV/, g”f’;f, 1;[fs Sgyf}, is a marginalization operator.
P can be viewed as a vector function over the scapgs.., Z;. The reasoning

problem is to comput®, ., (R):

PZh---Zt(R) = <U’Z1 ® fia) 7‘U’Zt ® fz> .
=1 =1

We will focus primarily on reasoning problems defined By= (). The marginal-
ization operator is sometimes called alimination operator because it removes
some arguments from the input function’s scopes. Spedifigal f is defined on
Y. It therefore removes variablés— Y from f’s scope,S. Note that herg] is the
relational projection operator and unlike the rest of thegimalization operators
the convention is that is defined by the scope of variablasatteanot eliminated.

We next elaborate on the two popular graphical models oftcaing networks and
belief networks which will be the primary focus of this paper

3.1 Constraint Networks

Constraint Satisfactioms a framework for formulating real world problems, such
as scheduling and design, planning and diagnosis, and marg/as a set of con-
straints between variables. For example, one approachrufating a scheduling
problem as a constraint satisfaction problem (CSP) is tae@aariable for each
resource and time slice. Values of variables would be thiestésat need to be
scheduled. Assigning a task to a particular variable (spwading to a resource
at some time slice) means that this resource starts exgdimngiven task at the
specified time. Various physical constraints (such as tigaten job takes a certain
amount of time to execute, or that a task can be executed atomos) can be mod-
eled as constraints between variables. Ghestraint satisfaction tasis to find an
assignment of values to all the variables that does nottei@day constraints, or
else to conclude that the problem is inconsistent. Othéstaee finding all solu-
tions and counting the solutions.

Definition 14 (constraint network, constraint satisfaction problem) A con-
straint network (CN)is defined by a 4-tuple,X, D, C,X), where X is a set of
variablesX = {X;,...,X,}, associated with a set of discrete-valued domains,
D ={D,,...,D,}, and a set of constraints' = {C1, ..., C,}. Each constraint

C; is a pair (S;, R;), whereR; is a relation R; C Dg, defined on a subset of
variablesS; C X. The relation denotes all compatible tuples/af, allowed by the
constraint. The combination operatod, is join. The primal graph of a constraint
network is called aonstraint graphA solutionis an assignment of values to all
the variablesx = (zy,...,2,), z; € D;, such thatv C; € C, x5, € R;. The
constraint network represents its set of solutions(;.

Constraint satisfactions a reasoning probler® = (R,II,Z = (), where
R = (X,D,C,) is a constraint network, and the marginalization operator i
the projection operatofl. Namely, for constraint satisfactioi = (), and{}y is
ITx y.Sothetaskistofingy Q, f; = fofi which corresponds to enumerating
all solutions. When the combination operator is a product thwe cost-based rep-
resentation of the relations, and the marginalization aeeris logical summation
we get 1 if the constraint problem has a solution and “0” oth&®. Forcounting
the marginalization operator is summation ahe- () too.

An immediate extension of constraint networks eost networksvhere the set of
functions are real-valued cost functions, and the primas¥ ts optimization.

Definition 15 (cost network, combinatorial optimization) A cost networks de-
fined by a 4-tuple(X, D, C, 3°), whereX is a set of variablest = {X;,..., X,,},
associated with a set of discrete-valued domais= {D;,...,D,}, and a set
of cost function” = {C4,...,C,}. Each(; is a real-valued function defined
on a subset of variableS; C X. The combination operator, is. The reasoning

problem is to find a minimum or maximum cost solution which jgessed via the
marginalization operator of maximization or minimizati@nd Z = {.

A task such as MAX-CSP: finding a solution that satisfies makimaenber of con-

straints (when the problem is inconsistent), can be defigeckhting each relation
as a cost function that assigns “0” to consistent tuples ahdtherwise. Then the
combination operator is summation and the marginalizagperator is minimiza-
tion. Namely, the task is to finily ®; fi = miny >, f;.

3.2 Propositional Satisfiability

A special case of a CSP is tpeopositional satisfiability probler(SAT). A formula

¢ in conjunctive normal fornfCNF) is a conjunction otlausesy, ..., a; where

a clause is a disjunction diterals (propositions or their negations). For example,
a = (PV-QV-R)isaclause, wher®, () andR are propositions, anft, - and
=R are literals. The SAT problem requires deciding whethenargiCNF theory
has amode] i.e., a truth-assignment to its propositions that does not tectay
clause.

Propositional satisfiability (SAT) can be defined as a CSP,revipgopositions
corresponds to variables, domains &6 1}, and constraints are represented by
clauses, for example clauseA Vv B) is the relation (or function) over its proposi-
tional variables that allows all tuples ovet, B) except(A =1, B =0).

3.3 Belief Networks

Belief networkg$30] provide a formalism for reasoning about partial bedishder
conditions of uncertainty. They are defined by a directeclargraph over ver-
tices representing random variables of interesy,(the temperature of a device,
the gender of a patient, a feature of an object, the occugrehan event). The arcs
signify the existence of direct causal influences betwedetl variables quanti-
fied by conditional probabilities that are attached to edabkter of parents-child
vertices in the network.

Definition 16 (belief networks)A belief network (BN)is a graphical modeP =
(X, D, Pg,1T1), whereX = {X;,...,X,} is a set of variables over multi-valued
domainsD = {Dy,...,D,}. Given a directed acyclic grap¥ over X as nodes,
P; = {P;}, whereP, = {P(X;|pa(X;))} are conditional probability tables
(CPTs for short) associated with eachi, wherepa(X;) are the parents of; in
the acyclic graphG. A belief network represents a probability distribution pvé,
P(zy,...,2,) = [Ti2; P(xil7pacx,))- An evidence setis an instantiated subset of
variables.

When formulated as a graphical model, functiongFienote conditional proba-
bility tables and the scopes of these functions are deteuriny the directed acyclic
graphG: each functionf; ranges over variableX; and its parents irG. The com-
bination operator is®; = [I;. The primal graph of a belief network is called a
moral graph. It connects any two variables appearing in thesZPT.

Definition 17 (belief updating) Given a belief network and evidenegthe belief
updatingtask is to compute the posterior marginal probability ofiadte .X;, con-
ditioned on the evidence. Namely,

Bel(XZ = SL’Z) =« Z H P(xkae|xpak)7

{(z150yTim1,Tig 1,20)| E=e,X;=x;} k=1

wherea is a normalization constant. In this case, the marginal@atoperator is

The query of finding the probability of the evidence is deflmed = 0.

Definition 18 (most probable explanation) The most probable explanation
(MPE) task is to find a complete assignment which agrees with thereadand
which has the highest probability among all such assignméasely, to find an

assignmentz?, ..., x2) such that
n
P(ay,...,x5) = mats,,. ., H (2, €] Tpa,)-
k=1

As a reasoning problem, an MPE task is to find®, f; = maxy [; P;. Namely,
the marginalization operator isax andZ = {).

Markov networks are graphical models very similar to belief networks. Thion
difference is that the set of probabilistic functioRs called potentials, can be de-
fined over any subset of variables. An important reasonislg tar Markov net-
works is to find the partition function which is defined by thanginalization op-
erator of summation, whetg =).

4 AND/OR Search Trees for Graphical Models

We will next present the AND/OR search space for a gengaphical model
starting with an example of a constraint network.

Example 19 Consider the simple tree graphical modek(, the primal graph is
a tree) in Figure 1(a), over domaingl, 2, 3}, which represents a graph-coloring
problem. Namely, each node should be assigned a value sucadjagent nodes

10

AND

° e OR
//,\\ //L\\
O &® O W. AND
(@) A constraint (b) OR search tree (c) AND/OR search tree with one of
tree its solution subtrees

Fig. 1. OR vs. AND/OR search trees; note the connector for AND arcs

have different values. Once variahleis assigned the value 1, the search space it
roots can be decomposed into two independent subprobleethatis rooted at”

and one that is rooted at Z, both of which need to be solved emt#gntly. Indeed,
given X = 1, the two search subspaces do not interact. The same decdioposi
can be associated with the other assignmentX{0 X, 2) and (X, 3). Applying
the decomposition along the tree (in Figure 1(a) yields thNbDAOR search tree in
Figure 1(c). In the AND/OR space a full assignment to all thealdes is not a
path but a subtree. For comparison, the traditio@R search tree is depicted in
Figure 1(b). Clearly, the size of the AND/OR search space idlenthan that of
the regular OR space. The OR search space3has nodes while the AND/OR has
3-25 (compare 1(b) with 1(c)). If is the domain size, a balanced binary tree with
nodes has an OR search tree of gixg™). The AND/OR search tree, whose pseudo
tree has depthD(log, n), has sizeD((2k)°&:") = O(n - k'°&2") = O(n'tlos2k),
Whenk = 2, this become® (n?).

The AND/OR space is not restricted to tree graphical modeksnly has to be
guided by aackbondree which spans the original primal graph of the graphical
model in a particular way. We will define the AND/OR searchcspeelative to a
depth-first search tree (DFS tree) of the primal graph firsd, \&ill generalize to a
broader class of backbone spanning trees subsequentlyofgleteness sake we
defineDFS spanning treenext.

Definition 20 (DFS spanning tree) Given a DFS traversal ordering of an undi-
rected graphG = (V, E), d = X3,..., X, theDFS spanning treg of GG is de-
fined as the tree rooted at the first nodg,, which includes only the traversed arcs
of G. Namely,7 = (V, E'), whereE’ = {(X;, X;) | X; traversed from X;}.

We are now ready to define the notion of AND/OR search tree fgraphical
model.

Definition 21 (AND/OR search tree) Given a graphical model R =

11

(X,D, F,Q®), its primal graphG and a backbone DFS treg of G, the as-
sociated AND/OR search tree, denotegl), has alternating levels of AND and
OR nodes. The OR nodes are labelédand correspond to the variables. The AND
nodes are labeledX;, x;) (or simplyz;) and correspond to the value assignments
in the domains of the variables. The structure of the AND/CdRcbetree is based
on the underlying backbone trée. The root of the AND/OR search tree is an OR
node labeled by the root gf. A path from the root of the search trée-(R) to a
noden is denoted byr,,. If n is labeledX; or z; the path will be denoted, (X;) or
mn(z;), respectively. The assignment sequence alongpattienotedisgn(r,,) is
the set of value assignments associated with the sequend&éonddes along,,:

asgn(wn(X,)) = {(Xl, I1>, <X2, IQ), PP (Xi—la IZ'_1>},
asgn(m,(z;)) = {(X1, z1), (Xo, za), .. ., (Xi,) }.

The set of variables associated with OR nodes alongpatbdenoted byar(r,):
var(m, (X3)) = { X1, ..., Xi_1 }, var(m,(x;)) = {X4, ..., X;} . The exact parent-
child relationship between nodes in the search space areetkéia follows:

(1) An OR nodep, labeled byX; has a child AND nodey, labeled(X;, x;) iff
(X;, x;) is consistent with the assignmentgn(r,). Consistency is defined
relative to the flat constraints.

(2) An AND noden, labeled{X;, z;) has a child OR node labeledY’, iff Y is
child of X in the backbone treg . Each OR arc, emanating from an OR to
an AND node is associated with a weight to be defined shortly (séaifion
26).

Clearly, if a noden is labeledX; (OR node) or:; (AND node)par(m,) is the set of
variables mentioned on the path from the root¥pin the backbone tree, denoted
by pathr(X;)?.

A solution subtree is defined in the usual way:

Definition 22 (solution subtree) A solution subtreeof an AND/OR search tree
contains the root node. For every OR nodes it contains ontsahild nodes and
for each of its AND nodes it contains all its child nodes, arldtalleaf nodes are
consistent.

Example 23 In the example of Figure 1(a)] is the DFS tree which is the tree
rooted at.X', and accordingly the root OR node of the AND/OR tree in 1(cYis
Its child nodes are labeledX, 1), (X, 2), (X, 3) (only the values are noted in the
Figure), which are AND nodes. From each of these AND nodes emanwatOR
nodes,Y and Z, since these are the child nodes.®fin the DFS tree of (1(a)).
The descendants &f along the path from the root{X, 1)), are (Y, 2) and (Y, 3)
only, sincgY, 1) is inconsistent witf X, 1). In the next level, from each nodg, y)

2 When the AND/OR tree is extended to dynamic variable orderings the setiables
along different paths may vary.

12

emanate OR nodes labelg&dand R and from(Z, z) emanate nodes labelddand
M as dictated by the DFS tree. In 1(c) a solution tree is higftkgl.

4.1 Weights of OR-AND Arcs

The arcs in AND/OR trees are associated with weightbat are defined based on
the graphical model’s functions and combination operdtoe simplest case is that
of constraint networks.

Definition 24 (Arc weight for constraint networks) Given an AND/OR tree
S7(R) of a constraint networkk, each terminal node is assumed to have a sin-
gle, dummy, outgoing arc. The outgoing arc of a terminal ANDenalways has
the weight “1” (namely it is consistent and thus solved). Againg arc of a ter-
minal OR node has weight “0”, (there is no consistent valueigaggsents). The
weight of any internal OR to AND arc is “1”. The arcs from AND to ORdes
have no weight.

We next define arc weights for any graphical model using th®nof buckets of
functions.

Definition 25 (buckets relative to a backbone tree)Given a graphical model
R = (X,D,F,®) and a backbone treg, the bucketof X; relative to 7, de-
notedBr(Xj;), is the set of functions whose scopes conféjmnd are included in
pathr(X;), which is the set of variables from the rootxg in 7. Namely,

Br(X;) = {f € FIX; € scope(f), scope(f) C pathr(Xy)}.

Definition 26 (OR-to-AND weights) Given an AND/OR tre€+(R), of a graph-
ical modelR, the weightw, m)(X;, ;) of arc (n,m) where X; labelsn and z;
labels m, is the combinationof all the functions inB(X;) assigned by values

along,,. Formally, w, m) (X, z;) = Qrenr(xy) f(asgn(my,)[scope(f)]).

Definition 27 (weight of a solution subtree)Given a weighted AND/OR tree
S7(R), of a graphical modeR, and given a solution subtreénaving OR-to-AND
set of arcsurcs(t), the weight of is defined byw (1) = ®.cqresr) w(e)-

Example 28 Figure 2 shows a belief network, a DFS tree that drives its weight
AND/OR search tree, and a portion of the AND/OR search tree Witlappropriate
weights on the arcs expressed symbolically. In this case ubkelb of £ contains
the functionP(E|A, B), and the bucket af' contains two functions?(C|A) and
P(D|B,C). Note thatP(D|B, C) belongs neither to the bucket &f nor to the
bucket ofD, but it is contained in the bucket 6f, which is the last variable in its
scope to be instantiated in a path from the root of the trees®¢eindeed that the

13

P(D=0[B=0,C=0)x /\ P(D=0[B=0,C=1)x P(D=1|B=0,C=0)%/\ P(D=1|B=0,C=1)x P(D=0|B=1,C=0)y\ P(D=0|B=1,C=1)x P(D=1|B=1,C=0)5/\ P(D=1[B=1,C=1)x
P(C=0A=0) =1]A= P(C=0]A=0) P(C=1]A=0) P(C=0]A=0) P(C=1]A=0) P(C=0/A=0) P(C=1/A=0)

R(B=0,C=0,0=0)x /\ R(B=0,C=1,D=0)x R(B=0,C=0,D=1)%/\ R(B=0,C=1,D=1)x R(B=1,C=0,0=0)¥/\ R(B=1,C=1D=0)x R(B=1,C=0,0=1)%/\ R(B=1,C=1,D=1)x
R(A=0,C=0) R(A=0,C=1) R(A=0,C=0) R(A=0,C=1) R(A=0,C=0) =0,C= R(A=0,C=0) R(A=0,C=1)

Fig. 3. Arc weights for constraint networks

weights on the arcs from the OR nodleand any of its AND value assignments
include only the instantiated functiaR(E|A, B), while the weights on the arcs
connectingC' to its AND child nodes are the products of the two functionsan it
bucket instantiated appropriately. Figure 3 shows a constraetwork with four
relations, a backbone DFS tree and a portion of the AND/OR cdesree with
weights on the arcs. Note that the complex weights would redu@ég@and “1"s

in this case. However, since we use the convention that arosaapp the search
tree only if they represent a consistent extension of a @astlution, we will not
see arcs having zero weights.

4.2 Properties of AND/OR Search Tree

Any DFS tre€T of a graphG' has the property that the arcs@fwhich are not irf/”
are backarcs. Namely, they connect a node and one of itstarcesthe backbone
tree. This ensures that each scopé’ofill be fully assigned on some path ih, a
property that is essential for the validity of the AND/OR detree.

Theorem 29 (correctness)Given a graphical modeR having a primal graph
and a DFS spanning treg of G, its weighted AND/OR search tré&g-(R) is sound
and complete, namely: 1) there is a one-to-one correspaelbrtween solution
subtrees o6 (R) and solutions ofR; 2) the weight of any solution tree equals the
cost of the full solution it denotes; namelyy ifs a solution tree o57-(R) which
denotes a solutiom = (21, ...x,) thenc(z) = w(t).

14

Table 1
OR vs. AND/OR search size, 20 nodes

OR space AND/OR space
treewidth height| time (sec.) nodes | time (sec.) AND nodes OR nodes
5 10 3.154 2,097,151 0.03 10,494 5,247
4 9 3.135 2,097,151 0.01 5,102 2,551
5 10 3.124 2,097,151 0.03 8,926 4,463
5 10 3.125 2,097,151 0.02 7,806 3,903
6 9 3.124 2,097,151 0.02 6,318 3,159

The virtue of an AND/OR search tree representation is tlsaside may be far
smaller than the traditional OR search tree. The size of ab/&NR search tree
depends on the depth of its backbone DFS fre@herefore, DFS trees of smaller
depth should be preferred to drive the AND/OR sedreb. An AND/OR search
tree becomes an OR search tree when its DFS tree is a chain.

Theorem 30 (size bounds of AND/OR search treefsiven a graphical modeR,
with domains size bounded kyand a DFS spanning treg having depthn and
[leaves, the size of its AND/OR search tgdR) is O(l - k™) (and therefore also
O(nk™) and O((bk)™) whenb bounds the branching degree ®fand n bounds
the number of nodes). In contrast the size of its OR searetei@ng any ordering
is O(k™). The above bounds are tight and realizable for fully coesisgraphical
models. Namely, one whose all full assignments are consistent

Table 1 demonstrates the size saving of AND/OR vs. OR segates for 5 ran-
dom networks having 20 bivalued variables, 18 CPTs with 2rganger child and 2
root nodes, when all the assignments are consistent (reereimdt this is the case
when the probability distribution is strictly positive)h& size of the OR space is
the full binary tree of depth 20. The size of the full AND/ORasp varies based
on the backbone DFS tree. We can give a better analytic boutitecsearch space
size by spelling out the depth; of each leaf nodé,; in 7.

Proposition 31 Given a graphical modeR, with domains size bounded byand

a backbone spanning trég havingL = {L, ..., L;} leaves, where depth of leaf
L; is m;, then the size of its full AND/OR search triég(R) is O(Xh_, k™). Al-
ternatively, we can use the exact domain sizes for each Jariablding an even
more accurate expressi@n(>,, 1, [ix; x;epathr (L)} [P(X5)])-

15

1
(b) 4
6 7 2 4 3
3 2 7 5
1
1
(@ (©) (d)

Fig. 4. (a) A graph; (b) a DFS treg ; (c) a pseudo treé;; (d) a chain pseudo treg
4.3 From DFS Trees to Pseudo Trees

There is a larger class of trees that can be used as backlwon®SD/OR search
trees, calleghbseudo treef?]. They have the above mentioned back-arc property.

Definition 32 (pseudo tree, extended graph)Given an undirected graplé: =
(V,E), a directed rooted tred” = (V, E') defined on all its nodes is pseudo
treeif any arc ofG which is not included irt’ is a back-arc in7, namely it con-
nects a node iry” to an ancestor irf. The arcs inE’ may not all be included in
E. Given a pseudo treg of G, theextended grapbf G relative to7 is defined as
G" =(V,EUE).

Clearly, any DFS tree and any chain of a graph are pseudo trees.

Example 33 Consider the graph’ displayed in Figure 4(a). Orderingl; =
(1,2,3,4,7,5,6) is a DFS ordering of a DFS tre; having the smallest DFS
tree depth of 3 (Figure 4(b)).

The tre€T7; in Figure 4(c) is a pseudo tree and has a tree

depth of 2 only. The two tree-arcs (1,3) and (1,5) are natzinTree7; in Figure
4(d), is a chain. The extended grap$:, G’ and G are presented in Figure
4(b),(c),(d) when we ignore directionality and include thételd arcs.

It is easy to see that the weighted AND/OR search tree is vediheld when the
backbone trees is a pseudo tree. Namely, the propertiesuofleess and com-
pleteness hold and the size bounds are extendible.

Theorem 34 (properties of AND/OR search trees)Given a graphical modeR
and a backbone pseudo trge its weighted AND/OR search trég-(R) is sound
and complete, and its size @3(/ - k™) wherem is the depth of the pseudo tree,
bounds its number of leaves, ahdbounds the domain size.

Example 35 Figure 5 shows the AND/OR search trees along the pseudo Tiees
and7; from Figure 4. Here the domains of the variables &web, ¢} and the con-

16

/\ AN /AN /N N AN AN AN NN NN NN AN NN NN NN NN NN NN NN NN NN NN
lblcalblclalb]clalblclalblclalblclalblclalblc [alblclalblc]alblclalblclalb]cfalblc]alb]cfalblc]alblclalblclalblclalblc]albclalblc [albcfalb]clalblclalbclalblclalblclalblclalblclalblelalblclablc]alblclalblclalblc]

Fig. 5. AND/OR search tree along pseudo trégeand7;

straints are universal. The AND/OR search tree base@l,as smaller, becausg,
has a smaller depth tha,. The weights are not specified here.

Finding good pseudo treesFinding a pseudo tree or a DFS tree of minimal depth
is known to be NP-complete. However various greedy heasigtie available. For
example, pseudo trees can be obtained by generating atiwlifsgood induced
graph along an orderingand then traversing the induced graph depth-first, break-
ing ties in favor of earlier variables [8]. For more infornoat see [31,32].

The definition of buckets relative to a backbone tree extémgdseudo trees as well,
and this allows the definitions of weights for an AND/OR tresé&d on pseudo tree.
Next we define the notion of laucket treeand show that it corresponds a pseudo
tree. This relationship will be used to make additional @uotions between various
graph parameters.

Definition 36 (bucket tree [33]) Given a graphical model, its primal graph and
an orderingd, the bucket treeof G along d is defined as follows. L&t be the
induced graph of7 alongd. Each variableX has an associatetducket denoted
by By, that containsX and its earlier neighbors in the induced graptj (similar

to Definition 25). The nodes of the bucket tree aresthauckets. Each nod8y

points toBy (By is the parent ofBy) if Y is the latest earlier neighbor ok in

Gy

The following relationship between the treewidth and thptdef pseudo trees is
known [8,26]. Given dree decompositiof a primal graphG havingn nodes,
whose treewidth is*, there exists a pseudo trégeof G whose depthi, satisfies:

m < w* - logn. It can also be shown that any bucket tree [33] yields a pseudo
tree and that a min-depth bucket tree yields min-depth psteds. The depth of a
bucket tree was also calleimination depthn [26].

17

Table 2
Average depth of pseudo trees vs. DFS trees; 100 instances ofagadnr model

Model (DAG) width Pseudo tree depth DFS tree depth
(N=50, P=2, C=48) 9.5 16.82 36.03
(N=50, P=3, C=47) 16.1 23.34 40.60
(N=50, P=4, C=46) 20.9 28.31 43.19
(N=100, P=2, C=98) 18.3 27.59 72.36
(N=100, P=3, C=97) 31.0 41.12 80.47
(N=100, P=4, C=96) 40.3 50.53 86.54

In summary,

Proposition 37 [8,26] The minimal depthn over all pseudo trees satisfies <
w* - log n, wherew* is the treewidth of the primal graph of the graphical model.

Therefore,

Theorem 38 A graphical model that has a treewidth* has an AND/OR search
tree whose size i©(n - k(*"1°¢™) wherek bounds the domain size andis the
number of variables.

For illustration, Table 2 shows the effect of DFS spannirggsragainst pseudo
trees, both generated using brute-force heuristics oneloraly generated graphs,
whereN is the number of variableg? is the number of variables in the scope of a
function andC' is the number of functions.

4.4 Pruning Inconsistent Subtrees for the Flat Constraintwoeks

Most advanced constraint processing algorithms incotpara-good learning, and
constraint propagation during search, or use variableimdition algorithms such
asadaptive-consisten@nddirectional resolutior{34], generating all relevant no-
goods, prior to search. Such schemes can be viewed as cognifepresentation
that would yield gorunedsearch tree. We next define thacktrack-freeAND/OR
search tree.

Definition 39 (backtrack-free AND/OR search tree) Given an AND/OR search
tree S1(R), the backtrack-free AND/OR search tred R based on7’, denoted
BF7(R), is obtained by pruning from§7(R) all inconsistent subtrees, namely alll
nodes that root no consistent partial solution.

Example 40 Consider 5 variables(, Y, Z, T, R over domaing 2, 3,5}, where the
constraints areX dividesY andZ, andY dividesT and R. The constraint graph

18

OR

AND

OR

(& A constraint (b) Search tree (c) Backtrack-free search
tree tree

Fig. 6. AND/OR search tree and backtrack-free tree

and the AND/OR search tree relative to the DFS tree rooted aare given in
Figure 6(a). In 6(b) we present the-(R) search space whose nodes’ consistency
status (which will latter will be referred to aglues) are already evaluated hav-
ing value “1” is consistent and “0” otherwise. We also highligtwo solutions
subtrees; one depicted by solid lines and one by dotted.lifas (c) presents
BFr(R), where all nodes that do not root a consistent solution arenpcl

If we traverse the backtrack-free AND/OR search tree we cahdisolution sub-
tree without encountering any dead-ends. Some constraiwonks specifications
yield a backtrack-free search space. Others can be madedackee by massag-
ing their representation usingpnstraint propagatioralgorithms before or during
search. In particular, it is well known that variable-elvation algorithms such
asadaptive-consistend5] and directional resolution [36], applied in a reversed
order ofd (whered is the DFS order of the pseudo tree) compile a constraint spec
ification (resp., a Boolean CNF formula) that has a backtraek-Eearch space.
Assuming that the reader is familiar with variable elimioatalgorithms [16] we
define:

Definition 41 (directional extension [35,36])Let R be a constraint problem and
let d be a DFS traversal ordering of a backbone pseudo tree of itmargraph,
then we denote bi,;(R) the constraint network (resp., the CNF formula) compiled
by Adaptive-consistency (resp., directional resolutiomeversed order of.

Proposition 42 Given a Constraint networlk, the AND/OR search tree of the
directional extensiorE,;(R) whend is a DFS ordering ofT, is identical to the
backtrack-free AND/OR search tree & based on7. NamelySr(E;(R)) =
BFEr(R).

Example 43 In Example 40, if we apply adaptive-consistency in reverseroof

X, Y, T, R, Z, the algorithm will remove the valugs5 from the domains of boti’
and 7 yielding a tighter constraint networkR’. The AND/OR search tree in Figure

19

40(c) is bothS(R') and BF1-(R).

Proposition 42 emphasizes the significance of no-good ilegi37] for decid-
ing inconsistency or for finding a single solution. Theséhteques are known as
clause learning in SAT solvers, first introduced by [38] anel @urrently used in
most advanced solvers [39]. Namely, when we apply no-goachieg we explore
the search space whose many inconsistent subtrees arel pRameounting how-
ever, and for other relevant tasks, pruning inconsistebtreas and searching the
backtrack-free search tree yields a partial help only, aslaleorate later.

5 AND/OR Search Graphs

It is often the case that a search space that is a tree can becgraph if identical
nodes are merged, because identical nodes root identiaethssubspaces, and
correspond to identical reasoning subproblems. Any tweeadHat root identical
weighted subtrees can Ibeerged reducing the size search graph. For example, in
Figure 1(c), the search trees below any appearan¢®,ah are all identical, and
therefore can be merged.

Sometimes, two nodes may not root identical subtrees, layt ¢ould still root
search subspaces that correspond to equivalent subpmbemes that root equiv-
alent subproblems having the same universal model (seeifiefid4) even though
the weighted subtrees may not be identical, caarbged yielding an even smaller
search graph, as we will show.

We next formalize the notions ehergingandunifyingnodes and define the mini-
mal AND/OR search graph.

5.1 Minimal AND/OR Search Graphs

An AND/OR search tree can also be viewed as a data structairdefines aniver-
sal graphical model (see Definition 8), defined by the weightdso$et of solution
subtrees (see Definition 22).

Definition 44 (universal graphical model of AND/OR search tees) Given a
weighted AND/OR search trgg over a set of variablesX and domainsD, its
universal graphical modedenoted byU(G), is defined by its set of solutions
as follows: if¢ is a solution subtree and = asgn(t) is the set of assignments
associated with thenu(z) = w(t); otherwiseu(z) = 0.

A graphical modeR is equivalent to its AND/OR search treég; (R), which means
thatu(R) is identical toU(S7(R)). We will next define sound merge operations

20

f(C,A,B) f(C,A)

~ |k oo |o
o |k o |»
P o |;

ek e lofo oo]o
Pk lolo |k [~ oo >

(a) (b)
Fig. 7. Merge vs. unify operators

that transform AND/OR search trees into graphs that preseguivalence.

Definition 45 (merge) Assume a given weighted AND/OR search graptiR)
(S%(R) can be the AND/OR search treg-(R)), and assume two paths =
7o, (2;) @ndmy = m,,(z;) ending by AND nodes at levehaving the same label
x;. Nodesn; andn, can bemergediff the weighted search subgraphs rooted at
ny andny are identical. Themergeoperator,merge(n, ny), redirects all the arcs
going inton, into n; and removes; and its subgraph. It thus transforn#- into

a smaller graph. When we merge AND nodes only we call the oparétidD-
merge. The same reasoning can be applied to OR nodes, and Migscaperation
OR-merge.

We next define the semantic notionwfifiablenodes, as opposed to the syntactic
definition ofmerge

Definition 46 (unify) Given a weighted AND/OR search gragtfor a graphical
modelR and given two paths,,, andr,, having the same label on nodesand
ns, thenn, andn, are unifiablg iff they root equivalent conditioned subproblems
(Definition 10). Namely, iR|.sgn(r,) = Rlasgn(rs)-

Example 47 Let'’s follow the example in Figure 7 to clarify the differengetween
mergeand unify. We have a graphical model defined by two functiang.ost
functions) over three variables. The search tree given gufé 7(c) cannot be
reduced to a graph bynerge because of the different arc weights. However, the
two OR nodes labeled root equivalent conditioned subproblems (the cost of each
individual solution is given at the leaves). Therefore, tiogles labeledd can be
unified but they cannot be recognized as identical byrttergeoperator.

Proposition 48 (minimal graph) Given a weighted AND/OR search gragh
based on pseudo treg:

(1) The merge operator has a unique fix point, called thaerge-minimal
AND/OR search graph and denoted b§"“"?“(G).
(2) Theunify operator has a unique fix point, called thaify-minimal AND/OR

21

J“\g £
i
A N "‘-"‘“//\.\

& N N NN

/= [\ =\ | \

1 [2 2] [0 (20
\
]\

/.
LA
/==
m v

Fig. 8. OR search tree for the Fig. 9. The minimal OR search graph of the tree
tree problem in Figure 1(a) graphical model in Figure 1(a)

search graph and denoted By, (G).
(3) Any two nodes; andn, of G that can be merged can also be unified.

Definition 49 (minimal AND/OR search graph) The unify-minimal AND/OR
search graph ofR relative to7 will also be simply called theninimal AND/OR
search graph and be denoted by/(R).

WhenT is a chain pseudo tree, the above definitions are applicakie traditional
OR search tree as well. However, we may not be able to readathe compression
as in some AND/OR cases, because of the linear structuresmapby the OR
search tree.

Example 50 The smallest OR search graph of the graph-coloring probleifFig-
ure 1(a) is given in Figure 9 along the DFS ord&r Y, T, R, Z, L, M. The small-
est AND/OR graph of the same problem along the DFS tree is givEigure 11.
We see that some variable-value pairs (AND nodes) must batexpe Figure 9
while in the AND/OR case they appear just once. In particulter,qubgraph below
the paths((X, 1), (Y, 2)) and ((X, 3), (Y, 2)) in the OR tree cannot be merged at
(Y, 2). You can now compare all the four search space representatime by side
in Figures 8-11.

Note that in the case of constraint networks we can accomta@iaeven more
general definition of merging of two AND nodes that are assityfifferentvalues

from their domain, or two OR nodes labeled by different valea, as long as they
root identical subgraphs. In that case the merged node dlteulabeled by the
disjunction of the two assignments (this is similar to inte&xngeable values [23]).

22

Fig. 10. AND/OR search tree Fig. 11. The minimal AND/OR search graph of
for the tree problem in Figure the tree graphical model in Figure 1(a)
1(a@)

5.2 Building AND/OR search graphs

In this subsection we will discuss practical algorithms ffmerating compact
AND/OR search graphs of a given graphical model. In parsicwe will iden-
tify effective rules for recognizing unifiable nodes, aigpitowards the minimal
AND/OR search graph as much as computational resource® dlhe rules allow
generating a small AND/OR graph calléte context minimal graptvithout cre-
ating the whole search tree- first. We focus first on AND/OR search graphs of
graphical models having no cycles, calleee modelqi.e., the primal graph is a
tree).

5.2.1 Building AND/OR search graphs for Tree Models and Treedinpositions

Consider again the graph in Figure 1(a) and its AND/OR seaeh in Figure
1(c) representing a constraint network. Observe that at Bwnode(Y, 1) appears
twice, (and so ar¢Y’, 2) and (Y, 3)). Clearly however, the subtrees rooted at each
of these two AND nodes are identical and we can reason thatctire be merged
because any specific assignmenttaniquely determines its rooted subtree. In-
deed, the AND/OR search graph in Figure 11 is equivalentedARD/OR search
tree in Figure 8 (same as Figure 1(c)).

Definition 51 (explicit AND/OR graphs for constraints tree models) Given a
tree model constraint network and the pseudo ffeielentical to its primal graph,
theexplicit AND/OR search grapbf the tree model relative t@ is obtained from
S+ by merging all AND nodes having the same laf¥|).

Proposition 52 Given a rooted tree mod#T: (1) Its explicit AND/OR searchraph

is equivalent ta57. (2) The size of the explicit AND/OR search grapbis:k). (3)
For some tree models the explicit AND/OR search graph is naihim

23

The notion of explicit AND/OR search graph for a tree modedxtendable to any
general graphical models that are trees. The only differes¢hat the arcs have
weights. Thus, we need to show that merged nodes via therrdigfinition 51 root
identical weighted AND/OR trees.

Proposition 53 Given a general graphical model whose graph is a tfedts ex-
plicit AND/OR searclgraphis equivalent taS7, and its size i$)(nk);

Next, the question is how to identiBfficientlymergeable nodes faeneralnon-
tree graphical models. A guiding idea is to transform a giGaimodel into a tree
decomposition first, and then apply the explicit AND/OR drapnstruction to the
resulting tree decomposition. The next paragraph skettiesituition.

A tree decompositioi33] (see Definition 5) of a graphical model partitions the
functions into clusters. Each cluster corresponds to arsbiigm that has a set of
solutions and the clusters interact in a tree-like mannerceQve have a tree de-
composition of a graphical model, it can be viewed as a redoiata) tree model
where each cluster is a node and its domain is the cross grofitiee domains of
variables in the cluster. The constraint between two adfacedes in the tree de-
composition is equality over the common variables. For naetails about tree de-
compositions see [33]. For the meta-tree model the ex@lidiD/OR search graph
is well defined: the OR nodes are the scopes of clusters inréleedecomposi-
tion and the AND nodes, are their possible value assignmg&ise the graphical
model is converted into a tree, its explicit AND/OR searcapir is well defined
and we can bound its size.

Theorem 54 Given atree decompositiof a graphical model, whose domain
sizes are bounded by, the explicit AND/OR search grapimplied by the tree
decomposition has a size Of rk“"), wherer is the number of clusters in the tree
decomposition and* is the size of the largest cluster.

The tree decomposition can guide an algorithm for genegamAND/OR search
graph whose size is bounded exponentially by the inducethywdhich we will
refer to in the next section as tkentext minimal graph

While the idea of explicit AND/OR graph based on a tree decaitipm can be ex-
tended to any graphical model it is somewhat cumbersomeddsin the next sec-
tion we propose a more direct approach for generating theexpbminimal graph.

5.2.2 The Context Based AND/OR Graph

We will now present a generative rule for merging nodes inAN®/OR search
graph that yields the size bound suggested above. We widl tleenotion ofin-
duced width of a pseudo tree of fGr bounding the size of the AND/OR search
graphs We denote byl rs(7) a linear DFS ordering of a treg.

24

Definition 55 (induced width of a pseudo tree) The induced width of7 relative
to the pseudo tre&, wy(G), is the induced width along thé&,»5(7") ordering of
the extended graph df relative to7, denoted?”.

Proposition 56 (1) The minimal induced width @f over all pseudo trees is iden-
tical to the induced width (treewidth)y*, of G. (2) The minimal induced width
restricted to chain pseudo trees is identical to its pathtvigto*.

Example 57 In Figure 4(b), the induced graph ¢f relative to7; contains also the
induced arcs (1,3) and (1,5) and its induced width i§2: is already triangulated
(no need to add induced arcs) and its induced width is 2 as @éllhas the added
arc (4,7) and when ordered it will have the additional inducecsg1,5) and (1,3)
edges, yielding induced width 2 as well.

We will now provide definitions that will allow us to identifgodes that can be
merged in an AND/OR graph. The idea is to find a minimal set ofalde as-
signments from the current path that will always generagesédime conditioned
subproblem, regardless of the assignments that are natedlin this minimal set.
Since the current path for an OR nodle and an AND nod€.X;, x;) differ by the
assignment of; to x; (Definition 2), the minimal set of assignments that we want
to identify will be different for.X; and for(X;, ;). In the following two definitions
ancestors and descendants are with respect to the pseeadqg tmhile connection

is with respect to the primal gragh.

Definition 58 (parents) Given a primal graphG' and a pseudo tre§ of a rea-
soning problen, the parentsof an OR nodeX;, denoted byua; or pay,, are the
ancestors ofY; that have connections ¥ to .X; or to descendants of;.

Definition 59 (parent-separators) Given a primal graphz and a pseudo treg&
of a reasoning problerf?, the parent-separatos X; (or of (X}, z;)), denoted by
pas; Of pasy,, are formed byX; and its ancestors that have connectiongirno
descendants of;.

It follows from these definitions that the parents)Xof, pa;, separate in the primal
graphG (and also in the extended graph’ and in the induced extended graph
G77) the ancestors (iff") of X;, from X; and its descendants (if). Similarly, the
parents separators of;, pas;, separate the ancestors ®f from its descendants.
It is also easy to see that each varialdleand its parentpa; form a clique in the
induced grapl&” . The following proposition establishes the relationstepieen
pa; andpas;.

Proposition 60 (1) If Y is the single child ofX in 7, thenpasyx = pay-.
(2) If X has children, ..., Y} in T, thenpasx = UL pay..

Theorem 61 (context based mergeGivenG’ ", let 7, and,, be any two par-
tial paths in an AND/OR search graph, ending with two noadesandn..

25

(1) If ny andn, are AND nodes annotated By, =;) and

asgn(mn,)[pasx,] = asgn(ma,)[pasx,] 1)

then the AND/OR search subtrees rootednhyand n, are identical andn;
andn, can be mergedisgn(m,,)[pasx,] is called theAND context of n,.
(2) If n, andn, are OR nodes annotated b§; and

(ngn(T('m)[ani] = asgn(ﬂ'nz)[ani] (2)

then the AND/OR search subtrees rootednbyand n, are identical andn;
andn, can be mergedisgn(m,,)[pax,] is called theOR context of n,.

Example 62 For the balanced tree in Figure 1 consider the chain
pseudo treed = (X,Y,T,R,Z,L,M). Namely the chain has arcs
{(X,Y),(Y,7),(T,R),(R,Z),(Z,L),(L,M)} and the extended graph in-
cludes also the arcéZ, X), (M, Z). The parent-separator d¢f alongd is XYT
(since the induced graph has the 4dff, X)), of Ritis X R, for Z itis Z and for
M itis M. Indeed in the first 3 levels of the OR search graph in Figureedd are
no merged nodes. In contrast, if we consider the AND/OR ordeziong the DFS
tree, the parent-separator of every node is itself yieldingingle appearance of
each AND node having the same assignment annotation in thenaliAND/OR
graph.

Definition 63 (context minimal AND/OR search graph) The AND/OR search
graph of R based on the backbone tr@ethat is closed under context-based merge
operator is calledcontext minimalAND/OR search graph and is denot€g(R).

We should note that we can in general merge nodes based b@tNbrand OR
contexts. However, Proposition 60 shows that doing justafrtbem renders the
other unnecessary (up to some small constant factor). titipeawe would recom-
mend just the OR context based merging, because it has & @&lghit by a small
constant factor) space advantage. In the examples thaveénghis paperC'-(R)
refers to an AND/OR search graph for which either the AND eahbased or OR
context based merging was performed exhaustively.

Example 64 Consider the example given in Figure 12(a). The OR contexadti e
node in the pseudo tree is given in square brackets. Thexdamiaimal AND/OR
search graph (based on OR merging) is given in Figure 12(b).

Since the number of nodes in the context minimal AND/OR degraph cannot
exceed the number of different contexts, we can bound tleeodithe context min-
imal graph.

Theorem 65 Given a graphical modeR, its primal graphG, and a pseudo tre@
having induced widthv = w(G), the size of the context minimal AND/OR search
graph based o, C+(R), isO(n - k"), whenk bounds the domain size.

26

P(D|B,C

ke lelrlofo]o o=
ke lofolr|-]o e o
o= < [x lo o< |x

E (o] .

(b) ()

Fig. 12. Context minimal vs. minimal AND/OR graphs

Note that the criterion in equations 1 and 2 is cautioustAing real number of
assignments over context variables includes only comgisigsignments. Second,
we have already seen (Example 47) that there exist nodesathdeunifiedbut not
merged Here we give an example that shows that contexts can ndifai the
nodes that can beerged There could be paths whose contexts are not identical,
yet they might root identical subgraphs.

Example 66 Let’s return to the example of the Bayesian network given guié
12(a), whereP(D|B, C) is given in the table, and the OR-context of each node in
the pseudo tree is given in square brackets. Figure 12(byshbe context minimal
graph. However, we can see thB{D = 0|B = 0,C = 0) = P(D = 0|B =
1,C=0)=zandP(D =1|B=0,C =0)=P(D=1B=1,C =0) =y.
This allows theunification of the corresponding OR nodes labeled with and
Figure 12(c) shows the (unify) minimal graph.

The context based merge offers a powerful way of boundingd¢hech complexity:

Theorem 67 The context minimal AND/OR search graph of a graphical model
having a backbone tree with bounded treewidtltan be generated in time and
spaceO (nk").

Since the unify minimal AND/OR grapM%imfy and the merge minimal AND/OR
graphM 7"’ are subsets d@f'r, both are bounded by (n-£*), wherew = wr(G).
Sinceminy{wr(G)} is equal to the treewidth* and sincaniny e pains{wr(G)}
is equal to the pathwidthw*, we get:

Corollary 68 Given a graphical modeR, there exists a backbone trgesuch that
the unify minimal, merge minimal and context minimal AND/@R&reh graphs
of R are bounded exponentially by the treewidth of the primal graghe unify,
merge and context minimal OR search graphs can be boundemerpally by the

27

pathwidth only.

5.2.3 More on OR vs. AND/OR

It is well known [26] that for any graph* < pw* < w* - logn. It is easy to place
m* (the minimal depth over pseudo trees) in that relation yigjdv* < pw* <
m* < w* -logn. Itis also possible to show that there exist primal graphsviuch
the upper bound on pathwidth is attained, thatig = O(w* - logn).

Consider a complete binary tree of depthIn this casew* = 1, m* = m, and it
is also known [40,41]) that:

Theorem 69 ([41]) If T is a binary tree of deptim thenpw*(T) > 7.

Theorem 69 shows that for graphical models having a boun@edwidthw, the
minimal AND/OR graph is bounded b (nk®) while the minimal OR graph is
bounded byO(nkv'e™). Therefore, even when caching, the use of an AND/OR
vs. an OR search space can yield a substantial saving.

Remark 70 We have seen that AND/QReesare characterized by thdepthof
the pseudo trees while minimal AND/@Raphsare characterized by theinduced
width. It turns out however that sometimes a pseudo tree that isnaptelative to

w is far from optimal form and vice versa. For example a primal graph model that
is a chain has a pseudo tree having = n andw; = 1 on one hand, and another
pseudo tree that is balanced having = logn andw, = logn. There is no single
pseudo tree having botlh = 1 andm = logn for a chain. Thus, if we plan to
have linear space search we should pick one kind of a backbsewedp tree, while

if we plan to search a graph, and therefore cache some nodethanpseudo tree
should be used.

5.3 On the Canonicity and Generation of the Minimal AND/OR Grap

We showed that the merge minimal AND/OR graph is unique favarggraphical
model, given a backbone pseudo tree (Proposition 48). Iergént subsumes the
minimal AND/OR graph, and sometimes can be identical toat. ¢onstraint net-
works we will now prove a more significant property of unigass relative to all
equivalent graphical models given a backbone tree. We woNethis notion rel-
ative tobacktrack-freesearch graphs which are captured by the notion of strongly
minimal AND/OR graph. Remember that any graphical model @ lan associ-
ated flat constraint network.

Definition 71 (strongly minimal AND/OR graph) ® A strongly minimal

3 The minimal graph is built by lumping together “unifiable” nodes, which aredhbat

28

AND/OR graph ofR relative to a pseudo tre@ is the minimal AND/OR graph,
M7(R), that is backtrack-freei. any partial assignment in the graph leads to
a solution), denoted by/;(R). The strongly context minimal graph is denoted
CH(R).

5.3.1 Canonicity of Strongly Minimal AND/OR Search Graphs

We briefly discuss here the canonicity of the strongly minigpaph, focusing

on constraint networks. Given two equivalent constraimivioeks representing the
same set of solutions, where each may have a different eamsgraph, are their
strongly minimal AND/OR search graphs identical?

The above question is not well defined however, because an/@RYraph for
R is defined only with respect to a backbone pseudo tree. We ase two
equivalent constraint networks having two different gmp¥here a pseudo tree
for one graph may not be a pseudo tree for the other. Consmleexample a
constraint network having three variables; Y and Z and equality constraints.
The following networks,R; = {Rxy = (X =Y), Ryz = (Y = Z)}
and Ry = {RXZ = (X = Z), Ry, = (Y = Z)} and Ry = {RXY =
(X =Y), Ryz = (Y = Z), Rxz = (X = Z)} are equivalent. However,
Ti = (X « Y — Z)is apseudo tree fdR,, but not forR, neither forR;. We ask
therefore a different question: given two equivalent caist networks and given
a backbone tree that is a pseudo tree for both, is the strangiynal AND/OR
graph relative to/” unique?

We will answer this question positively quite straightfandly. We first show
that equivalent networks that share a backbone tree haméiddebacktrack-free
AND/OR search trees. Since the backtrack-free search tneigsiely determine
their strongly minimal graph the claim follows.

Definition 72 (shared pseudo trees)Given a collection of graphs on the same set
of nodes, we say that the graphs share a tfedf 7 is a pseudo tree of each of
these graphs. A set of graphical models defined over the satroésariables share
atreeT, iff their respective primal graphs shafe.

Proposition 73 1. If R, andR, are two equivalent constraint networks that share
T,thenBFr(R,) = BFr(R) (see Definition 39). 2. IR, and R, are two equiv-
alent graphical models (not necessarily constraint netwpitkat share7, then
BFr(R1) = BFr(Ry) as AND/OR search trees although their arcs may not have
identical weights.

root equivalent subproblems. Therefore, at each level (canebpg to one variable), all
the nodes that root inconsistent subproblems will be unified. If we eliminateettundant
nodes, the minimal graph is already backtrack free.

29

Theorem 74 If R, and R, are two equivalent constraint networks that sh&re
thenMi(Ry) = ME(R,).

Theorem 74 implies thal/; is a canonical representation of a constraint network
R relative to7 .

Generating the strongly minimal AND/OR graphs

From the above discussion we see that several methods ferajemy the canon-
ical AND/OR graph of a given graphical model, or a given ANR@raph may
emerge. The method we focused on in this paper is to genbat®htext minimal
AND/OR graph first. Then we can process this graph from le&vesot, while

computing the value of nodes, and additional nodes can Weedrar pruned (if
their value is “0”).

There is another approach that is based on processing thedis in a variable
elimination style, when viewing the pseudo tree as a bucketdr a cluster tree.
The original functions can be expressed as AND/OR graphshaydwill be com-
bined pairwise until an AND/OR graph is generated. This ptak®ws computing
the value of each node and therefore allows for semanticcatiin. Subsequently
a forward phase will allow generating the backtrack-frqgesentation as well as
allow computing the full values associated with each nodhe fOill details of this
approach are out of the scope of the current paper. Forlimbak restricted to
constraint networks see [42].

5.4 Merging and Pruning: Orthogonal Concepts

Notice that the notion of minimality is orthogonal to thatgfuning inconsistent
subtrees (yielding the backtrack-free search space). Wermage two identical
subtrees whose root value is “0” but still keep their commohtisee. However,
since our convention is that we don't keep inconsistentrselstwe should com-
pletely prune them, irrespective of them rooting identaahon-identical subtrees.
Therefore, we can have a minimal search graph thadtidacktrack-free as well as
a non-minimal search grapb.@.a tree) that is backtrack-free.

When the search space is backtrack-free and if we seek a siolglgon, the size
of the minimal AND/OR search graph and its being OR vs. AND/@R both ir-

relevant. It will, however, affect a traversal algorithnatttounts all solutions or
computes an optimal solution as was often observed [43].cBanting and for
optimization tasks, even when we record all no-goods anldecalt nodes by con-
text, the impact of the AND/OR graph search vs. the OR graplchecan still be
significant.

Example 75 Consider the graph problem in Figure 6(a) when we add the value 4

30

to the domains ofX and Z. Figure 13(a) gives the full AND/OR search tree and
Figure 13(b) gives the backtrack-free search tree. Figudéa) gives the context
minimal but unpruned search graph and Figure 14(b) givestiv@mal and pruned
search graph.

O, @ O, @ O, @ O, @
HEDE
OEOEO®OEOEOEOEOEOE OE®O®OE®
Yl el Bl el e) i el el el el i el el el el) el el el el sl el
(a) Full AND/OR tree (b) Pruned backtrack-
free AND/OR tree

Fig. 13. AND/OR trees

(a) Context minimal unpruned AND/OR graph(b) Context minimal
pruned backtrack-free
AND/OR graph

Fig. 14. AND/OR graphs

5.5 Using Dynamic Variable Ordering

The AND/OR search tree we defined uses a fixed variable ogldtims known
that exploring the search space in a dynamic variable argésihighly beneficial.
AND/OR search trees for graphical models can also be modiietiow dynamic
variable ordering. A dynamic AND/OR tree that allows variediable ordering
has to satisfy that for every subtree rooted by the curretit paany arc of the
primal graph that appears as a cross-arc (not a back-arbeisubtree must be
“inactive” conditioned onr.

Example 76 Consider the propositional formulX — Av C andX — BV C.
The constraint graph is given in Figure 15(a) and a DFS tred %{b). However,
the constraint subproblem conditioned ¢H, 0), has no real constraint between
A, B, C, so the effective spanning tree beldw, 0) is {(X,0) — A, (X,0) —
B, (X,0) — C}, yielding the AND/OR search tree in Figure 15(c). Note that evhil
there is an arc betweedA andC' in the constraint graph, the arc isotactive when
X is assigned the value

31

(CY (b) ©

Fig. 15. (a) A constraint graph; (b) a spanning tree; (c) a dynamic ANfDiree

Clearly, the constraint graph conditioned on any partialgassent can only be
sparser than the original graph and therefore may yield desnfeND/OR search
tree than with fixed ordering. In practice, after each newi@assignment, the
conditional constraint graph can be assessed as followsfycconstraint over the
current variableX, if the current assignmentX, z) does not make the constraint
activethen the corresponding arcs can be removed from the gragm, Bhpseudo
tree of the resulting graph is generated, its first variablselected, and search
continues. A full investigation of dynamic orderings is side the scope of the
current paper.

6 Solving Reasoning Problems

6.1 Value Functions of Reasoning Problems

As we described earlier, there are a variety of reasoningl@nes over weighted

graphical models. For constraint networks, the most pogakks are to decide if

the problem is consistent, to find a single solution or to ¢sotutions. If there is a

cost function defined we may also seek an optimal solution.pfimary tasks over

probabilistic networks are belief updating, finding thehability of the evidence

and finding the most likely tuple given the evidence. Eaclhese reasoning prob-
lems can be expressed as findingwhtieof some nodes in the weighted AND/OR
search space where different tasks call for different vekfenitions. For example,

for the task of finding a solution to a constraint network, ¥éie of every node

is either “1” or “0". The value “1” means that the subtree mxbtat the node is

consistent and “0” otherwise. Therefore, the value of thet rmde answers the
consistency query. For solutions-counting the value foncof each node is the

number of solutions rooted at that node.

Definition 77 (value function for consistency and counting)Given a weighted
AND/OR treeS+(R) of a constraint network. The value of a node (AND or OR) for
deciding consistencg “1” if it roots a consistent subproblem and “0” otherwise.
The value of a node (AND or OR) foounting solutionss the number of solutions
in its subtree.

32

It is easy to see that the value of nodes in the search grapbecammputed recur-
sively from leaves to root.

Proposition 78 (recursive value computation)(1) For the consistency task the
value of AND leaves is their labels and the value of OR leavég”igthey are
inconsistent). An internal OR node is labeled “1” if one of guccessor nodes is
“1” and an internal AND node has value “1” iff all its success@®R nodes have
value “1”.

(2) The counting values of leaf AND nodes are “1” and of leaf Qiles are “0”.
The counting value of an internal OR node is the sum of thetoay#walues of all
its child nodes. The counting-value of an internal AND nodéaésproduct of the
counting-values of all its child nodes.

We can now generalize to any reasoning problem, focusing@simplified case
whenZ = (), namely when the marginalization has to be applied to aN#n@bles.
This special case captures most tasks of interest. We \aifl siith the recursive
definition.

Definition 79 (recursive definition of values) The value function of a reasoning
problem? = (R, |y, Z), whereR = (X, D, F,®) and Z = {, is defined as
follows: the value of leaf AND nodes is “1” and of leaf OR node0is The value
of an internal OR node is obtained bgmbiningthe value of each AND child node
with the weight (see Definition 26) on its incoming arc and theamginalizingover
all AND children. The value of an AND node is the combinatiorhef\alues of
its OR children. Formally, ifchildren(n) denotes the children of nodein the
AND/OR search graph, then:

v(n) = Quechitdren(n)y V(1'), if n = (X, x) is an AND node,

v(n) =Uncchitdrenn) (Wnny @v(n')), if n = X is an OR node.

The following proposition states that given a reasoning,taesmputing the value
of the root node solves the given reasoning problem.

Proposition 80 LetP = (R, |y, Z), whereR = (X, D, F,®) and Z = (), and
let X, be the root node in any AND/OR search gragh(R). Thenv(X;) ={x
Q;_, fi whenv is defined in Definition 79.

Search algorithms that traverse the AND/OR search spacearapute the value
of the root node yielding the answer to the problem. The Valhg section dis-
cusses such algorithms. Algorithms that traverse the weigAND/OR search
tree in a depth-first manner or a breadth-first manner areagtesgd to have time
bound exponential in the depth of the pseudo tree of the grapmodel. Depth-
first searches can be accomplished using either linear spaygeor context based
caching, bounded exponentially by the treewidth of the geewee. Depth-first
search is an anytime schemes and can, if terminated, pravidgg@proximate so-
lution for some tasks such as optimization. The next sulisegresents typi-
cal depth-first algorithms that search AND/OR trees andlggaj/e usesolution

33

countingas an example for a constraint query and the probability mfesmce as

an example for a probabilistic reasoning query. The algorg compute the value
of each node. For application of these ideas for combireltoptimization tasks,

such as MPE see [31].

6.2 Algorithm AND/OR Tree Search and Graph Search

Algorithm 1 presents the basic depth-first traversal of tiMDAOR search tree

(or graph, if caching is used) for counting the number of sohs of a constraint

network, AO-COUNTING (or for probability of evidence for belief networks, AO-
BELIEF-UPDATING).

The context based caching is done based on tables. We ekewiphi OR caching.

For each variabléeX;, a table is reserved in memory for each possible assignment
to its parent sepq;. Initially each entry has a predefined value, in our case.“-1"
The fringe of the search is maintained on a stack cdlRgil. The current node is
denoted by, its parent by, and the current path by,. The children of the current
node are denoted byuccessors(n).

The algorithm is based on two mutually recursive steps: BEXPAand PROPA-
GATE, which call each other (or themselves) until the seéeaminates.

Since we only use OR caching, before expanding an OR nodeadtse table is
checked (line 6). If the same context was encountered hataeeretrieved from
cache, anduccessors(n) is set to the empty set, which will trigger the PROPA-
GATE step.

If a node is not found in cache, it is expanded in the usual wapending on
whether itis an AND or OR node (lines 10-17). The only diffeze between count-
ing and belief updating is line 12 vs. line 13. For countitngg value of a consistent
AND node is initialized to 1 (line 12), while for belief updiag, it is initialized to
the bucket value for the current assignment (line 13). Ag lsithe current node is
not a dead-end and still has unevaluated successors, asesatcessors is chosen
(which is also the top node dPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a nadeah empty set of
successors (note that as each successor is evaluatecentased from the set of
successors in line 31). This means that all its children hees evaluated, and its
final value can now be computed. If the current node is the thenh the search
terminates with its value (line 20). If it is an OR node, itduais saved in cache
before propagating it up (line 22).4fis OR, then its parentis AND andp updates

its value by multiplication with the value af (line 24). If the newly updated value

of p is O (line 25), therp is a dead-end, and none of its other successors needs
to be evaluated. An AND node propagates its value to its pargnin a similar

34

Algorithm 1: AO-COUNTING / AO-BELIEF-UPDATING

input : A constraint networkR = (X, D, C), or a belief networkP = (X, D, P); a pseudo tre§ rooted at
X1; parentpa; (OR-context) for every variabl&’;; caching set totrue or false.
output : The number of solutions, or the updated behgfX).

1 if caching == true then /1 Initialize cache tables
2 L Initialize cache tables with entries of-1"
3 v(X1) < 0; OPEN «+ {X1} /1 Initialize the stack OPEN
4 while OPEN # ¢ do
5 n < top(0OPEN); removen from OPEN
6 if caching == true andn is OR, labeledX; and Cache(asgn(mrn)[pa;]) # —1then // 1In cache
7 v(n) < Cache(asgn(my)[pai]) /] Retrieve val ue
8 successors(n) < ¢ /1 No need to expand bel ow
9 else /1 EXPAND
10 if nis an OR node labeled’; then /1 OR-expand
11 successors(n) < {(X;,z;) | (X;, z;) is consistent withr,, }
12 v((Xs,x)) < 1, forall (X;,x;) € successors(n)

v((Xi,x;)) I1 flasgn(mn)lpai]), forall(X;,x;) € successors(n) I/ AO BU
13 FEBT(X;)

if n is an AND node labeledX;, ;) then /1 AND- expand

14 if

15 successors(n) < childrens(X;)

16 | v(X;) + Oforall X; € successors(n)

17 | Add successors(n) to top of OPEN

18 while successors(n) == ¢ do /1 PROPAGATE
19 if n is an OR node labeled’; then

20 if X; == X1 then /1 Search is conplete
21 | return v(n)

22 if caching == true then

23 | Cache(asgn(my)[pai]) < v(n) /1 Save in cache
24 v(p) + v(p) * v(c)

25 if v(p) == 0then /] Check if p is dead-end
26 removesuccessors(p) from OPEN

27 successors(p) < ¢

28 if n is an AND node labeledX;, ;) then

29 let p be the parent af

30 | () vp) + v(n);

31 removen from successors(p)

32 | nep

way, only by summation (line 30). Finally, the current nadis set to its pareng
(line 32), becausa was completely evaluated. The search continues eitherawith
propagation step (if conditions are met) or with an expanstep.

6.3 General AND-OR Search - AO(i)

General AND/OR algorithms for evaluating the value of a motle for any rea-
soning problem using tree or graph AND/OR search are idanticthe above al-
gorithms when product is replaced by the combination ope&td summation is
replaced by the marginalization operator. We can view th®ADR tree algorithm
(which we will denote AOT) and the AND/OR graph algorithm ifdged AOG)
as two extreme cases in a parameterized collection of #hgasithat trade space
for time via a controlling parameteér We denote this class of algorithms .46 (i)

35

wherei; determines the size of contexts that the algorithm cachigsrithm AO(i)
records nodes whose context size @ smaller (the test in line 22 needs to be a
bit more elaborate and check if the context size is smalken th Thus AO(0) is
identical to AOT, whileAO(w) is identical to AOG, wherev is the induced width
of the used backbone tree. For any intermediate get an intermediate level of
caching, which is space exponentialiiand whose execution time will increase as
i decreases.

6.4 Complexity

From Theorems 34 and 38 we can conclude that:

Theorem 81 For any reasoning problemAOT runs in linear space and time
O(nk™), whenm is the depth of the pseudo tree of its graphical model/argithe
maximum domain size. If the primal graph has a tree decortiposvith treewidth
w*, there exists a pseudo trgéfor which AOT isO(nk® ™ 1en).

Obviously, the algorithm for constraint satisfaction ttivauld terminate early with
first solution, would potentially be much faster than the odshe AOT algorithms,
in practice.

Based on Theorem 65 we get complexity bounds for graph segrakgorithms.

Theorem 82 For any reasoning problem, the complexity of algoritA@G is time
and space)(nk™) wherew is the induced width of the pseudo tree a@nés the
maximum domain size.

Thus the complexity of AOG can be time and space exponenmtitda treewidth,
while the complexity of any algorithm searching the OR spe&e be time and
space exponential in its pathwidth.

The space complexity can often be less than exponentiakitréewidth. This is
similar to the well known space complexity of tree decomfpasischemes which
can operate in space exponential only in the size of theesls¶tors, rather
than exponential in the cluster size. It is also similar te diead cachesoncept
presented in [12,32]. Intuitively, a node that has only am@iming arc will only
be traversed once by search, and therefore its value doasendtto be cached,
because it will never be used again. For context based gactuich nodes can be
recognized based only on the parents (or parent separa@iss)

Definition 83 (dead cache)lf X is the parent ot” in 7, andpax C pay, then
pay is adead cache

36

Given a pseudo tre@, the induced graph alon§ can generate a tree decom-
position based on the maximal cliques. The maximum sepas&e of the tree
decomposition is the separator sizejaf

Proposition 84 The space complexity of graph-caching algorithms can beced
to being exponential in the separator’s size only, whilé bging time exponential
in the treewidth, if dead caches are not recorded.

7 AND/OR Search Spaces and Other Schemes

7.1 Relationship with Variable Elimination

A comparison between Variable Elimination and memory isten AND/OR
search appears in [44]. That paper shows that Variable &ition can be under-
stood as bottom up layer by layer traversal of the contextimahAND/OR search
graph. If the graphical model is strictly positive (has ntedinism), then context
based AND/OR search and Variable Elimination are essénitintical. When de-
terminism is present, they may differ, because they travétrs AND/OR graph in
different directions and encounter determinism (and clemaalvantage of it) differ-
ently. Therefore, for graphical models with no determinis¢inere is no principled
difference between memory-intensive AND/OR search witedixariable order-
ing and inference beyond: (1) different direction of expigra common search
space (top down for search vs. bottom up for inference); ifrdnt assumption
of control strategy (depth-first for search and breadth-iinsinference).

Another interesting observation discussed in [44] is thahynknown advanced
algorithms for constraint processing and satisfiability lba explained as traversing
the AND/OR search tree.g.graph based backjumping [3,37,8]. For more details
we refer the reader to [44].

7.2 Relationship with BTD (Backtracking with Tree-Decomipms)

BTD [10] is a memory intensive method for solving constraiatisfaction prob-
lems, which combines search techniques with the notionesf ttecomposition.
This mixed approach can in fact be viewed as searching an 8RQyraph, whose
backbone pseudo tree is defined by and structured alongebdelécomposition.
What is defined in [10] astructural goodsthat is parts of the search space that
would not be visited again as soon as their consistency iwknoorresponds pre-
cisely to the decomposition of the AND/OR space at the leAND nodes, which
root independent subproblems. Not surprisingly, the time gpace guarantees of

37

B c A BC
D

A AB ABE AC BCD DF A AB AC ABE BCD DF

i

(a) (b) (©
Fig. 16. RC and AND/OR pseudo-trees

BTD are the same as those of AND/OR graph search. An optiroizagrsion of
the algorithm is presented in [11].

7.3 Relationship with Recursive Conditioning

Recursive Conditioning (RC) [12] is based on the divide and cengaradigm.
Rather than instantiating variables to obtain a tree stradtonetwork like the cycle
cutset scheme, RC instantiates variables with the purposesaking the network
into independent subproblems, on which it can recurse ubiegame technique.
The computation is driven by a data-structure catlléee which is a full binary
tree, the leaves of which correspond to the network CPTs.

It can be shown that RC explores an AND/OR space. Let's stdlt the exam-
ple in Figure 16, which shows: (a) a belief network; (b) ang fewo dtrees and
the corresponding pseudo-trees for the AND/OR search. Treeglalso show the
variables that are instantiated at some of the internal W\obee pseudo-trees can
be generated from the static ordering of RC dictated by theeedirhis ensures that
whenever RC splits the problem into independent subprobldrassame happens
in the AND/OR space. It can also be shown that the contexteohtides in RC, as
defined in [12] is identical to that in AND/OR.

7.4 Relationship with Value Elimination

Value Elimination [13] is a recently developed algorithm Bayesian inference. It
was already explained in [13] that, under static variabteedng, there is a strong
relation between Value Elimination and Variable Elimioati From our paragraph
on the relation between AND/OR search and VE we can derivedhaection be-
tween Value Elimination and AND/OR search, under statieardjs. But we can
also analyze the connection directly. Given a static ondgfifor Value Elimina-

38

tion, we can show that it actually traverses an AND/OR spabe. pseudo-tree
underlying the AND/OR search graph traversal by Value Histion can be con-
structed as the bucket tree in revergedHowever, the traversal of the AND/OR
space will be controlled by, advancing the frontier in a hybrid depth or breadth
first manner.

The most important part to analyze is the management of g&dken Value Elim-
ination computes a factor at a leaf node, it backs up the ualtiee deepest node
in the dependency sBket . TheDset is identical to the context in the AND/OR
space. For clarity reasons, we chose to have the AND/OR ittigpback up the
value to its parent in the pseudo-tree, which may be diffetean the deepest vari-
able in the context. We can however accommodate the prdpagat the value
like in Value Elimination, and maintain bookkeeping of thersnation sefset ,
and this would amount to a constant factor saving. Value iBtion continues by
unionizingDset s andSset s whenever values are propagated, and this is iden-
tical to computing the context of the corresponding nodehsa AND/OR space
(which is in fact the induced ancestor set of graph-basekijiyaping [45]).

In the presence of determinism, any backjumping strateglyreogood learning
used by Value Elimination can also be performed in the AND/§fRce. Con-
text specific structure that can be used by Value Eliminatiam also be used in
AND/OR. Dynamic variable orderings can also be used in ANDApPRces, but in
this paper we limit the discussion to static orderings.

7.5 Relationship with Case-Factor Diagrams

Case-Factor Diagrams (CFD) were introduced in [20] and reptesprobabilistic
formalism subsuming Markov random fields of bounded tredwaahd probabilistic
context free

grammars. Case-factor diagrams are based on a variant of Bidizsy(decision

diagram [17]) with both zero suppression and “factor nod€sictor nodes are
analogous to the AND nodes in an AND/OR search space. A easerfdiagram

can be viewed as an AND/OR search space in which each outgomfyjom an

OR node is explicitly labeled with an assignment of a valuea teariable. Zero
suppression is used to fix the value of variables not mentiama given solution.

Zero suppression allows the formalism to concisely repriggmbabilistic context
free grammars as functions from variable-value assignsrteribg probabilities (or
energies).

39

7.6 AO-Search Graphs and Compilation

The authors have proposed in [42] the compilation of comdtr@etworks into
AND/OR Multi-Valued Decision Diagrams (AOMDDSs). This is ssstially the
strongly minimal AND/OR graph representation of a constraietwork with re-
dundant variables removed for conciseness. The algorittan &@chieves this is
structurally similar to variable elimination. It uses atoot up traversal of a bucket
tree, and at each node arPLY operator is used to combine all the AOMDDs of
the bucket into another AOMDD. TherpPLY is similar to the OBDD apply oper-
ator [17], but is adapted for AND/OR structures. Essertiditie AOMDD extends
an OBDD (or multi-valued decision diagram) with an AND/ORusture.

7.6.1 Relationship with d-DNNF

An AND/OR structure restricted to propositional theorigsvery similar to d-
DNNF [18]. One can show a one-to-one linear translation fesmAND/OR bi-
valued tree of a propositional CNF theory into a d-DNNF. TheDX®R structure is
more restrictive allowing disjunction only on the variablealue while in d-DNNF
disjunction is allowed on more complex expressions; segffamplications of
this distinction. The AND/OR search graph is built on top graphical model and
can be viewed as a compiled scheme of a CNF into an AND/OR steic®ince an
AND/OR search can be expressed as a d-DNNF, the construgiqrseudo tree
yields a scheme for d-DNNF compilation. In other words, gigeCNF theory, the
algorithm can be applied using a pseudo tree to yield an ANDgaph, which
can be transformed in linear time and space into a d-DNNF.

Conversely, given a d-DNNF that is specialized to varialdseda disjunction for
OR nodes, it is easy to create an AND/OR graph or a tree thajuivaent hav-
ing a polynomially equivalent size. The AND/OR search grémhprobabilistic

networks is also closely related to algebraic circuits abyabilistic networks [19]
which is an extension of d-DNNF to this domain.

7.6.2 Relationship with OBDDs

The notion of minimal OR search graphs is also similar to thew concept of
Ordered Binary Decision Diagrams (OBDj) the literature of hardware and soft-
ware design and verification The properties of OBDDs wereistuextensively in
the past two decades [17,47].

It is well known that the size of the minimal OBDD is bounded exentially by
the pathwidthof the CNF’s primal graph and that the OBDD is unique for a fixed
variable ordering. Our notion of backtrack-free minimal BXDR search graphs,

if applied to CNFs, resembldésee BDDs[48]. Minimal AND/OR graphs are also

40

related to Graph-driven BDDs (called G-FBDD) [49,50] in tHa¢y are based on
a partial order expressed in a directed graph. Still, a G-FBB®an OR structure,
whose ordering is restricted to some partial orders, buncAND/OR structure.
For example, the OBDD based on a DFS ordering of a pseudo tee&+5BDD.
Some other relationships between graphical model congmil@nd OBDDs were
studied in [18].

In summary, putting OBDDs within our terminology, an OBDD regentation of
a CNF formula is a strongly minimal OR search graph where rédonnodes are
removed.

7.6.3 Relationship with Tree Driven Automata

Fargier and Vilarem [21] proposed the compilation of CSPs inte-driven au-
tomata, which have many similarities to the work in [42]. lartcular, the com-

piled tree-automata proposed there is essentially the sanige AND/OR multi-

valued decision diagram. Their main focus is the transitfrom linear automata
to tree automata (similar to that from OR to AND/OR), and thegilde savings
for tree-structured networks and hyper-trees of congsaloe to decomposition.
Their compilation approach is guided by a tree-decompositihile ours is guided
by a variable-elimination based algorithms. And, it is watlown that Variable
Elimination and cluster-tree decomposition are in prifegithe same [24].

7.7 Relationship with Disjoint Support Decomposition

The work on Disjoint Support Decompositions (DSD) [22] wasgpsed in the
area of design automation [51], as an enhancement for BDDedaathexploiting
function decomposition. The main common aspect of DSD an§BO [42] is
that both approaches show how structure decompositioneeardoited in a BDD-
like representation. DSD is focused on Boolean functions Gard exploit more
refined structural information that is inherent to Booleanchions. In contrast,
AND/OR BDDs assume only the structure conveyed in the constyeaph, and are
therefore more broadly applicable to any constraint exgioesand also to graphical
models in general. They allow a simpler and higher level sijmm that yields
graph-based bounds on the overall size of the generated AQMD

7.7.1 Relationship with Semi-Ring BDDs

In recent work [23] OBDDs were extended to semi-ring BDDs. Témaisring treat-
ment is restricted to the OR search spaces, but allows dyneamiable ordering.
It is otherwise very similar in aim and scope to our stronglyiimal AND/OR

graphs. When restricting the strongly minimal AND/OR grafth®R graphs only,

41

the two are closely related, except that we express BDDs tisen§henoy-Shafer
axiomatization that is centered on the two operation of doatibn and marginal-
ization rather then on the semi-ring formulation. Minintain the formulation in
[23] is more general allowing merging nodes having différeaiues and therefore
can capture symmetries (called interchangeability).

8 Conclusions

The primary contribution of this paper is in viewing searohdraphical models in
the context of AND/OR search spaces rather than OR spacemtiduced the
AND/OR search tree, and showed that its size can be boungedemrtially by the
depth of its pseudo tree over the graphical model. This iesmXxponential savings
for any linear space algorithms traversing the AND/OR de&iee. Specifically, if
the graphical model has treewidthi, the depth of the pseudo tree(gw* - logn).

The AND/OR search tree was extended into a graph by mergiegtichl sub-
trees. We showed that the size of the minimal AND/OR searaplyis exponential
in the treewidth while the size of the minimal OR search gregpéxponential in
the pathwidth. Since for some graphs the difference betweenvidth and path-
width is substantial€.g, balanced pseudo trees) the AND/OR representation im-
plies substantial time and space savings for memory intedgorithms traversing
the AND/OR graph. Searching the AND/OR seagthphcan be implemented by
goods caching during search, while no-good recording isrpmeted as pruning
portions of the search space independent of it being a tr@egoaph, an OR or
an AND/OR. For finding a single solution, pruning the searchcspis the most
significant action. For counting and probabilistic infezepusing AND/OR graphs
can be of much help even on top of no-good recording.

We observe that many known advanced algorithms for constpaocessing and
satisfiability can be explained as traversing the AND/ORde#ee. €.9, back-
jumping [3,37,8]). Also, recent algorithms in probabilisteasoning such as Re-
cursive Conditioning [12] and Value Elimination [13] can oge in linear space
and can be viewed as searching the AND/OR search tree. Inrttgnory inten-
sive mode, these algorithms were noted to search the ANDi@phghaving sim-
ilar time and space complexities. Also, as noted, recenk\\if)] proposes search
guided by a tree decomposition either for constraint sattgin or optimization,
and is searching the AND/OR seagtaph, whose pseudo tree is constructed along
the tree decomposition.

42

Acknowledgements

This work was supported in part by the NSF grants 11S-008652911S-0412854
and by the MURI ONR award N0O0014-00-1-0617.

References

[1] N. J. Nilsson, Principles of Atrtificial Intelligence, Tioga, Palo Alto, CFQ80.

[2] E. C. Freuder, M. J. Quinn, Taking advantage of stable sets @ihblas in constraint
satisfaction problems, in: Proceedings of the Ninth International Jointe@amce on
Artificial Intelligence (IJCAI'85), 1985, pp. 1076-1078.

[3] E. C. Freuder, M. J. Quinn, The use of lineal spanning trees tesept constraint
satisfaction problems, Tech. Rep. 87-41, University of New HampsBiteham
(1987).

[4] Z.Coallin, R. Dechter, S. Katz, On the feasibility of distributed constraattsfaction,
in: Proceedings of the Twelfth International Conference of Atrtificiaklliigence
(IICAI'91), 1991, pp. 318-324.

[5] Z. Collin, R. Dechter, S. Katz, Self-stabilizing distributed constrairtiszction,
The Chicago Journal of Theoretical Computer Science 3(4), spesia isn self-
stabilization, 1999.

[6] P. J. Modi, W. Shena, M. Tambea, M. Yokoo, Adopt: asynchrendistributed
constraint optimization with quality guarantees, Atrtificial Intelligence 161 (2005
149-180.

[71 R. Dechter, Constraint networks, Encyclopedia of Artificial Intelfige (1992) 276—
285.

[8] R. Bayardo, D. Miranker, A complexity analysis of space-boundnlied algorithms
for the constraint satisfaction problem, in: Proceedings of the Thirteeatiomal
Conference on Artificial Intelligence (AAAI'96), 1996, pp. 298-304

[9] J. Larrosa, P. Meseguer, M. Sanchez, Pseudo-tree sedilttsoift constraints, in:
Proceedings of the European Conference on Artificial Intelligencé\(i62), 2002,
pp. 131-135.

[10] C. Terrioux, P. @gou, Hybrid backtracking bounded by tree-decomposition of
constraint networks, Artificial Intelligence 146 (2003) 43-75.

[11] C. Terrioux, P. 8gou, Bounded backtracking for the valued constraint satisfaction
problems, in: Proceedings of the Ninth International Conference orcipies and
Practice of Constraint Programming (CP’03), 2003, pp. 709-723.

[12] A. Darwiche, Recursive conditioning, Artificial Intelligence 125Z11(2001) 5-41.

43

[13] F. Bacchus, S. Dalmao, T. Pitassi, Value elimination: Bayesian inferana
backtracking search, in: Proceedings of the Nineteenth Conferenténoertainty
in Artificial Intelligence (UAI'03), 2003, pp. 20-28.

[14] F. Bacchus, S. Dalmao, T. Pitassi, Algorithms and complexity results#at
and bayesian inference, in: Proceedings of the 44th Annual IEEE &sjiomp on
Foundations of Computer Science (FOCS’'03), 2003, pp. 340-351.

[15] T. Sang, F. Bacchus, P. Beam, H. Kautz, T. Pitassi, Combining coemaaching
and clause learning for effective model counting, in: Proceedings efSiéventh
International Conference on Theory and Applications of Satisfiabilitytifgs
(SAT'04), 2004.

[16] R. Dechter, Bucket elimination: A unifying framework for reasonirfytificial
Intelligence 113 (1999) 41-85.

[17] R. E. Bryant, Graph-based algorithms for boolean function maripulalEEE
Transaction on Computers 35 (1986) 677—691.

[18] A. Darwiche, P. Marquis, A knowledge compilation map, Journal ofifigial
Intelligence Research (JAIR) 17 (2002) 229-264.

[19] A. Darwiche, A differential approach to inference in Bayesiatwoeks, Journal of
the ACM 50 (3) (2003) 280—305.

[20] D. McAllester, M. Collins, F. Pereira, Case-factor diagrams farctired probabilistic
modeling, in: Proceedings of the Twentieth Conference on Uncertainty tificisd
Intelligence (UAI'04), 2004, pp. 382—-391.

[21] H. Fargier, M. Vilarem, Compiling csps into tree-driven automata forraudtve
solving, Constraints 9 (4) (2004) 263-287.

[22] V. Bertacco, M. Damiani, The disjunctive decomposition of logic funwdioin:
ICCAD, International Conference on Computer-Aided Design, 19p778-82.

[23] N. Wilson, Decision diagrams for the computation of semiring valuations, in
Proceedings of the Nineteenth International Joint Conference on Asttifitelligence
(IJCAr05), 2005, pp. 331-336.

[24] R. Dechter, J. Pearl, Tree clustering for constraint networksfidal Intelligence 38
(1989) 353-366.

[25] S. A. Arnborg, Efficient algorithms for combinatorial problems oramrs with
bounded decomposability - a survey, BIT 25 (1985) 2—-23.

[26] H. L. Bodlaender, J. R. Gilbert, Approximating treewidth, pathwidth emdimum
elimination tree-height, Tech. rep., Utrecht University (1991).

[27] H. L. Bodlaender, Treewidth: Algorithmic techniques and results,Time Twenty
Second International Symposium on Mathematical Foundations of Compuigerc®
(MFCS’97), 1997, pp. 19-36.

44

[28] R. Dechter, A new perspective on algorithms for optimizing policiesundcertainty,
in: International Conference on Artificial Intelligence Planning SystemB£A2000),
2000, pp. 72-81.

[29] P. Shenoy, Valuation-based systems for bayesian decision Bpa{yperations
Research 40 (1992) 463—-484.

[30] J. Pearl, Probabilistic Reasoning in Intelligent Systems, MorganrKamih, 1988.

[31] R. Marinescu, R. Dechter, AND/OR branch-and-bound forphgieal models, in:
Proceedings of the Nineteenth International Joint Conference on Attifitelligence
(IJCAI05), 2005, pp. 224-229.

[32] D. Allen, A. Darwiche, New advances in inference by recursieaditioning, in:
Proceedings of the Nineteenth Conference on Uncertainty in Artificiallijgace
(UAI'03), 2003, pp. 2-10.

[33] K. Kask, R. Dechter, J. Larrosa, A. Dechter, Unifying clugtee decompositions for
reasoning in graphical models, Artificial Intelligence 166 (1-2) (20@3-1193.

[34] R. Dechter, Constraint Processing, Morgan Kaufmann PubfisRé03.

[35] R. Dechter, J. Pearl, Network-based heuristics for constraiigfaction problems,
Artificial Intelligence 34 (1987) 1-38.

[36] I. Rish, R. Dechter, Resolution vs. search; two strategies fodsatnal of Automated
Reasoning 24(1/2) (2000) 225-275.

[37] R. Dechter, Enhancement schemes for constraint processaudyjuBnping, learning
and cutset decomposition, Artificial Intelligence 41 (1990) 273-312.

[38] R. J. Bayardo, R. C. Schrag, Using csp look-back techniquesoliee real world
sat instances, in: Proceedings of the Fourteenth National Confemneetificial
Intelligence (AAAI'97), 1997, pp. 203—-208.

[39] J. P. Marques-Silva, K. A. Sakalla, Grasp: A search algorithmpi@positional
satisfiability, IEEE Transaction on Computers 48 (5) (1999) 506-521.

[40] N. Robertson, P. Seymour, Graph minors i. excluding a forespdiih. Theory, Ser.
B 35(1983) 39-61.

[41] D. Bienstock, N. Robertson, P. Seymour, R. Thomas, Quickly ekafua forest, J.
Combin. Theory Ser. B 52 (1991) 274-283.

[42] R. Mateescu, R. Dechter, Compiling constraint networks into AND/ORtimu
valued decision diagrams (AOMDDSs), in: Proceedings of the Twelfth hatigrnal
Conference on Principles and Practice of Constraint Programming §§2006, pp.
329-343.

[43] D. H. Frost, Algorithms and heuristics for constraint satisfactiorbfemms, Tech.
rep., Ph.D. thesis, Information and Computer Science, University of @Qaiifdrvine
(1997).

45

[44] R. Mateescu, R. Dechter, The relationship between AND/OR seamdhvariable
elimination, in: Proceedings of the Twenty First Conference on Uncertaimty
Artificial Intelligence (UAI'05), 2005, pp. 380-387.

[45] R. Dechter, D. Frost, Backjump-based backtracking for coimstraatisfaction
problems, Artificial Intelligence 136(2) (2002) 147-188.

[46] J. Huang, A. Darwiche, Dpll with a trace: From sat to knowledgmgitation, in:
Proceedings of the Nineteenth International Joint Conference on Attifitelligence
(IJCAI'05), 2005, pp. 156-162.

[47] K. L. McMillan, Symbolic Model Checking, Kluwer Academic, 1993.

[48] K. L. McMillan, Hierarchical representation of discrete functionstwapplication to
model checking, in: Computer Aided Verification, 1994, pp. 41-54.

[49] J. Gergov, C. Meinel, Efficient boolean manipulation with obdds caexiended to
fbdds, IEEE Trans. Computers 43 (1994) 1197-1209.

[50] D. Sieling, I. Wegner, Graph driven BDDs - a new data structorédolean functions,
Theoretical Computer Science 141 (1994) 283-310.

[51] R. Brayton, C. McMullen, The decomposition and factorization of leao
expressions, in: ISCAS, Proceedings of the International Symposw@irouits and
Systems, 1982, pp. 49-54.

A Proofs

Proof of Theorem 29 (correctness)

1) By definition, all the arcs of-(R) are consistent. Therefore, any solution tree
of S7(R) denotes a solution fdR whose assignments are all the labels of the AND
nodes in the solution tree. Also, by definition of the AND/QRBg, every solution
of R must corresponds to a solution subtre&j(R). 2) By construction, the set
of arcs in every solution tree have weights such that eacttifmof £’ contribute

to one and only one weight via the combination operator.¢&the total weight of
the tree is derived by combination, it yields the cost of aisoh.

Proof of Theorem 30 (size bounds of AND/OR search tree)

Let p be an arbitrary directed path in the DFS tfEdhat starts with the root and
ends with a leaf. This path induces an OR search subtree whiobluded in the
AND/OR search tre€r, and its size i) (k™) whenm bounds the path length.
The DFS tree] is covered by such directed paths, whose lengths are bounded
by m. The union of their individual search trees covers the wAd®/OR search
tree S7, where every distinct full path in the AND/OR tree appearaatly once,
and therefore, the size of the AND/OR search tree is bounged(b- £™). Since

[<nandl <™, it concludes the proof.

46

Proof of Proposition 31

The proof is similar to that of Theorem 30, only each nodedrdmrtes with its
actual domain size rather than the maximal one, and each@atkeaf in7 con-
tributes with its actual depth, rather than the maximal one.

Proof of Theorem 34 (properties of AND/OR search trees)

All the arguments in the proof for Theorem 29 carry immedyate AND/OR
search spaces that are defined relative to a pseudo tresvitgkehe bound size
argument in the proof of Theorem 30 holds relative to theldepthe more general
pseudo tree.

Proof of Proposition 42

First, we should note that if is a pseudo tree oR and if d is a DFS ordering
of 7, thenT is also a pseudo tree &,;(R) and therefore5,(E,(R)) is a faith-
ful representation of/;(R). E4(R) is equivalent toR, thereforeS+(E4(R)) is a
supergraph oBF(R). We only need to show that;(E,(R)) does not contain
any dead-ends, in other words any consistent partial asgghmust be extend-
able to a solution ofR. Adaptive consistency makes,(R) strongly directional
w*(d) consistent, wherev*(d) is the induced width of? along orderingd [35].

It follows from this that eithefR is inconsistent, in which case the proposition is
trivially satisfied, both trees being empty, or else any iast partial assignment
in Sr(E4(R)) can be extended to the next variableljrand therefore no dead-end
is encountered.

Proof of Proposition 48 (minimal graph)

(1) All we need to show is that theergeoperator is not dependant on the order
of applying the operator. Mergeable nodes can only appeheaame level in the
AND/OR graph. Looking at the initial AND/OR graph, beforeetmerge operator
is applied, we can identify all the mergeable nodes per l&Vel prove the propo-
sition by showing that if two nodes are initially mergealtheen they must end up
merged after the operator is applied exhaustively to thphgrahis can be shown
by induction over the level where the nodes appear.

Base caself the two nodes appear at the leaf level (levglthen it is obvious that
the exhaustive merge has to merge them at some point.

Inductive stepSuppose our claim is true for nodes up to leiveind two nodes,
andn, at levelk + 1 are initially identified as mergeable. This implies that; in
tially, their corresponding children are identified as neagle. These children are
at levelk, so it follows from the inductive hypothesis that the exhismesmerge has
to merge the corresponding children. This in fact impliex titodes:; andn, will
root the same subgraph when the exhaustive merge ends,yshate to end up
merged. Since the graph only becomes smaller by mergingdlasthe above the
process of merging has to stop at a fix point.

a7

(2) Analogous to (1). (3) If the nodes can be merged, it foddtat the subgraphs
are identical, which implies that they define the same carktd subproblems, and
therefore the nodes can also be unified.

Proof of Proposition 52

Parts 1 and 2 follow from definitions. Regarding claim 3, fog tiraph coloring
problem in Figure 1(a), the minimal AND-OR search graph entical to its ex-
plicit AND/OR search graphz . (See Figure 11).

Proof of Proposition 53

In tree models, the functions are only over two variablegré&fore, after an assign-
ment(X,) is made and the appropriate weight is given to the arc fkota (X, x),
the variableX and all its ancestors in the pseudo tree do not contributeyt@aec
weight below in the AND/OR search tree. Therefore, the domued subproblems
rooted at any AND node labeled By, =) depend only on the assignment¥fto

x (and do not depend on any other assignment on the currenjt patit follows
that all the AND nodes labeled QX =) can be merged. Since the equivalence of
AND/OR search spaces is preserved by merge, the explicit/&Dsearch graph
is equivalent taSy. At each AND level in the explicit graph there are at mbst
values, and therefore its size(§nk).

Proof of Theorem 54

The size of an explicit AND/ORyraph of a tree model was shown to I6&n - k)
(Proposition 52), yielding))(r - k*") size for the explicit AND/OR graph, because
k is replaced by:”", the number of possible assignments to a cluster of scope siz
w*, andr replaces..

Proof of Proposition 56

(1) The induced width of7 relative to a given pseudo tree is always greater than
w*, by definition ofw*. It remains to show that there exists a pseudo fregich
thatwr(G) = w*. Consider an ordering that gives the induced width*. The
orderingd defines a bucket treBT (see Definition 36), which can also be viewed
as a pseudo tree for the AND/OR search, therefose(G) = w*. (2) Analogous

to (1).

Proof of Proposition 60
Both claims follow directly from Definitions 58 and 59.

Proof of Theorem 61 (context based merge)
(1) The conditioned graphical models (Definition 10yatandn, are defined by

48

the functions whose scopes are not fully assigned,pyandr,,,. Sincen; andn,
have the same labelingX;, x;), it follows thatvar(r,,) = var(m,,), and there-
fore the two conditioned subproblems are based on the saméfsactions, let’s
call it F\W(ﬂnl). The scopes of functions iF|W(MI) determine connections in
the primal graph between ancestors\gfand its descendants. Therefore, the only
relevant variables that define the restricted subprobleathase irpas;, and equa-
tion 1 ensures that they have identical assignments. tiMalithat the conditioned
subproblems are identical, ang andn, can be merged.

(2) Analogous to (1).

Proof of Theorem 65

The number of different nodes in the context minimal AND/CRrsh graph('r,
does not exceed the number of contexts. From equations 1\aad@e that, for any
variable, the number of contexts is bounded by the numbessdiple instantiations
of the largest context it” *, which is bounded by (k®). For all then variables,
the boundD(n - k%) follows.

Proof of Theorem 67

We can generat€'r using depth-first or breadth first search which caches aksod
via their contexts and avoids generating duplicate searfdrehe same contexts.
Therefore, the generation of the search graph is lineas siae, which is exponen-
tial in w and linear im.

Proof of Proposition 73

Let By = BFr(R,) and B, = BFr(R,) be the corresponding backtrack-free
AND/OR search trees dR, andR,, respectively. NamelyBFr(R1) C Sr(R1),
BF7(Ry) C S7(R2). Clearly they are subtrees of the same full AND/OR tree. We
claim that a path appears By iff it appears inBs. If not, assume without loss of
generality that there exists a pathf, 7, which does not exists iB;. Since this is

a backtrack-free search tree, every path appears in soontesand therefore there

is a solution subtree i, that includesr which does not exist i3,, contradicting

the assumption that, andR, have the same set of solutions. The second part has
an identical proof based on flat functions (see introdudiio&ection 3).

Proof of Theorem 74

From Proposition 73 we know tha®,; and R, have the same backtrack-free
AND/OR tree. Since the backtrack-free AND/OR search treeafbackbone tree
T uniquely determines the strongly minimal AND/OR graph, ttiorem follows.

Proof of Proposition 78 (recursive value computation)
The proof is by induction over the number of levels in the AR graph.

49

Basis stepif the graph has only two levels, one OR and one AND, then taercl
is straightforward because the AND leaves are labeled byf‘ddnsistent and the
OR node accumulates “1” or the sum of consistent values heot®” if there is
no consistent value.

Inductive stepAssuming the proposition holds farpairs of levels (one AND and
one OR in each pair), proving it holds fbr- 1 pairs of levels is similar to the basis
step, only the labeling of the top AND nodes is the sum of sohst below in the
case of counting.

Proof of Proposition 80

The proof is again by induction, similar to the proof of Prejion 78.

Basis stepif the model has only one variable, then the claim is obvious.

Inductive step:Let X be an OR node in the graph. Assume that the value of
each OR node below it is the solution to the reasoning proldemesponding

to the conditioned subproblem rooted by it. We need to prbe¢ the value of

X will be the solution to the reasoning problem of the condiid subproblem
rooted by X. SupposeX has childrenYi,...,Y,, in the pseudo tree. We have
v(Y:) =Vviupesey;) gerly, f, where Desc(Y;) are the descendants df, and

the functions are restrlcted on the current path. Each AN@erd’, x) will com-
bine the values below. Because the S€ts) Desc(Y;) are pairwise disjoint, the
marginalization operator commutes with the combinatioarafor and we get:

’U((Xl' ®UYUDesc ® f L (YiuDesc(Y; ® f

feF|W feF\M

The values)((X, z)) are then combined with the values of the buckeXofwhich

are the weightsu x (x)). The functions that appear in the bucket%fdo not

contribute to any of the weights belayy, and therefore the marginalization over
™ (Y; U Desc(Y;)) can commute with the combination that we have just de-

scribed:

W(X (X)) ®U(<X7 ZI}>) UU (Y;UDesc(Y3)) W(x(X,z)) ®(® f)

fEF|ny

Finally, we get:

v(X) = Ix wixxay @ (X, 2) = Uxupesex) @ f-

fEF |z

Proof of Proposition 84 A bucket tree can be built by having a cluster for each
variable X; and its parentga;, and following the structure of the pseudo trEe
Some of the clusters may not be maximal, and they have a oneetcarespon-
dence to the variables with dead caches. The pajenthat are not dead caches
correspond to separators between maximal clusters in ttleebtree.

50

