Advances in AND/OR Branch-and-Bound Search for
Constraint Optimization

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum dechter }@cs. uci . edu

Abstract. AND/OR search spacdsave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphicalels. The main
virtue of this representation is its sensitivity to the stuwe of the model, which
can translate into exponential time savings for searchriéiigos. In [1] we intro-
duced a linear space AND/OR Branch-and-Bound (AOBB) seactieme that
explores the AND/OR search tree for solving optimizatiosk&a In this paper
we extend the algorithm by equipping it with a context-baaddptive caching
scheme similar to good and nogood recording, thus it explaneAND/OR graph
rather than the AND/OR tree. We also improve the algorithmubing a new
heuristic for generating close to optimal height pseudegr based on a well
known recursive decomposition of the hypergraph repraesient We illustrate
our results using a number of benchmark networks, inclutiegrery challeng-
ing ones that arise in genetic linkage analysis.

1 Introduction

Graphical models such as Bayesian networks or constraiwbnies are a widely used
representation framework for reasoning with probabdistnd deterministic informa-
tion. These models use graphs to capture conditional imdbgreies between variables,
allowing a concise representation of the knowledge as veebkfficient graph-based
query processing algorithms. Optimization tasks such difinthe most likely state of
a Bayesian network or finding a solution that violates thetleamber of constraints in
a constraint network, are typically tackled with eitlsgrarchor inferencealgorithms.
Search methods (e.g. depth-first Branch-and-Bound, lissséarch) are time expo-
nential in the number of variables and can operate in polyabspace. Inference al-
gorithms (e.g. variable elimination, tree-clustering ime and space exponential in a
topological parameter calldgdee width If the tree width is large, the high space com-
plexity makes the latter methods impractical in many cases.

The AND/OR search space for graphical models [2] is a newtipduced frame-
work for search that is sensitive to the independenciesamthdel, often resulting in
exponentially reduced complexities. It is based on a pseradnthat captures indepen-
dencies in the graphical model, resulting in a search trpemential in the depth of the
pseudo-tree, rather than in the number of variables.

In [1] we presented a linear space Branch-and-Bound schbateekplores the
AND/OR search tree for solving optimization tasks in graghimodels, called AOBB.

In this paper we improve the AOBB scheme significantly by gsiaching schemes.
Namely, we extend the algorithm to explore the AND/OR gragther than the AND/OR
tree, using a flexible caching mechanism that can adapt toamelimitations. The
caching scheme is based@ntextsand is similar to good and nogood recording and re-
cent schemes appearing in Recursive Conditioning and ¥aaektracking [3-5]. We
also introduce a new heuristic for generating close to agthmight pseudo-trees based
on the recursive decomposition of the problem’s hypergraphesentation. A similar
idea was already exploited in [4] for constructing low-viidtecomposition trees. The
efficiency of the proposed search methods also depends attheacy of the guid-
ing heuristic function, which is based on the mini-buckeiragimation or maintaining
soft arc-consistency. We focus our empirical evaluatiortivem common optimization
tasks such as solving Weighted CSPs [6] and finding the Madid®e Explanation in
Bayesian networks [7], and illustrate our results over &waof benchmark networks,
including the very challenging ones that arise in the fielderetic linkage analysis.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization ProbledCOP) is a six-tuplé® = (X, D, F,®, |, Z),
whereX = {X;,..., X, } is a set of variablesD = {Ds,...,D,} is a set of fi-
nite domains andc = {fi,..., fin} is a set of constraints. Constraints can be either
soft (cost functions) otard (sets of allowed tuples). Without loss of generality we
assume that hard constraints are represented as (bi-yalastfunctions. Allowed
and forbidden tuples have codtand oo, respectively. The scope of functigfy, de-
notedscope(f;) C X, is the set of arguments ¢f. The operator®x and | can be
defined using the semi-ring framework [6], but in this paperagsume that; f; is
a combinationoperator®; f; € {I[; fi,>.; fi} andl, f is aneliminationoperator,
Uy f € {mazxs_v f,ming_y [}, whereS is the scope of functiorf andY C X. The
scope of), fisY.

An optimization task is defined by(Z) = |} ,®*, f;, whereZ C X. A global
optimizationis the task of finding the best global cost, namg&ly= (). For simplicity
we will develop our work assuming a COP instance wgitimmatiorandminimization
as combination and elimination operators, yielding a dl@oat function defined by
f(X) =minx 3570, fi

Given a COP instance, itgimal graphG associates each variable with a node and
connects any two nodes whose variables appear in the scdipe sdme (hard or soft)
constraint.

2.2 AND/OR Search Spaces

The classical way to do search is to instantiate variablesaira time, following a
static/dynamic variable ordering. In the simplest cass,ftocess defines a search tree,
whose nodes represent states in the space of partial assigmnihe traditional search
space does not capture the structure of the underlying gapmodel. Introducing

g
O)

g e ey

(©

Fig. 1. The AND/OR search space.

AND states into the search space can capture the structaoeng®sing the problem
into independent subproblems by conditioning on value&][8The AND/OR search
space is defined using a backbgseudo-tree

Definition 1 (pseudo-tree) Given an undirected grap& = (V, E), a directed rooted
treeT = (V, E’) defined on all its nodes is callggbeudo-tred any arc of G which is
not included inE’ is a back-arc, namely it connects a node to an ancestdt.in

AND/OR Search Trees Given a COP instance = (X, D, F), its primal graph& and

a pseudo-tred” of G, the associated AND/OR search tr8g has alternating levels
of OR nodes and AND nodes. The OR nodes are labdle@nd correspond to the
variables. The AND nodes are labelédl;, z;) and correspond to value assignments
in the domains of the variables. The structure of the AND/@d® tis based on the
underlying pseudo-tree arrangem&naf G. The root of the AND/OR search tree is an
OR node, labeled with the root @f.

The children of an OR nod&; are AND nodes labeled with assignmefls;, x;),
consistent along the path from the ropith(z;) = ((X1,z1), ..., (Xi—1,2:-1)). The
children of an AND nod€X;, z;) are OR nodes labeled with the children of variable
X, in T. In other words, the OR states represent alternative wagsleing the prob-
lem, whereas the AND states represent problem decompositio independent sub-
problems, all of which need be solved. When the pseudo4raechain, the AND/OR
search tree coincides with the regular OR search tree.

Example 1.Figure 1(a) shows the pseudo-tree arrangement of a prinaghgof a
COP instance, together with the back-arcs (dotted lindguré 1(b) shows a partial
AND/OR search tree based on the pseudo-tree, for bi-valagdbles.

The AND/OR search tree can be traversed by a depth-firstisadgorithm that is
guaranteed to have a time complexity exponential in thehdepthe pseudo-tree and
can operate in linear time. The arcs frokj to (X, z;) are annotated by appropri-
atelabelsof the cost functions iF. The nodes inSr can be associated withalues
accumulating the result of the computation resulted froenstibtree below.

Definition 2 (label). Thelabel[(X;, (X;, z;)) of the arc from the OR nod¥; to the
AND node(X;, x;) is defined as the sum of all the cost functions values whog®sco
includesX; and is fully assigned alongath(x;).

Definition 3 (value). Thevaluewv(n) of a noden € St is defined recursively as fol-
lows: (i) if n = (X, z;) is aterminal AND node then(n) = I(X;, (X, z;)); (i) if n =
(Xi,z;) isaninternal AND node then(n) = (X5, (Xi, 2i))+ 32,0 csuce(n) Y (1); (i)

if n» = X is an internal OR node them(n) = min, ¢ sucem)v(n'), wheresucc(n) are
the children ofn in St.

Clearly, the value of each node can be computed recursiveiy, leaves to root.

Proposition 1. Given an AND/OR search treer of a COP instancé® = (X, D, F),

the valuev(n) of a noden € Sy is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along thetpfrom root ton. If n is
the root ofSt, thenv(n) is the minimal cost solution tB.

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledifiable When unifiable nodes are merged, the search
tree becomes a graph and its size becomes smaller. A degtthefarch algorithm can
explore the AND/OR graph using additional memory. The dthor can be modified

to cachepreviously computed results and retrieve them when the sades are en-
countered again. Some unifiable nodes can be identified loastircontexts

Definition 4 (context).Given a COP instanc® = (X, D, F) and the corresponding
AND/OR search treéSt relative to a pseudo-tre&’, the contextof any AND node
(Xi,x;) € St, denoted byontext(X;), is defined as the set of ancestorsgfin the
induced pseudo-tree, including;, that are connected to descendantsgf

It is easy to verify that the context of; d-separates [7] the subproblem below
X; from the rest of the network. Theontext-minimaAND/OR graph is obtained by
merging all the context unifiable AND nodes. For illustrati@onsider the context-
minimal graph in Figure 1(c) of the pseudo-tree from Figui@) 1The contexts of the
nodes can be read from the pseudo-tree, as follawgext(A) = { A}, context(B) =
{B, A}, context(C) = {C, B, A}, context(D) = {D}, context(E) = {E, B, A}
andcontext(F) = {F} (for more information see [2]).

3 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently introducedlhas a depth-first
Branch-and-Bound that explores an AND/OR search tree fairgpoptimization tasks
in graphical models. Our empirical evaluation demonstratearly the improved per-
formance of the AND/OR tree search over the traditional @R search. In this section
we move from searching the AND/OR tree to searching AND/OBpbs. The new
algorithm, denoted here by AOBB(augments AOBB with a flexible context-based
caching scheme that stores the results in a cache afterghedimputation and retrieves
them when the same nodes are encountered again.

3.1 Caching Schemes

Traversing an AND/OR search graph requires caching somesddring search and
the ability to recognize unifiable nodes. The caching scheiased orontextswhich

are precomputed from the pseudo-tree. As it was mentiondiéreghe context of an
AND node(X;, z;) is the set of ancestors d&f; in the induced pseudo-tree, including
X, that are connected to descendantXefAlgorithm AOBB(j) stores nodes at vari-
ables whose context size is smaller than or equgl(talled cache bound grbound).

It is easy to see that whehequals the induced width of the pseudo-tree the algorithm
explores the minimal context AND/OR graph.

This rather straightforward scheme can be further improVé@ second caching
scheme is inspired by the cutset conditioning ideas from [8}s assume the con-
text of a nodeXy, is context(Xy) = {Xy, ..., Xt }, where|context(X})| > j. Dur-
ing the search, when variablgs(,, ..., X;_;} are assigned, they can be viewed as
a cutset. Therefore, the problem rootedX5t _;,; can be solved in isolation, once
variables{ X1, ..., X;_,} are assigned. In the subproblem, conditioned on the values
{z1,...,x5—;}, context(Xy) is {Xk—j+1,.., Xk}, SO it can be stored within thg
bounded space restrictions. However, when AOBB¢tracts taX,_; or above, all the
nodes cached at variahl, need to be discarded. This caching scheme requires only a
linear increase in additional memory.

The usual way of caching is to have a table for each variabléedtcache table
which records the context. However, some tables might ngeecache hits. We call
thesedead-cachesln the AND/OR search graph, dead-caches appear at nodes tha
have only one incoming arc. AOBBY needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be de>ry inspecting the
pseudo-tree. Namely, if the context of a node includes thiéd parent, then there is no
need to store anything for that node, because it would be@dceehe. For illustration,
consider the AND/OR search graph from Figure 1(c). N&dis a dead-cache because
its context includes the context of node which is its parent in the pseudo-tree.

3.2 Lower Bounds on Partial Trees

At any stage during search, any nodalong the current path roots a curreuatrtial
solution subtregdenoted byG,;(n), to the corresponding subproblem. By the nature
of the search proces&i,(n) must be connected, must contain its raoand will
have afrontier containing all those nodes that were generated but not yetreled.
The leaves of7,,(n) are callectip nodes. Furthermore, we assume that there exists
a staticheuristic evaluation functioh(n) underestimating(n) that can be computed
efficiently when node is first generated.

Given the current partially explored AND/OR search graph, the active path
AP(t) is the path of assignments from the root®f to the current tip node Thein-
side contexin(AP) of AP(t) contains all nodes that were fully evaluated and are chil-
dren of nodes otdP(t). Theoutside contextut(AP) of AP(t), contains all the fron-
tier nodes that are children of the nodes4R(¢). Theactive partial subtreedP7 (n)
rooted at a node € AP(t) is the subtree ofis,;(n) containing the nodes aAP(t)
betweem andt together with their OR children. We can define nodyaamic heuristic
functionof a noden relative to AP7 (n), as follows.

ALGORITHM : AOBB(j, P, T)
Input: ACOPP = (X,D,F,+,min), pseudo-tred’, root X, cache bound.
Output: Minimal cost solution tdP.

@)
)

@)

(4)

©)

Initialize OPEN by adding OR nodg, to it; PATH «— ¢;
Initialize cache tables for every variahlé such thatcontezt(X;)| < j;
if (OPEN ==¢)
return v(Xo);
Remove the first node in OPEN; Addn to PATH;
Retrieve cached values as follows:
if (n is AND node, denote. = (X, z;))
if (econtext(X;)| < j)

A—{filfi € FA(Xi€var(f;)) A (var(f;) CPATH)};
UXiy (Xiyxa)) < D04 [

v(n) — cache(Xi,xi);

goto step(5);

Try to prune the subtree belawas follows:
foreachm € PAT H, wherem is an ancestor of
it (fa(m) = ub(m))

v(n) <« oo; (dead-end)
goto step (4);

Expandn generating all its successors as follows:
suce(n) «— ¢,
if (n is OR node, denote = X;)

v(n) «— oo;

foreachvaluezx; € D;

h({Xi,zi)) — LB(X:, 1),
suce(n) «— suce(n) U {{(X;,z:) };

else(n is AND node, denoter = (X, x;))
A {fi | ; € F A(Xi € var(f;) A (var(f;) C PATH)};
’U(TL) —0; l(X’i7 <Xb7w2>) — ZA fj;
foreachvariableY € chr(X;)

h(Y) — LB(Y);
suce(n) — {Y'};

Add succ(n) on top of OPEN;
while succ(n) == ¢
if (n is OR node)

v(Parent(n)) « v(Parent(n)) + v(n);

else(n is AND node)

cache(X;,z;) «— v(n);
v(n) — v(n) + (X, (X, a));
v(Parent(n)) «— min(v(Parent(n)),v(n));

succ(Parent(n)) <« succ(Parent(n)) — {n};
PATH «— PATH - {n};
n <« Last(PATH);

(6) gotostep (2);

Fig. 2. AOBB(5): AND/OR Branch-and-Bound graph search.

Definition 5 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functiain, f,(n), is defined recursively
as follows: (i) if APT (n) consists only of a single node and ifn € in(AP) then
fn(n) = v(n) else fr(n) = h(n); (i) if n = (X;,z;) is an AND node, having OR
childrenmy, ..., my, thenf,(n) = maz(h(n), [(X;, (X;, ;) + Zle fr(my)); (i) if

n = X; is an OR node, having an AND child, thenf;,(n) = maxz(h(n), fi(m)).

We can show that:

Theorem 1. (1) f»(n) is alower boundon the minimal cost solution to the subproblem
rooted atn, namelyf,(n) < v(n); (2) fn(n) > h(n), namely the dynamic heuristic

function is tighter than the static one.

3.3 AND/OR Branch-and-Bound with Caching

A search algorithm traversing the AND/OR search space clnlete alower bound
onwv(n) of a noden on the active path, by using,(n). It can also compute ampper
boundonv(n), based on the portion of the search space beldhat has already been
explored. The upper bound(n) onwv(n) is the current minimal cost solution subtree
rooted atn.

The depth-firsAND/OR Branch-and-Bourgtaph search algorithm withbounded
caching is described in Figure 2. A list called OPEN simuddke recursion stack. The
list PATH maintains the current assignment on the activh.pgairent(n) refers to the
predecessor of in the AND/OR search grapbucc denotes the set of successors of
a node in the AND/OR search graph arid-(X;) denotes the children of variablé;
in the pseudo-tre®. Procedure LBf) computes the static heuristic estimate:) of
v(n) for any noden.

In the initialization step, AOBBJ) computes the context of every variable. A cache
table is created for every context whose size is less thagualdo the cache bound
In Step (3), the algorithm attempts to retrieve the reswathed at the AND nodes. If a
valid cache entryy is found for noden = (X;, z;), namely the subproblem rooted at
n has already been solved for the current instantiation of#niables incontext(X;),
thenu(n) is set too and the search continues with Step (4), thus avoidiagxpansion.

Step (4) is where the search goes forward and expands ditgytevels of OR and
AND nodes. Upon the expansion of the algorithm successively updates tbheer
bound functionf,, (m) for every ancestom of n along the active path, and prunes the
subgraph below: if, for somem, f,(m) > ub(m).

Step (5) is where the value functions are propagated backwduis is triggered
when a node has an empty set of successors and it typicalpehapvhen the node’s
descendants are all evaluated.

Theorem 2. AOBB(j) is sound and complete for COP.

4 Heuristics

In this section we describe briefly several schemes for gingrstatic heuristic esti-
matesh(n), based on bounded inference and soft arc-consistency.

4.1 Mini-Bucket Heuristics

In this section we briefly describe two general schemes foegiing heuristic es-
timates that can guide Branch-and-Bound search, and whélbased on the Mini-
Bucket approximation. Mini-Bucket Elimination (MBE) [1@ an approximation al-
gorithm designed to avoid the high time and space compl@fiBucket Elimination
(BE) [11], by partitioning large buckets into smaller sulssealledmini bucketseach
containing at most (calledi-bound) distinct variables, and which are processed inde-
pendently. The heuristics generators are therefore paesized by the Mini-Bucket
i-bound, thus allowing for a controllable trade-off betwdweuristic strength and its
overhead.

Static Mini-Bucket Heuristics (sMB) In the past, [12] showed that the intermediate
functions generated by the Mini-Bucket algorithm MBE¢an be used to compute a
heuristic function, that underestimates the minimal castresion of the current partial
assignment in a regular OR search tree. In [1] we extendeddiba to AND/OR search
spaces.

Dynamic Mini-Bucket Heuristics (dMB) The dynamic version of the mini-bucket
heuristics has been recently proposed in [1] for both OR aN®/OR search spaces.
The heuristic lower-bound estimate is computed by the Bincket algorithm MBE{),

at each node in the search space, restricted to the subproblem roote@iadl subject
to the current partial instantiation (for more details sgg.

4.2 Directional Arc-Consistency Heuristics

Maintaining full directional arc-consistency (FDAC) [18hd the more recent existen-
tial directional arc-consistency (EDAC) [14] provide a paful mechanism for gen-
erating high quality lower bound heuristic estimates oftiaimal cost extension of
any partial assignment in a regular OR search tree. In theegpbaf AND/OR search
spaces we showed in [1] that it is possible to maintain arsisbency separately, on
independent components rooted at AND nodes, thus complotiaglower-bounds on
the minimal cost solutions to the respective subproblems.

5 Finding a Pseudo-Tree

The performance of AND/OR tree/graph search algorithmsfisénced by the quality
of the pseudo-tree. Finding the minimal depth/context deduvee is a hard problem
[8,15]. In the following we describe two heuristics for geating pseudo-trees with
relatively small heights/contexts.

5.1 Min-Fill Heuristic

Min-Fill [16] is one of the best and most widely used heucsstfor creating small
induced width elimination orders. An ordering is generdtgglacing the variable with

the smallestill set(i.e. number of induced edges that need be added to fullyexxirine
neighbors of a node) at the end of the ordering, connectlraj &b neighbors and then
removing the variable from the graph. The process continumis all variables have
been eliminated. Once an elimination order is given, theiggdree can be extracted
as a depth-first traversal of the min-fill induced graph,tstgrwith the variable that
initiated the ordering, always preferring as successonofi®e the earliest adjacent node
in the induced graph. An ordering uniquely determines a gadtee. This approach
was first used by [15].

5.2 Hypergraph Separator Decomposition

An alternative heuristic for generating a low height batthpseudo-tree arrangement
is based on recursive decomposition. Given a COP instBneg(X', D, F) we convert
it into a hypergraphH = (V, E) where each constraint it is a vertexv; € V and
each variable irt’ is an edge:; € E connecting all the constraints in which it appears.

Definition 6 (separators).Given a hypergrapti{ = (V, E), a hypergraph separator
decompositiornis a triple (H, S, R) where: (i)S C E, and the removal of separates
‘H into k disconnected components (subgraphs)..., Hy; (ii) R is a relation over the
size of the disjoint subgraphs (i.e. balance factor).

It is well known that the problem of generating optimal hygraph partitions is
hard. However heuristic approaches were developed ovgetirs. A good approach is
packaged imMeTi S*. We will use this software as a basis for our pseudo-treergene
tion. This idea and software were also used by [4] to genératevidth decomposition
trees. Generating a pseudo-tfBdor P usinghMeTi Sis fairly straightforward. The
vertices of the hypergraph are partitioned into two baldr{oeughly equal-sized) parts,
denoted byH,. r; andH..;4n: respectively, while minimizing the number of hyperedges
across. A small number of crossing edges translates intoadl anmber of variables
shared between the two sets of functioRs. s andH,.;4»: are then each recursively
partitioned in the same fashion, until they contain a singlgex. The result of this
process is a tree of hypergraph separators which is alsowalpgece of the original
model since each separator corresponds to a subset oflesrcained together.

In Tablel we computed the height of the pseudo-tree obtaiitbdhe hypergraph
and minfill heuristics for 10 belief networks from the UAI Resitory? and 10 constraint
networks derived from the SPOT5 benchmark [17]. For eachdiséree we also com-
puted the induced width of the elimination order obtainearfithe depth-first traversal
of the tree. We observe that the minfill heuristic generategi-width elimination or-
ders, while the hypergraph heuristic produces much smiaflieyht pseudo-trees. The
hypergraph pseudo-trees appear to be favorable for treehsalgorithms, while the
minfill pseudo-trees, which minimize the context size, amrerappropriate for graph
search algorithms.

! http://www-users.cs.umn.edu/ karypis/metis/hmetis
2 http://lwww.cs.huiji.ac.il/labs/compbio/Repository

Networkl hypergrapil min-fill ||Network| hypergraph min-fill

width heightwidth heigh width heightwidth heigh
barley 7 13| 7 23 ||spot5 47 152| 39 204
diabeteg 7 16 | 4 77 ||spot28 | 108 138| 79 199
link 21 40 | 15 53 |lspot29 | 16 23 | 14 42
mildew | 5 9 4 13 ||spot42 | 36 48 | 33 87
muninl| 12 17 | 12 29 ||lspot54 | 12 16 | 11 33
munin2 | 9 16 | 9 32 |lspot404 19 26 | 19 42
munin3| 9 15| 9 30 (|spot408 47 52 | 35 97
munind | 9 18 9 30 (lspot503 11 20| 9 39
water 11 16 | 10 15 |[spot505 29 42 | 23 74
pigs 11 20 | 11 26 |[spot507 70 122| 59 160

Table 1. Bayesian Networks Repository (left); SPOT5 benchmarlght)i

6 Experiments

In this section we evaluate the performance of the new ANDED&ch-and-Bound
graph search schemes on two common optimization problerhséng Weighted CSPs
(WCSP) and finding the Most Probable Explanation (MPE) ind&agn networks

Weighted CSK6] extends the classic CSP formalism with so-calleft constraints
which assign a positive integer penalty cost to each fosriddple (allowed tuples have
cost 0). The goal is to find a complete assignment with mininaggregated cost.

Bayesian Networkprovide a formalism for reasoning about partial beliefsemd
conditions of uncertainty [7]. They are defined by a direceyclic graph over nodes
representing variables of interest. The arcs indicatexfstamce of direct causal influ-
ences between linked variables quantified by conditior@ability tables (CPTs) that
are attached to each family of parents-child nodes in thearé&t The MPE problem is
the task of finding a complete assignment with maximum priibathat is consistent
with the evidence. It easy to see that MPE can be triviallyregged as a WCSP by
replacing the probability tables by their negative lodarit

We consider three classes of AND/OR Branch-and-Bound &asch algorithms,
each one of them using a specific heuristics generator asvaliClasses-AOMB(¢)
andd-AOMB(:) are guided by static/dynamic mini-bucket heuristics,J&’sAlOMFDAC
maintains full directional arc-consistency (FDAC). Weoatensider the graph versions
of these algorithms, denoted ByAOMB(i,5), d-AOMB(4,7) and AOMFDAC(), re-
spectively, which perform caching only at the variablesvidiich the context size is
smaller than or equal to the cache boynd

In all our experiments, the competing algorithms were ietsi to a static variable
ordering resulted from a depth-first traversal of the psewe®. We report the average
effort, as CPU time (in seconds) and number of visited nodgsiired for proving
optimality of the solution. For all test instances we recitrel number of variables (n),
domain size (d), number of functions (c), induced width (ard height of the pseudo-

8 Experiments were done on a 2.4GHz Pentium IV with 1GB of RAMning Windows XP.

hypergraph minfill
Network | Algorithm | (w*,h) no cache cache (w*,h) no cache cache
time nodes time node time nodes time nodes
29b [AOMFDAC|(16,22)5.938 170,82R1.492 40,42§(14,42) 5.036 79,86(3.237 34,128
(83,394) [SAOMB(12) 1.002 8,4581.012 1,03 0.381 997|0.411 94
42b [AOMFDAC|(31,43)1,043 6,071,39[884.1 3,942,94K18,62 - 22,102,05! - 17,911,719
(191,1151)sAOMB(16) 132.0 2,871,801.27.4 2,815,503 3.254 11,6383.164 9,030
54b [AOMFDAC|(12,14)0.401 6,581 0.29 3,377(9,19)[1.793 28,4910.121 2,087
(68,197) [SAOMB(10) 0.03 74 0.03 74 0.02 567| 0.02 381
404b |AOMFDAC](19,23) 0.02 148 0.01 138|(19,57)] 2.043 21,406 0.08 1,221
(101,595)|SAOMB(12), 0.01 101] 0.01 101 0.02 357 0.01 208
503b [AOMFDAC] (9,14) 0.02 40§ 0.01 307[(8,46)[1077.1 19,041,5520.05 703
(144,414)| sAOMB(8) 0.01 150/ 0.01 150 0.03 1,918 0.01 172
505b [AOMFDAC|(19,32) 17.8 368,247 5.20 69,04%(16,98 - 9,872,07815.43 135,64
(241,1481)sAOMB(14) 5.618 6836.208 68 4.997 1912/5.096 83]

Table 2. Results for SPOT5 benchmarks.

tree (h). A"-" indicates that a time limit was exceeded by tbgpective algorithm. The
best results are highlighted.

6.1 Weighted CSPs

For our first experiment, we consider the scheduling of athEyserving satellite. The
original formulation of the problem states that given a detamndidate photographs,
select the best subset that the satellite will actually .tdke selected subset of pho-
tographs must satisfy a set of imperative constraints anttheasame time, maximize
the importance of the selected photographs. We experimevite problem instances
from the SPOT5 benchmark [17] that can be trivially traresiahto the WCSP formal-
ism. These instances have binary and ternary constraidtd@mains of size 1 and 3.
For our purpose we consider a simplified binary MAX-CSP \@rsif the problem (i.e.
0/1 binary cost functions) and search for a complete valsgamsent to all variables
that violates the least number of constraints.

Table 2 reports the results obtained for 6 SPOT5 networks fif$t column identi-
fies the instance, the number of variabley &nd the number of binary constraints.(
For each instance we ran two algorithms (given by the secoharm): AOMFDAC
and s-AOMB(4). For the latter we report only thebound for which we obtained the
best results. The remaining columns are divided into twdicadrblocks, each corre-
sponding to a specific heuristic used for constructing tleige-tree (e.g. hypergraph,
min-fill). Each block reports the induced width{), the height of the pseudo-trek)(
the running time and number of nodes explored by the tree &he) as well as the
graph (cache) version of each algorithm. The cache bgunds set to 16. It can be
observed that caching improves considerably the perfocmahboth algorithms, espe-
cially for AOMFDAC. On instance 505b for example, the gragision of AOMFDAC
is as much as 3.4 times faster than the tree version whennmginvith a hypergraph
based pseudo-tree. The same instance could not be solv&d @it hour limit by the
tree AOMFDAC using a min-fill based pseudo-tree, but it wasesbin about 15 sec-
onds by the graph version of the algorithm. The effect of gags not too prominent
for s-AOMB(7). This is most likely due to the very good quality of the hstid esti-
mates which able to prune the search space very effectiRelyarding the quality of
the pseudo-trees we observe that the hypergraph heurstarates lower height trees

(100,3,90,2) w*=16, h=26 (100,3,90,2) w*=16, h=26

—e8—— d-AOMB() /

35 | 65 4 o d-AOMBY(i.2) /
——-¥-—— d-AOMB(i8) /
—-—&-—- d-AOMB(i,14)

time (sec)
N
time (sec)

i-bound i-bound

@ (b)
Fig. 3. Results for random Bayesian networks.

which appear to favor AOMFDAC. Alternatively, min-fill bagerees produce lower
width orderings which can in turn generate more accurate-mioket heuristic esti-
mates.

6.2 Bayesian Networks

Our second experiment consists of uniform random Bayestanarks. The networks
were generated using parameteisd, c, p), wheren is the number of variableg, is
the domain sizeg is the number of conditional probability tables (CPTs) and the
number of parents in each CPT. The structure of the netwockeiated by randomly
picking ¢ variables out of. and, for each, randomly pickingparents from their pre-
ceding variables, relative to some ordering. The entriesawh probability table are
generated uniformly randomly, and the table is then nozedli

Figure 3 displays the results for a class of random Bayesamarks with parame-
ters (¢=1004=3,c=90p=2). The pseudo-tree was constructed by the min-fill haarist
We consider two classes of algorithma®\OMB(i,5) and d-AOMB(i,5), respectively.
Thei-bound of the mini-bucket heuristic ranged between 2 andid we chose three
caching levels as followdow (j = 2), medium(; = 8) andhigh (j = 14). It can
be observed that caching improvwesOMB(¢) (see Figure 3(a)) especially for smaller
i-bounds of the static mini-bucket heuristic (e.g- 8). When using the dynamic mini-
bucket heuristic (see Figure 3(b)) caching does not outwifgoverhead for all re-
portedi-bounds. This is due primarily to the accuracy of the heigrishich is able to
prune a substantial portion of the search space.

6.3 Genetic Linkage Analysis

For our third experiment we consider the problem of computiremaximum likelihood
haplotype configuratioof a general pedigree. In human genetic linkage analysis [18
thehaplotypds the sequence of alleles at different loci inherited byratividual from

one parent, and the two haplotypes (maternal and paterhal) imdividual constitute

this individual’sgenotypeWhen genotypes are measured by standard procedures, the

Fig. 4. A fragment of Bayesian network used in genetic linkage asisly

hypergraph minfill
Pedigree| Algorithm | (w*,h) no cache cache (w*,h) no cache cache
(n,d) time nodes time node time nodes time node
bn27 [sAOMB(14)((20,36)2.273 42,276 0.83 11,35d(18,43)5.998 8,3645.979 8,077
(460,5) VE+C n/a
Superlink 1.140
bn29 [sAOMB(14)((22,39)8.222 169,98R31.823 20,20J(21,52)8.532 80,00y7.741 69,14
(566,5) VE+C n/a
Superlink 1.571
bn11l3 [sAOMB(12)|(17,27)0.771 11,89$0.551 3,706(15,41)0.721 9,1470.681 8,294
(186,4) | VE+C 11.98
Superlink 0.030
bnil4 [sAOMB(12)[(22,33)14.79 462,70[6.660 167,33320,55)20.50 498,3052.32 490,008
(234,5) VE+C 17.41
Superlink 0.430
bnLB_.3 [sAOMB(18)((25,42)26.72 467,6418.944 21,78%24,74)33.47 357,31.083 40,31
(642,4) VE+C 0.881
Superlink 0.110
bnLB_4 [sAOMB(18)[(26,45)1,390 24,961,2623.79 289,91(21,90)131.8 1,562,51[22.34 215,798
(799,4) | VE+C 1.011
Superlink 0.130
bnGB.27.1{sAOMB(14)[(19,29)28.28 863,07RL0.47 168,54(0(21,40)67.75 1,726,2374.23 1,716,848
(178,4) | VE+C 172.5
Superlink 32.88
bnGB.67_1{sAOMB(18)((24,39)9.744 47,869.564 36,715(25,50)170.3 95,504225.2 94,587
(212,4) VE+C 597.5
Superlink 11.72

Table 3. Results for genetic linkage analysis networks.

result is a list of unordered pairs of alleles, one pair fozthebbcus. The maximum
likelihood haplotype problem consists of finding a joint ltdppe configuration for all
members of the pedigree which maximizes the probabilityadéd

The pedigree data can be represented as a Bayesian netwiotkrge types of ran-
dom variablesgenetic locivariables which represent the genotypes of the individuals
in the pedigree (two genetic loci variables per individuat fpcus, one for the pater-
nal allele and one for the maternal allelphenotypevariables, angelectorvariables
which are auxiliary variables used to represent the geneifidhe pedigree. Figure 4
represents a fragment of a network that describes paréiltsitteractions in a simple

2-loci analysis. The genetic loci variables of individuat locus; are denoted by.; ;,
andL; ;.. VariablesX; ;, S; j, andS; j,, denote the phenotype variable, the paternal
selector variable and the maternal selector variable a¥iehgal : at locusj, respec-
tively. The conditional probability tables that corresddn the selector variables are
parameterized by thecombination ratid [19]. The remaining tables contain only de-
terministic information. It can be shown that given the jgeeé data, the haplotyping
problem is equivalent to computing the Most Probable Exgtian of the correspond-
ing Bayesian network (for more details consult [19, 20]).

In Table 3 we show results for several hard genetic linkagdblpm instances
We experimented with three algorithmsAOMB(:) (tree and graph versions), VE+C
and Superlink. Superlink v1.5 is currently the most effitgolver for genetic linkage
analysis, is dedicated to this domain and uses a combinafiwariable elimination
and conditioning, as well as a proprietary matrix multiption scheme. VE+C is our
implementation of the elimination and conditioning hybrdthout the special multi-
plication scheme, and it uses the elimination order outp@uperlink. Fors-AOMB(1)
we report only the bestbound of the mini-bucket heuristic. For the graph versiébn o
s-AOMB(7) the cache bound was equal to theound. We observe that on this domain,
the hypergraph based pseudo-trees produced the bessfestibth the tree and graph
versions ofs-AOMB(3). In several instances, the hypergraph heuristic was dlisota
produce orderings with widths smaller than those obtainil tie min-fill heuristic
(e.g. bnGB27_1, bnGB67.1).

Caching improves dramatically the performance-#{OMB(%) in all test cases. On
the bnLB4 pedigree, the graph versionoPOMB(18) is about 58 times faster than the
tree version, reducing the size of the search space explaed25M to about 290K
nodes. The grapk-AOMB(%) is consistently better than VE+C, except on instances
bnLB_3 and bnLB4. In that case, the elimination order produced by Supetiud a
width of 13, which was much smaller than that obtained by hbéhhypergraph and
min-fill heuristics. When comparing the graptAOMB(7) with Superlink we observe
that the graphs-AOMB(¢) is better than Superlink in 3 out of the 8 instances (e.g.
bn2.7, bnGB27_1, bnGB67_1) and they are about the same order of magnitude on the
remaining instances.

7 Conclusion

This paper rests on two contributions. First, we extendedAND/OR Branch-and-
Bound tree search algorithm with a flexible context-basetiiogy scheme allowing the
algorithm to explore an AND/OR search graph rather thanea frbe new graph search
algorithm was then specialized with heuristics based dreeithe mini-bucket approx-
imation or soft arc-consistency. Second, we introducedwaheuristic for generating
pseudo-trees based on the recursive decomposition of ttdepn’s hypergraph. Both
contributions are supported by experimental results férisg WCSPs and comput-
ing the MPE configuration in belief networks on a variety ofithetic and real-world
networks, including some very challenging networks frora field of genetic link-
age analysis. Finally, some new directions of researcluifectombining the AND/OR

4 All networks are available at http://biocinfo.cs.techniamil/superlink/

search algorithms with constraint propagation for effitichandling the determinism
in Bayesian networks, as well as improving the heuristies gluide the search process.

Related Work: AOBB is related to the Branch-and-Bound method propose®y [
for acyclic AND/OR graphs and game trees, as well as the pstee search algorithm
proposed in [22] for boosting Russian Doll search. The ogtition method developed
in [23] for semi-ring CSPs can also be interpreted as an AND{#Daph search algo-
rithm.

References

wn R

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.
22.

23.

R. Marinescu and R. Dechter. And/or branch-and-boundraphical modelsln IJCAI'05.
R. Dechter and R. Mateescu. Mixtures of deterministabpbilistic networksin UAI'04.

R. Dechter. Enhancement schemes for constraint proces8ackjumping, learning and
cutset decompositiorartificial Intelligence 41(3):273-312, 1990.

. A. Darwiche. Recursive conditioningrtificial Intelligence 126(1-2):5-41, 2001.
. F. Bacchus, S. Dalmao, and T. Pittasi. Value eliminatigayesian inference via backtrack-

ing searchProc. of UAI'03 pages 20-28, 2003.

. S. Bistarelli, U. Montanari, and F. Rossi. Semiring basmustraint solving and optimization.

Journal of ACM 44(2):309-315, 1997.

. J. PearlProbabilistic Reasoning in Intelligent Systenvdorgan-Kaufmann, 1988.
. E. Freuder and M. Quinn. Taking advantage of stable setar@tbles in constraint satisfac-

tion problems.Proc. of IJCAI'85 1985.

. R. Mateescu and R. Dechter. And/or cutset conditioningJCAI'05.
. R. Dechter and I. Rish. Mini-buckets: A general schemeagproximating inferenceACM,

2003.

R. Dechter. Bucket elimination: A unifying framework fe@asoningAtrtificial Intelligence
1999.

K. Kask and R. Dechter. A general scheme for automatierggion of search heuristics
from specification dependenciettificial Intelligence 2001.

J. Larrosa and T. Schiex. In the quest of the best formazafl loonsistency for weighted csp.
Proc. of IJCAI'03 pages 631-637, 2003.

S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Exiitd arc consistency: getting closer
to full arc consistency in weighted cspRroc. of IJCAI'05 2005.

R. Bayardo and D. Miranker. On the space-time tradero$olving constraint satisfaction
problems.Proc. of IJCAI'95 1995.

U. Kjeeaerulff. Triangulation of graph-based algorithms givimgadl total spaceTechnical
Report, University of Aalborg, Denmark990.

E. Bensana, M. Lemaitre, and G. Verfaillie. Earth obson satellite managemen€on-
straints 4(3):293-299, 1999.

Jurg Ott. Analysis of Human Genetic Linkag€he Johns Hopkins University Press, 1999.
M. Fishelson and D. Geiger. Exact genetic linkage coatpris for general pedigrees.
Bioinformatics 2002.

M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximunelilkood haplotyping for general
pedigreesHuman Heredity2005.

L. Kanal and V. KumarSearch in artificial intelligenceSpringer-Verlag., 1988.

J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tme séth soft constraintsProc. of
ECAI'02, 2002.

P. Jegou and C. Terrioux. Decomposition and good remgritir solving max-csps.In
ECAI'04.

