
Advances in AND/OR Branch-and-Bound Search for
Constraint Optimization

Radu Marinescu and Rina Dechter

School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{radum,dechter}@ics.uci.edu

Abstract. AND/OR search spaceshave recently been introduced as a unify-
ing paradigm for advanced algorithmic schemes for graphical models. The main
virtue of this representation is its sensitivity to the structure of the model, which
can translate into exponential time savings for search algorithms. In [1] we intro-
duced a linear space AND/OR Branch-and-Bound (AOBB) searchscheme that
explores the AND/OR search tree for solving optimization tasks. In this paper
we extend the algorithm by equipping it with a context-basedadaptive caching
scheme similar to good and nogood recording, thus it explores an AND/OR graph
rather than the AND/OR tree. We also improve the algorithm byusing a new
heuristic for generating close to optimal height pseudo-trees, based on a well
known recursive decomposition of the hypergraph representation. We illustrate
our results using a number of benchmark networks, includingthe very challeng-
ing ones that arise in genetic linkage analysis.

1 Introduction

Graphical models such as Bayesian networks or constraint networks are a widely used
representation framework for reasoning with probabilistic and deterministic informa-
tion. These models use graphs to capture conditional independencies between variables,
allowing a concise representation of the knowledge as well as efficient graph-based
query processing algorithms. Optimization tasks such as finding the most likely state of
a Bayesian network or finding a solution that violates the least number of constraints in
a constraint network, are typically tackled with eithersearchor inferencealgorithms.
Search methods (e.g. depth-first Branch-and-Bound, best-first search) are time expo-
nential in the number of variables and can operate in polynomial space. Inference al-
gorithms (e.g. variable elimination, tree-clustering) are time and space exponential in a
topological parameter calledtree width. If the tree width is large, the high space com-
plexity makes the latter methods impractical in many cases.

The AND/OR search space for graphical models [2] is a newly introduced frame-
work for search that is sensitive to the independencies in the model, often resulting in
exponentially reduced complexities. It is based on a pseudo-tree that captures indepen-
dencies in the graphical model, resulting in a search tree exponential in the depth of the
pseudo-tree, rather than in the number of variables.

In [1] we presented a linear space Branch-and-Bound scheme that explores the
AND/OR search tree for solving optimization tasks in graphical models, called AOBB.

In this paper we improve the AOBB scheme significantly by using caching schemes.
Namely, we extend the algorithm to explore the AND/OR graph rather than the AND/OR
tree, using a flexible caching mechanism that can adapt to memory limitations. The
caching scheme is based oncontextsand is similar to good and nogood recording and re-
cent schemes appearing in Recursive Conditioning and Valued Backtracking [3–5]. We
also introduce a new heuristic for generating close to optimal height pseudo-trees based
on the recursive decomposition of the problem’s hypergraphrepresentation. A similar
idea was already exploited in [4] for constructing low-width decomposition trees. The
efficiency of the proposed search methods also depends on theaccuracy of the guid-
ing heuristic function, which is based on the mini-bucket approximation or maintaining
soft arc-consistency. We focus our empirical evaluation ontwo common optimization
tasks such as solving Weighted CSPs [6] and finding the Most Probable Explanation in
Bayesian networks [7], and illustrate our results over a variety of benchmark networks,
including the very challenging ones that arise in the field ofgenetic linkage analysis.

2 Background

2.1 Constraint Optimization Problems

A finite Constraint Optimization Problem(COP) is a six-tupleP = 〈X ,D,F ,⊗,⇓, Z〉,
whereX = {X1, ..., Xn} is a set of variables,D = {D1, ..., Dn} is a set of fi-
nite domains andF = {f1, ..., fm} is a set of constraints. Constraints can be either
soft (cost functions) orhard (sets of allowed tuples). Without loss of generality we
assume that hard constraints are represented as (bi-valued) cost functions. Allowed
and forbidden tuples have cost0 and∞, respectively. The scope of functionfi, de-
notedscope(fi) ⊆ X , is the set of arguments offi. The operators⊗ and⇓ can be
defined using the semi-ring framework [6], but in this paper we assume that:⊗ifi is
a combinationoperator,⊗ifi ∈ {

∏
i fi,

∑
i fi} and⇓Y f is aneliminationoperator,

⇓Y f ∈ {maxS−Y f, minS−Y f}, whereS is the scope of functionf andY ⊆ X . The
scope of⇓Y f is Y .

An optimization task is defined byg(Z) = ⇓Z⊗
m
i=1fi, whereZ ⊆ X . A global

optimizationis the task of finding the best global cost, namelyZ = ∅. For simplicity
we will develop our work assuming a COP instance withsummationandminimization
as combination and elimination operators, yielding a global cost function defined by
f(X) = minX

∑m

i=1 fi.
Given a COP instance, itsprimal graphG associates each variable with a node and

connects any two nodes whose variables appear in the scope ofthe same (hard or soft)
constraint.

2.2 AND/OR Search Spaces

The classical way to do search is to instantiate variables one at a time, following a
static/dynamic variable ordering. In the simplest case, this process defines a search tree,
whose nodes represent states in the space of partial assignments. The traditional search
space does not capture the structure of the underlying graphical model. Introducing

A

D

B

EC

F

(a)

AOR

0AND

BOR

0AND

OR E

OR F F

AND 0 1 0 1

AND 0 1

C

D D

0 1 0 1

0 1

1

1

(b)

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(c)

Fig. 1. The AND/OR search space.

AND states into the search space can capture the structure decomposing the problem
into independent subproblems by conditioning on values [8,2]. The AND/OR search
space is defined using a backbonepseudo-tree.

Definition 1 (pseudo-tree).Given an undirected graphG = (V, E), a directed rooted
treeT = (V, E′) defined on all its nodes is calledpseudo-treeif any arc ofG which is
not included inE′ is a back-arc, namely it connects a node to an ancestor inT .

AND/OR Search TreesGiven a COP instanceP = (X ,D,F), its primal graphG and
a pseudo-treeT of G, the associated AND/OR search treeST has alternating levels
of OR nodes and AND nodes. The OR nodes are labeledXi and correspond to the
variables. The AND nodes are labeled〈Xi, xi〉 and correspond to value assignments
in the domains of the variables. The structure of the AND/OR tree is based on the
underlying pseudo-tree arrangementT of G. The root of the AND/OR search tree is an
OR node, labeled with the root ofT .

The children of an OR nodeXi are AND nodes labeled with assignments〈Xi, xi〉,
consistent along the path from the root,path(xi) = (〈X1, x1〉, ..., 〈Xi−1, xi−1〉). The
children of an AND node〈Xi, xi〉 are OR nodes labeled with the children of variable
Xi in T . In other words, the OR states represent alternative ways ofsolving the prob-
lem, whereas the AND states represent problem decomposition into independent sub-
problems, all of which need be solved. When the pseudo-tree is a chain, the AND/OR
search tree coincides with the regular OR search tree.

Example 1.Figure 1(a) shows the pseudo-tree arrangement of a primal graph of a
COP instance, together with the back-arcs (dotted lines). Figure 1(b) shows a partial
AND/OR search tree based on the pseudo-tree, for bi-valued variables.

The AND/OR search tree can be traversed by a depth-first search algorithm that is
guaranteed to have a time complexity exponential in the depth of the pseudo-tree and
can operate in linear time. The arcs fromXi to 〈Xi, xi〉 are annotated by appropri-
ate labelsof the cost functions inF . The nodes inST can be associated withvalues,
accumulating the result of the computation resulted from the subtree below.

Definition 2 (label). The label l(Xi, 〈Xi, xi〉) of the arc from the OR nodeXi to the
AND node〈Xi, xi〉 is defined as the sum of all the cost functions values whose scope
includesXi and is fully assigned alongpath(xi).

Definition 3 (value). Thevaluev(n) of a noden ∈ ST is defined recursively as fol-
lows: (i) if n = 〈Xi, xi〉 is a terminal AND node thenv(n) = l(Xi, 〈Xi, xi〉); (ii) if n =
〈Xi, xi〉 is an internal AND node thenv(n) = l(Xi, 〈Xi, xi〉)+

∑
n′∈succ(n) v(n′); (iii)

if n = Xi is an internal OR node thenv(n) = minn′∈succ(n)v(n′), wheresucc(n) are
the children ofn in ST .

Clearly, the value of each node can be computed recursively,from leaves to root.

Proposition 1. Given an AND/OR search treeST of a COP instanceP = (X ,D,F),
the valuev(n) of a noden ∈ ST is the minimal cost solution to the subproblem rooted
at n, subject to the current variable instantiation along the path from root ton. If n is
the root ofST , thenv(n) is the minimal cost solution toP .

AND/OR Search Graphs The AND/OR search tree may contain nodes that root iden-
tical subtrees. These are calledunifiable. When unifiable nodes are merged, the search
tree becomes a graph and its size becomes smaller. A depth-first search algorithm can
explore the AND/OR graph using additional memory. The algorithm can be modified
to cachepreviously computed results and retrieve them when the samenodes are en-
countered again. Some unifiable nodes can be identified basedon theircontexts.

Definition 4 (context).Given a COP instanceP = (X ,D,F) and the corresponding
AND/OR search treeST relative to a pseudo-treeT , the contextof any AND node
〈Xi, xi〉 ∈ ST , denoted bycontext(Xi), is defined as the set of ancestors ofXi in the
induced pseudo-tree, includingXi, that are connected to descendants ofXi.

It is easy to verify that the context ofXi d-separates [7] the subproblem below
Xi from the rest of the network. Thecontext-minimalAND/OR graph is obtained by
merging all the context unifiable AND nodes. For illustration, consider the context-
minimal graph in Figure 1(c) of the pseudo-tree from Figure 1(a). The contexts of the
nodes can be read from the pseudo-tree, as follows:context(A) = {A}, context(B) =
{B, A}, context(C) = {C, B, A}, context(D) = {D}, context(E) = {E, B, A}
andcontext(F) = {F} (for more information see [2]).

3 AND/OR Branch-and-Bound Search

AND/OR Branch-and-Bound (AOBB) was recently introduced in[1] as a depth-first
Branch-and-Bound that explores an AND/OR search tree for solving optimization tasks
in graphical models. Our empirical evaluation demonstrated clearly the improved per-
formance of the AND/OR tree search over the traditional OR tree search. In this section
we move from searching the AND/OR tree to searching AND/OR graphs. The new
algorithm, denoted here by AOBB(j), augments AOBB with a flexible context-based
caching scheme that stores the results in a cache after the first computation and retrieves
them when the same nodes are encountered again.

3.1 Caching Schemes

Traversing an AND/OR search graph requires caching some nodes during search and
the ability to recognize unifiable nodes. The caching schemeis based oncontexts, which
are precomputed from the pseudo-tree. As it was mentioned earlier, the context of an
AND node〈Xi, xi〉 is the set of ancestors ofXi in the induced pseudo-tree, including
Xi, that are connected to descendants ofXi. Algorithm AOBB(j) stores nodes at vari-
ables whose context size is smaller than or equal toj (called cache bound orj-bound).
It is easy to see that whenj equals the induced width of the pseudo-tree the algorithm
explores the minimal context AND/OR graph.

This rather straightforward scheme can be further improved. The second caching
scheme is inspired by the cutset conditioning ideas from [9]. Lets assume the con-
text of a nodeXk is context(Xk) = {X1, ..., Xk}, where|context(Xk)| > j. Dur-
ing the search, when variables{X1, ..., Xk−j} are assigned, they can be viewed as
a cutset. Therefore, the problem rooted atXk−j+1 can be solved in isolation, once
variables{X1, ..., Xk−j} are assigned. In the subproblem, conditioned on the values
{x1, ..., xk−j}, context(Xk) is {Xk−j+1, ..., Xk}, so it can be stored within thej-
bounded space restrictions. However, when AOBB(j) retracts toXk−j or above, all the
nodes cached at variableXk need to be discarded. This caching scheme requires only a
linear increase in additional memory.

The usual way of caching is to have a table for each variable, called cache table,
which records the context. However, some tables might neverget cache hits. We call
thesedead-caches. In the AND/OR search graph, dead-caches appear at nodes that
have only one incoming arc. AOBB(j) needs to record only nodes that are likely to
have additional incoming arcs, and these nodes can be determined by inspecting the
pseudo-tree. Namely, if the context of a node includes that of its parent, then there is no
need to store anything for that node, because it would be a dead-cache. For illustration,
consider the AND/OR search graph from Figure 1(c). NodeB is a dead-cache because
its context includes the context of nodeA, which is its parent in the pseudo-tree.

3.2 Lower Bounds on Partial Trees

At any stage during search, any noden along the current path roots a currentpartial
solution subtree, denoted byGsol(n), to the corresponding subproblem. By the nature
of the search process,Gsol(n) must be connected, must contain its rootn and will
have afrontier containing all those nodes that were generated but not yet expanded.
The leaves ofGsol(n) are calledtip nodes. Furthermore, we assume that there exists
a staticheuristic evaluation functionh(n) underestimatingv(n) that can be computed
efficiently when noden is first generated.

Given the current partially explored AND/OR search graphGT , the active path
AP(t) is the path of assignments from the root ofGT to the current tip nodet. Thein-
side contextin(AP) of AP(t) contains all nodes that were fully evaluated and are chil-
dren of nodes onAP(t). Theoutside contextout(AP) of AP(t), contains all the fron-
tier nodes that are children of the nodes onAP(t). Theactive partial subtreeAPT (n)
rooted at a noden ∈ AP(t) is the subtree ofGsol(n) containing the nodes onAP(t)
betweenn andt together with their OR children. We can define now adynamic heuristic
functionof a noden relative toAPT (n), as follows.

ALGORITHM : AOBB(j,P , T)
Input: A COPP = (X ,D,F , +, min), pseudo-treeT , rootX0, cache boundj.
Output: Minimal cost solution toP .
(1) Initialize OPEN by adding OR nodeX0 to it; PATH← φ;

Initialize cache tables for every variableXi such that|context(Xi)| ≤ j;
(2) if (OPEN ==φ)

return v(X0);
Remove the first noden in OPEN; Addn to PATH;

(3) Retrieve cached values as follows:
if (n is AND node, denoten = 〈Xi, xi〉)

if (|context(Xi)| ≤ j)
A← {fj | fj ∈ F ∧ (Xi ∈ var(fj)) ∧ (var(fj) ⊆ PATH)};
l(Xi, 〈Xi, xi〉)←

∑
A

fj ;
v(n)← cache(Xi, xi);
goto step(5);

(4) Try to prune the subtree belown as follows:
foreachm ∈ PATH , wherem is an ancestor ofn

if (fh(m) ≥ ub(m))
v(n)←∞; (dead-end)
goto step (4);

Expandn generating all its successors as follows:
succ(n)← φ;
if (n is OR node, denoten = Xi)

v(n)←∞;
foreach valuexi ∈ Di

h(〈Xi, xi〉)← LB(Xi, xi);
succ(n)← succ(n) ∪ {〈Xi, xi〉};

else(n is AND node, denoten = 〈Xi, xi〉)
A← {fj | fj ∈ F ∧ (Xi ∈ var(fj)) ∧ (var(fj) ⊆ PATH)};
v(n)← 0; l(Xi, 〈Xi, xi〉)←

∑
A

fj ;
foreach variableY ∈ chT (Xi)

h(Y)← LB(Y);
succ(n)← {Y };

Add succ(n) on top of OPEN;
(5) while succ(n) == φ

if (n is OR node)
v(Parent(n))← v(Parent(n)) + v(n);

else(n is AND node)
cache(Xi, xi)← v(n);
v(n)← v(n) + l(Xi, 〈Xi, a〉);
v(Parent(n))← min(v(Parent(n)), v(n));

succ(Parent(n))← succ(Parent(n))− {n};
PATH← PATH –{n};
n← Last(PATH);

(6) gotostep (2);

Fig. 2. AOBB(j): AND/OR Branch-and-Bound graph search.

Definition 5 (dynamic heuristic evaluation function). Given an active partial tree
APT (n), thedynamic heuristic evaluation functionof n, fh(n), is defined recursively
as follows: (i) ifAPT (n) consists only of a single noden, and if n ∈ in(AP) then
fh(n) = v(n) elsefh(n) = h(n); (ii) if n = 〈Xi, xi〉 is an AND node, having OR
childrenm1, ..., mk thenfh(n) = max(h(n), l(Xi, 〈Xi, xi〉) +

∑k

i=1 fh(mi)); (iii) if
n = Xi is an OR node, having an AND childm, thenfh(n) = max(h(n), fh(m)).

We can show that:

Theorem 1. (1) fh(n) is a lower boundon the minimal cost solution to the subproblem
rooted atn, namelyfh(n) ≤ v(n); (2) fh(n) ≥ h(n), namely the dynamic heuristic
function is tighter than the static one.

3.3 AND/OR Branch-and-Bound with Caching

A search algorithm traversing the AND/OR search space can calculate alower bound
on v(n) of a noden on the active path, by usingfh(n). It can also compute anupper
boundon v(n), based on the portion of the search space belown that has already been
explored. The upper boundub(n) on v(n) is the current minimal cost solution subtree
rooted atn.

The depth-firstAND/OR Branch-and-Boundgraph search algorithm withj-bounded
caching is described in Figure 2. A list called OPEN simulates the recursion stack. The
list PATH maintains the current assignment on the active path. Parent(n) refers to the
predecessor ofn in the AND/OR search graph,succ denotes the set of successors of
a node in the AND/OR search graph andchT (Xi) denotes the children of variableXi

in the pseudo-treeT . Procedure LB(n) computes the static heuristic estimateh(n) of
v(n) for any noden.

In the initialization step, AOBB(j) computes the context of every variable. A cache
table is created for every context whose size is less than or equal to the cache boundj.
In Step (3), the algorithm attempts to retrieve the results cached at the AND nodes. If a
valid cache entryα is found for noden = 〈Xi, xi〉, namely the subproblem rooted at
n has already been solved for the current instantiation of thevariables incontext(Xi),
thenv(n) is set toα and the search continues with Step (4), thus avoidingn’s expansion.

Step (4) is where the search goes forward and expands alternating levels of OR and
AND nodes. Upon the expansion ofn, the algorithm successively updates thelower
bound functionfh(m) for every ancestorm of n along the active path, and prunes the
subgraph belown if, for somem, fh(m) ≥ ub(m).

Step (5) is where the value functions are propagated backward. This is triggered
when a node has an empty set of successors and it typically happens when the node’s
descendants are all evaluated.

Theorem 2. AOBB(j) is sound and complete for COP.

4 Heuristics

In this section we describe briefly several schemes for generating static heuristic esti-
matesh(n), based on bounded inference and soft arc-consistency.

4.1 Mini-Bucket Heuristics

In this section we briefly describe two general schemes for generating heuristic es-
timates that can guide Branch-and-Bound search, and which are based on the Mini-
Bucket approximation. Mini-Bucket Elimination (MBE) [10]is an approximation al-
gorithm designed to avoid the high time and space complexityof Bucket Elimination
(BE) [11], by partitioning large buckets into smaller subsets, calledmini buckets, each
containing at mosti (calledi-bound) distinct variables, and which are processed inde-
pendently. The heuristics generators are therefore parameterized by the Mini-Bucket
i-bound, thus allowing for a controllable trade-off betweenheuristic strength and its
overhead.

Static Mini-Bucket Heuristics (sMB) In the past, [12] showed that the intermediate
functions generated by the Mini-Bucket algorithm MBE(i) can be used to compute a
heuristic function, that underestimates the minimal cost extension of the current partial
assignment in a regular OR search tree. In [1] we extended this idea to AND/OR search
spaces.

Dynamic Mini-Bucket Heuristics (dMB) The dynamic version of the mini-bucket
heuristics has been recently proposed in [1] for both OR and AND/OR search spaces.
The heuristic lower-bound estimate is computed by the Mini-Bucket algorithm MBE(i),
at each noden in the search space, restricted to the subproblem rooted atn and subject
to the current partial instantiation (for more details see [1]).

4.2 Directional Arc-Consistency Heuristics

Maintaining full directional arc-consistency (FDAC) [13]and the more recent existen-
tial directional arc-consistency (EDAC) [14] provide a powerful mechanism for gen-
erating high quality lower bound heuristic estimates of theminimal cost extension of
any partial assignment in a regular OR search tree. In the context of AND/OR search
spaces we showed in [1] that it is possible to maintain arc-consistency separately, on
independent components rooted at AND nodes, thus computinglocal lower-bounds on
the minimal cost solutions to the respective subproblems.

5 Finding a Pseudo-Tree

The performance of AND/OR tree/graph search algorithms is influenced by the quality
of the pseudo-tree. Finding the minimal depth/context pseudo-tree is a hard problem
[8, 15]. In the following we describe two heuristics for generating pseudo-trees with
relatively small heights/contexts.

5.1 Min-Fill Heuristic

Min-Fill [16] is one of the best and most widely used heuristics for creating small
induced width elimination orders. An ordering is generatedby placing the variable with

the smallestfill set (i.e. number of induced edges that need be added to fully connect the
neighbors of a node) at the end of the ordering, connecting all of its neighbors and then
removing the variable from the graph. The process continuesuntil all variables have
been eliminated. Once an elimination order is given, the pseudo-tree can be extracted
as a depth-first traversal of the min-fill induced graph, starting with the variable that
initiated the ordering, always preferring as successor of anode the earliest adjacent node
in the induced graph. An ordering uniquely determines a pseudo-tree. This approach
was first used by [15].

5.2 Hypergraph Separator Decomposition

An alternative heuristic for generating a low height balanced pseudo-tree arrangement
is based on recursive decomposition. Given a COP instanceP = (X ,D,F) we convert
it into a hypergraphH = (V, E) where each constraint inF is a vertexvi ∈ V and
each variable inX is an edgeej ∈ E connecting all the constraints in which it appears.

Definition 6 (separators).Given a hypergraphH = (V, E), a hypergraph separator
decompositionis a triple (H,S,R) where: (i)S ⊂ E, and the removal ofS separates
H into k disconnected components (subgraphs)H1, ...,Hk; (ii) R is a relation over the
size of the disjoint subgraphs (i.e. balance factor).

It is well known that the problem of generating optimal hypergraph partitions is
hard. However heuristic approaches were developed over theyears. A good approach is
packaged inhMeTiS1. We will use this software as a basis for our pseudo-tree genera-
tion. This idea and software were also used by [4] to generatelow width decomposition
trees. Generating a pseudo-treeT for P usinghMeTiS is fairly straightforward. The
vertices of the hypergraph are partitioned into two balanced (roughly equal-sized) parts,
denoted byHleft andHright respectively, while minimizing the number of hyperedges
across. A small number of crossing edges translates into a small number of variables
shared between the two sets of functions.Hleft andHright are then each recursively
partitioned in the same fashion, until they contain a singlevertex. The result of this
process is a tree of hypergraph separators which is also a pseudo-tree of the original
model since each separator corresponds to a subset of variables chained together.

In Table1 we computed the height of the pseudo-tree obtainedwith the hypergraph
and minfill heuristics for 10 belief networks from the UAI Repository2 and 10 constraint
networks derived from the SPOT5 benchmark [17]. For each pseudo-tree we also com-
puted the induced width of the elimination order obtained from the depth-first traversal
of the tree. We observe that the minfill heuristic generates lower-width elimination or-
ders, while the hypergraph heuristic produces much smallerheight pseudo-trees. The
hypergraph pseudo-trees appear to be favorable for tree search algorithms, while the
minfill pseudo-trees, which minimize the context size, are more appropriate for graph
search algorithms.

1 http://www-users.cs.umn.edu/ karypis/metis/hmetis
2 http://www.cs.huji.ac.il/labs/compbio/Repository

Network hypergraph min-fill Network hypergraph min-fill
width heightwidth height width heightwidth height

barley 7 13 7 23 spot 5 47 152 39 204
diabetes 7 16 4 77 spot 28 108 138 79 199
link 21 40 15 53 spot 29 16 23 14 42
mildew 5 9 4 13 spot 42 36 48 33 87
munin1 12 17 12 29 spot 54 12 16 11 33
munin2 9 16 9 32 spot 404 19 26 19 42
munin3 9 15 9 30 spot 408 47 52 35 97
munin4 9 18 9 30 spot 503 11 20 9 39
water 11 16 10 15 spot 505 29 42 23 74
pigs 11 20 11 26 spot 507 70 122 59 160

Table 1.Bayesian Networks Repository (left); SPOT5 benchmarks (right).

6 Experiments

In this section we evaluate the performance of the new AND/ORBranch-and-Bound
graph search schemes on two common optimization problems: solving Weighted CSPs
(WCSP) and finding the Most Probable Explanation (MPE) in Bayesian networks3.

Weighted CSP[6] extends the classic CSP formalism with so-calledsoft constraints
which assign a positive integer penalty cost to each forbidden tuple (allowed tuples have
cost 0). The goal is to find a complete assignment with minimumaggregated cost.

Bayesian Networksprovide a formalism for reasoning about partial beliefs under
conditions of uncertainty [7]. They are defined by a directedacyclic graph over nodes
representing variables of interest. The arcs indicate the existence of direct causal influ-
ences between linked variables quantified by conditional probability tables (CPTs) that
are attached to each family of parents-child nodes in the network. The MPE problem is
the task of finding a complete assignment with maximum probability that is consistent
with the evidence. It easy to see that MPE can be trivially expressed as a WCSP by
replacing the probability tables by their negative logarithm.

We consider three classes of AND/OR Branch-and-Bound tree search algorithms,
each one of them using a specific heuristics generator as follows. Classess-AOMB(i)
andd-AOMB(i) are guided by static/dynamic mini-bucket heuristics, while AOMFDAC
maintains full directional arc-consistency (FDAC). We also consider the graph versions
of these algorithms, denoted bys-AOMB(i,j), d-AOMB(i,j) and AOMFDAC(j), re-
spectively, which perform caching only at the variables forwhich the context size is
smaller than or equal to the cache boundj.

In all our experiments, the competing algorithms were restricted to a static variable
ordering resulted from a depth-first traversal of the pseudo-tree. We report the average
effort, as CPU time (in seconds) and number of visited nodes required for proving
optimality of the solution. For all test instances we recordthe number of variables (n),
domain size (d), number of functions (c), induced width (w*)and height of the pseudo-

3 Experiments were done on a 2.4GHz Pentium IV with 1GB of RAM, running Windows XP.

hypergraph minfill
Network Algorithm (w*,h) no cache cache (w*,h) no cache cache

time nodes time nodes time nodes time nodes
29b AOMFDAC (16,22)5.938 170,8231.492 40,428(14,42) 5.036 79,8663.237 34,123

(83,394) sAOMB(12) 1.002 8,4581.012 1,033 0.381 997 0.411 940
42b AOMFDAC (31,43)1,043 6,071,390884.1 3,942,942(18,62) - 22,102,050 - 17,911,719

(191,1151)sAOMB(16) 132.0 2,871,804127.4 2,815,503 3.254 11,6363.164 9,030
54b AOMFDAC (12,14)0.401 6,581 0.29 3,377 (9,19) 1.793 28,4920.121 2,087

(68,197) sAOMB(10) 0.03 74 0.03 74 0.02 567 0.02 381
404b AOMFDAC (19,23) 0.02 148 0.01 138 (19,57) 2.043 21,406 0.08 1,222

(101,595) sAOMB(12) 0.01 101 0.01 101 0.02 357 0.01 208
503b AOMFDAC (9,14) 0.02 405 0.01 307 (8,46) 1077.1 19,041,5520.05 701

(144,414) sAOMB(8) 0.01 150 0.01 150 0.03 1,918 0.01 172
505b AOMFDAC (19,32) 17.8 368,247 5.20 69,045(16,98) - 9,872,07815.43 135,641

(241,1481)sAOMB(14) 5.618 6836.208 683 4.997 1912 5.096 831

Table 2.Results for SPOT5 benchmarks.

tree (h). A ”-” indicates that a time limit was exceeded by therespective algorithm. The
best results are highlighted.

6.1 Weighted CSPs

For our first experiment, we consider the scheduling of an Earth observing satellite. The
original formulation of the problem states that given a set of candidate photographs,
select the best subset that the satellite will actually take. The selected subset of pho-
tographs must satisfy a set of imperative constraints and, at the same time, maximize
the importance of the selected photographs. We experimented with problem instances
from the SPOT5 benchmark [17] that can be trivially translated into the WCSP formal-
ism. These instances have binary and ternary constraints and domains of size 1 and 3.
For our purpose we consider a simplified binary MAX-CSP version of the problem (i.e.
0/1 binary cost functions) and search for a complete value assignment to all variables
that violates the least number of constraints.

Table 2 reports the results obtained for 6 SPOT5 networks. The first column identi-
fies the instance, the number of variables (n) and the number of binary constraints (c).
For each instance we ran two algorithms (given by the second column): AOMFDAC
ands-AOMB(i). For the latter we report only thei-bound for which we obtained the
best results. The remaining columns are divided into two vertical blocks, each corre-
sponding to a specific heuristic used for constructing the pseudo-tree (e.g. hypergraph,
min-fill). Each block reports the induced width (w∗), the height of the pseudo-tree (h),
the running time and number of nodes explored by the tree (no cache) as well as the
graph (cache) version of each algorithm. The cache boundj was set to 16. It can be
observed that caching improves considerably the performance of both algorithms, espe-
cially for AOMFDAC. On instance 505b for example, the graph version of AOMFDAC
is as much as 3.4 times faster than the tree version when running with a hypergraph
based pseudo-tree. The same instance could not be solved within a 1 hour limit by the
tree AOMFDAC using a min-fill based pseudo-tree, but it was solved in about 15 sec-
onds by the graph version of the algorithm. The effect of caching is not too prominent
for s-AOMB(i). This is most likely due to the very good quality of the heuristic esti-
mates which able to prune the search space very effectively.Regarding the quality of
the pseudo-trees we observe that the hypergraph heuristic generates lower height trees

(a) (b)

Fig. 3.Results for random Bayesian networks.

which appear to favor AOMFDAC. Alternatively, min-fill based trees produce lower
width orderings which can in turn generate more accurate mini-bucket heuristic esti-
mates.

6.2 Bayesian Networks

Our second experiment consists of uniform random Bayesian networks. The networks
were generated using parameters(n, d, c, p), wheren is the number of variables,d is
the domain size,c is the number of conditional probability tables (CPTs) andp is the
number of parents in each CPT. The structure of the network iscreated by randomly
picking c variables out ofn and, for each, randomly pickingp parents from their pre-
ceding variables, relative to some ordering. The entries ofeach probability table are
generated uniformly randomly, and the table is then normalized.

Figure 3 displays the results for a class of random Bayesian networks with parame-
ters (n=100,d=3,c=90,p=2). The pseudo-tree was constructed by the min-fill heuristic.
We consider two classes of algorithmss-AOMB(i,j) andd-AOMB(i,j), respectively.
Thei-bound of the mini-bucket heuristic ranged between 2 and 14,and we chose three
caching levels as follows:low (j = 2), medium(j = 8) andhigh (j = 14). It can
be observed that caching improvess-AOMB(i) (see Figure 3(a)) especially for smaller
i-bounds of the static mini-bucket heuristic (e.g.i = 8). When using the dynamic mini-
bucket heuristic (see Figure 3(b)) caching does not outweigh its overhead for all re-
portedi-bounds. This is due primarily to the accuracy of the heuristic which is able to
prune a substantial portion of the search space.

6.3 Genetic Linkage Analysis

For our third experiment we consider the problem of computing themaximum likelihood
haplotype configurationof a general pedigree. In human genetic linkage analysis [18],
thehaplotypeis the sequence of alleles at different loci inherited by an individual from
one parent, and the two haplotypes (maternal and paternal) of an individual constitute
this individual’sgenotype. When genotypes are measured by standard procedures, the

L11p L11m

X11

L21p L21m

X21

L31p L31m

X31

S11p S11m

L12p L12m

X12

L22p L22m

X22

L32p L32m

X32

S12p S12m

Fig. 4. A fragment of Bayesian network used in genetic linkage analysis.

hypergraph minfill
Pedigree Algorithm (w*,h) no cache cache (w*,h) no cache cache

(n,d) time nodes time nodes time nodes time nodes
bn2 7 sAOMB(14) (20,36) 2.273 42,276 0.83 11,358(18,43) 5.998 8,3645.979 8,077

(460,5) VE+C n/a
Superlink 1.140

bn2 9 sAOMB(14) (22,39) 8.222 169,9831.823 20,201(21,52) 8.532 80,0077.741 69,140
(566,5) VE+C n/a

Superlink 1.571
bn113 sAOMB(12) (17,27) 0.771 11,8990.551 3,706(15,41) 0.721 9,1470.681 8,294
(186,4) VE+C 11.98

Superlink 0.030
bn114 sAOMB(12) (22,33) 14.79 462,7016.660 167,333(20,55) 20.50 498,30522.32 490,003
(234,5) VE+C 17.41

Superlink 0.430
bnLB 3 sAOMB(18) (25,42) 26.72 467,6423.944 21,783(24,74) 33.47 357,3169.083 40,310
(642,4) VE+C 0.881

Superlink 0.110
bnLB 4 sAOMB(18) (26,45) 1,390 24,961,26923.79 289,914(21,90) 131.8 1,562,51022.34 215,793
(799,4) VE+C 1.011

Superlink 0.130
bnGB 27 1 sAOMB(14) (19,29) 28.28 863,07310.47 168,540(21,40) 67.75 1,726,23274.23 1,716,848

(178,4) VE+C 172.5
Superlink 32.88

bnGB 67 1 sAOMB(18) (24,39) 9.744 47,8699.564 36,715(25,50) 170.3 95,504225.2 94,587
(212,4) VE+C 597.5

Superlink 11.72

Table 3.Results for genetic linkage analysis networks.

result is a list of unordered pairs of alleles, one pair for each locus. The maximum
likelihood haplotype problem consists of finding a joint haplotype configuration for all
members of the pedigree which maximizes the probability of data.

The pedigree data can be represented as a Bayesian network with three types of ran-
dom variables:genetic locivariables which represent the genotypes of the individuals
in the pedigree (two genetic loci variables per individual per locus, one for the pater-
nal allele and one for the maternal allele),phenotypevariables, andselectorvariables
which are auxiliary variables used to represent the gene flowin the pedigree. Figure 4
represents a fragment of a network that describes parents-child interactions in a simple

2-loci analysis. The genetic loci variables of individuali at locusj are denoted byLi,jp

andLi,jm. VariablesXi,j , Si,jp andSi,jm denote the phenotype variable, the paternal
selector variable and the maternal selector variable of individual i at locusj, respec-
tively. The conditional probability tables that correspond to the selector variables are
parameterized by therecombination ratioθ [19]. The remaining tables contain only de-
terministic information. It can be shown that given the pedigree data, the haplotyping
problem is equivalent to computing the Most Probable Explanation of the correspond-
ing Bayesian network (for more details consult [19, 20]).

In Table 3 we show results for several hard genetic linkage problem instances4.
We experimented with three algorithms:s-AOMB(i) (tree and graph versions), VE+C
and Superlink. Superlink v1.5 is currently the most efficient solver for genetic linkage
analysis, is dedicated to this domain and uses a combinationof variable elimination
and conditioning, as well as a proprietary matrix multiplication scheme. VE+C is our
implementation of the elimination and conditioning hybrid, without the special multi-
plication scheme, and it uses the elimination order output by Superlink. Fors-AOMB(i)
we report only the besti-bound of the mini-bucket heuristic. For the graph version of
s-AOMB(i) the cache bound was equal to thei-bound. We observe that on this domain,
the hypergraph based pseudo-trees produced the best results for both the tree and graph
versions ofs-AOMB(i). In several instances, the hypergraph heuristic was also able to
produce orderings with widths smaller than those obtained with the min-fill heuristic
(e.g. bnGB27 1, bnGB67 1).

Caching improves dramatically the performance ofs-AOMB(i) in all test cases. On
the bnLB4 pedigree, the graph version ofs-AOMB(18) is about 58 times faster than the
tree version, reducing the size of the search space exploredfrom 25M to about 290K
nodes. The graphs-AOMB(i) is consistently better than VE+C, except on instances
bnLB 3 and bnLB4. In that case, the elimination order produced by Superlinkhad a
width of 13, which was much smaller than that obtained by boththe hypergraph and
min-fill heuristics. When comparing the graphs-AOMB(i) with Superlink we observe
that the graphs-AOMB(i) is better than Superlink in 3 out of the 8 instances (e.g.
bn2 7, bnGB27 1, bnGB67 1) and they are about the same order of magnitude on the
remaining instances.

7 Conclusion

This paper rests on two contributions. First, we extended the AND/OR Branch-and-
Bound tree search algorithm with a flexible context-based caching scheme allowing the
algorithm to explore an AND/OR search graph rather than a tree. The new graph search
algorithm was then specialized with heuristics based on either the mini-bucket approx-
imation or soft arc-consistency. Second, we introduced a new heuristic for generating
pseudo-trees based on the recursive decomposition of the problem’s hypergraph. Both
contributions are supported by experimental results for solving WCSPs and comput-
ing the MPE configuration in belief networks on a variety of synthetic and real-world
networks, including some very challenging networks from the field of genetic link-
age analysis. Finally, some new directions of research include combining the AND/OR

4 All networks are available at http://bioinfo.cs.technion.ac.il/superlink/

search algorithms with constraint propagation for efficiently handling the determinism
in Bayesian networks, as well as improving the heuristics that guide the search process.

Related Work: AOBB is related to the Branch-and-Bound method proposed by [21]
for acyclic AND/OR graphs and game trees, as well as the pseudo-tree search algorithm
proposed in [22] for boosting Russian Doll search. The optimization method developed
in [23] for semi-ring CSPs can also be interpreted as an AND/OR graph search algo-
rithm.

References

1. R. Marinescu and R. Dechter. And/or branch-and-bound forgraphical models.In IJCAI’05.
2. R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks.In UAI’04.
3. R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning and

cutset decomposition.Artificial Intelligence, 41(3):273–312, 1990.
4. A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.
5. F. Bacchus, S. Dalmao, and T. Pittasi. Value elimination:Bayesian inference via backtrack-

ing search.Proc. of UAI’03, pages 20–28, 2003.
6. S. Bistarelli, U. Montanari, and F. Rossi. Semiring basedconstraint solving and optimization.

Journal of ACM, 44(2):309–315, 1997.
7. J. Pearl.Probabilistic Reasoning in Intelligent Systems.Morgan-Kaufmann, 1988.
8. E. Freuder and M. Quinn. Taking advantage of stable sets ofvariables in constraint satisfac-

tion problems.Proc. of IJCAI’85, 1985.
9. R. Mateescu and R. Dechter. And/or cutset conditioning.In IJCAI’05.

10. R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating inference.ACM,
2003.

11. R. Dechter. Bucket elimination: A unifying framework for reasoning.Artificial Intelligence,
1999.

12. K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics
from specification dependencies.Artificial Intelligence, 2001.

13. J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted csp.
Proc. of IJCAI’03, pages 631–637, 2003.

14. S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting closer
to full arc consistency in weighted csps.Proc. of IJCAI’05, 2005.

15. R. Bayardo and D. Miranker. On the space-time trade-off in solving constraint satisfaction
problems.Proc. of IJCAI’95, 1995.

16. U. Kjæaerulff. Triangulation of graph-based algorithms giving small total space.Technical
Report, University of Aalborg, Denmark, 1990.

17. E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellite management.Con-
straints, 4(3):293–299, 1999.

18. Jurg Ott.Analysis of Human Genetic Linkage. The Johns Hopkins University Press, 1999.
19. M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.

Bioinformatics, 2002.
20. M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for general

pedigrees.Human Heredity, 2005.
21. L. Kanal and V. Kumar.Search in artificial intelligence.Springer-Verlag., 1988.
22. J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints.Proc. of

ECAI’02, 2002.
23. P. Jegou and C. Terrioux. Decomposition and good recording for solving max-csps.In

ECAI’04.

