
The Impact of AND/OR Search Spaces on Constraint
Satisfaction and Counting

Rina Dechter and Robert Mateescu

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter, mateescu}@ics.uci.edu

Abstract. The contribution of this paper is in demonstrating the impact of AND/OR
search spaces view on solutions counting. In contrast to thetraditional (OR)
search space view, the AND/OR search space displays independencies present in
the graphical model explicitly and may sometimes reduce thesearch space expo-
nentially. Empirical evaluation focusing on counting demonstrates the spectrum
of search and inference within the AND/OR search spaces.

1 Introduction

The primary contribution of this paper is in viewing search for constraint processing
in the context ofAND/OR search spacesrather thanOR spaces. We demonstrate how
the AND/OR principle can exploit independencies in the graph model to yield expo-
nentially smaller search spaces. The notion of AND/OR search tree is closely related to
the notion of pseudo-tree rearrangement introduced in [1] for constraint satisfaction. In
recent work we revive this idea, extend it to various tasks for any graphical model and
extend AND/OR spaces to search graphs as well, thus allowingcaching. In this paper
we focus on counting for constraint networks and provide initial empirical evaluation
along the full spectrum of space and time.

2 AND/OR Search Trees

In the following sections we will use the common definitions and notations for con-
straint networks and their associated parameters. For moredetails see [2].

Definition 1 (AND/OR search tree based on a DFS tree).Consider a constraint net-
work R and a DFS spanning treeT of its primal graph. The AND/OR search tree of
R based onT , denotedST , has alternating levels of OR nodes (labeled with variable
names, e.g.X) and AND nodes (labeled with variable values, e.g.〈X, v〉). The root of
ST is an OR node labeled with the root ofT . The children of an OR nodeX are AND
nodes, each labeled with a value ofX , 〈X, v〉. The children of an AND node〈X, v〉 are
OR nodes, labeled with the variables that are children ofX in T .

Consider the treeT in Fig. 1 describing a graph coloring problem over domains
{1, 2, 3}. Its traditional OR search tree along the DFS orderingd = (X, Y, T, R, Z, L, M)
is given in Fig. 2, its AND/OR search tree based on the DFS treeT and a highlighted
solution subtree are given in Fig. 3.

X

Y Z

T R L M

Fig. 1. TreeT

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

Fig. 2.OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

Fig. 3.AND/OR search tree

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Fig. 4.Minimal OR search graph of the tree
problem in Fig. 1

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Fig. 5. Minimal AND/OR search graph of the
tree problem in Fig. 1

Pseudo-trees. The construction of AND/OR search trees can use as its basisnot just
DFS spanning trees, but also the more generalpseudo-trees[1, 3]. They have the prop-
erty that every arc of the original primal graph is a back-arcin the pseudo-tree (i.e.
it doesn’t connect across different branches). Clearly, any DFS tree and any chain are
pseudo-trees. Searching the OR space corresponds to searching a chain. It is easy to see
that searching an AND/OR tree is exponential in the depth of the pseudo-tree. Also, it
is known that the minimal depth over pseudo-trees,m∗, satisfiesm∗ ≤ w∗ log n [3].

Theorem 1. Given a constraint networkR and a pseudo-treeT , its AND/OR search
tree ST is sound and complete (contains all and only solutions) and its size isO(n ·
exp(m)) wherem is the depth of the pseudo-tree. A constraint network that has a tree-
widthw∗ has an AND/OR search tree whose size isO(exp(w∗ · log n)).

3 AND/OR Search Graphs

It is often the case that certain states in the search tree canbe merged because the
subtrees they root are identical. Any two such nodes are called unifiable, and when
merged, transform the search tree into a search graph. It canbe shown that the closure
of an AND/OR search graph under the merging of unifiable states yields a unique fixed
point, called theminimal AND/OR search graph. Merging is applicable to the OR search
space as well. However, in many cases it will not be able to reach the compression we
see in the AND/OR search graph. Fig. 4 and Fig. 5 show a comparison between minimal
OR and AND/OR search graphs for the problem in Fig. 1. Note that in the AND/OR
graph only the AND levels are relevant, the OR levels servingonly for clarity.

We will now describe some efficient rules for generating AND/OR search graphs.
The idea is to extract from each path only the relevantcontextthat completely deter-

procedure AND-OR-COUNTING

Input: A constraint network; a pseudo-treeT of its constraint graph; parentspai and parent-separatorspsai.
Output: The number of solutionsg(X0). π denotes the current partial assignment path.¯
1. Initialize : X0 = root(T), type(X0) = OR, OPEN← X0, cache← φ;
2. Expand: n← first node in OPEN; generate all successors ofn as follows:

if (type(n) == OR), denoten = X
succ(X)← {〈X, v〉 | consistent(〈X, v〉)}
if (succ(X) = φ) then g(X) = 0; (dead-end)
[cache(πpaX

) = 0 , update constraints and go to step 3]

for each〈X, v〉 ∈ succ(X) do π′ ← π ∪ (〈X, v〉)
[if (cache(π′

psaX
) 6= φ) then g(〈X, v〉) = cache(π′

psaX
) else] add〈X, v〉 to OPEN

if (type(n) == AND), denoten = 〈X, v〉
if X is a leaf inT then,g(〈X, v〉) = 1, go to step 3
succ(〈X, v〉)← {Y | Y ∈ children(X) in T}
for eachY ∈ succ(〈X, v〉) do
[if (cache(πpaY

) 6= φ) then g(Y) = cache(πpaY
) else] addY to OPEN

3. Propagate: whileyou can propagateg values:
a. For a non-terminal AND node〈X, v〉:

if (Y ∈ succ(〈X, v〉) andg(Y) = 0), remove siblings ofY from OPEN,g(〈X, v〉) = 0.
if all succ(〈X, v〉) are evaluated,g(〈X, v〉) = ΠY ∈succ(〈X,v〉)g(Y)
[if (〈X, v〉 is evaluated) then cache(πpsaX

) = g(〈X, v〉)]
b. For a non-terminal OR nodeX:

if all succ(X) haveg values,g(X) = Σ〈X,v〉∈succ(X)g(〈X, v〉)
OR [if (X is evaluated) then cache(πpaX

) = g(X)]
4. if X0 was evaluated, exit withg(X0) elsego to step 2.

Fig. 6.The counting algorithm

mines the unexplored portion of the space. Subsequently, ifmemory allows, the sub-
graph is only solved once and the results are indexed by the context and cached. We
will need some more definitions.

Definition 2 (induced-width relative to a pseudo-tree).GivenGT , which is an ex-
tended graph ofG that includes all the arcs in the pseudo-treeT , the induced width
of G relative to the pseudo-treeT , wT (G), is the induced-width ofGT along the DFS
ordering ofT .

Definition 3 (parents, parent-separators).Given the induced-graph,G∗T of an ex-
tended graphGT , the parents ofX denotedpaX , are its earlier neighbors in the
induced-graph. Its parent-separators,psaX are its parents that are also neighbors of
future variables inT .

In G∗T , the parent-separators of every nodeXi separate inT its ancestors on the path
from the root, and all its descendents inGT . Therefore, any two nodes having the same
context, that is, the same assignments to their parent-separators, can be merged.

Theorem 2. GivenG, a pseudo-treeT and its induced widthw = wT (G), the size of
the AND/OR search graph based onT obtained when every two nodes inST having the
same context are merged isO(n · kw), whenk bounds the domain size.

Thus, the minimal AND/OR search graph ofG relative to T is O(n · kw) where
w = wT (G). Since, as can be shown,minT {wT (G)} equals the tree-widthw∗ and
since minT∈chain{wT (G)} equals the path-widthpw∗ we obtain that the minimal
AND/OR search graph is bounded exponentially by the primal graph’s tree-width, while
the minimal OR search graph is bounded exponentially by its path-width. It is well
known [4] that for any graphw∗ ≤ pw∗ ≤ w∗ · log n. It is also easy to placem∗ (the
minimal pseudo-tree depth) yieldingw∗ ≤ pw∗ ≤ m∗ ≤ w∗ · log n.

Table 1.A/O FC, N=60, K=3

N=40, K=3, C=50, S=3, 20 inst., w*=13, d=20
Time Number of dead-ends

tightness 20% 40% 60% 20% 40% 60%
solutions 0 0 147898575 0 0 147898575

BE 8.714 8.709 8.637
i=0 A/O FC 0.030 0.454 32.931 533 9,229 1,711,947

OR FC 0.031 0.511 9737.823 533 9,897 324,545,908
i=6 A/O FC 0.029 0.454 25.140 533 8,991 917,612

OR FC 0.032 0.508 7293.472 533 9,897 208,159,068
i=13 A/O FC 0.030 0.457 11.974 533 8,533 181,157

OR FC 0.032 0.494 1170.203 533 9,283 20,018,823

Table 2.A/O FC, N=100, K=2

N=100, K=2, C=130, S=3, 20 inst., w*=32, d=43

tightness 10% 30% 50% 70%
solutions 0 0 0 0

Time (seconds)
i=20 0.069 0.193 3.572 677.045

Number of nodes
i=20 70 406 4,264 1,139,860

Number of dead-ends
i=20 72 204 4,266 1,043,692

4 AND/OR Algorithms for Counting

Figure 6 presents the basic DFS traversal of the AND/OR search space. The square
bracketed lines allow different levels of caching. The nodes in the search graph are
labeled byg-values. These stand for the number of solutions below that variable (or
variable-value). The computation of the number of solutions is done at step 3 by multi-
plication (for AND nodes) and summation (for OR nodes). The complexity is, [2]:

Theorem 3. AND-OR-COUNTING with linear space has time complexityO(n·exp(w∗·
log n)), wherew∗ is the tree-width of the problem. With full caching, it is time and space
exponential inw∗. For OR space, the complexity is exponential in the path-width.

5 Empirical Demonstration

We ran a version of the counting algorithm, which uses forward checking (FC) as the
constraint propagation method, defined by theconsistentfunction in step 2 of the algo-
rithm. We compared AND/OR and OR search spaces, resulting intwo algorithms: A/O
FC and OR FC. We tried different levels of caching, controlled by ani-boundwhich
defines the maximum context size that can be cached. We also compared against bucket
elimination (BE) in some cases, where space was available. We report average measures
over 20 instances. Also,w∗ is the induced width andd is the depth of the pseudo-tree.
The constraint networks were generated randomly uniformlygiven a number of input
parameters:N - number of variables;K - number of values per variable;C - number of
constraints;S - the scope size of the constraints;t - the tightness (percentage of allowed
tuples per constraint). For extended results see [2].

Table 1 shows a comparison on moderate size problems which allowed bucket elimi-
nation to run. The bolded time numbers show the best values ineach column. The most
important thing to note is the vast superiority of AND/OR space over the traditional
OR space. A/O FC and OR FC are comparable only on inconsistentproblems (up to
t = 40%). When the problems are consistent, the difference becomesgreater with in-
creasing number of solutions. For BE we only report time, which is not sensitive to the
tightness of the problems.

Table 2 shows examples of large networks for which BE and traditional OR search
were infeasible. We ran only A/O FC with the maximum cache size possible for our
machine. This shows that AND/OR search is more flexible, being able to solve problems
of much larger size than inference algorithms or the traditional OR search.

6 Conclusions, Discussion and Related Work

The paper shows how counting algorithms can be affected whenformulated as search-
ing AND/OR search trees and graphs rather than searching their OR counterparts. We
present and analyze counting algorithms and provide initial empirical evaluation along
the full spectrum of space and time. We compare counting algorithms on the AND/OR
search space when pruning is accomplished by forward-checking and show how their
performance is affected by different levels of caching and how it is compared to bucket-
elimination, as a function of problem tightness. The empirical evaluation shows that
AND/OR search space is always better than the traditional ORspace, often yielding ex-
ponential improvements. Compared to inference based algorithms (bucket elimination),
AND/OR search is more flexible and able to adapt to the amount of available space. All
the existing constraint propagation techniques are readily available for AND/OR search.
Coupling this with the possibility of caching makes AND/OR search a very powerful
scheme. For full details see [2].
Related work. It can be shown that graph-based backjumping [5, 6] mimics the explo-
ration of an AND/OR search tree. Indeed, it was shown that thedepth of a DFS-tree
or a pseudo-tree [7, 3] plays an important role in bounding backjumping complexity.
Memory-intensive algorithms can be viewed as searching theAND/OR search graph,
such as recent work [8] which performs search guided by a tree-decomposition for
constraint satisfaction and optimization. A similar approach was introduced recently in
[9, 10] both for belief updating and counting models of a CNF formula. Relationship
between minimal AND/OR graphs and tree-OBDDs can be shown.

Acknowledgments
This work was supported in part by the NSF grant IIS-0086529 and the MURI ONR
award N00014-00-1-0617.

References

1. Freuder, E.C., Quinn, M.J.: Taking advantage of stable sets of variables in constraint satisfac-
tion problems. In: International Joint Conference on Artificial Intelligene. (1985) 1076–1078

2. Dechter, R., Mateescu, R.: The impact of AND/OR search spaces on constraint satisfaction
and counting. Technical report, UCI (2004)

3. Bayardo, R., Miranker, D.: A complexity analysis of space-bound learning algorithms for
the constraint satisfaction problem. In: AAAI’96. (1996) 298–304

4. Bodlaender, H., Gilbert, J.R.: Approximating treewidth, pathwidth and minimum elimination
tree-height. Technical Report RUU-CS-91-1, Utrecht University (1991)

5. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning and
cutset decomposition. Artificial Intelligence41 (1990) 273–312

6. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
7. Freuder, E.C., Quinn, M.J.: The use of lineal spanning trees to represent constraint satisfac-

tion problems. Technical Report 87-41, University of New Hampshire, Durham (1987)
8. Terrioux, C., Jegou, P.: Hybrid backtracking bounded by tree-decomposition of constraint

networks. Artificial Intelligence146(2003) 43–75
9. Darwiche, A.: Recursive conditioning. In: Proceedings of the 15th Conference on Uncer-

tainty in Artificial Intelligence. (1999)
10. F. Bacchus, S.D., Piassi, T.: Value elimination: Bayesian inference via backtracking search.

In: Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence. (2003)

