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Abstract

This paper describes a general framework called
Hybrid Dynamic Mixed Networks (HDMNSs)
which are Hybrid Dynamic Bayesian Networks
that allow representation of discrete deterministic
information in the form of constraints. We pro-
pose approximate inference algorithms that in-
tegrate and adjust well known algorithmic prin-
ciples such as Generalized Belief Propagation,
Rao-Blackwellised Particle Filtering and Con-
straint Propagation to address the complexity of
modeling and reasoning in HDMNs. We use
this framework to model a person’s travel ac-
tivity over time and to predict destination and
routes given the current location. We present a
preliminary empirical evaluation demonstrating
the effectiveness of our modeling framework and
algorithms using several variants of the activity
model.

1 INTRODUCTION

Modeling sequential real-life domains often requires th
ability to represent both probabilistic and determinigtic

formation. Hybrid Dynamic Bayesian Networks (HDBNSs)
were recently proposed for modeling such phenome
[Lerner, 2002]. In essence, these are factored represen
tion of Markov processes that allow discrete and continu
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of our approach on a complex dynamic domain of a per-
son’s transportation routines.

Focusing on  algorithmic issues, the  most
popular  approximate query  processing  algo-
rithms for dynamic networks are  Expecta-
tion propagation(EP) [Heskes and Zoeter, 2002]
and Rao-Blackwellised Particle Filtering
(RBPF) [Doucet et al., 2000]. We therefore extend
these algorithms to accommodate and exploit discrete
constraints in the presence of continuous probabilistic
functions. Extending Expectation Propagation to handle
constraints is easy, extension to continuous variables is a
little more intricate but still straightforward. The prese

of constraints introduces a principles challenge for Sague
tial Importance Sampling algorithms, however. Indeed the
main algorithmic contribution of this paper in presenting
a class of Rao-Blackwellised Particle Filtering algorithm
IJGP-RBPF for HDMNs which integrates a Generalized
Belief Propagation component with a Rao-Blackwellised
Particle Filtering scheme.

Our motivation for developing HDMNs as a modeling
framework is a range of problems in the transportation lit-
erature that depend upon reliable estimates of the prevail-
ing demand for travel over various time scales. At one
end of this range, there is a pressing need for accurate
and complete estimation of the global origins and destina-
tions (O-D) matrix at any given time for an entire urban
area. Such estimates are used in both urban planning ap-

%Iications [Sherali et al., 2003] and integrated traffic con

ol systems based upon dynamic traffic assignment tech-

nigues [Peeta and Zilaskopoulos, 2001]. Even the most ad-

Anced techniques, however, are hamstrung by their re-
liance upon out-dated, pencil-and-paper travel survegs an

§parsely distributed detectors in the transportatioresyst

IO kqddredssD thrllst pr;(t))(l)zm- [:Deghterdart]: Mfateescu, ioolf\Ne view the increasing proliferation of powerful mobile
arkin and Decnter, ] introduce € framework o computing devices as an opportunity to remedy this sit-

Mixed Networks. In this paper we extend the Mixed Net- uation. If even a small sample of the traveling public

workstrameyv ork t(? ci))l/nam!c Iz'nWOHane'gt; aIIovy c&r)tmé agreed to collect their travel data and make that data pub-
uous faussian variables, yielding Hybrid Lynamic Mixe licly available, transportation management systems could

Networks (HDM.N)' we a(_jdress the algorithmic issues the_l Iignificantly improve their operational efficiency. At the
emerge from this extension and demonstrate the potentia



other end of the spectrumersonal traffic assistantain-  The recently proposed Mixed Network frame-
ning on the mobile devices could help travelers replan theitvork  [Dechter and Mateescu, 2004] for augmenting
travel when the routes they typically use are impacted byBayesian Networks with constraints, can immediately be
failures in the system arising from accidents or natural disapplied to HBNs vyielding theHybrid Mixed Networks
asters. A common starting point for these problems is tdHMNs). Formally, given a HBN3 = (X,G,P) that
develop an efficient formulation for learning and inferring expresses the joint probabili; and given a constraint
individual traveler routines like traveler’s destinatiand  network® = (X,D,C) that expresses a set of solutigns
his route to destination from raw data points. an HMN is a pairy = (8,%.). The discrete variables and

. . heir domains are shared lyand® and the relationships
The rest of the paper is organized as follows. In the nexf,Jlre those expressed M andC. We assume thak is

section, we discuss preliminaries and introduce our mod-_~ .
i . . . “consistent. The mixed networ{ = (3, % ) represents the

eling framework. We then describe two approximate in- o iy .

) . . conditional probabilityP,, (x) = P (x|x € p) if x € p and
ference algorithms for processing HDMN queries: an Ex- .

. . : o 0 otherwise.

pectation Propagation type and a Particle Filtering type.
Subsequently, we describe the transportation modeling apdynamic Bayesian Networks are Markov models whose
proach and present preliminary empirical results on howstate-space and transition functions are expressed in a fac
effectively a model is learnt and how accurately its predic-tored form using Bayesian Networks. They are defined by
tions are given several models and a few variants of the prior P(Xg) and a state transition functioR(Xq+1/X%).
relevant algorithms. Hybrid Dynamic Bayesian Networks (HDBNs) allow con-

We view the contribution of this paper in addressing a com—tInuouS variables while Hybrid Dynamic Mixed Networks

plex and highly relevant real life domain using a generaI(HDMNs) also permit explicit discrete constraints.

framework and domain independent algorithms, thus alDEFINITION 2.1 A Hybrid Dynamic Mixed Network
lowing systematic study of modeling, learning and infer- (HDMN) is a pair (Mo,M_.), defined over a set of vari-

ence in a non-trivial setting. ables X= {x,...,Xa}, where M is an HMN defined over
X representing PXp). M_, is a 2-slice network defining
the stochastic procesgR 1% ). The2-time-slice Hybrid
Mixed network (2-THMN)is an HMN defined overXsX”
such that Xand X' are identical to X. The acyclic graph
Hybrid Bayesian Networks (HBN)-auritzen, 1992] are of the probabilistic portion is restricted so that nodes in X
graphical models defined by a tupte= (X, G,P), whereX  are root nodes and have no CPDs associated with them.
is the set of variables partitioned into discrete and centin The constraints are defined the usual way. The 2-THMN
ous onesX = I'JA, respectivelyG is a directed acyclic represents a conditional distribution(R”|X').
graph whose nodes corresponds to the variablBs=
{P1,...,Pn} is a set of conditional probability distributions The semantics of any dynamic network can be under-
(CPDs). Given variable; and its parents in the graph stood by unrolling the network td time-slices. Namely,
pa(x), P = P(xi|pa(x)). The graph structur& is re-  P(Xo1) = P(Xo) * [i—1 P(%|%_1) where each probabilis-
stricted in that continuous variables cannot have discretéic component can be factored in the usual way, yielding a
variables as their child nodes. The conditional distribu-regular HMN ovefT copies of the state variables.
tion of'contmuou_s variables are given t_)y a Im_ear GaUSSIarJI'he most common task over Dynamic Probabilistic Net-
model: P(xi|l =1,Z=2) = N(a(i)+B(i) xzy(i))x €T AP - g
. k works is filtering and prediction Filtering is the task of de-
whereZ andl are the set of continuous and discrete parent? . : .
. : S . ermining the belief stat®(X |ept) whereX; is the set of
of x;, respectively antll(, o) is a multi-variate normal dis- ; . ;
o o N variables at timé andey: are the observations accumulated
tribution. The network represents a joint distribution iove

all its variables given by a product of all its CPDs. a_t time-sices O to. Filtering can be accomph;hed In prin-
ciple by unrolling the dynamic model and using any state-

A Constraint NetworkDechter, 2003] is a graphical model of-the art exact or approximate reasoning algorithm. The
% = (X,D,C), whereX = {x1,...,X,} is the set of vari- join-tree-clustering algorithm is the most commonly used
ables,D = {Dg,...,Dn} is their respective discrete do- algorithm for exact inference in Bayesian networks. It par-
mains andC = {C1,Cy,...,Cn} is the set of constraints. titions the CPDs and constraints into clusters that interac
Each constrain€; is a relationR; defined over a subset of in a tree-like manner (the join-tree) and applies message-
the variablesS C X and denotes the combination of val- passing between clusters. The complexity of the algo-
ues that can be assigned simultaneoushSdiutionis an  rithm is exponential in a parameter called treewidth, which
assignment of values to all the variables such that no coris the maximum number of discrete variables in a clus-
straint is violated. The primary query is to decide if the ter. However, the stochastic nature of Dynamic Networks
constraint network is consistent and if so find one or allrestricts the applicability of join-tree clustering caohesi-
solutions. ably. In the discrete case the temporal structure implies

2 PRELIMINARIES AND DEFINITIONS



tree-width which equals to the number of state variablespecial cliques called the interface. [Dechter et al., 2002
that are connected with the next time-slice, thus making thelescribe a method to compute join-graphs from join-trees.
factored representation ineffective. Even worse, wheh bot The two methods can be combined in a straightforward way
continuous and discrete variables are present the eféectito come up with an online procedure for constructing a
treewidth isO(T) whenT is the number of time slices, thus join-graph. In this procedure, we split the interface into
making exact inference infeasible. Therefore the applicasmaller cliques such that the new cliques have less than
ble approximate inference algorithms for Hybrid Dynamici + 1 variables. This construction procedure is shown in
Networks are either sampling-based such as Particle FiltefFigure 1.
ing or propagation-based such as Expectation PropagatioR/I
In the next two sections, we will extend these algorithms to
f
HDMNSs.

essage-passing is then performed in a sequential way as
ollows. At each time-slicé, we perform message-passing
over nodes irt and the interface of with t — 1 andt + 1
(shown by the ovals in Figure 1). The new functions com-

3 EXPECTATION PROPAGATION puted in the interface dfwith t + 1 are then used by+ 1,
when we perform message passing-nl.

In this section we extend an approximate infer-Three important technical issues remain to be discussed.
ence algorithm called Expectation PropagationFirst, message-passing requires the operations of niultipl
(EP) [Heskes and Zoeter, 2002] from HDBNs to HDMNS. cation and marginalization to be performed on functions
The idea in EP (forward pass) is to perform Belief Prop-in each node. These operators can be constructed for
agation by passing messages between slicasdt +1  HDMNSs in a straightforward way by combining the oper-
along the ordering = 0 to T. EP can be thought of as ators by [Lauritzen, 1992] and [Larkin and Dechter, 2003]
an extension of Generalized Belief Propagation (GBP)hat work on HBNs and discrete mixed networks respec-
to HDBNs [Heskes and Zoeter, 2002]. For simplicity of tively. We will now briefly comment on how the mul-
exposition, we will extend a GBP algorithm called Iterative tiplication operator can be derived. Let us assume we
Join graph propagation [Dechter et al., 2002] to HDMNswant to multiply a collection of probabilistic functiori

and call our technique IJGP(i)-S where "S” denotes thatand a set of constraint relatio@® (which consist of only

the process is sequential. The extension is rather straighgliscrete tuples allowed by the constraint) to form a sin-
forward and can be easily derived by integrating the resultgle functionPC. Here, multiplication can be performed

in [Murphy, 2002, Dechter etal., 2002, Lauritzen, 1992,0n the functions ir®’ andC’ separately using the opera-
Larkin and Dechter, 2003]. tors in [Lauritzen, 1992] and [Dechter, 2003] respectively

IJGP [Dechter et al., 2002] is a Generalized Belief Prop-to ComP“te a §ingle probabilistic fur)ctidhand a single
agation algorithm which performs message passing on ongtrgmt reIath@. These two functlonE’ andC can bg
join-graph. A join-graph is collection of cliques or cluste multiplied by delet_lng all tuples iR that are not present in
such that the interaction between the clusters is captured {© form the required functioRC.

by a graph. Each clique in a join-graph contains a subsesecond, because IJGP(i)-S constructs join-graphs sequen-
of variables from the graphical model. 1JGP(i) is a param-ially, the maximumi-bound for IJGP(i)-S is bounded by
eterized algorithm which operates on a join-graph whichthe treewidth of the time slice and its interfaces and not the
has less thamn+ 1 discrete variables in each clique. The treewidth of the entire HDMN model (see Figure 1).
complexity of IJGP(i) is bounded exponentially byalso

called thei-bound. In the message-passing step of IJGP(i),

a message is sent between any two nodes that are neig’ ~ Jeintree construction for a Dynamic network
bors of each other in the join-graph. A message sentb . \IL;\)\QA b g
nodeN; to N;j is constructed by multiplying all the func- < I > R

tions and messages in a node (except the message recei )

from Nj) and marginalizing on the common variables be- ggg g”;;/ —
tweenN; andN; (see [Dechter et al., 2002]). R e martion for e v e
IJGP(i) can be easily adapted to HDMNs (which we call /@),‘ DION > Q%%%
IJGP(i)-S) and we describe some technical details her N o . ' S \'@ K
rather than a complete derivation due to lack of space. Not () &) N

that because we are performing online inference, we nee ®)y )/ @

to construct the join-graph used by IJGP(i)-S in an online . N \

manner rather than recomputing the join-graph every time Siice 0 Steet Slee?
new evidence arrives. Murphy [Murphy, 2002] describes
a method to compute a join-tree in an online manner byFigure 1: Schematic illustration of the Procedure used for

pasting together join-trees of individual time-slicesngsi ~ creating join-graphs and join-trees of HDMNs



Algorithm 1IJGP-RBPF

e Input: A Hybrid Dynamic Mixed Network(X,D,G,P,C)ot and a observation sg-

quencesy-T Integer N, w and i.
Output: P(Xr |ep:T)
Fort=0to T do

Sequential Importance Sampling step

1. Generalized Belief Propagation step
Use IJGP(i) to compute the proposal distributdgpp

Rao-Blackwellisation step
Partition the Variable¥; into Rt andZ; such that the treewidth of a join-tree
Zt isw.
. Sampling step
Fori=1toN do
(@) Generate & from Qapp.
(b) reject sample if{ is not a solution. i=i-1;
(c) Compute the importance weights of R

2.
pf

4. Normalize the importance weights to fowh
e Selection step

— Resample N samples froRi according to the normalized importance weights

w; to obtain new N random samples.
e Exact step

— fori=1toNdo N
Use join-tree-clustering to compute the distributionZgivenz; _,, &, R and

Rt

Figure 2: IJGP-RBPF for HDMNs

Third, IJGP(i) guarantees that the computations will be ex
actifi is equal to the treewidth. This is not true for IJGP(i)-
S in general as shown in [Lerner, 2002]. It can be prove
that:

THEOREM 3.1 The complexity of IJGP(i)-S is (@A | +
n)xd «I¥) « T) where|A| is the number of discrete vari-

cle filtering uses an appropriate (importance) proposal dis
tribution Q(X) to sample from. The particle filter starts by
generating\ particles according to an initial proposal dis-
tribution Q(Xo|€p). At each step, it generates the next state
X{, 1 for each particleq! by sampling fromQ(X;;1/X/, €o1).

It then computes the weight of each particle based given by
w = P(X)/Q(X) to compute a weighted distribution and
thenre-samplegrom the weighted distribution to obtain a
set of un-biased or un-weighted particles.

Particle filtering often shows poor performance in high-
dimensional spaces and its performance can be improved
by sampling from a sub-space by using tiRao-
Blackwellisation (RB) theorerfand the particle filtering
is called Rao-Blackwellised Particle Filtering (RBPF)).
Specifically, the state; is divided into two-sets:R; and

Z; such that only variables in s& are sampled (from a
proposal distributioQ(R;) ) while the distribution orz;

is computed analytically given each sampleRyr{assum-
ing that P(Z|R:,e0t,R—1) is tractable). The complexity
of RBPF is proportional to the complexity of exact infer-
ence step i.e. computiZ|R;,ept,R—1) for each sam-
ple RX. w-cutset [Bidyuk and Dechter, 2004] is a parame-
terized way to seled® such that the complexity of comput-
ing P(Z|R;, eot,R—1) is bounded exponentially by. Be-
low, we use thev-cutset idea to perform RBPF in HDMNSs.

Since exact inference can be done in polynomial time if

a HDBN contains only continuous variables, a straightfor-

O]Nard application of RBPF to HDBNs involves sampling

only the discrete variables in each time slice and exactly
inferring the continuous variables [Lerner, 2002].

Extending this idea to HDMNSs, suggests that in each time
slicet we sample the discrete variables and discard all par-

ables in time-slice t, d is the maximum-domain size of theicles that violate the constraints in the time slice. Leasts
discrete variables, i is the i-bound used, n is the humbesume that we select a proposal distributi@that is a good

of nodes in a join-graph of the time-slicg; is the maxi-

mum number of continuous variables in the clique of theignores the constraint portion.

join-graph used and T is the number of time-slices.

4 RAO-BLACKWELLISED PARTICLE
FILTERING

In this section, we will extend the Rao-Blackwellised Par-
ticle filtering algorithm [Doucet et al., 2000] from HDBNs
to HDMNs. Before, we present this extension, we will
briefly review Particle Filtering and Rao-Blackwellised
Particle Filtering (RBPF) for HDBNs.

approximation of the probabilistic filtering distributidmut
The extension described
above can be inefficient because if the proposal distribu-
tion Q is such that it makes non-solutions to the constraint
portion highly probable, most samples fragnwill be re-

jected (because these sampReswill have P(R}) = 0 and

so the weight will be zero). Thus, on one extreme sampling
only from the Bayesian Network portion of each time-slice
may lead to potentially high rejection-rate.

On the other extreme, if we want to make the sample re-

jection rate zero we would have to use a proposal dis-

tribution @ such that all samples from this distribution
are solutions. One way to find this proposal distribution

Particle filtering uses a weighted set of samples or partiis to make the constraint network backtrack-free (using
cles to approximate the filtering distribution. Thus, givenadaptive-consistency [Dechter, 2003] or exact constraint
a set of particles(!, ..., X approximately distributed ac- propagation) along an ordering of variables and then sam-
cording to the target-filtering distributioR(X = M|ept),  ple along the reverse ordering. Another approach is to
the filtering distribution is given byP(X = Mleot) =  use join-tree-clustering which combines probabilistid an

1/NyN,3(X = M) whered is the Dirac-delta function. deterministic information and then sample from the join-
Since we cannot sample froR{X; = M|epy) directly, Parti-



tree. However, both join-tree-clustering and adaptive- ° °
consistency are time and space exponential in treewidth ar
so they are costly when the treewidth is large. Thus on on
hand, zero-rejection rate implies using a potentially lgost
inference procedure while on the other hand sampling fron
a proposal distribution that ignores constraints may tesul
in a high rejection rate.

We propose to exploit the middle ground between the twc
extremes by combining the constraint network and the
Bayesian Network into a single approximate distribution
Qapp using 1JGP(i) which is a bounded inference proce-
dure. Note that because IJGP(i) has polynomial time com-
plexity for constant, we would not eliminate the sample-
rejection rate completely. However, by using IJGP(i) we
are more likely to reduce the rejection-rate because 1JGP(i
also achieves Constraint Propagation and it is well knownng network Z; is bounded byw. (3) In the sampling
that Constraint Propagation removes many inconsistenitep, the variableR: are sampled fron®ap, To gener-
tuples thereby reducing the chance of sampling a nonate a sample fronf2.pp, We use a special data-structure
solution. [Dechter, 2003]. of ordered buckets which is described in a companion pa-
Another important advantage of using 1JGP(i) is thatPer [Gogate and Dechter, 2005]. Importance weights are
it yields very good approximations to the true poste_computed as usual [Doucet et al., 2000].

rior [Dechter et al., 2002] thereby proving to be an idealFinally, the exact-step computes a distribution fnus-
candidate for proposal distribution. Note that IJGP(i)ing join-tree-clustering for HMNs (see a companion pa-
can be used as a proposal distribution because it can hger [Gogate and Dechter, 2005] for details on join-tree-
proved using results from [Dechter and Mateescu, 2003t|ustering for HMNS). It can be proved that:

that IJGP(i) includes all supports & (X |ept,%—1) (i.€.

P(X:|eot, %—1) > O implies that the output of IJGP(i) viz. THEOREM4.1 The complexity of IJGP-RBPF(i,w) is
Q>0) O(INR * d™1 4+ ((|A] +n) * (d" +|T|®))] * T) where|4| is

. - the number of discrete variables, d is the maximum-domain
Note that 1JGP(i) we use here is different from the algo'size of the discrete variables, i is the adjusted-i-bounis, w

r|th.m.IJGP(|)—S that we described in the previous sectlon.defined by w-cutset, n is the number of nodes in a join-
This is because in our RBPF procedure, we need to com

L S, K graph, I is the number of continuous variables in a 2-
p_ute an approxm?(atlon to the d'smbu“de_Rt—l’eOI) THMN, NR is the number of samples actually drawn and
given the sampl&®_; on variablefx_1 and evidenceoy.

. i T is the number of time-slices.
IJGP(i) as used in our RBPF procedure works on HMNs

and can be derived using the results in [Dechter et al., 2002
Lauritzen, 1992, Larkin and Dechter, 2003]. For lack of5 THE TRANSPORTATION MODEL
space we do not describe the details of this algorithm (see a

companion paper [Gogate and Dechter, 2005] for details)./n this section, we describe the application of HDMNSs to
a real-world problem of inferring car travel activity of in-

The integration of the ideas described above into a formajiiduals. The major query in our HDMN model is to pre-
algorithm called 1JGP-RBPF is given in Figure 2. It usesgict where a traveler is likely to go and what his/her route
the same template as in [Doucet et al., 2000] and the only, the destination is likely to be, given the current loca-
step different in IJGP-RBPF from the original template isjon of the traveler's car. This application was described
the implementation of the Sequential Importance Samplingy, [Liao et al., 2004] in a different context for detecting ab
step (SIS). normal behavior in Alzheimer’s patients and they use a Ab-

SIS is divided into three-steps: (1) In the GeneralizedStract Hierarchical Markov Models (AHMM) for reasoning
Belief Propagation step of SIS, we first perform Be- a@boutthis problem. The novelty in our approachis notonly
lief Propagation using IJGP(i) to form an approxima- & more general modeling framework and approximate in-
tion of the posterior (sayQapp) as described above. ference algorithms but also a domain independent imple-
(2) In the Rao-Blackwellisation step, we first parti- mentation which allows an expert to add and test variants
tion the variables in a 2THMN into two setsR and  Of the model.

Z using a method due to [Bidyuk and Dechter, 2004]. Figyre 3 shows a HDMN model for modeling the car travel
This method [Bidyuk and Dechter, 2004] removes minimalactivity of individuals. Note that the directed links exgse
variablesR; from X such that the treewidth of the remain- the probabilistic relationships while the undirected ol

Figure 3: Car Travel Activity model of an individual



edges express the constraints. ity of the person’s travel. The location is given as latitude
. and longitude pairs. The data was first divided into indi-
We consider the roads as a Grapiy, E) where the ver vidual routes taken by the person and the HDMN model

ticesV correspond to intersections while _the edﬁ.e_sor— was learned using the Monte Carlo version of the EM algo-
respond to segments of roads between intersections. Th

variables in the model are as follows. The varialeand fithm [Liao etal., 2004, Levine and Casella, 2001].

w; represent the information about time-of-day and day-We used the first three months’ data as our training
of-week respectivelyd; is a discrete variable and has four set while the remaining data was used as a test set.
values(morning afternooneveningnight) while the vari- ~ TIGER/Line files available from the US Census Bureau
ablew; has two valuegweekengweekday. Variable g formed the graph on which the data was snapped. As spec-
represents the persons next goal (e.g. his office, home etdjied earlier our aim is two-fold: (a) Finding the destinatio
We consider a location where the person spends significamtr goal of a person given the current location and (b) Find-
amount of time as a proxy for a goal [Liao et al., 2004]. ing the route taken by the person towards the destination or
These locations are determined through a preprocessirgpal.

step by noting the locations in which the dwell-time is . . .
To compare our inference and learning algorithms, we use

greater than a threshold (15 minutes). Once such Iocatior}%ree HDMN models. Model-1 is the model shown in Fid-
are determined, we cluster those that are in close proximit : 9

to simplify the goal set. A goal can be thought of as a set o¥”e. 3. Model-2 is the model given |n.F|gur<_e 3 with the
. . variablesiw; andd; removed from each time-slice. Model-
edgesE; C E in our graph representation. The route level

f, represents the route taken by the person to move fro 3 is the base-model which tracks the person without any

one goal to other. We arbitrarily set the number of valuesrﬂ'gh_level information and is constructed from Figure 3 by

it can take to|g;|?. The person’s locatioh and velocity removing the variablest, ct, f, g andry from each time-

. : . slice.
v; are estimated from GPS readigg f; is a counter (es-
sentially goal duration) that governs goal switching. TheWe used 4 inference algorithms. Since EM-learning uses
Locationl; is represented in the form of a two-tugke w) inference as a sub-step, we have 4 different learning al-
wherea = (s1,5),a € E ands;,s €V is an edge of the gorithms. We call these algorithms as 1IJGP-S(1), 1IGP-
mapG(V,E) andw is a Gaussian whose mean is equal toS(2) and 1JGP-RBPF(1,1,N) and 1IJGP-RBPF(2,1,N) re-
the distance between the person’s current positiomamd  spectively. Note that the algorithm 1JGP-S(i) (described
one of the intersections i in Section 3) usesas the-bound. IJGP-RBPF(i,w,N) (de-
I . . scribed in Section 4) usess thei-bound for IIGP(i)w as
The probabilistic dependencies in the model are straigh ihew-cutset bound antl is the number of particles at each

forward and can be foun.d by tracing the arrows (see I:'giime slice. Three values & were used: 100, 200 and 500.
ure 3). The constraints in the model are as follows. W

. : . “For EM-learningN was 500. Experiments were run on a
assume that a person switches his goal from one time Sllclgentium-4 2 4 GHz machine with 2G of RAM. Note that
to another when he is near a goal or moving away from 3or Model-1 .we only use 1JGP-RBPE(L,1) and IJGP(1)-S

goal but not whgn he is on a goal Iocatlo_n_. we al_so al_because the maximurrbound in this model is bounded by
low a forced switch of goals when a specified maximum .
1 (see section 3).

time that he is supposed to spend at a goal is reached. This
is modeled by using a constant D. These assumptions of

SWitChing between goaIS is modeled USing the fO”OWlngGl FINDING DESTINATION OR GOAL OF A
constraints between the current location, the current,goal PERSON

the next goal and the switching counters: (1)l = g—1
andR_1 =0Thenk =D, (2) If li_1 =gi—1 andR_1 >0
Thenk =R_1—1, (3) Ifl;_1 # g1 andR_1 = 0 Then
R =0and (4) Ifli_1 # g1 andR_1 > 0 Thenk =0, (5)

The results for goal prediction with various combinations
of models, learning and inference algorithms are shown
el in Tables 1, 2 and 3. We define prediction accuracy as
If R-1>0andR =0 Theng, is given byP(qi(gi-1), (6) I the number of goals predicted correctly. Learning was
R-1 = 0Oandh =0 Theng: is same ag;_1, (7) T 1> 0 performed offline. Our slowest learning algorithm based
andh > 0g; issame ag—1 and (8) Ifh-1=0andR >0 GBP-RBPF(2,1) used almost 5 days of CPU time for

9 is given byP(gi|gi—1). Model-1, and almost 4 days for Model-2—significantly
less than the period over which the data was collected. The
6 EXPERIMENTAL RESULTS column’'Time’ in Tables 1, 2 and 3 shows the time for infer-

ence algorithms in seconds while the other entries indicate

The test data consists of a log of GPS readings coIIecteHﬂIe accuracy for each combination of inference and learn-
Ing algorithms.

by one of the authors. The test data was collected ove
a six month period at intervals of 1-5 seconds each. Thén terms of which model yields the best accuracy, we can
data consist of the current time, date, location and velocsee that Model-1 achieves the highest prediction accuracy



of 84% while Model-2 and Model-3 achieve prediction ac Table 3: Goal Prediction Model-3

curacies of 77% and 68% respectively or lower. TEARNING
N Inference Time 1IJGP-RBPF(1,1) | 1JGP(1)-S

For Model-1, to verify which algorithm vyields the best ;gg :jgggggigg ig gg gi
learned model we see that |JGP'RBPF(2,1) and |JGP(2 =500 |JGP:RBPF(1:1) 1345 68 63

S yield an accuracy of 83% and 81% respectively whil 'fj;;lg)f 123 e o
for Model-2, we see that the average accuracy of 1JGP-

RBPF(2,1) and 1JGP(2)-S was 76% and 75% respectively.

From these two results, we can see that [JGP-RBPF(2,1)

and IJGP(2)-S are the best performing learning algorithms.

RELATED WORK

For Model-1 and Model-2, to verify which algorithm yields
the best accuracy given a learned model, we see that

IJGP(2)-S is the most cost-effective alternative in terms

time versus accuracy while IJGP-RBPF yields the best ac[-l'iao etal., 2004] and [Patterspn etal., 2003]. descripe a
model based on AHMEM [Bui, 2003] and Hierarchical

curacy. : . ) .
Y Markov Models (HMMs) respectively for inferring high-
level behavior from GPS-data. Our model goes beyond
Table 1: Goal-prediction: Model-1 their model by representing two new variables day-of-week
LEARNING and time-of-day which improves the accuracy in our model
1JGP-RBPF 1JGP-S
N Tnference Tme | @D | @D | @ @A) by about 6%.
100 1JGP-RBPF(1,1) 12.3 78 80 79 80
100 [ WGP-RBPF(21)] 158 | 81 84 s | el A mixed network framework for representing de-
200 1JGP-RBPF(1,1) 33.2 80 84 77 82 . . . .
200 | JGP-RBPF(2,1)| 603 80 84 76 82 terministic and uncertain information was presented
500 1JGP-RBPF(1,1) 123.4 81 84 80 82 H H H
500 | TGP-RBPFE.D) | 20012 |84 o e in [Dechter and Larkin, 2001, Larkin and I_Dechter, 2003,
IGP(1)-S 9 79 79 77 79 Dechter and Mateescu, 2004]. These previous works also
1IGP(2)-S 34.3 74 84 78 82 . . . .
Average 79625 | 82875 | 78.25 | 8125 describe exact inference algorithms for mixed networks

with the restriction that all variables should be discrete.
Our work goes beyond these previous works in that we de-
scribe approximate inference algorithms for the mixed net-
work framework, allow continuous Gaussian nodes with
certain restrictions in the mixed network framework and
To see how our models predict a person’s route, we usenodel discrete-time stochastic processes. The approx-
the following method. We first run our inference algorithm imate inference algorithms called 1JGP(i) described in
on the learned model and predict the route that the persoibechter et al., 2002] handled only discrete variables. In
is likely to take. We then super-impose this route on theour work, we extend this algorithm to include Gaussian
actual route taken by the person. We then count the numbefariables and discrete constraints. We also develop a se-
of roads that were not taken by the person but were in thguential version of this algorithm for dynamic models.
predicted route i.e. the false positives, and also compute L . .
the number of roads that were taken by the person but Wethartche Filtering is a very attractive research

not in the actual route i.e. the false negatives. The twd'€a [Doucetetal., 2000]. Particle Filtering in HDMNs

measures are reported in Table 4 for the best performin an be inefficient if non-solutions of constraint portion
ave high probability of being sampled. We show how

learning models in each category: viz IJGP-RBPF(2,1) fo h R . .
Model-1 and Model-2 and GBP-RBPF(1,1) for Model-3. to aIIgVIate th|§ d|ff|cul'ty by performing IJ_GP(l) before
As we can see Model-1 and Model-2 have the best routéamp“ng' This algorithm IJGP-RBPF yields the best

prediction accuracy (given by low false positives and false?e””'”_”a”_ce in_ our _settings_ and_ might prove to be useful
negatives). in applications in which particle filtering is preferred.

6.2 FINDING THE ROUTE TAKEN BY THE
PERSON

Table 2: Goal Prediction: Model-2

LEARNING
1JGP-RBPF 1JGP-S Table 4: False positives (FP) and False negatives for routes

N Inference Time (1,1) (2,1) (1) (2)
100 | IGP-RBPFLL| 83 | 73 73 7 73 taken by a person (FN)
100 1JGP-RBPF(2,1) 14.5 76 76 71 75 Modell Model2 Model3
200 1JGP-RBPF(1,1) 23.4 76 77 71 75 N INFERENCE FP/FN FP/FN FP/FN
200 | JGP-RBPF(21)| 314 | 76 77 71 76 1IGP(T) 33123 39734 | 60/55
500 1IJGP-RBPF(1,1) | 40.08 76 77 71 76 1JGP(2) 31/17 39/33
500 1IJGP-RBPF(2,1) | 51.87 76 77 71 76 100 1JGP-RBPF(1,1) 33/21 39/33 60/54

TIGP(1)-S 634 | 71 73 71 74 200 | 1JGP-RBPF(1,1)| 33/21 39733 | 58/43

JGP(2)-S 10.78 | 76 76 72 76 100 | DGP-RBPF(2,1)| 32/22 | 42/33

Average 75 75.75 71.125 75.125 200 1JGP-RBPF(2,1) 31/22 38/33




8 CONCLUSION AND FUTURE WORK [Doucet et al., 2000] Doucet, A., de Freitas, N., Murphy,

K. P., and Russell, S. J. (2000). Rao-blackwellised par-
In this paper, we introduced a new modeling framework ticle filtering for dynamic bayesian networks. WAI
called HDMNSs, a representation that handles discrete-time '00: Proceedings of the 16th Conference on Uncertainty
stochastic processes, deterministic and probabilistarin in Artificial Intelligence pages 176—183. Morgan Kauf-
mation on both continuous and discrete variables in a sys- mann Publishers Inc.

tematic way. We also propose a GBP-based algorith
. . . . . Gogate and Dechter, 2005] Gogate, V. and Dechter, R.
called 1JGP(i)-S for approximate inference in this framer—TE (3005)_ Approximate in%erengc]:e algorithms for hybrid

yvork. Th_e main algorithmic contrlbut!on of th|.s paper bayesian networks with discrete constrair2d st Con-
is presenting a class of Rao-Blackwellised particle filter- L e :
ference on Uncertainty in Artificial Intelligence, UAI-

ing algorithm, IJGP-RBPF for HDMNs which integrates 2005

a generalized belief propagation component with a Rao-

Blackwellised Particle Filtering scheme for effective sam [Heskes and Zoeter, 2002] Heskes, T. and Zoeter, O.
pling in the presence of constraints. Another contribution (2002). Expectation propagation for approximate in-
of this paper is addressing a complex and highly relevant ference in dynamic bayesian networks. Aroceedings
real life domain using a general framework and domain in- of 18th Conference of Uncertainty in Artificial Intelli-
dependent algorithms. Directions for future work include gence, UAI-2002

relaxing the restrictions made on dependencies betweeﬁl Ki d Dechter. 2003] Larkin. D d Dech R
discrete and continuous variables and developing an effi a(r2 (;r(l)g)n Baegs;[:;,inferce]nc::nlrt]ﬁe .rezznce E? dtaet:a,rmi.n—
cient EM-algorithm. - Bay P

ism. InAI-STATS-2003
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