The Impact of AND/OR Search Spaces on Constraint
Satisfaction and Counting

Rina Dechter and Robert Mateescu

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697-3425
{dechter, mateescu}@cs. uci.edu

Abstract. The contribution of this paper is in demonstrating the intjgh&ND/OR
search spaces view on solutions counting. In contrast tdréwtional (OR)
search space view, the AND/OR search space displays indepeies present in
the graphical model explicitly and may sometimes reducedaech space expo-
nentially. Empirical evaluation focusing on counting dersimates the spectrum
of search and inference within the AND/OR search spaces.

1 Introduction

The primary contribution of this paper is in viewing searon ¢onstraint processing
in the context ofAND/OR search spaceather tharOR spacesWe demonstrate how
the AND/OR principle can exploit independencies in the grapodel to yield expo-
nentially smaller search spaces. The notion of AND/OR s$etmee is closely related to
the notion of pseudo-tree rearrangement introduced inofl¢dnstraint satisfaction. In
recent work we revive this idea, extend it to various tasksfty graphical model and
extend AND/OR spaces to search graphs as well, thus allogdnlging. In this paper
we focus on counting for constraint networks and providgahempirical evaluation
along the full spectrum of space and time.

2 AND/OR Search Trees

In the following sections we will use the common definitiomslanotations for con-
straint networks and their associated parameters. For datadls see [2].

Definition 1 (AND/OR search tree based on a DFS treeConsider a constraint net-
work R and a DFS spanning tre& of its primal graph. The AND/OR search tree of
‘R based orl', denotedSt, has alternating levels of OR nodes (labeled with variable
names, e.gX) and AND nodes (labeled with variable values, X, v)). The root of
St is an OR node labeled with the root6f The children of an OR nod& are AND
nodes, each labeled with a valueX®f (X, v). The children of an AND nodgX, v) are
OR nodes, labeled with the variables that are childretkXah 7.

Consider the tre€’ in Fig. 1 describing a graph coloring problem over domains
{1, 2, 3}. lts traditional OR search tree along the DFS ordeding (X,Y,T, R, Z, L, M)
is given in Fig. 2, its AND/OR search tree based on the DFS’fread a highlighted
solution subtree are given in Fig. 3.

AND L 3
B
0)
£ [3

OR
1] L [z
O 6® O W

= N 1 H4 < X

Fig. 4. Minimal OR search graph of the tree Fig. 5. Minimal AND/OR search graph of the
problem in Fig. 1 tree problem in Fig. 1

Pseudo-treesThe construction of AND/OR search trees can use as its basigist
DFS spanning trees, but also the more genesalido-treefl, 3]. They have the prop-
erty that every arc of the original primal graph is a back-iarthe pseudo-tree (i.e.
it doesn’t connect across different branches). Clearly,2RS tree and any chain are
pseudo-trees. Searching the OR space corresponds toisgaadain. It is easy to see
that searching an AND/OR tree is exponential in the depthefiseudo-tree. Also, it
is known that the minimal depth over pseudo-trees, satisfiesn* < w* logn [3].

Theorem 1. Given a constraint networR and a pseudo-tre&’, its AND/OR search
tree Sr is sound and complete (contains all and only solutions) asdize isO(n -
exp(m)) wherem is the depth of the pseudo-tree. A constraint network thathzee-
width w* has an AND/OR search tree whose siz@{sxp(w* - logn)).

3 AND/OR Search Graphs

It is often the case that certain states in the search tredoeanerged because the
subtrees they root are identical. Any two such nodes aredalhifiable and when
merged, transform the search tree into a search graph. liecahown that the closure
of an AND/OR search graph under the merging of unifiable stgdds a unique fixed
point, called theninimal AND/OR search grapMerging is applicable to the OR search
space as well. However, in many cases it will not be able tolrélae compression we
see inthe AND/OR search graph. Fig. 4 and Fig. 5 show a cosgrabietween minimal
OR and AND/OR search graphs for the problem in Fig. 1. Noteéiththe AND/OR
graph only the AND levels are relevant, the OR levels serainky for clarity.

We will now describe some efficient rules for generating ARB/ search graphs.
The idea is to extract from each path only the relevaritextthat completely deter-

procedure AND-OR-COUNTING
Input: A constraint network; a pseudo-trgeof its constraint graph; parents:; and parent-separatopsa; .
Output: The number of solutiong(Xy). = denotes the current partial assignment path.
1. Initialize: Xo = root(T), type(Xo) = OR, OPEN«— X, cache «— ¢;
2. Expand: n < first node in OPEN; generate all successors afs follows:
if (type(n) == OR), denoten = X
succ(X)«— {(X,v) | consistent({X,v))}
if (suce(X) = ¢) then g(X) = 0; (dead-end)
[cache(mpay) =0, update constraints and go to step 3]
for each(X, v) € succ(X)dorn’ «— mU ((X,v))
[if(cache(ﬂ';)sax) # ¢) theng({X,v)) = cache(ﬂ';)sax
if (type(n) == AN D), denoten = (X, v)
if X is aleafinT then,g((X,v)) = 1,gotostep3
suce((X,v)) «— {Y | Y € children(X) in T}
for eachY” € suce((X,v)) do
[if (cache(mpay) # ¢) theng(Y) = cache(mpay) €lse] addY to OPEN
3. Propagate: whileyou can propagate values:
a. For a non-terminal AND nodgX, v):
if (Y € suce({X,v))andg(Y) = 0), remove siblings ot” from OPEN,g((X, v)) = 0.
if all succ((X, v)) are evaluatedg((X, v)) = Iy csuce((x,0))9(Y)
[if ({(X,v) is evaluated) thencache(mpsay) = g({X,v))]
b. For a non-terminal OR nod& :
if all succ(X) havey values,g(X) = X x vyesuce(x)9({X; v))
OR [if (X is evaluated) thencache(mpay) = g(X)]
4. if X, was evaluated, exit with (X) elsego to step 2.

) else] add(X,v)to OPEN

Fig. 6. The counting algorithm

mines the unexplored portion of the space. Subsequentiyerhory allows, the sub-
graph is only solved once and the results are indexed by thiexioand cached. We
will need some more definitions.

Definition 2 (induced-width relative to a pseudo-tree).Given G, which is an ex-
tended graph of7 that includes all the arcs in the pseudo-tr€e the induced width
of G relative to the pseudo-tré®, wr(G), is the induced-width of/”" along the DFS
ordering ofT'.

Definition 3 (parents, parent-separators).Given the induced-grapt;*” of an ex-
tended graphG”, the parents ofX denotedpax, are its earlier neighbors in the
induced-graph. Its parent-separatogssax are its parents that are also neighbors of
future variables irll".

In G*T', the parent-separators of every nodgseparate iff” its ancestors on the path
from the root, and all its descendentgifi . Therefore, any two nodes having the same
context, that is, the same assignments to their parentaeps, can be merged.

Theorem 2. GivenG, a pseudo-tre§” and its induced widthw = wr(G), the size of
the AND/OR search graph based drobtained when every two nodesSi having the
same context are mergedd@¥n - k), whenk bounds the domain size.

Thus, the minimal AND/OR search graph 6f relative to7 is O(n - k) where
w = wr(G). Since, as can be showminy{wr(G)} equals the tree-widthy* and
since minyechain{wr(G)} equals the path-widthw* we obtain that the minimal
AND/OR search graph is bounded exponentially by the primegbly’'s tree-width, while
the minimal OR search graph is bounded exponentially by athidth. It is well
known [4] that for any graplv* < pw* < w* - logn. Itis also easy to place* (the
minimal pseudo-tree depth) yielding' < pw* < m* < w* - logn.

Table 1. A/O FC, N=60, K=3 Table 2. A/O FC, N=100, K=2

N=40, K=3, C=50, S=3, 20 inst., w*=13, d=20 [N=100, K=2, C=130, S=3, 20 inst., w*=32, d=4:3
Time Number of dead-ends | tightness‘f 10% | 30% | 50% | 70%|
tightness 20%| 40% 60%|([20%]| 40%) 60% [#solutiong 0] 0] 0] 0|
solutions 0 0[147898574 0 0| 147898574

Time (seconds) |

i=20] 0.069 0.193 3.572 677.049
Number of nodes |

i=20] 70| _406] 4,264[1,139,86(
Number of dead-ends |

i=20] 72| 204 4,266(1,043,692

BE||8.7148.709 8.637
i=0|A/O FC|[[0.030] 0.454 32.931| 533|9,229] 1,711,947
OR FCJ|0.031]0.511] 9737.823| 533|9,897|324,545,90;
i=6|A/O FC[[0.0290.454 25.140]| 533(8,991 917,617
OR FCJ|0.032/0.508| 7293.474| 533|9,897|208,159,06
i=13| A/O FC|[0.030] 0.457 11.974)| 5338,533 181,157
OR FCJ|0.032/0.494| 1170.203| 533|9,283 20,018,823

4 AND/OR Algorithms for Counting

Figure 6 presents the basic DFS traversal of the AND/OR bespace. The square
bracketed lines allow different levels of caching. The rodethe search graph are
labeled byg-values. These stand for the number of solutions below thaable (or
variable-value). The computation of the number of solgisndone at step 3 by multi-
plication (for AND nodes) and summation (for OR nodes). Tomplexity is, [2]:

Theorem 3. AND-OR-COUNTING with linear space has time complexi(n-exp(w*-
logn)), wherew* is the tree-width of the problem. With full caching, it iséiend space
exponential inv*. For OR space, the complexity is exponential in the pathtfwid

5 Empirical Demonstration

We ran a version of the counting algorithm, which uses fodadrecking (FC) as the
constraint propagation method, defined by ¢basistenfunction in step 2 of the algo-
rithm. We compared AND/OR and OR search spaces, resultitvgarlgorithms: A/O
FC and OR FC. We tried different levels of caching, contbly ani-boundwhich
defines the maximum context size that can be cached. We atgoared against bucket
elimination (BE) in some cases, where space was availaldeeybrt average measures
over 20 instances. Alsayx is the induced width and is the depth of the pseudo-tree.
The constraint networks were generated randomly unifogign a number of input
parametersV - number of variablesk’ - number of values per variabl€; - number of
constraintsS - the scope size of the constraintsithe tightness (percentage of allowed
tuples per constraint). For extended results see [2].

Table 1 shows a comparison on moderate size problems wiieteal bucket elimi-
nation to run. The bolded time numbers show the best valueadh column. The most
important thing to note is the vast superiority of AND/OR spaver the traditional
OR space. A/O FC and OR FC are comparable only on inconsistebtems (up to
t = 40%). When the problems are consistent, the difference becgneeser with in-
creasing number of solutions. For BE we only report time olth$ not sensitive to the
tightness of the problems.

Table 2 shows examples of large networks for which BE andttoadl OR search
were infeasible. We ran only A/O FC with the maximum cache giassible for our
machine. This shows that AND/OR search is more flexible,dpabie to solve problems
of much larger size than inference algorithms or the tradél OR search.

6 Conclusions, Discussion and Related Work

The paper shows how counting algorithms can be affected Wdretulated as search-
ing AND/OR search trees and graphs rather than searchiirgQRecounterparts. We
present and analyze counting algorithms and provide I@tigirical evaluation along
the full spectrum of space and time. We compare countingittgos on the AND/OR
search space when pruning is accomplished by forward-aingekd show how their
performance is affected by different levels of caching amv h is compared to bucket-
elimination, as a function of problem tightness. The encpirievaluation shows that
AND/OR search space is always better than the traditionas@e, often yielding ex-
ponential improvements. Compared to inference baseditiigos (bucket elimination),
AND/OR search is more flexible and able to adapt to the amdumtailable space. All
the existing constraint propagation techniques are rgaddilable for AND/OR search.
Coupling this with the possibility of caching makes AND/O&asch a very powerful
scheme. For full details see [2].

Related work. It can be shown that graph-based backjumping [5, 6] minhiesekplo-
ration of an AND/OR search tree. Indeed, it was shown thattpgh of a DFS-tree
or a pseudo-tree [7, 3] plays an important role in boundingkjpemping complexity.
Memory-intensive algorithms can be viewed as searchinghti®/OR search graph,
such as recent work [8] which performs search guided by adesemposition for
constraint satisfaction and optimization. A similar apgrio was introduced recently in
[9, 10] both for belief updating and counting models of a CNFnfula. Relationship
between minimal AND/OR graphs and tree-OBDDs can be shown.

Acknowledgments
This work was supported in part by the NSF grant [1S-0086529the MURI ONR
award N0O0014-00-1-0617.

References

1. Freuder, E.C., Quinn, M.J.: Taking advantage of stalitecferariables in constraint satisfac-
tion problems. In: International Joint Conference on Aciéfi Intelligene. (1985) 10761078

2. Dechter, R., Mateescu, R.: The impact of AND/OR searclespan constraint satisfaction
and counting. Technical report, UCI (2004)

3. Bayardo, R., Miranker, D.: A complexity analysis of spaoeind learning algorithms for
the constraint satisfaction problem. In: AAAI'96. (19968-304

4. Bodlaender, H., Gilbert, J.R.: Approximating treewigihthwidth and minimum elimination
tree-height. Technical Report RUU-CS-91-1, Utrecht Ursitg (1991)

5. Dechter, R.: Enhancement schemes for constraint priage€ackjumping, learning and
cutset decomposition. Atrtificial Intelligened. (1990) 273-312

6. Dechter, R.: Constraint Processing. Morgan Kaufmandishdys (2003)

7. Freuder, E.C., Quinn, M.J.: The use of lineal spanningstte represent constraint satisfac-
tion problems. Technical Report 87-41, University of Newnheshire, Durham (1987)

8. Terrioux, C., Jegou, P.: Hybrid backtracking boundedreg-decomposition of constraint
networks. Atrtificial Intelligencel46(2003) 43-75

9. Darwiche, A.: Recursive conditioning. In: Proceedinfishe 15th Conference on Uncer-
tainty in Artificial Intelligence. (1999)

10. F. Bacchus, S.D., Piassi, T.: Value elimination: Bagesnference via backtracking search.

In: Proceedings of the 19th Conference on Uncertainty iifididl Intelligence. (2003)

