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Abstract

The complexity of the exact inference increases exponentially with size and complexity of the network. As a result,
the exact inference methods become impractical for large networks and we seek to approximate the results. A
variety of approximation methods exist. This research focuses on two approximation methods for finding posterior
marginals P (xi|e) in Bayesian networks: iterative belief updating (defined by Pearl [Pearl 1988]) and sampling.
The belief updating is an exact inference method for singly-connected networks. It can be applied to loopy networks
to obtain approximate answers. The algorithm is based on message passing: in some order, each node computes and
sends messages to its neighbors incorporating the latest messages it recieved. In a singly-connected network, we can
order nodes so that it will be sufficient for each node to pass one messages in each direction. In a loopy network, the
nodes compute several iterations of messages to achieve convergence (or to demonstrate the lack of convergence).
Thus, belief updating in loopy networks is often referred to as Iterative Belief Propagation or IBP. Although IBP
generally computes only approximate answers, it is known to perform extremely well in several special classes of
networks such as coding networks and noisy-or networks. At the same time, we know that in some instances IBP
does not converge or generates approximate answers far from correct. Currently, we do not have any methodology
that would allow us in general case to predict the convergence of IBP or provide some practical error bounds on
the approximate marginals it computes. In this research work, we examine the influence of the ε-cutset criteria
on the convergence and quality of approximate marginals computed by IBP. We conjecture the ε-cutset (defined
as a cycle-cutset with extreme posterior marginals) has effect similar to an observed cycle-cutset which breaks the
loops and leaves the network singly-connected. We prove that the conjecture is true for Bayesian networks without
evidence and show that the error in the approximate marginals computed by IBP converges to 0 as ε tends to 0. We
provide empirical support for instances of Bayesian networks with evidence.
The idea behind the sampling methods for Bayesian networks is to generate a set of samples (where a sample in a
vector space X = {X1, ..., XN} is just an assignment of values to the elements of vector X) and then estimate the
posterior marginals of interest from samples. In general, the quality of the approximate answers depends primarily
on the number of samples generated and the approximate values converge to the exact values as number of samples
increases. However, the sampling variance increases with the size of the sampling space. In this research work, we
focus on the the variance reduction techniques on the example of the Gibbs sampler for Bayesian networks. It is ob-
vious that we can achieve the reduction in variance by sampling only a subset of variables. However, the implication
is that we have to carry out a lot more analytical computations which may render the whole approach impractical.
We demonstrate that we can reduce sampling space efficiently if we take into consideration the underlying network
structure. The time/space complexity of the exact inference in Bayesian networks is exponential in the induced
width of the graph. In our sampling scheme, called w-cutset sampling, we sample a subset of variables (called a
cutset) that is carefully chosen to reduce the complexity of the graph bounded by the induced width w. We analyze
the problem of finding an optimal w-cutset of a graph (NP-hard in general case) and provide a heuristic algorithm
for finding w-cutset in practice. We show empirically that w-cutset sampling typically finds better approximate
answers than standard Gibbs sampler for a range of w values although its performance eventually deteriorates as w
increases.
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Chapter 1

Introduction

In this chapter, we define essential terminology and provide background information on Bayesian networks.

1.1 Notation
For clarity, we define here basic notation used throughout this document:

- use an upper case letter without subscripts, such as X or V, to denote a set of variables;
- use an upper case letter with a subscript, such as Xi, to denote a single variable;
- use ”-i” subscript to denote the set of variables X minus variable Xi: X−i = X\Xi;
- use Di or D(Xi) depending to denote domain of the variable Xi;
- use a lower case letter without a subscript to denote an instantiation of a group of variables (e.g. x

indicates that each variable in set X is assigned a value);
- use a lower case letter with a subscripts, to denote an instantiated variable (e.g. xi denotes a value in the

domain of Xi and means Xi = xi);
- use a superscript in a subscripted lower case letter to denote a specific value (defined by superscript) in

the domain of the corresponding variable: D(Xi) = x1
i , x

2
i , ....

1.2 Graph Concepts
A directed graph is a pair D = {V,E}, where V = {X1, ..., Xn} is a set of nodes, or variables, and
E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges. Given (Xi, Xj) ∈ E, Xi is called a parent of Xj , and Xj

is called a child of Xi. The set of Xi’s parents is denoted pa(Xi), or pai, while the set of Xi’s children is
denoted ch(Xi), or chi. The family of Xi includes Xi and its parents.

The moral graph of a directed graph D is the undirected graph obtained by connecting the parents of all
the nodes in D and removing the arrows.

A cycle-cutset of an undirected graph a subset of nodes in the graph that, when removed, results in a graph
without cycles.

The underlying graph G of a directed graph D is the undirected graph formed by ignoring the directions of
the edges in D.

A node X in a directed graph D is called a root if no edges are directed into X. A node X in a directed
graph D is called a leaf if all of its adjacent edges are directed into X.

A cycle in undirected graph G is a path whose two end-points coincide. A cycle-cutset of undirected graph
G is a set of vertices that contains at least one node in each cycle in G.

A loop in a directed graph D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink
with respect to loop L if the two edges adjacent to v in L are directed into v. A vertex that is not a sink with
respect to a loopL is called an allowed vertex with respect to L. A cycle-cutset (aka loop-cutset) of a directed
graph G is a set of vertices that contains at least one allowed vertex with respect to each loop in D.

A directed graph is acyclic if it has no loops. A graph is singly connected (also called a polytree), if its
underlying undirected graph has no cycles. Otherwise, it is called multiply connected.

1.3 Belief Networks
DEFINITION 1.3.1 Let X = {X1, ..., Xn} be a set of random variables over multi-valued domains
D(X1), ..., D(Xn). A belief network (BN) is a pair (G,P ) where G is a directed acyclic graph on X
and P = {P (Xi|pai)|i = 1, ..., n} is the set of conditional probability tables (CPTs) associated with each

1
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Figure 1.1: Bayesian network (left), its moral graph(center), and conditioned poly-tree (right) (conditioned
on C = {X2, X5}).

Xi. An assignment (X1 = x1, ..., Xn = xn) can be abbreviated as x = {x1, ..., xn}. The BN represents a
joint probability distribution having the product form:

P (x1, ...., xn) =
n

∏

i=1

P (xi|xpa(Xi))

An evidence e is an instantiated subset of variables E.

Bayesian networks facilitate a compact representation of the joint probability distribution over a set of
variables X. Instead of enumerating all possible instantiations of X, we only enumerate the instantiations of
parents of each node Xi in corresponding conditional probability table (CPT). Thus, the storage requirement
is reduced from d|X | to |X | ∗ dmaxi|pa(Xi)| where d = maxi|D(Xi)| is the maximum domain size of a
variable in B.

The structure of the directed acyclic graph reflects the dependencies between the variables. The parents of
a variable Xi together with its children and parents of its children form a Markov blanket M(Xi) of node
Xi: given the Markov blanket of a variable, its probability distribution is independent from the rest of the
variables in the network: P (xi|x−i) = P (xi|M(Xi)). A complete theory of Bayesian networks can be found
in [Pearl 1988]

Figure 1.2 shows a belief network(left) and its moral graph(center). When a nodeXi in a Bayesian network
is observed (conditioned), we can transform the Bayesian network into an equivalent network as follows:
remove all directed edges between the nodes and its children; for each child chj(Xi), create a copy Xij of
node Xi add a directed edge from Xij to chj(Xi). If instantiated nodes in a Bayesian network form a cycle-
cutset, then the Bayesian network can be transformed into an equivalent network that is a singly-connected.
The graph on the right in Figure 1.2 shows a poly-tree network that is equivalent to the original network
conditioned on cycle-cutset C = {X2, X5}.

The structure of a reasoning problem (including Bayesian networks) can be depicted via several graph
representations.

DEFINITION 1.3.2 (Primal-, dual-,hyper-graph of a problem) The primal graph G=<X ,E>of a reason-
ing problem <X ,F> has the variables X as its nodes and an arc connects two nodes if they appear in the
scope of the same function f ∈ F . A dual graph of a reasoning problem has the scopes of the functions as the
nodes and an arc connects two nodes if the corresponding scopes share a variable. The arcs are labelled by
the shared variables. The hyper-graph of a reasoning problem has the variables X as nodes and the scopes
as edges. There is a one-to-one correspondence between the hyper-graph and the dual graphs of a problem.

DEFINITION 1.3.3 (tree-width) The tree-width of a tree-decomposition< T, χ, ψ > is maxv∈V |χ(v)| [Arn-
borg 1985]. Given two adjacent vertices u and v of a tree-decomposition, the separator of u and v is defined
as sep(u, v) = χ(u) ∩ χ(v).

DEFINITION 1.3.4 (induced-width) The width of a node in an ordered undirected graph is the number of
the node’s neighbors that precede it in the ordering. The width of an ordering d, denoted w(d), is the width
over all nodes. The induced width of an ordered graph, w∗(d), is the width of the ordered graph obtained by
processing the nodes from last to first. When node X is processed, all its preceding neighbors are connected.
The resulting graph is called induced graph or triangulated graph.

It is well known that the tree-width of a graph is identical to its induced-width. Also, the task of finding
the tree-width of a graph is NP-complete [Arnborg 1985]. In the past 2 decades, substantial research focused
on designing exact and approximate algorithms for finding the tree-width [Shoiket & Geiger 1997; Becker &
Geiger 1996].
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Figure 1.2: Induced graph with added edge {X2, X6}: d={X5, X4, X6, X2, X3, X1, X7, X8, X9}, w*=4.

For the sample network in Figure 1.2, along ordering {X5, X4, X6, X2, X3, X1, X7, X8, X9}, the induced
width w∗ = 4 after we add edge {X2, X6}. The induced ordered graph is presented in Figure 1.2.

We next describe the notion of a tree-decomposition [Dechter & Pearl 1987; Lauritzen & Spiegelhalter
1988; Georg Gottlob & Scarello 1999]. It is applicable to any graphical model since it is defined relative to
its hyper-graph or dual graph.

DEFINITION 1.3.5 (tree-decomp., cluster-tree, tree-width) Let R =< X,D, F > be a reasoning problem
with its hyper-graph H = (X,F )). (We abuse notation when we identify a function with its scope). A tree-
decomposition for R (resp., its hyper-graph H) is a triple < T, χ, ψ >, where T=<V,E> is a tree, and χ
and ψ are labelling functions which associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ F
such that

1. For each function fi ∈ F , there is exactly one vertex v ∈ V such that fi ∈ ψ(v), and scope(fi) ⊆ χ(v).
2. For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree of T . This is also

called the running intersection property.

We will often refer to a node and its functions as a cluster and use the term tree-decomposition and cluster
tree interchangeably. The maximum size of node χi minus 1 is the width of the tree decomposition. The
tree width of a graph G denoted tw(G) is the minimum width over all possible tree decompositions of G
[Arnborg1985].We sometime denote the optimal tree-width of a graph by tw∗. We use the notation of tree-
width and induced-width interchangeably.

There is a known relationship between tree-decompositions and chordal graphs. A graph is chordal if any
cycle of length 4 or more has a chord. Every tree-decomposition of a graph corresponds to a chordal graph
that augments the input graph where the tree clusters are the cliques in the chordal graph. And vice-versa,
any chordal graph is a tree-decomposition where the clusters are the maximal cliques. Therefore, much of
the discussion that follows, relating to tree-decompositions of graphs, can be rephrased using the notion of
chordal graph embeddings.

1.4 Inference in Bayesian networks
Given a Bayesian network B over a set of variables X and observations e (E ⊂ X), the inference task over
B is to infer the values of unobserved variables. The typical inference tasks are:

1. Belief Updating: given evidence e and a query variable Xi ∈ X , compute a posterior probability distribu-
tion P (xi|e);

2. Belief Revision (MPE): find most probable explanation for evidence e, namely, find a maximum probability
assignment to the unobserved variables Y = X\E:

y ← arg max
y

P (y|e)

3. MAP: find maximum a posteriori hypothesis, namely find a maximum probability assignment to a subset
of unobserved variables y ∈ x\e given evidence e:

y ← arg max
y

P (y|e)



The exact inference in Bayesian networks is NP-hard ([Cooper 1990; Shimony 1994]). Furthermore, find-
ing an approximate solution for any of the tasks above with a fixed error bound is also NP-hard ([Dagum
& Luby 1993; Abdelbar & Hedetniemi 1998]). More recent results have demonstrated that between the tree
tasks, belief updating is harder than belief revision, and MAP is harder than belief updating:

MPE < BeliefUpdating < MAP

To be exact, MPE remains NP -complete, Belief Updating was shown to be #P -complete ([Roth 1996]) as
the task is similar to that of counting the number of solutions, and MAP was shown to be NP PP -complete
[Park 2002].

MPE and belief updating are can be solved in time linear in the size of the network when Bayesian network
is singly-connected (has no loops) using belief propagation algorithms proposed by Pearl ([Pearl 1988]).
Park ([Park 2002; Park & Darwiche 2003]) showed that MAP task remains hard even when MPE and belief
updating become easy (for example, in poly-tree networks).

This research work is focused on answering the Belief Updating queries, namely finding the posterior
marginals of the form P (xi|e).

1.5 Classes of the Bayesian Networks
Here, we will define a few special classes of Bayesian networks as we will refer to them multiple times in our
empirical studies.

1.5.1 Noisy-Or Networks
The Noisy-Or model was introduced by Judea Pearl [Pearl 1988]. All nodes in a simple Noisy-Or relationship
are assumed bi-valued. A Noisy-Or node in a Bayesian network is a generalization of a logical or. The parents
of node Xi model potential causes of the event Xi. The Noisy-Or relationship is embedded in the CPT of
node Xi. As in the case of logical or, the probability of event Xi is 0 if all conditions that cause event are
false:

P (Xi = TRUE|∀j, paj(xi) = FALSE) = 0

However, unlike logical or, we assume that each cause paj(Xi) of Xi has associated inhibitory influence
which is active with probability qi. Thus, given the parents with TRUTH assignment, the probability of Xi

being FALSE equals the probability that all of those parents were inhibited. Since all inhibitors are presumed
independent, their joint probability equals the product of individual probabilities:

P (Xi = FALSE|pa(xi)) =
∏

j,paj=TRUE

qi

As a result:
P (Xi = TRUE|pa(xi)) = 1−

∏

j,paj=TRUE

qi

We can further extend the Noisy-Or relationship by introducing the leak probability θ of the even Xi being
TRUE even if all of its causes (parents) evaluate to FALSE:

P (Xi = TRUE|∀j, paj(Xi) = FALSE) = θ

1.5.2 Coding Networks
Coding networks are associated with probabilistic decoding problems. A coding network contains 4 classes
of nodes:
- code bits X = {X1, ..., Xn};
- parity check bits Y = {Y1, ..., Ym};
- transmitted code bits T = {T1, ..., Tn};
- transmitted parity check bits Z = {Z1, ..., Zm}.

All nodes have domains of size 2 of form D = {0, 1}. The code bits are root nodes (without parents)
with uniform priors: P (xi) = 0.5 Each transmitted code bit Ti has one parent node, the code bit Xi. Each
transmitted parity check bit Zi has one parent node, the parity check bit Yi. Sample coding network is shown
in Figure 1.5.2. The conditional probability table of parity check nodes is deterministic and equals the parity
check function:

P (Yi|Xj1 , ..., Xji
) = Xj1 ⊕ ...⊕Xji
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Figure 1.3: A sample coding network with code bits X = {X1, ..., X5}, parity check bits Y = {Y1, ..., Y5},
transmitted code bits T = {T1, ..., T5}, and transmitted parity check bits Z = {Z1, ..., Z5}.

The conditional probabilities of the transmitted bits are parametrized by the noise parameter σ. The dis-
tribution P (ti|xi) is Gaussian with mean µ = xi and noise σ. Similarly, the distribution P (zi|yi) is
Gaussian with mean µ = yi and noise σ. The decoding task can be defined as either finding the most
probable assignment to the code bits and parity check bits (MPE task) given the transmitted bits (evidence
E = {t1, ..., tn, z1, ..., zm}) or belief updating task of computing posterior marginals P (xi|e) of each code
bit node and assigning each code bit the most probable value. The rigorous probabilistic decoding study is
presented in [I. Rish & Dechter 1998].



Chapter 2

Cutset sampling for Bayesian networks

In this chapter, we discuss the sampling-based approximation methods for Bayesian networks with the focus
on Gibbs sampling (a instance of Markov Chain Monte Carlo sampling). The key principles behind all sam-
pling methods for Bayesian networks are that first, we generate a set of samples and then estimate posterior
marginals P (xi|e) from samples. However, the sampling variance can increase dramatically with the size of
the sampling space. We can reduce variance by sampling only a subset of variables and carrying out exact
computation as much as possible. The caveat is that exact computation is usually expensive and increases
sample computation time so that within the same time period we can produce only a fraction of samples of
smaller size compared to sampling all variables rendering this variance reduction scheme impractical in many
applications. In Bayesian networks, we can control the cost of exact inference via the induced width w of the
graph. We introduce the concept of a w-cutset of a graph as a subset of nodes such that, when observed, the
induced width of the graph is w. If sampling nodes form a w-cutset of a graph, then the exact inference time
is bounded by O(N · dw) where d is maximum domain size and, consequently, sampling time is bounded
by O(M · d · N · dw) where M is the size of the w-cutset. We demonstrate the efficiency of this scheme
empirically for several classes of benchmarks.

2.1 Motivation for Cutset Sampling
Sampling methods for Bayesian networks are commonly used approximation techniques, applied successfully
where exact inference is not possible due to prohibitive time and memory demands. In this paper, we focus on
Gibbs sampling, a member of the Markov Chain Monte Carlo sampling methods group for Bayesian networks
[Geman & Geman 1984; Gilks, Richardson, & Spiegelhalter 1996; MacKay 1996]. Given a Bayesian network
over the variables X = {X1, ..., Xn}, and evidence e, Gibbs sampling [Geman & Geman 1984; Gilks,
Richardson, & Spiegelhalter 1996; MacKay 1996] generates a set of samples {xt} from P (X |e) where each
sample xt = {xt

1, ..., x
t
n} is an instantiation of all the variables in the network. It is well-known that a

function f(X) can be estimated using the generated samples by:

E[f(X)|e] ∼= 1

T

∑

t

f(xt) (2.1)

where T is the number of samples. Namely, given enough samples, the estimate converges to the exact value.
The central query of interest over Bayesian networks is computing the posterior marginals P (xi|e) for each
value xi of variable Xi. A significant limitation of all existing sampling schemes, including Gibbs sampler,
is the increase in the statistical variance for high-dimensional spaces. In addition, standard sampling methods
fail to converge to the target distribution when the network is not ergodic.

There exist a number of variance reduction methods that are well-known from statistics. The most efficient
approach is to reduce the sampling space and carry out analytical computation whenever possible. The
difficulty lies in performing analytical computation efficiently, without slowing down the sampling algorithm
too much. In this chapter, we demonstrate that we can efficiently sample only a subset of the variables (a
cutset) and apply exact inference for the rest of the variables.

Alternatively, we find motivation for sampling a subset of variables when dealing with the state-space
explosion associated with the cycle-cutset conditioning method. We know that when cycle-cutset nodes of a
graph are instantiated, the graph can be transformed into an equivalent singly-connected graph where exact
inference is easy. This fact provides basis for the cycle-cutset conditioning method of Judea Pearl ([Pearl
1988]) where we compute exact posterior marginals P (xi|c, e) over all possible instantiations of the cycle-
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cutset nodes C and then sum:
P (xi|e) = α

∑

c

P (xi|c, e)P (c, e)

where α is a normalization constant. Clearly, the time complexity of cycle-cutset conditioning grows ex-
ponentially with the size of the cycle-cutset. To avoid state-space explosion, it was proposed ([Horvitz,
Suermondt, & Cooper 1989]) that we can obtain good bounds on posterior marginals processing only a sub-
set of all possible tuples if we can pick the tuples with high probability mass P (c, e). Of course, the challenge
is to identify high probability mass tuples without actually computing their probabilities. It appears that sam-
pling from P (c, e) offers a natural solution to the problem as samples tends to concentrate in the areas of
importance. The sampling-based estimate of the posterior marginals is similar to summing over a part of the
cycle-cutset space Cs ⊂ D(C) that was explored while sampling:

P (xi|e) =
∑

c∈Cs

P (xi|c, e)P̂ (c, e)

where P̂ (c, e) is a sampling estimator for P (c, e). We will discuss this notion further in section 2.6.
In sections 2.2 and 2.3, we provide background information on the sampling methods for Bayesian net-

works and describe the standard Gibbs sampler. In section 2.4, we discuss the variance reduction techniques.
In section 2.6, we describe our cutset sampling approach followed by empirical evaluation in section 2.9.

2.2 Monter Carlo Sampling
Given that task of evaluating the expectation E(f(x)), the basic idea behind sampling techniques is to draw
independent and identically distributed (i.i.d.) samples x(1), x(2), ..., x(m) and then evaluate as follows:

f̂m = E(f(x)) =
1

m

∑

t

f(x(t)) (2.2)

Following the law of large numbers, it can be shown that:

lim
m→infty

f̂m = f

The convergence rate is derived from central limit theorem (CLT):
√
m(f̂m − f)→ N(0, σ2)

where σ2 = varf(x). As a result, the ”error term” in the approximate result evaluates toO(m−1/2) and does
not depend on the dimensionality of x. This makes the sampling methods attractive to solve large problems,
including complex Bayesian networks. The limiting factors are:

• as dimensionality of X increases, the variance σ2, which measures how uniform is the function f(x) over
X , can increase dramatically;

• we maybe unable to produce independent uniform samples;

• we do not know the sampling distribution π(x).

We will address the variance reduction techniques in section 2.4. Here, we will summarize the basic sampling
schemes for Bayesian networks.

The target sampling distribution π(x) in a Bayesian network is the posterior joint distribution P (x|e) and
it is typically also the unknown we want to evaluate. in absence of evidence, we actually can sample from
target distribution P (x) using approach known as Logic sampling ([Henrion 1988]): sample node values in
topological order; first, sample the root node values are from their priors; sample other node values Xi in
topological order from P (Xi|pa(Xi)). Since the parents of node Xi are sampled first, their values are fixed
by the time we need to sample node Xi. Thus, we only need to look up P (Xi|pa(Xi)) in the CPT of node
Xi. The samples produced are independent and posterior marginals estimation is straight-forward.

When evidence is present, we can apply Logic sampling ignoring evidence, but we have to discard (reject)
samples where values assigned to evidence node conflict with actual evidence values resulting in the Rejection
sampling ([Gilks & Wild 1992]). In this scenario though, many samples are wasted if the probability of
evidence is small: P (e) → 0. Importance sampling ([Shachter & Peot 1989]) overcomes this problem; it
allows to draw samples from trial distribution g(x), different from target distribution, and then weighing each
sample against the target distribution π(x):

E[f(x)] =
1

m

m
∑

t=1

f(xt)
π(xt)

g(xt)



If we define wt = π(xt)
g(xt) , then we obtain:

E[f(x)] =
1

m

m
∑

t=1

f(xt)wt (2.3)

The equation 2.3 defines an unbiased estimator for f(x). In many instances, a biased estimator maybe pre-
ferred:

E[f(x)] =

∑m
t=1 f(xt)wt

∑m
t=1 w

t
(2.4)

The biased estimator maybe preferred because it allows us to compute the weightswt only up to normalization
constant. Additionally, although inducing a small bias, 2.4 often has a smaller mean squared error than the
unbiased one ([Liu 2001]). In Bayesian networks, an easy to sample from trial distribution is P (X), same as
the distribution used in Logic sampling and Rejection sampling. This special case of importance sampling
is known as Likelihood weighting ([Fung & Chang 1989; Shachter & Peot 1989]) However, an importance
sampling performs much better when g(x) and π(x) are close. Thus, in presence of low-probability evidence,
P (X) is a bad trial distribution. Variations of importance sampling were proposed that update the trial
distribution during sampling process to bring it closer to π(x) ([Cheng & Druzdzel 2000; Yuan & j. Druzdzel
2003]). Importance sampling analysis and its applications can be found in [A. Doucet 2001; Liu 2001].

An alternative approach is to generate dependent samples based on the idea of Markov Chain Monte Carlo
sampling. In this case, each sample represents the state of the system and generating a sample st+1 after
sample st is equivalent to system state transition. The key is to define state transition function such that the
stationary distribution of the Markov Chain is the target distribution π(x). The Markov Chain-based Monte
Carlo sampling was first proposed by [Metropolis et al. 1953] and is known as Metropolis sampling. The
original Metropolis sampling algorithm required a symmetric transition function. Hastings generalized the
algorithm ([Hastings 1970]) so that the only critical requirement on the transition function is that the function
remains positive. The generalized algorithm is known as Metropolis-Hastings sampling.

Gibbs sampling is a special MCMC scheme introduced by Geman and Geman ([Geman & Geman 1984]).
Metropolis and Metropolis-Hastings schemes do not specify how to choose state transition function. Gibbs
sampler specifically uses conditional distribution P (xi|x−i) to define state transition rules. We will describe
Gibbs sampler in detail in the next section.

The power of MCMC sampling is that it allows to sample from almost any target distribution π(x). A
Markov chain that is aperiodic and irreducible and has an invariant distribution π(x) is guaranteed to become
stationary at its invariant distribution. The convergence is guaranteed regardless of the initial state.

DEFINITION 2.2.1 (Aperiodic) A Markov chain is said to be aperiodic if the maximum common divider of
the number of steps it takes for the chain to come back to the starting point (any) is equal to one. [[Liu 2001]]

DEFINITION 2.2.2 (Irreducible) Markov chain is irreducible if the chain has nonzero probability (density)
to move from one position in the state space to any other position in a finite number of steps. [[Liu 2001]]

DEFINITION 2.2.3 (Ergodic) An aperiodic, irreducible Markov chain is called ergodic.

The aperiodicity means that the chain does not have regular loops where every ki steps we return to state
Si. The irreducibility guarantees that we can get to any state Sj from any state Si with non-zero probability
and thus, will be able to visit (as number of samples T → infty) all statistically important regions of state
space. The conditions are almost always satisfied for the Metropolis algorithm ([Tierney 1994]).

Since Markov chain is only guaranteed to converge to the stationary distribution after some K samples (the
”burn in” period), the first K samples are often discarded. While there is no exact theory on how the burn-in
period must be, it is typical to choose K = 1000.

The main drawback of MCMC sampling is that samples, dependent by definition, can be highly correlated.
As a result, the estimates obtained from those samples tend to have higher variance then those obtained from
independent samples ([Liu 2001]). Thus, a lot of MCMC sampling research is focused on either generating
less correlated samples or reducing variance directly. The latter is the focus of this chapter.

2.3 Gibbs sampling
In this section, we will define Gibbs sampling in the context of Bayesian networks. Gibbs sampling generates
samples from P̂ (X |e) which converges to P (X |e) as the number of samples increases [Pearl 1988; MacKay
1996] as long as the network is ergodic. Given a Bayesian network B with variables X = {X1, X2, ..., Xn},
a sample xt is an instantiation of variables in X:

x(t) = {x(t)
1 , x

(t)
2 , ..., x(t)

n }



where t denotes a sample number and xt
i is the value of Xi in sample t. Gibbs sampling generates a set

of samples xt where t denotes a sample and x(t)
i is the value of Xi in sample t. The first sample can be

initialized at random. The values of evidence nodes remain fixed. The next sample x(t+1)
i is generated from

previous sample x(t)
i following one of the two schemes:

Random Scan Gibbs Sampler. Given a sample x(t)
i at iteration t, pick a variable Xi at random and

samples a new value from conditional distribution leaving other variables unchanged:

xi ← P (xi|x(t)
−i)

Systematic Scan Gibbs Sampler. Given a sample xt, we sample the value of each variable xi in some
order :

x1 ← P (x1|x(t)
2 , x

(t)
3 , ..., x(t)

n )

x2 ← P (x2|x(t+1)
1 , x

(t)
3 , ..., x(t)

n )

...

xi ← P (xi|x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n )

...

xn ← P (xn|x(t+1)
1 , x

(t+1)
2 , ..., x

(t+1)
n−1 )

Systematic Scan Gibbs sampler is also referred to as an Ordered Gibbs sampler. The algorithm is formally
defined in Figure 2.3. It was shown in [Roberts & Sahu 1997] that random scan Gibbs sampler can outperform
the systematic scan Gibbs sampler. However, ultimately, the convergence rate of Gibbs sampler strongly
depends on the correlation between two consecutive samples whether the sampling variables are ordered or
picked at random. We discuss this subject further in the section 2.4.

In Bayesian networks, the conditional probability distribution P (xi|x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n ) is de-

pendent only on the assignment to the Markov blanket of variable Xi. Thus, we can rewrite the sampling of
value xi more concisely as follows:

xi ← P (xi|markov(t)(xi))

Ordered Gibbs Sampler
Input: A belief network (B), variables X = (X1, ..., Xn), and evidence tuple e = {(Xi = ei)|Xi ∈ E, E ⊆ X}.
Output: A set of samples {xt},
1. Initialize: Assign random value x0

i to each variable Xi ∈ X\E from D(Xi). This is initial assignment x0. Assign
evidence variables their observed values.
2. Generate samples:

For t = 1 to T ( generate a new sample xt):
For i = 1 to n, (compute a new value xt

i for variable Xi):
Compute P (xi|markovt(xi)) and sample:

x
t
i ← P (xi|markov

t(xi))

Set Xi = xt
i.

End (for i)
Add a new sample to list of samples.
End (for t)

Figure 2.1: A Gibbs sampling Algorithm

Once samples {x(1), ..., x(T )} are generated, we can estimate posterior marginal beliefs P (xi|e) for each
variable Xi. Two estimators are available. One is called histogram estimator:

P̂ (xi|e) =
1

T

T
∑

t=1

P (Xi = xi|x(t)) (2.5)



Since P (Xi = xi|x(t)) = 1 if x(t)
i = xi and P (Xi = xi|xt) = 0 otherwise, the histogram estimator is

effectively counting the samples where Xi = xi and can re-written as follows:

P̂ (xi|e) = E[P (xi|e)] =
1

T

T
∑

t=1

δxi
(x(t)) (2.6)

where δxi
(xt) = 1 if xt

i = xi and equals 0 otherwise. Alternatively, a mixture estimator can be used:

P̂ (xi|e) =
1

T

T
∑

t=1

E[P (xi)|x(t)
−i ] (2.7)

Gelfand and Smith have pointed out (in [Gelfand & Smith 1990] ) that mixture estimator should be pre-
ferred because it guarantees lower variance in the estimator. The mixture estimator is also called the ”Rao-
Blackwellised” estimator because it is based on estimating conditional expectation. Rao-Blackwellisation
always improves the efficiency of Monte Carlo estimates. The variance reduction in the conditional expecta-
tion was first proven in Rao-Blackwell theorem ([Groot 1986]). In Bayesian networks, the mixture estimator
is simply an average of conditional probability distributions:

P̂ (xi|e) =
1

T

T
∑

t=1

P (xi|x(t)
−1)) (2.8)

Again, the probability distribution P (xi|x(t)
−1)) only depends on the Markov blanket of node Xi yielding the

final form of mixture estimator:

P̂ (xi|e) =
1

T

T
∑

t=1

P (xi|markov(t)(xi)) (2.9)

Given a Markov blanket of Xi, the closed form for the sampling probability distribution is given explicitly
by ([Pearl 1988]) :

P (xi|markovt(xi)) = αP (xi|xt
pa(Xi)

)
∏

{j|Xj∈chj}

P (xt
j |xt

paj
) (2.10)

Thus, generating a complete new sample requires O(n · r) multiplication steps where r is the maximum
family size and n is the number of variables. Subsequently, computing the posterior marginals is linear in the
number of samples.

2.4 Variance Reduction Schemes
The convergence of the Gibbs sampling strongly depends on the degree of correlation between samples
([Liu 1991; Schervish & Carlin 1992; J. S. Liu & Kong 1995]). A few techniques were proposed to reduce
dependence between samples such as randomly selecting a sampling variable in Random Scan Gibbs sampler
or subsampling the Gibbs sampler by including only every kth sample into the estimate (see analysis in [Geyer
1992; MacEachern & Berliner 1994]. However, the subsampling of Gibbs sampler actually increases the
statistical variance of the estimate. Furthermore, neither random variable selection nor subsampling address
the main problem that the convergence rate is controlled by the maximal correlation between the states of
two consecutive Gibbs iterations (see [Liu 2001], chapter 12, for details). In other words, the strong between
two variables in a sample will drive the convergence rate of the Gibbs sampler.

The two main approaches that directly reduce variance are blocking (grouping variables together and sam-
pling simultaneously) and collapsing (integrating out some of the random variables and sampling a subset).
Given Bayesian network with three random variables: X, Y, and Z, we can schematically describe those three
sampling schemes as follows:

1. Standard Gibbs: samples values from P (x|y, z), P (y|x, z), P (z|x, y)
2. Collapsing: sample X from P (x|y), sample Y from P (y|x) integrating out random variable X.

3. Blocking Gibbs: samples X from P (x|y, z) and (Y,Z) from P (y, z|x)
As shown in [J. Liu & Kong 1994], the blocking Gibbs sampling scheme, where several variables are

grouped together and sampled simultaneously, is expected to converge faster than standard Gibbs sampler.
Variations to this scheme have been investigated in [Jensen, Kong, & Kjaerulff 1995; Kjærulff 1995]. The



collapsed Gibbs sampler ([Liu 1994])actually allows to integrate some of the random variables out, thus
reducing sampling space, and it is expected to converge the fastest [J. Liu & Kong 1994]. Thus, of the two
basic data augmentation scheme, namely collapsing and blocking, collapsing is generally preferred. The
analysis of the collapsed Gibbs sampler can be found in [Escobar 1994; MacEachern 1994; Liu 1996].

The caveat in the utilization of the collapsed Gibbs sampler is that computation of the probabilities P (x|y)
and P (y|x) must be efficient. In case of Bayesian networks, the task of integrating variables out equates to
performing exact inference on the network where evidence nodes and sampling nodes are observed and its
time complexity is exponential in the induced width of the network. Taken a priori that performance of the
sampler will be severely impacted when many variables are integrated out, collapsing has been applied only
in a few special cases of Bayesian networks ([Doucet et al. 2000; Liu 1994]). In this research work, we
demonstrate that indeed we can reduce sample size and still maintain efficiency of the Gibbs sampler if we
choose sampling variables carefully, taking into account the underlying graph structure.

2.5 Related Work
The idea of grouping of the variables to improve efficiency of Gibbs sampler was first proposed in [J. Liu &
Kong 1994]. Grouping strongly correlated variables together can significantly improve convergence rates of
the Gibbs sampler and reduce the sampling variance in the estimates. In [Jensen, Kong, & Kjaerulff 1995],
groups of variables were sampled simultaneously (using exact inference to compute conditional probability
distribution) conditional on the sufficiently large number of variables to reduce the complexity of the exact
inference problem. The empirical results in [Jensen, Kong, & Kjaerulff 1995] demonstrate a significant
improvement in the convergence of the Gibbs sampler over time. The major differences between our cutset
sampling approach (define in the next section) and one proposed in [Jensen, Kong, & Kjaerulff 1995] are
that, first, in the proposed blocking Gibbs sampling, a sample consists of all the variables in the network (as
usual) while cutset sampling never assigns values to those variables that are integrated out; second, in [Jensen,
Kong, & Kjaerulff 1995], exact inference is used to perform joint sampling step for a group of variables while
cutset sampling uses exact inference to integrate variables out.

A different combination of sampling and exact inference for join-trees was described in [Koller, Lerner, &
Angelov 1998] and [Kjærulff 1995]. Both papers proposed to use sampling to estimate the probability distri-
bution in each cluster from which they compute messages sent to the neighboring clusters. In [Kjærulff 1995],
the Gibbs sampling was used only large clusters to estimate the joint probability distribution P (Vi), Vi ⊂ X
of variables in cluster i. The estimation of the P (Vi) is recorded instead of the true joint probability distri-
bution to conserve memory: the motivation is that the low probability tuples will not be generated during
sampling and can be assumed to have probability 0 while only the joint probabilities of tuples with high-
probability mass will be generated an recorded. In small clusters, the exact joint distribution P (Vi) is com-
puted and recorded. However, the paper does not analyze the introduced errors or compare the performance
of this scheme with standard Gibbs sampler or the exact algorithm.

In [Koller, Lerner, & Angelov 1998], the sampling is used to represent the intermediate local probability
distributions used in computing messages (sent from cluster i to cluster j) and the posterior joint distributions
in a cluster-tree of a hybrid network that contains both discrete and continous variables. This approach sub-
sumes the sampling scheme described in [Kjærulff 1995] and includes rigorous considerations with respect
to minimizing the error in the estimated posterior distributions. However, the method has obvious difficulties
with propagation of evidence. The empirical evaluation (limited to two hybrid network instances) only com-
pares the quality of the estimates to those of likelihood weighting, an instance of importance sampling that
does not perform well in presence of low-probability evidence. Thus, it is not clear how much we gain (if we
gain anything at all) from implementing proposed scheme compared to discretizing continous variable values
or using Gibbs sampling.

Sampling of a subset variable In particular, it has been applied to the Particle Filtering (using importance
sampling) method for Dynamic Bayesian networks [Doucet et al. 2000] in cases where some of the variables
can be integrated out easily either because they are conditionally independent given the sampled variables
(plus evidence) or because their probability distribution permits tractable exact inference (for example, using
Kalman filter).

Previously, sampling from a subset of variables was successfully applied to particle sampling for Dynamic
Bayesian networks (DBNs) [Doucet et al. 2000]. Indeed, the authors demonstrated that sampling from a
subspace combined with exact inference yields a better approximation. Yet, the application of described
approach is limited to summing out those nodes that are independent from the values assigned in a previous
time slice conditional on the assignment to the sampling variables. Our cutset sampling scheme, defined in
section 2.6 offers a generic approach to collapsing a Gibbs sampler in any Bayesian network.



2.6 Cutset sampling
This section presents the cutset sampling method. As noted earlier, the basic scheme partitions variables X
into two subsets C and X\C. If we can efficiently compute sampling distribution P (ci|c−1) for all Ci ∈ C
as well as conditional distribution P (zi|ct, e) for all Xi ∈ X\C, then we can efficiently sample the subset of
variable C and sum out the rest of the variables.

Let us assume for a moment that we can compute all necessary probability distributions efficiently. The
benefits over plan Gibbs sampler are two-fold. First, we achieve reduction in the sampling variance due to
collapsing the sampling space. Second, we maybe able to extend Gibbs sampler to the non-ergodic networks
that have an ergodic subspace. Namely, although standard Gibbs sampler will not converge if some of the
transition probabilities P (xi|x−1) are deterministic, we maybe able to select a subset of variables C ⊂ X
such that all transition probabilities are positive: ∀Ci ∈ C,P (ci|c−i) > 0) and thus, guarantee convergence.
We demonstrate this on the example of the coding networks in the empirical section 2.9.

Given a set of samples over a subset of variables C, we can estimate posterior marginals of any variable
in the network using mixture estimator defined in section 2.3. For the sampling variables, the estimator will
have a form:

P̂ P (ci|e) =
1

T

T
∑

t=1

P (ci|c(t)−i, e) (2.11)

For variables in X\C that do not participate in sampling, we estimate the posterior marginals as follows:

P̂ (xi|e) =
1

T

T
∑

t=1

P (xi|c(t), e) (2.12)

Thus, for each variable in the network, we only need to compute P (ci|c(t)−i, e) or P (xi|c(t), e) and maintain a
running sum to obtain the posterior marginal estimation. The total amount of additional memory required is
O(N).

2.6.1 Cutset sampling algorithm.
Thus, assume we are given a Bayesian network B with variables X. Let C={C1, C2, ..., Cm} be a subset of
variables. We want to generate samples from space C where each sample c(t) is an instantiation of variables
in C.

In order to generate samples, following the Gibbs sampling scheme, we need to sample values of variables
in C from conditional distributions:

ci ← P (ci|c(t)−i, e)

Thus, we need to obtain P (ci|c(t)−i, e) for each sampling variableCi ∈ T . We also need to obtain P (xi|c(t), e)
for each of the remaining variables in order to estimate posterior marginals.

The relevant conditional distributions can be computed by exact inference algorithms whose complexity
is tied to the network structure. We use JTC as a generic name for a class of variable-elimination or join
tree-clustering algorithms that compute that compute the exact joint probabilities JTC(e) as well as the exact
posterior marginals JTC(xi|e) of nodeXi given evidence e. [Lauritzen & Spiegelhalter 1988; Dechter 1999;
Jensen, Lauritzen, & Olesen 1990]. It is known that the complexity of JTC is time and space exponential in
the induced-width w of the moral graph of the network with evidence variables removed.

We can use JTC algorithm to obtain exact probabilities P (ci|c(t)−i, e) and P (xi|c(t), e). The sampling

probability P (ci|c(t)−i, e) can be obtained by marginalising joint distributions obtained by JTC algorithm.

For each sampling node Ci we compute JTC(ci, c
(t)
−1, e) for each value ciinD(Ci). Then, we marginalize:

P (ci|c(t)−i, e) = αJTC(ci, c
(t)
−1, e)

The nodes in C as well as evidence nodes E remain observed throughout the exact inference computation.
Thus, the complexity of the exact inference is tied to the induced width of the graph conditioned on C and E.

Evidence nodes can reduce complexity of the graph by breaking cycles (we demonstrate this in chapter 4).
Generally, the more nodes we instantiate, the easier exact inference becomes until instantiated nodes form
a cycle-cutset and graph becomes a polytree. Choosing sampling nodes C carefully so as to minimize the
induced widthw of the graph when nodes in C are observed, we can control the complexity of exact inference
required. Thus, we arrive at the concept of w-cutset.



DEFINITION 2.6.1 (w-cutset) Given an undirected graph G = (X,E), if C is a subset of X such that, when
observed, the induced width of the resulting graph is ≤ w, then C is called a w-cutset of G and the adjusted
induced width of G relative to C is w.

Using the notion of w-cutset, we can balance sampling and exact inference to optimize the performance
as necessary. At one end of the spectrum, we will have plain Gibbs sampling which is fast, requires linear
amount of additional space, but has higher variance. At the other end, we have exact inference that requires
time and space exponential in the induced width of the graph.

The difficult problem remaining is that of finding an optimal w-cutset. Roughly, we want to find minimum
size w-cutset. In section 2.8, we describe several simple heuristic schemes for finding w-cutset. We provide
a more rigorous analysis and empirical study of this problem in chapter 3. For now, we assume that w-cutset
is given as an input to the problem.

w-Cutset Sampling
Input: A belief network (B), w-cutset C = {C1, ..., Cm}, evidence e.
Output: A set of samples ct, t = 1...Tc.
1. Initialize: Assign random value c0

i to each Ci ∈ C and assign e.
2. Generate samples:

For t = 1 to T, generate a new sample ct:
For i = 1 to m, compute new value ct

i for variable Ci as follows:
Using algorithm join-tree clustering, compute JTC(Ci, c

(t)
−i, e) and sam-

ple:
c
t+1
i → P (ci|c

(t)
−i, e) = αJTC(ci, c

(t)
−i, e) (2.13)

End For i
End For t

Figure 2.2: w-Cutset sampling Algorithm

Thew-cutset sampling algorithm using the systematic scan Gibbs sampler is formally defined in Figure 2.2.
Clearly, it can be adapted to use with the random scan Gibbs sampler.

We provide a proof of the convergence of this general scheme in Section 2.7. Namely, computing P (xi|e)
by cutset sampling is (1) guaranteed to converge to the exact quantities. In general, cutset sampling requires
fewer samples to converge than full sampling [Casella & Robert 1996; Groot 1986; J. Liu & Kong 1994].

Example. Consider again a belief network shown in Figure 1.2. When sampling from set C = {X2, X5}
(although there is a better cutset C = {X3}), we will have to compute for each sample t the probabilities
P (x2|xt−1

5 ) and P (x5|xt
2). These probabilities can be computed using belief propagation over the singly

connected network (Figure 1.2, right) or bucket elimination in linear time. For each new value of variables
X2 and X5, we profane the updated messages through the (singly-connected) network. The desired joint
P (x′2, x

′
5, e) can be computed at any variable and then normalized to yield the conditional distribution.

2.6.2 Complexity
Clearly, computing a new sample ct in cutset-sampling is more complex (step 1) than Gibbs sampling. How-
ever, we can control that complexity with the induced width parameterw. In particular, it is still very efficient
when the cutset C is a cycle-cutset of the Bayesian network (w = 1). In this case, JTC reduces to belief
propagation algorithm [Pearl 1988; Peot & Shachter 1992] that can compute the joint probabilityP (ci, c

(t)
−i, e)

in linear time and then normalize it relative to Ci. When C is a w-cutset, the complexity of JTC (equa-
tion 2.13) is exponential in w and will dominate the complexity of generating the next sample. Therefore:
THEOREM 2.6.1 (Complexity of sample generation) The complexity of generating a sample by cutset sam-
pling with cutset C is O(m · d · n · dw) where C is a w-custet of size m, d bounds the variables domain size,
and n is the number of nodes.

COROLLARY 2.6.1 If C is a cycle-cutset, the complexity of generating a sample by cycle-cutset sampling is
linear in the size of the network.
Computing P (Xi|e) using equation (2.12) requires computing P (Xi|ct, e) for each variable using JTC
algorithm is also exponential in w, the adjusted induced width relative to cutset:
THEOREM 2.6.2 Given a w-cutset C, the complexity of computing the posterior of all the variables using
cutset sampling over T samples is O(T · n · dw).

COROLLARY 2.6.2 If C is a cycle-cutset, the complexity of computing the posterior of all the variables by
cycle-cutset sampling is linear in the size of the network.



2.7 Convergence of cutset-sampling
In this section we demonstrate the convergence of the P̂ (ci|e) and P̂ (xi|e) as defined in equations (2.11)
and (2.12) to the correct probabilities P (ci|e) and P (xi|e) respectively based on cutset conditioning formula
and using the basic assumption that samples are generated from P (c, e). While this proof does not address
the issues concerning the convergence of Monte Carlo chain sampling in general, it shows the connection
between Gibbs sampling and cutset conditioning.

THEOREM 2.7.1 (cutset convergence) Given a network B over X and a subset of evidence variables E, and
given a cutsetC, assuming P̂ (ci|e) and P̂ (xi|e) were computed by equations (2.11) and (2.12) over the cutset
sample, then P̂ (ci|e)→ P (ci|e) and P̂ (xi|e)→ P (xi|e) as the number of samples Tc increases.

Proof. Let |C| = m. Let |X | = n. The computation of P̂ (ci|e) is done exactly in the same way as
in Gibbs sampling. There are several different ways to prove convergence of Gibbs sampling and we will
not repeat them here. Therefore, based on the correct convergence of Gibbs sampling we can conclude that
P̂ (ci|e)→ P (ci|e) as the number of samples increases.

Consider now a variableXi not in C and not in E. We could write the posterior distribution of variableXi

as follows:
P (xi|e) =

∑

c

P (xi|c, e)P (c|e)

Assume that we have generated a collection of samples c1, c2, ..., cT from the correct distribution P (C|e).
Let q(c) be the number of times c occurs in the samples. Then, for each tuple C = c:

P (c|e) =
q(c)

T
(2.14)

After we substitute the right hand side of the equation 2.14 in the expression for P (xi|e):

P (xi|e) =
∑

c

P (xi|c, e)
q(c)

T
(2.15)

Factoring out 1
T we get:

P (xi|e) =
1

T

∑

c

P (xi|c, e)q(c). (2.16)

Clearly,
∑

c q(C) = T . Therefore, we can sum over T instead of summing over instantiations of C, yielding:

∑

c

P (xi|c, e)q(c) =
T

∑

t=1

P (xi|c, e) (2.17)

After replacing the sum over C in (2.16) with the sum over T, we get:

P (xi|e) =
1

T

T
∑

t=1

P (xi|c, e) (2.18)

Therefore we obtained expression (2.18), assuming that m(c)
T converges to the exact P (C|e). Since P̂ (ci|e)

converges to P (ci|e) in cutset-sampling, as we have already shown, then we can conclude that P̂ (xi|e) →
P (xi|e).

2.8 Selecting w-cutset
Selecting an optimal w-cutset for a given w is critical to obtaining good approximations. An optimal w-
cutset for cutset sampling can be defined as the w-cutset that allows to obtain the best approximation within
the given time period. The quality of the approximation is affected by several factors such as the size of the
cutset, correlations between sampling variables, and number of samples. Smaller cutset and less correlation
between variables lead to reduction in sampling variance and improve convergence of Gibbs sampler so that
we can obtain better estimates using fewer samples. As mentioned earlier, the complexity of exact inference is
linear on the cutset size |C| = M and exponential in the induced width w of the network with w-cutset nodes



instantiated. Although the smaller cutset results in a smaller linear factor M , the increase in the exponential
factor w may render exact inference prohibitively expensive and, given a fixed amount of time, we maybe
able to generate very few samples using a small cutset compared to a larger one. Since, convergence also
depends on the number of samples generated, reducing cutset size and increasing w beyond some threshold
value wmax may become impractical unless reduction in M is significant.

Ideally, we want to combine all those factors into a single optimization function, but, in practice, it is
hard to measure and predict their joint effects. Since we cannot quantify the effect of the collapsing Gibbs
sampling space or predict the maximum correlation factor, we will limit our objective function to optimizing
the relationship between the size of the cutset and the complexity of exact inference. Optimizing only those
two factors is still a difficult problem. Given two w-cutsets, C1 and C2 with the same induced width bound
w such that |C1| < |C2|, instantiation of a larger cutset C2 may result in a fewer clusters of large size in the
tree-decomposition used by JTC and allow to generate samples faster.

We have tried several greedy schemes for selecting an optimal w-cutset. Each scheme starts with a set C
that contains all nodes inX in topological order except evidenceE: C = X\E and then removes nodes from
C in some order until no other node can be removed without violating the maximum induced width bound
wmax.

Greedy Algorithm (GA) In the topological order, process nodes in C. Select the next node Ci from C and
evaluate the induced width of the bucket tree wi with nodes C\Ci and E observed. If wi ≤ wmax, remove
node Ci from sampling set: C = C\Ci.

Monotonous Greedy Algorithm (GA) First, obtain 1-cutset by removing from C (in some order) all such
nodes that the adjusted induced width w of the min-fill ordering of nodes X\C,E is bounded by w = 1. The
1-cutset becomes a starting sampling set for selection of 2-cutset. We repeat this process selecting a (w+ 1)-
cutset from w-cutset until maximum adjusted induced width wmax is reached. Following this scheme, nodes
with smaller degrees will be removed from the sampling set first unless they are a part of a large family.

Heuristic Greedy Algorithm (HG) In this scheme, we order nodes in C by the size of the Markov blanket
(consisting of node’s children, parents, and children’s parents) which reflects how many conditional prob-
abilities tables sizes would be reduced if a given node was instantiated. Then, the Greedy Algorithm was
applied.

Alg
|C| Time |C| Time |C| Time |C| Time |C| Time

cpcs54 GA 24 3.73 16 6.42 14 11.2 10 20.8 8 38
2000 MG 25 3.51 18 5.55 15 15.9 12 24.3 11 30.2
samples HG 23 3.68 15 4.67 11 10.3 10 15.3 8 19.1
cpcs179 GA 16 2.08 12 5.3 9 6.04 6 51 5 128
200 MG 17 2.47 12 5.22 9 11.2 7 33.1 4 213
samples HG 16 2.15 11 2.91 8 16.6 6 64 5 162
cpcs360b GA 28 4.94 22 4.12 19 4.62 17 6.42 17 7.74
100 MG 28 4.23 21 4.61 19 4.56 16 5.72 15 9.11
samples HG 27 4.34 21 3.73 18 3.82 16 5.02 16 7.01
cpcs422b GA 81 6.54 69 5.89 60 6.59 55 4.83 57 10.8
20 MG 83 5.61 72 5.99 64 4.44 58 6.75 53 7.52
samples HG 78 5.55 66 5.5 57 6.16 50 7.42 46 8.13

w*=6w*=2 w*=3 w*=4 w*=5

Figure 2.3: Size of the w-cutset and sampling time for a fixed number of samples obtained by different
algorithms: GA=greedy algorithm, MG=monotonous greedy algorithm, HG=heuristic greedy algrorithm.

The size of the minimalw-cutset found by each algorithm and corresponding time to generate a fixed num-
ber of samples (specified in the table after the benchmark’s name) are shown in Figure 2.3 (tested on 1GHz
CPU, 128 Mb RAM PC). Overall, the heuristic greedy search usually finds the smallest w-cutset and shows
the best time. Surprisingly, a simple greedy search also performs well. Most of the time, it finds w-cutset
of the same size as heuristic greedy search or second smallest. The monotonous greedy search consistently



yields in performance to the heuristic greedy search (with a few deviations) and performs comparably with
simple greedy search.

The described schemes for selecting w-cutset are presented primarily to demonstrate the influence of the
different factors on the performance of cutset sampling. Those algorithms are not optimal and further inves-
tigation is necessary to identify good w-cutset selection methods.

2.9 Experiments
In this section, we present empirical studies of the w-cutset sampling algorithm for Bayesian networks. In
section 2.9.1, we compare the performance of the plain Gibbs sampler that samples from X\E and cycle-
cutset sampling that is a special instance of w-cutset sampling where w = 1. In section 2.10, we compare
the performance of Gibbs sampler and w-cutset for a range of values of w. Fixing the number of samples
generated, we show that convergence of cutset sampling dramatically increases as predicted theoretically.
When the sampling time is bounded, the performance of w-cutset sampling varies with the time required for
exact inference. However, experiments clearly that there exists a range of w-values where w-cutset sampling
outperforms Gibbs sampler. In fact, in some instances, despite reducing the sampling set size, we are able to
generate samples faster than Gibbs sampler to efficient implementation of JTC algorithm.

2.9.1 Cycle-Cutset Sampling
We compared cycle-cutset sampling with full Gibbs sampling on several CPCS networks, random net-
works, Hailfinder network, and coding networks. Generally, we are interested in how much accuracy
we can achieve in a given period of time. Therefore, we provide here figures showing accuracy of
the Gibbs and cycle-cutset sampling as a function of time. For comparison, we also show the accu-
racy of Iterative Belief Propagation algorithm (IBP) after 25 iterations. IBP is an iterative message-
passing algorithm that performs exact inference in Bayesian networks without loops ([Pearl 1988]). It
can also be applied to Bayesian networks with loops to compute approximate posterior marginals. The
advantage of IBP as an approximate algorithm is that it is very efficient. It requires linear space and
usually converges very fast. IBP was shown to perform well in practice ([I. Rish & Dechter 1998;
K. P. Murphy & Jordan 1999]) and is considered the best algorithm for inference in coding networks where
finding the most probable variable values equals the decoding process.

For each Bayesian network B with variables X = {X1, ..., Xn}, we computed exact posterior marginals
P (xi|e) using bucket-tree elimination and computed the mean square error (MSE) in the approximate poste-
rior marginals P̂ (xi|e) for each approximation scheme:

MSE =
1

∑

i |D(xi)|
∑

i

∑

D(xi)

(P (xi|e)− P̂ (xi|e))2

and averaged MSE over the number of instances tried. In all networks, except for coding networks, evidence
nodes were selected at random. The cutset was always selected so that evidence and sampling nodes together
constitute a cycle-cutset of the network using the mga algorithm ([Becker, Bar-Yehuda, & Geiger 1999]).

CPCS networks. We considered four CPCS networks derived from the Computer-based Patient Case
Simulation system. The largest network, cpcs422b, consisted of 422 nodes with induced width w∗ = 23.
With evidence, its cycle-cutset size was 42. The results are shown in Figure 2.4. Each chart title specifies
network name, number of nodes in the network N, the size of evidence set |E|, size of cycle-cutset (sampling
set) |C|, and induced width w∗ of the network instance. For all four CPCS networks, we observed that
the cutset sampling is far better than Gibbs sampling. In case of cpcs179 (Figure 2.4, middle), cpcs360b
(Figure 2.4, bottom), and cpcs422b (Figure 2.5) cutset sampling achieves even greater accuracy than IBP.
Gibbs sampling does not converge on cpcs179 due to non-ergodic properties of the network. The cutset
sampling overcomes this limitation because the cycle-cutset selected is an ergodic subspace.

Random networks. We generated a set of random networks with bi-valued nodes. Each network contained
total of 200 nodes. The first 100 nodes, {X1, ..., X100}, were designated as root nodes. Each non-root node
Xi was assigned 3 parents selected randomly from the list of predecessors {X1, ..., Xi−1}. The conditional
probability table values P (Xi = 0|pa(Xi)) were chosen randomly from a uniform distribution. We collected
data for 10 instances (Figure 2.6, top). Cutset sampling always converged faster than Gibbs sampling.

2-Layer networks. We generated a set of random 2-layer networks with bi-valued nodes. Each network
contained 50 root nodes (first layer) and a total of 200 nodes. Each non-root node (second layer) was assigned
a maximum of 3 parents selected at random from the root nodes. The conditional probability table values
P (Xi = 0|pa(Xi)) were chosen randomly from uniform distribution. We collected data for 10 instances
(Figure 2.6, middle). On those types of networks, Iterative Belief Propagation often does not perform well.
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cpcs360b, N=360, |E|=32, |C|=26, w*=21
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Figure 2.4: Comparing cycle-cutset sampling, Gibbs sampling and IBP on CPCS networks averaged over 3
instances each. MSE is a function of time.



cpcs422b, N=422, |E|=28, |C|=42, w*=22
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Figure 2.5: Comparing cycle-cutset sampling, Gibbs sampling and IBP on cpcs422b network averaged over
2 instances. MSE is a function of time.

And, as our experiments show, cutset sampling outperforms both Gibbs sampling and IBP (although it takes
longer time to converge than IBP).

Coding Networks. We experimented with coding networks with 100 nodes (25 coding bits, 25 parity
check bits). The results are shown in Figure 2.6, bottom. Those networks had cycle-cutset size between
12 and 14 and induced width between 13 and 16. The parity check matrix was randomized; each parity
check bit had three parents. We computed MSE over all coding bits and averaged over 10 networks. Coding
networks are not ergodic due to the deterministic parity check function. As a result, Gibbs sampling does not
converge. At the same time, the subspace of code bits only is ergodic and cutset sampling, that samples a
subset of coding bits, converges and generates results comparable to those of IBP. In practice, IBP is certainly
preferable for coding networks since the size of the cycle-cutset grows linearly with the number of code bits.

Hailfinder network. Hailfinder is a non-ergodic network with many deterministic relationships. It has
56 nodes and cycle-cutset of size 5. Indeed, this network is easy to solve exactly. We used this network
to compare the behavior cutset sampling and Gibbs sampling in non-ergodic networks. As expected, Gibbs
sampling fails while cycle cutset sampling computes more accurate marginals and its accuracy continues to
improve with time (Figure 2.7).

In summary, the empirical results demonstrate the cycle-cutset is cost-effective time-wise and is superior
to Gibbs sampling. We measured the ratio R =

Mg

Mc
of the number of samples generated by Gibbs Mg to the

number of samples generated by cycle-cutset sampling Mc in the same time period. For cpcs54, cpcs179,
cpcs360b, and cpcs422b the ratios were correspondingly 1.4, 1.7, 0.6, and 0.5. We also obtained R=2.0 for
random networks and R=0.3 for random 2-layer networks. While cutset sampling algorithm often takes more
time to generate a sample, it produced substantially better results overall due to its variance reduction. In
some cases, cutset sampling could actually compute samples faster than Gibbs sampler. in which case the
improvement in the accuracy was due to both large sample set and variance reduction. Cutset sampling also
achieves better accuracy than IBP on some CPCS and random networks although takes more time to achieve
same or better accuracy. In 2-layer networks and coding networks, cycle-cutset sampling achieves the IBP
level of accuracy very quickly and is able to substantially improve with time.

The direction of our future work is to investigate methods for finding a sampling set with good convergence
properties. Some of the factors that strongly affect convergence of MCMC methods are the sampling set
size, the complexity of sample generation, and the correlations between variables. Reducing sampling set
size generally leads to a reduction in the sampling variance due to Rao-Blackwellisation, but it also results
in the increased complexity of exact inference when generating a new sample. Another factor is strong
correlations between sampled variables (deterministic probabilities, present in non-ergodic networks, are an
extreme example of strong correlation). If two variables are strongly dependent, it is preferred to either
integrate one of them out or group them together and sample jointly (as in blocking Gibbs sampler) (see
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Figure 2.6: Comparing cycle-cutset sampling, Gibbs sampling and IBP on random networks (top), 2-layer
random networks (middle), and coding networks, σ=0.4 (bottom), averaged over 10 instances each. MSE as
a function of time.
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Figure 2.7: Comparing cycle-cutset sampling and Gibbs sampling on Hailfinder network, 1 instance. MSE
as a function of time.

[J. Liu & Kong 1994]). Taking above into consideration, a good sampling set could be defined as a minimal
w-cutset with a small w and with all strongly-correlated variables removed.

2.10 w-cutset Sampling
2.10.1 Computing an Error Bound
Gibbs sampling provides a simple sampling scheme for Bayesian networks that is guaranteed to converge to
the correct posterior distribution in ergodic networks. The drawback of Gibbs sampling compared to many
other sampling methods is that it is hard to estimate how many samples are needed to achieve a certain de-
gree of convergence. It is possible to derive bounds on the absolute error based on sample variance for any
sampling method if it generates independent samples, for example forward sampling and importance sam-
pling. In Gibbs and other Monte Carlo methods, samples are dependent, and we cannot apply the confidence
interval estimate directly.

We can create independent samples restarting the chain after every T samples. Let P̂m(xi|e) be an estimate
derived from a single chain m ∈ [1, ...,M ] of length T (meaning, containing T samples) as defined in
equations (2.11)-(2.12). The estimates P̂m(x|e) are independent random variables. Every time we restart the
chain, we randomly assign new values to each sampling variable and this assignment is independent from the
results generated in previous chains. If we generate a total of M such chains, the posterior marginals P̂ (x|e)
will be an average of the M results obtained from each chain:

P̂ (x|e) =
1

M

M
∑

m=1

P̂m(x|e) (2.19)

Then, we can use the well-known sample variance estimate for random variables:

S2 =
1

M − 1

M
∑

m=1

(P̂m(x|e)− P̂ (x|e))2

An equivalent representation for sampling variance is:

S2 =

∑M
m=1 P̂

2
m(x|e)−MP̂ 2(x|e)
M − 1

(2.20)

where S2 is easy to compute incrementally storing only the running sums of P̂m(x|e) and P̂ 2
m(x|e). By the

Central Limit Theorem, ergodic mean converges to Normal distributionN(µ, σ). Therefore, we can compute



confidence interval in the 100(1−α) percentile used for random variables with normal distribution for small
sampling set sizes ([Hogg & Tanis 2001]). Namely:

P

[

P (x|e) ∈ [P̂ (x|e)± tα
2

,(M−1)
S√
M

]

= 1− α (2.21)

where tα
2

,(M−1) is a table value from t distribution with (M −1) degrees of freedom. In general, this method
may yield confidence interval that is too large to be useful. In the experimental section, we provide results
showing 90% confidence interval computed for Gibbs sampler and cutset sampling over 20 Markov chains
and analyze the feasibility of using confidence interval as a metrics in evaluating performance of Gibbs and
cutset sampling.

2.10.2 Methodology
The primary goal of our empirical study was to investigate performance of w-cutset as a function of w. We
compared the performance of Gibbs sampling, w-cutset sampling for different values of w and a special
case of w-cutset sampling, cycle-cutset sampling. In all empirical studies, cycle-cutset of the network was
found using the mga algorithm ([Becker, Bar-Yehuda, & Geiger 1999]). The w-cutset was selected using
monotonous greedy algorithm (MG) defined in Section 2.8. It is not the most efficient scheme, but its perfor-
mance is comparable with other w-cutset selection schemes and it guarantees that each (w + 1)-cutset is a
proper subset ofw-cutset. Therefore, given the same number of samples, the (w+1)-cutset is predictably bet-
ter following the Rao-Blackwellisation theory. This property allows us to eliminate some of the uncertainty
associated with selecting different sampling sets and focus the empirical study on the trade-offs between
cutset size reduction and the associated increase in the complexity of the exact inference as we gradually
increase the induced width bound w.

Our benchmarks are several CPCS networks, grid networks, 2-layer networks, random networks, and
coding networks. All the sampling algorithms were given a fixed time bound. Small networks, cpcs54
(w∗ = 15) and cpcs179 (w∗ = 8), where exact inference is easy, we allocated 20 seconds. Larger networks
were allocated up to 20% of the exact inference time not to exceed 6 minutes.

Each sampling algorithms generated M = 20 independent Markov chains of size Tm = 1
20T where T is

the maximum number of samples that an algorithm could generate within the given time bound.The resulting
chain length for each sampling algorithm for different benchmarks as well as sampling set sizes are given in
Figure 2.8. Each chain m produces approximation P̂m(xi|e) for the posterior marginals over Tm samples as
shown in eq.(2.19). We obtained a final estimate by averaging overP̂m(xi|e) values.

For comparison, we also show the performance of Iterative Belief Propagation (IBP) algorithm on each
benchmark after 25 iterations. IBP is an iterative message-passing algorithm that performs exact inference
in Bayesian networks without loops ([Pearl 1988]). Applied to Bayesian networks with loops, it computes
approximate posterior marginals. The advantage of IBP as an approximate algorithm is that it requires linear
space and usually converges fast.

The quality of the approximate posterior marginals is measured by Mean Square Error (MSE) between the
exact posterior marginals P (xi|e) and the approximate posterior marginals P̂ (xi|e):

MSE =
1

∑

i |D(xi)|
∑

i

∑

D(xi)

(P (xi|e)− P̂ (xi|e))2

averaged over the number of instances tried. The exact posterior marginals were obtained via bucket-tree
elimination algorithm ([Dechter 1999]). All experiments were performed on 2 GHz CPU 256 Mb RAM PC.

2.10.3 Benchmarks
CPCS networks. CPCS networks are derived from the Computer-based Patient Case Simulation system.
The nodes in CPCS networks correspond to diseases and findings and conditional probabilities describe their
correlations. For all CPCS networks, we present two charts: one chart demonstrates the convergence over
time of Gibbs sampling andw-cutset sampling for several selectedw values; the second chart plots the change
in the quality of approximation (MSE) as a function of w for two time lines - half of the total sampling time
and the total sampling time.

cpcs54 network consists of N = 54 nodes and has a relatively large cycle-cutset of size |LC| = 15
(> 25% of the nodes). Its induced width is 15. The performance of Gibbs sampling and cutset sampling is
shown in Figure 2.9. The chart title contains the following notation: N - number of nodes in the network;
|E| - average number of evidence nodes; |LC| - size of cycle-cutset; w∗ - adjusted induced width of the
network. The results are averaged over 10 instances with different evidence, 1− 4 observed nodes. The first



Gibbs LC w*=2 w*=3 w*=4 w*=5 w*=6 w*=7 w*=8
cpcs54 1000 700 700 450 300 200 100 - -
cpcs179 130 60 300 80 40 20 - - -
cpcs360b 500 900 1000 1000 900 700 400 300 -
cpcs422b 10 14 200 200 180 170 140 75 60
grid 2000 500 300 260 150 105 60 35 20
random 2000 1000 1400 700 450 300 140 75 -
2layer 200 700 900 320 150 75 40 - -
coding 650 450 800 600 250 150 100 - -

Gibbs LC w*=2 w*=3 w*=4 w*=5 w*=6 w*=7 w*=8
cpcs54 51 16 25 18 15 12 11 - -
cpcs179 151 8 17 12 9 7 4 - -
cpcs360b 328 26 28 21 19 16 15 14 -
cpcs422b 392 42 78 67 59 53 48 43 37
grid 410 169 163 119 95 75 60 50 13
random 190 30 61 26 25 24 18 17 -
2layer 185 17 22 15 13 12 11 - -
coding 100 26 38 23 18 17 - - -

#samples

Sampling Set Size

Figure 2.8: Markov chain sample count and sampling set size as a function of w.

graph, Figure 2.9, shows the means square error in the posterior marginals as a function of time for Gibbs
sampling, cycle-cutset sampling, and w-cutset sampling for w=2 and w=3. The second chart shows accuracy
as a function of w. The first point corresponds to Gibbs sampling (∼ w∗ = 1), other points correspond
to cutset sampling with different bound w in range from 2 to 6. The cycle-cutset result is embedded with
the w-cutset values at w=4. In cpcs54, the best results are obtained by 3-cutset sampling; the cycle-cutset
sampling is second best.

cpcs179 network consists of N=179 nodes. It has a small cycle-cutset of size |LC| = 8 but with a relatively
large corresponding adjusted induced width w*=8. The cutset sampling algorithm performance is very similar
for all different cutsets (cycle-cutset, 2-,3-,4-,5-cutset) as seen in the accuracy vs. time chart at the top
of Figure 2.10 and at the accuracy vs. w chart at the bottom. The cutset sampling algorithm performed
significantly better compared to Gibbs sampler as the network has some non-ergodic properties.

cpcs360b is a larger CPCS network with 360 nodes, adjusted induced width of 21, and cycle-cutset |LC| =
26. Exact inference on cpcs360b averaged ∼ 30 min. As we can see from Figure 2.11), the cycle-cutset
sampling and the 2-, 3-, and 4-cutset sampling perform comparatively the same. The top chart in Figure 2.11
provides a little more insight demonstrating that in the first half of the sampling time period, 3-cutset and
4-cutset perform better. Later, the 2-cutset performs better. This is typical of MCMC methods where the
convergence is guaranteed as number of samples approaches infinity but the improvement in behavior may
be non-monotonous. All cutset sampling implementations substantially outperform Gibbs sampling taking
advantage of both sampling space reduction and greater efficiency in generating samples. All cutset sampling
implementations outperform IBP given enough time.

cpcs422b is the largest of the CPCS networks with 422 nodes, cycle-cutset size |LC| = 47, and induced
width w∗ = 22. It also contains several large CPTs so that even when cycle-cutset is instantiated, bucket-tree
records the functions of size 14. We observed that w-cutset (but not cycle-cutset!) sampling handled large
function sizes efficiently and computed samples an order of magnitude faster than Gibbs sampling or cycle-
cutset sampling. In fact, within the 6 minutes time limit given to the sampling algorithm, Gibbs sampling
and cycle-cutset sampling could only generate on the order of 10 − 15 samples each which is statistically
insignificant and thus, were left out of the charts. The results for w-cutset sampling are shown in Figure 2.12.
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Figure 2.9: cpcs54, 10 instances, time bound=12 seconds.

Note that in cpcs422b, the w-cutset was able to take advantage of the network structure to the extent that
allowed to increase w efficiently. The bottom chart in Figure 2.12 shows that w-cutset performed well in
range of w = 2− 8.

Random networks. We generated a set of random networks with N=200 binary nodes and r=50 root nodes
with uniform priors. Each non-root node Xi was assigned P=3 parents (selected randomly). The conditional
probabilities were also chosen randomly, from uniform distribution. Evidence nodes E were selected at
random from leaf nodes (nodes without children). The w-cutset sampling significantly improves over Gibbs
sampling and IBP reaching optimal perform for w = 2− 4. In this range, its performance is similar to that of
cycle-cutset sampling.

2-Layer networks. We generated a set of random 2-layer networks with binary nodes, with r=50 root
nodes (with uniform priors), and a total of N=200 nodes (with binary domains). Each non-root node was
assigned 3 parents selected at random from root nodes. The CPT values were chosen randomly from uniform
distribution. We collected data for 10 instances (Figure 2.13(a)). As we can see the performance of both
Gibbs sampling and IBP is very poor (most likely due to extreme conditional probabilities present in the
networks). The w-cutset sampling offers substantial gain in accuracy compared to those algorithms reaching
the optimal performance at w = 2, 3 that is very near the performance of cycle-cutset sampling.

Grid networks. The grid networks with 450 nodes (15x30) were the only class of the networks where full
Gibbs sampling was able to generate samples faster than cutset sampling and produce comparable estimates.
The fastest instance of cutset sampling, in this case cycle-cutset sampling, was 4 times slower compared to
Gibbs sampling (see Figure 2.8). This indicates that networks with regular network structure (that cutset
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Figure 2.10: cpcs179, 10 instances, time bound=20 seconds.

sampling cannot exploit to its advantage) and small CPTs (in a two-dimensional grid network, each node
has at most 3 parents) represent a class of networks where Gibbs sampling is a strong player while cutset
sampling requires further optimizations. With respect to the accuracy of the estimates, Gibbs sampler, cycle-
cutset sampling, and 3-cutset sampling were the best and achieved similar quality results.

Coding Networks. We experimented with coding networks with 200 nodes (50 coding bits, 50
parity check bits). Each parity check bit was assigned three parents from coding bits. The Gal-
lager code parity check matrices were generated using the source code by David MacKay (see
http://www.inference.phy.cam.ac.uk/mackay/CodesFiles.html). The results are shown in Figure 2.14. In this
class of networks, the induced speed varied from 18 to 22 making exact inference quite feasible. However,
we additionally tested and observed that even a small increase in the network size to 60 code bits, a total of
240 nodes, the induced width exceeds 24 and and exact inference requires considerably longer time while
sampling time scales up linearly. We collected results for 10 networks (10 different parity check matrices)
with 10 different evidence instantiations (total of 100 instances). In decoding, the Bit Error Rate (BER) is a
standard error measure. However, we computed MSE over all unobserved nodes to evaluate the quality of
approximate results more precisely. Coding networks are not ergodic due to the deterministic parity check
function. As a result, Gibbs sampling did not converge, generated sporadic results, and was left off the charts.
At the same time, the subspace of code bits only is ergodic and cutset sampling on a subset of coding bits
converges and generates results comparable to those of IBP. Given enough time, cutset sampling can even
outperform IBP. The charts in Figure 2.14 show that cycle-cutset has actually proven to be the best cutset for
the coding networks closely followed by 2-cutset sampling.
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Figure 2.11: cpcs360b, 10 instances, time bound=6 minutes.

2.10.4 Estimating Absolute Error
We have computed a confidence interval for estimated posterior marginal P (xi|e) based on the on the sam-
pling variance of Pm(xi|e), the estimates produced by independent Markov chains, as described in Sec-
tion 2.10.1. We computed sampling variance S2 from eq.(2.20) and 90% confidence interval ∆0.9(xi) from
eq.(2.21) and averaged over all nodes:

∆0.9 =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

∆0.9(xi)

As noted earlier, estimated confidence interval can be too large to be practical. Thus, we compared ∆0.9 with
exact average absolute error ∆:

∆ =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

|P̂ (xi|e)− P (xi|e))

The objective of this study was to observe whether computed confidence interval ∆0.9 (estimated absolute
error) reflects true absolute error ∆, that is ∆ < ∆0.9 ? and how big the estimate is compared to the true
error since large confidence interval is not very informative.

Figure 2.15 shows the average confidence interval and average absolute error for a set of benchmarks
described earlier. As we can see, for all of the networks except cpcs179, we observe that ∆ < ∆0.9. In
cpcs179, the estimated bound is sometimes a little smaller than average error which maybe attributed to non-
ergodic properties of cpcs179 (even though the variance is small, the algorithm did not explore the sampling
space properly) and stochastic nature of the estimate. Also, we observe that in most cases the estimated



cpcs422b, N=422, |E|=28, |C|=42, w*=22
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Figure 2.12: cpcs422b, 3 instances, time bound=5 minutes.

confidence interval is no more than 2-3 times the size of average error. Thus, we can conclude that confidence
interval estimate could be used as a criteria reflecting the quality of the posterior marginal estimate by the
sampling algorithm where the comparison against exact posterior marginals is not possible.

2.10.5 Summary
The empirical evaluation of the performance of w-cutset sampling shows that with the exception of grid net-
works, w-cutset sampling always outperforms Gibbs sampling (in some instances, generating samples even
faster than Gibbs), outperforms cycle-cutset sampling for some w values, and offers a considerable improve-
ment over IBP on several networks. We have discovered a class of networks where we can recommend with
a degree of certainty Gibbs or cutset sampling. Gibbs appears to have an advantage in the networks with
regular structure and small probability tables (such as grid networks). Cutset sampling performs well when
it can take advantage of the underlying network structure and the network contains a few large probability
tables (as in cpcs422b).

Overall, we can conclude that there exists a range of w values wherew-cutset sampling achieves an optimal
performance. In many instances, increasing w, up to some threshold value, compensates for the incurred
overhead in exact inference due to variance reduction and, in some instances, also due to increased speed
of generating samples (discussed in Section 2.8). The performance of w-cutset begins to deteriorate when
increase in w results only in a small reduction of sampling set size. An example is cpcs360b network where
starting with w=5, increasing w by 1 results in the reduction of sampling set only by 1 node (shown in in
Figure 2.3) and leads to the reduction in the size of sampling chain (shown in in Figure 2.8).
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random, R=50, N=200, P=3, |LC|=30, w*=22
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grid, 15x30, |E|=40, |LC|=169, w*=20
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(c) Grid networks, 450 nodes (15x30), time bound=100 seconds.

Figure 2.13: Randomized networks , 10 instances each.



coding, 50x50, N=200, P=3, |LC|=26, w*=19 
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Figure 2.14: Coding networks, 50 code bits, 50 parity check bits, σ=0.4, 100 instances, time bound=6 min-
utes.

Error Gibbs LC w*=2 w*=3 w*=4 w*=5 w*=6
cpcs54 Exact 0.00117 0.000662 0.00076 0.000757 0.000703 0.00068 0.001028

Est 0.00265 0.001308 0.00167 0.001314 0.001547 0.00177 0.001772
cpcs179 Exact 0.02386 0.002798 0.00204 0.002215 0.002479 0.00198 -

Est 0.02277 0.002591 0.00146 0.001814 0.002229 0.00263 -
cpcs360b Exact 0.00109 0.000178 0.00014 0.000189 0.000152 0.00025 0.000372

Est 0.00282 0.000432 0.00049 0.000396 0.000402 0.0006 0.000719
cpcs422b Exact - - 0.00028 0.000206 0.00032 0.00041 0.000345

Est - - 0.00076 0.000642 0.000575 0.00064 0.000632
grid Exact 0.00108 0.000992 0.00119 0.000909 0.000986 0.00109 0.001126
15x30 Est 0.00248 0.002145 0.00247 0.00205 0.002254 0.00222 0.002386
random Exact 0.00091 0.000392 0.00039 0.000549 0.000644 0.00062 0.001024
N=200 Est 0.00199 0.000799 0.00089 0.001075 0.00124 0.00171 0.001996
2layer Exact 0.00436 0.000655 0.00063 0.000815 0.001171 0.00134 0.001969
N=200 Est 0.00944 0.001445 0.00144 0.001846 0.002354 0.00302 0.003414
coding Exact - 0.00014 0.00019 0.000189 0.000174 - -
N=200 Est - 0.000296 0.00035 0.000336 0.000356 - -

Figure 2.15: Average absolute error (exact) and estimated confidence interval (est.) as a function of w.

Further, our empirical study conclusively indicates that in most cases cycle-cutset makes a good sampling
set. It is not always the best, but usually it is comparable to the best w-cutset results for some w and maybe
practical when we do not want to invest time in finding an optimal w-cutset.

Finally, the comparison of estimated confidence interval for approximate posterior marginals to the exact
absolute error indicates that confidence interval accurately reflects the absolute error (most of the time, within
the factor of 2-3 and, in case of cutset sampling, never exceeding the range of [0, 0.003]) and could be used
as a measure of sampling algorithm performance.

2.11 Conclusions
In this chapter, we defined a general scheme for collapsing Gibbs sampler in Bayesian networks (see Sec-
tion 2.6) named w-cutset sampling combining sampling and exact inference. We showed theoretically and
empirically cutset sampling: (1) improves convergence rate due to sampling from lower-dimensional space



and (2) allows sampling from non-ergodic network that have ergodic subspace. Using the induced width
w of the graph to control the complexity of exact inference and the notion of w-cutset, w-cutset sampling
provides a mechanism for balancing the sampling and the exact inference to optimize the performance of the
algorithm.

We investigated empirically the performance of w-cutset sampling as a function of the adjusted induce
width parameter w. Our experiments over a range of randomly generated and real benchmarks demonstrate
the power of the cutset sampling idea and in particular show that an optimal balance between inference and
sampling benefits substantially from restricting the cutset size, even at the cost of more complex inference.
Thus, user can control the trade-offs between sampling and inference by examining the w-cutset sampling
for different w values. In this chapter, we have proposed several greedy schemes for finding a w-cutset for
cutset sampling. This problem is investigated further in chapter 3 .

We examined the efficiency of Gibbs sampler when the sampling set is a cycle-cutset and, more generally,
when the sampling set is a w-cutset of the network defined as a subset of variables such that, when instanti-
ated, the induced width of the network is ≤ w. We demonstrate empirically for several networks that we can
compute a new sample faster using cutset sampling scheme than standard Gibbs sampler. Most importantly,
fewer samples are needed for convergence.

The w-cutset sampling scheme is a simple yet powerful extension of sampling in Bayesian networks that
is likely to dominate regular sampling for any sampling method. While we focused on Gibbs sampling, other
sampling techniques, with better convergence characteristics, can be implemented with cutset sampling as
long as they permit to exploit Bayesian network structure in a similar manner.

The research results presented in this chapter have been published in [Bidyuk & Dechter 2003b] and
[Bidyuk & Dechter 2003a].

2.12 Future Work
So far we have investigated only one approach for reducing sampling variance, namely collapsing the
sampling space. We know that grouping of the variables (sampling several of the variables simultane-
ously) can provide additional improvement in the convergence of Gibbs sampler [J. Liu & Kong 1994;
Jensen, Kong, & Kjaerulff 1995]. When the collapsing and grouping of sampling space is no longer fea-
sible and convergence rate of the Markov chain is still too slow, we may need to use other variance reduction
methods. Therefore, the central objective is to improve efficiency of the sampling algorithms for Bayesian
networks by exploiting the network structure. Additional reduction in sampling variance and increase in
convergence speed can be expected from using additional memory structures to store and group intermediate
results. In chapter 5, we explore theoretical foundations for several variance reduction schemes and their
implications for Bayesian network sampling.

Beyond the problem if reducing sampling variance and improving convergence speed, we are interested in
exploring different combinations of exact and approximate inference methods. For example, for large values
of w, where the exact inference in the w-cutset sampling is no longer feasible, we can resort to approximate
inference via Iterative Belief Updating (investigated in chapter 4). Other possibilities include combining
exact conditioning and sampling. We explore those and other possibilities for hybrid inference methods in
the chapter 5.



Chapter 3

On finding minimal w-cutset problem

The complexity of a reasoning task over a graphical model is tied to the induced width of the underlying
graph. It is well-known that conditioning (assigning values) on a subset of variables yields a subproblem
of the reduced complexity where instantiated variables are removed. If the assigned variables constitute a
cycle-cutset, the rest of the network is singly-connected and therefore can be solved by linear propagation
algorithms. Aw-cutset is a generalization of a cycle-cutset defined as a subset of nodes such that the subgraph
with cutset nodes removed has induced-width of w or less. In this chapter, we address the problem of finding
a minimal w-cutset in a graph. We relate the problem to that of finding the minimal w-cutset of a tree-
decomposition. The latter can be mapped to the well-known set multi-cover problem. This relationship
yields a proof of NP-completeness on one hand and a greedy algorithm for finding a w-cutset of a tree
decomposition on the other. Empirical evaluation of the algorithms is presented.

3.1 Introduction
A cycle-cutset of an undirected graph is a subset of nodes that, when removed, the graph is cycle-free. Thus, if
the assigned variables constitute a cycle-cutset, the rest of the network is singly-connected and can be solved
by linear propagation algorithms. This principle is at heart of the well-known cycle-cutset conditioning
algorithms for Bayesian networks [Pearl 1988] and for constraint networks [Dechter 1990]. Recently, the
idea of cutset-conditioning was extended to accommodate search on any subset of variables using the notion
of w-cutset, yielding a hybrid algorithmic scheme of conditioning and inference paramterized by w [Rish &
Dechter 2000]. The w-cutset is defined as a subset of nodes in the graph that, once removed, the graph has
tree-width of w or less.

The hybrid w-cutset-conditioning algorithm applies search to the cutset variables and exact inference (e.g.,
bucket elimination [Dechter 1999]) to the remaining network. Given a w-cutset Cw, the algorithm is space
exponential in w and time exponential in w + |Cw| [Dechter 2001]. The scheme was applied successfully
in the context of satisfiability [Rish & Dechter 2000] and constraint optimization [Larossa & Dechter 2003].
More recently, the notion of conditioning was explored for speeding up sampling algorithms in Bayesian
networks in a scheme called cutset-sampling. The idea is to restrict sampling to w-cutset variables only
(peform inference on the rest) and thus reduce the sampling variance ([Bidyuk & Dechter 2003a; 2003b]).

Since the processing time of both search-based and sampling-based schemes grows with the size of the
w-cutset it calls for a secondary optimization task for finding a minimal-size w-cutset. Also, of interest is the
task of finding the full sequence of minimalw-cutsets, wherew ranges from 1 to the problem’s induced-width
(or tree-width), so that the user can select the w that fits his/her resources. We call the former the w-cutset
problem and the latter the sequence w-cutset problem. The w-cutset problem extends the task of finding
minimum cycle-cutset (e.g. a 1-cutset), a problem that received fair amount of attention [Becker & Geiger
1996; Becker, Bar-Yehuda, & Geiger 1999; Vazirani 2001].

The paper addresses the minimum size w-cutset and, more generally, the minimum weight w-cutset
problem. First, we relate the size of a w-cutset of a graph to its tree-width and the properties of its tree-
decompositions. Then, we prove that the problem of finding a minimal w-cutset of a given tree decomposi-
tion is NP-complete by reduction from the set multi-cover problem [Vazirani 2001]. Consequently, we apply
a well-known greedy algorithm (GWC) for set multi-cover problem to solve the minimum w-cutset problem.
The algorithm finds w-cutset within O(1 + lnm) of optimal where m is the maximum number of clusters
of size greater than w + 1 sharing the same variable in the input tree decomposition. We investigate its per-
formance empirically and show that, with rare exceptions, GWC and its variants find a smaller w-cutset than
the well-performing MGA cycle-cutset algorithm [Becker & Geiger 1996] (adapted to the w-cutset problem)
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and a w-cutset algorithm (DGR) proposed in [Geigher & Fishelson 2003].

3.1.1 w-cutset of a graph
DEFINITION 3.1.1 (w-cutset of a graph) Given a graph G=<X,E>, Cw ⊂ X is a w-cutset of G if the
subgraph over X\C has tree-width ≤ w. Clearly, a w-cutset is also a w′-cutset when w′ ≥ w. The cutset
Cw is minimal if no w-cutset of smaller size exists.

For completeness, we also define the weightedw-cutset problem that generalizes minimum w-cutset prob-
lem (where all node weights are assumed the same). For example, in w-cutset conditioning, the space re-
quirements of exact inference is O(dw

max) where dmax is the maximum node domain size in graph G. The
total time required to condition on w-cutset C is O(dw

max) × |D(C)| where |D(C)| is the size of the cutset
domain space. The upper bound value d|C|

max on |D(C)| produces a bound on the computation time of the

cutset-conditioning algorithm: O(dw
max) × d|C|

max = O(d
w+|C|
max ). In this case, clearly, we want to minimize

the size of C. However, a more refined optimization task is to minimize the actual value of |D(C)|:
|D(C)| =

∏

Ci∈C

|D(Ci)|

Since the minimum of |D(C)| corresponds to the minimum of lg(|D(C)|), we can solve this optimization
task by assigning each node Xi cost ci = lg |D(Xi)| and minimizing the cost of cutset:

cost(C) = lg |D(C)| =
∑

Ci∈C

lg |D(Xi)| =
∑

i

ci

Similar considerations apply in case of the w-cutset sampling algorithm. Here, the space requirements for
the exact inference are the same. The time required to sample a node Ci ∈ C is O(dw

max) × |D(Ci)|. The
total sampling time is O(dw

max) ×∑

Ci∈C |D(Ci)|. To minimize the total processing time, we assign each
node Xi cost ci = |D(Xi)| and select the w-cutset of minimum cost:

cost(C) =
∑

Ci∈C

|D(Ci)|

DEFINITION 3.1.2 (weighted w-cutset of a graph) Given a reasoning problem <X,F> where each node
Xi ∈ X has associated cost(Xi) = ci, the cost of a w-cutset Cw is given by: cost(Cw) =

∑

Xi∈Cw
ci. The

minimum weight w-cutset problem is to find a min-cost w-cutset.

In practice, we can often assume that all nodes have the same cost and solve the easier minimal w-cutset
problem which is our focus here. In section 3.2, we establish relations between the size ofw-cutset of a graph
and the width of its tree-decomposition. In section 3.3, we show that the problem is NP-hard even when
finding a minimum w-cutset of a chordal graph (corresponding to a tree-decomposition of a graph).

3.2 w-Cutset and Tree-Decompositions
In this section, we explore relationship between w-cutset of a graph and its tree-decomposition.

THEOREM 3.2.1 Given a graph G=<X,E>, if G has a w-cutset Cw, then there is a tree-decomposition of
G having a tree-width tw ≤ |Cw|+ w.Proof. If there exists a w-cutset Cw, then we can remove Cw from the graph yielding, by definition, a
subgraph G′ over X\Cw that has a tree decomposition T with clusters of size at most w+1. We can add the
set Cw to each cluster of T yielding a tree-decomposition with clusters of size at most w + 1 + |Cw| and
tree-width w + |Cw|.

We can conclude therefore that for any graph tw∗ ≤ |Ci|+ i for every i. Moreover,

THEOREM 3.2.2 Given a graph G, if c∗i is the size of a smallest i-cutset C∗
i , and tw∗ is its tree-width, then:

c∗1 + 1 ≥ c∗2 + 2 ≥ ... ≥ c∗i + i ≥ ... ≥ tw∗ (3.1)Proof. Let us define ∆i,i+1 = c∗i − c∗i+1, then we claim that ∆i,i+1 ≥ 1. Assume to the contrary that
ci = ci+1, that is Di,i+1=0. Since C∗

i is an i-cutset, we can build a tree decomposition T with maximum
cluster size (i+1). Pick some Xj ∈ C∗

i and add Xj to every cluster yielding tree decomposition T ′ with
maximum cluster size (i+2). Clearly, C∗

i \Xj is an (i+1)-cutset of size c∗i − 1 = c∗i+1 − 1 which contradicts
the minimality of C∗

i+1.

Given a graph G = (V,E), the w-cutset sequence problem seeks a sequence of minimal j-cutsets where
j ranges from 1 to the graph’s tree-width: C∗

1 , ..., C
∗
j , ..., Ctw∗ = φ. Let C ′

w be a subset-minimal w-cutset,
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Figure 3.1: (a) Graph; (b) triangulated graph and corresponding tree decomposition of width 2; (c) graph
with 1-cutset node {D} removed and corresponding tree-decomposition.

namely one that does not contain another w-cutset. If we have a w-cutset sequence, we can reason about
which w to choose for applying the w-cutset conditioning algorithm or w-cutset sampling. Given a w-cutset
sequence we define a function f(i) = |Ci| + i where i ranges from 1 to tw. This function characterizes the
complexity of the w-cutset conditioning algorithms where for each i, the space complexity is exponential in
i and the time complexity is exponential in f(i). The time-complexity suggests operating with i as large as
possible while space consideration suggests selecting i as small as possible. Notice that for various intervals
of i, f(i) is constant, if |Ci| = |Ci+1| + 1. Thus, given a w-cutset sequence, we have that whenever
f(i) = f(i + 1), then w = i is preferred over w = i + 1. Alternatively, given a bound on the space-
complexity expressed by r, we can select a most preferred wp-cutset such that:

wp(r) = argmin
j
{r = f(j)}

In the empirical section 3.5, we demonstrate the analysis of function f(i) and its implications.

THEOREM 3.2.3 Given a tree-decompositionT=(V,E) where V ={V1, ..., Vt} is the set of clusters and given
a constant w, a minimum w-cutset C∗

w of G satisfies:

|C∗
w | ≤

∑

i,|Vi|>w+1

(|Vi| − (w + 1)) (3.2)

Proof. From each cluster Vi ∈ V of size larger than (w+1), select a subset of nodes Ci ⊂ Vi of size
|Ci| = |Vi| − (w + 1) so that |Vi\Ci| ≤ w + 1.
Let Cw = ∪i,|Vi|>w+1Ci.
By construction, Cw is a w-cutset of G and:
c∗w ≤ |Cw | = | ∪i Ci| ≤

∑

i |Ci| =
∑

i,|Vi|>w+1 |Vi| − (w + 1).

Since a w-cutset yields a tree-decomposition having tw = w, it looks reasonable when seekingw-cutset to
start from a good tree-decomposition and find its w-cutset (or a sequence). In particular, this avoids the need
to test if a graph has tw = w. This task is equivalent to finding a w-cutset of a chordal (triangulated) graph.

DEFINITION 3.2.1 (A w-cutset of a tree-decomposition) Given a tree decomposition T=<V,E> of a rea-
soning problem <X,F> where V is a set of subsets of X then CT

w ⊂ X is a w-cutset relative to T if for every
i, |Vi\CT

w | ≤ w + 1.
We should note upfront, however, that a minimum-size w-cutset of T (even if T is optimal) is not neces-

sarily a minimum w-cutset of G.

Example 3.2.4 Consider a graph in Figure 3.1(a). An optimal tree decomposition of width 2 is shown in
Figure 3.1(b). This tree-decomposition clearly does not have a 1-cutset of size < 2. However, the graph has
a 1-cutset of size 1, {D}, as shown in Figure 3.1(c).



On the other hand, given a minimumw-cutset, removing the w-cutset from the graph yields a graph having
tw∗ = w. Because, otherwise, there exists a tree-decomposition over X\Cw having tw < w. Select such
a tree and select a node in Cw that can be added to the tree-decomposition without increasing its tree-width
beyond w. Such a node must exist, contradicting the minimality of Cw.

It is still an open question if every minimal w-cutset is a w-cutset of some minimum-width tree-
decomposition of G.

3.3 Hardness of w-Cutset on Cluster-Tree
While it is obvious that the general w-cutset problem is NP-complete (1-cutset is a cycle-cutset known to
be NP-complete), it is not clear that the same holds relative to a given tree-decomposition. We now show
that, given a tree-decomposition T of a hyper-graphH, the w-cutset problem for T is NP-complete.We use a
reduction from set multi-cover (SMC) problem.

DEFINITION 3.3.1 (Set Cover (SC)) Given a pair < U, S > where U is universal set and S is a set of
subsets S={S1, ..., Sm} of U , find a minimum set C ⊂ S s.t. each element of U is covered at least once:
∪Si∈CSi = U .

DEFINITION 3.3.2 (Set Multi-Cover(SMC)) Given a pair < U, S > where U is universal set and S is a set
of subsets S = {S1, ..., Sm} of U, find a minimum cost set C ⊂ S s.t. each Ui ∈ U is covered at least ri > 0
times by C.

The SC is an instance of SMC problem when ∀i, ri = 1.

THEOREM 3.3.1 (NP-completeness) The problem ”Given a tree-decomposition T=<V,E> and a constant
k, does there exist a w-cutset of T of size at most k ?” is NP-complete.

Proof. Given a tree decomposition T=<V,E> over X and a subset of nodes C ∈ X , we can verify in
linear time whether C is a w-cutset of T by checking if ∀Vi ∈ V , |Vi\C| ≤ w + 1. Now, we show that the
problem is NP-hard by reduction from set multi-cover.

Assume we are given a set multi-cover problem <U, S>, where U={X1, ..., Xn} and S={S1, ..., Sm}, a
covering requirement ri > 0 for each Ui ∈ U .

We define a cluster tree T=<V,E> over S where there is a node Vi ∈ V corresponding to each variable
Ui in U that contains all subsets Sj ∈ S that cover node Xi: Vi = {Sj ∈ S|Xi ∈ Sj}. Additionally, there
is a node VS ∈ V that contains all subsets in S: VS = S. Thus, V = {Vi|Ui ∈ U} ∪ VS . Denote |Vi| = fi.
The edges are added between each cluster Vi,i6=s and cluster VS : E = {ViVS |Ui ∈ U} to satisfy running
intersection property in T .

Define w+1=|S| −mini ri = m−mini ri. For each Vi,i6=s, since |Vi|=fi ≤ m and ri > 0, then fi − ri ≤
m−mini ri ≤ w + 1. Consequently, fi ≤ ri + w + 1.

For each Vi s.t. fi < ri + w + 1, define ∆i=ri + w + 1− fi and augment cluster Vi with a set of nodes
Qi = {Q1

i ...Q
∆i

i } yielding a cluster V ′
i = Vi ∪Qi of size |V ′

i |=f ′
i=ri + w + 1.

We will show now that a set multi-cover <U, S> has a solution of size k iff there exists a w-cutset of
augmented tree decomposition T ′=<V ′, E> of the same size.The augmented tree for sample SMC problem
in Figure 3.2(a) is shown in Figure 3.2(b).

Let C be a set multi-cover solution of size k. Then, ∀Ui ∈ U , |C ∩ V ′
i | ≥ ri which yields |V ′

i \C| ≤
|V ′

i | − ri = f ′
i − ri = w + 1. Since |C| ≥ mini ri, then |VS\C| ≤ |VS | −mini ri = m−mini ri = w + 1.

Therefore, C is a w-cutset of size k.
Let Cw be a w-cutset problem of size k. If Cw contains a nodeQj ∈ Qi, we can replace it with some node

Sp ∈ V ′
i without increasing the size of the cutset. Thus, without loss of generality, we can assume Cw ⊂ S.

For each V ′
i corresponding to some Ui ∈ U , let Ci = Cw ∩V ′

i . By definition of w-cutset, |V′
i \Cw| ≤ w+ 1.

Therefore, |Ci| ≥ |V ′
i | − (w + 1) = f ′

i − (w + 1) = ri. By definition, Cw is a cover for the given SMC
problem.

Minimum w-cutset problem is NP-hard by reduction from set multi-cover and is verifiable in linear time.
Therefore, minimum w-cutset problem is NP-complete.

Example 3.3.2 Let us demonstrate those steps for the SMC problem with U={U1, U2, U3} and
S={S1, ..., S5} shown in Figure 3.2(a). Define T=<V,E>, V ={V1, V2, V3, Vs}, over S:
V1={S1, S2, S3}, f1=3, V2={S3, S4, S5}, f2=3,
V3={S2, S4, S5}, f3=3, VS={S1, ..., S5}, fS=5.
Then, w = |S| − 1−mini ri = 5− 1− 1 = 3. Augment:
V1: ∆1=w+1+r1 − f1=4+2-3=3,Q1={Q1

1, Q
2
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3
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Figure 3.2: (a) A set multi-cover problem <U, S> where U={U1, U2, U3}, S={S1, ..., S5}, the cover-
ing requirements r1=2, r2=2, r3=1. (b) Corresponding augmented tree decomposition T ′=<V ′, E> over
S′={S1, ..., S5, Q
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V3: ∆3=w+1+r3 − f3=4+1-3=2,Q3={Q1
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The augmented tree decomposition T ′ is shown in Figure 3.2(b). Any SMC solution such as C={S3, S5} is a
3-cutset of T and vice versa.

In summary, we showed that when w is not a constant the w-cutset problem is NP-complete. This implies
that the w-cutset sequence problem over tree-decompositions is hard.

3.3.1 An exact algorithm for minimal w-cutset of a tree-decomposition
Assume we are given a tree-decomposition T=<V,E> over X . Assume that the tree-width of T is w∗ and
we are given a target bound value w. For each cluster Vi s.t. |Vi| > w + 1, define ri = |Vi| − (w + 1). Let
C∗

w(T ) denote minimum size w-cutset of T.
Before we define an algorithm for finding an exact minimum size w-cutset, we will outline a few pre-

processing steps that can be taken to solve the ”trivial” part of the problem and reduce its complexity.

THEOREM 3.3.3 Given a tree-decomposition T=<V,E> over X of width w∗ and a constant w < w∗,
assume there is a cluster Vi ∈ V s.t. |Vi| > w + 1 and Vi is singly-connected in T . In other words,
ri = |Vi| − (w + 1) > 0 and Vi has only 1 neighbour Vj . Let Sij be the separator between Vi and Vj:
Sij = Vi ∩ Vj . If |Sij | ≤ ri, then there is a minimum-size w-cutset C∗

w(T ) such that Sij ⊂ C∗
w(T ).

Proof. Assume some nodeXk ∈ Sij is not in the minimum-size cutset. Then, ∃Xq ∈ Vi s.t. Xq /∈ Sij and
Xq ∈ C∗

w(T ). Such a node must exist to satisfy ri. If Xq /∈ Sij , then ∀j 6= i, Xq /∈ Vj and we can replace
Xq with Xk in the cutset without increasing the size of the w-cutset.

As a consequence, whenever we have a singly-connected cluster Vi whose only separator |Sij | ≤ ri, we
can safely add to cutset any subset Si of nodes in Vi such that Sij ⊂ Si and |Si| = ri. Then, we remove
from T all nodes in Sij as well as the cluster Vi and obtain a tree T ′=<V ′, E′> where V ′ = V \Sij where
C∗

w(T ) = Si ∪C∗
w(T ′). Thus, without loss of generality, we assume that for any singly-connected cluster Vi

with some ri > 0, its separator size |Sij | > ri.
A similar line of reasoning leads to the conclusion that given any singly-connected cluster Vi with neighbor

Vj and their separator Sij where |Sij | > ri, then there is a minimum size cutset C∗
w(T ) that contains ri nodes

from Sij : C∗
w(T ) ∩ Vi ⊂ Sij . Thus, in our search for a minimum w-cutset, we can limit the search for

C∗
w(T ) ∩ Vi to the subsets of Sij . That is the main idea behind the proposed recursive algorithm: remove all

those singly-connected clusters Vi that have ri ≤ |Sij |, select one of the remaining sinlgy-connected clusters
Vi that have ri > |Sij | enumerate all possible subsets fi of Sij of size ri and solve the w-cutset problem for
each T ′ over X ′ = X\fi. The exact MinSizeCutset(T,w) algorithm is given in Figure 3.3.

The maximum depth of the recursion of procedure MinSizeCutset(T,w) equals the number of clusters
in T whose size > w+1. At each recursion iteration our state-space is multiplied by |Fi| = (|Sij |, ri). Since



MinSizeCutset(T,w)
1. Remove all singly-connected clusters of size ≤ w + 1.

2. Solve all singly-connected clusters Vi s.t. ri ≥ Sij where Sij is a separator between Vi and its neighborVj .

3. Select a singly-connected cluster Vi. Let Sij be a separator between Vi and its neighbor Vj . Let
Fi be a set of all possible subsets of size ri from Sij .
FOR EACH fi ∈ Fi DO

T ′ = T\fi

f i = MinSizeCutset(T ′, w)
END FOR
Let m = arg minfi∈Fi

|f i|.
Return C∗

w(T ) = fm ∪ fm.

Figure 3.3: Recursive minimum size w-cutset algorithm.

|Sij | ≤ w∗, then:

|Fi| ≤ (w∗, ri) =
w∗!

(w ∗ −ri)!ri!
= w∗(w∗ − 1)...(w∗ − ri + 1)

≤ (w∗)
∑

i
ri

The total size of state-space explored is bounded by:

|V |
∏

i=1

(w∗)ri = (w∗)
∑

i
ri

If we a looking to answer the decision problem ”Does the tree-decomposition T has a w-cutset of size k ?”,
we can stop the recursion when sum of the r′is of the processed clusters reaches k. Then, the total number of
states explored is bounded by (w∗)k.

3.4 Algorithm GWC for minimum cost w-cutset
Next, we show that the problem of finding w-cutset can be mapped to that of finding set multi-cover. The
mapping suggests an application of greedy approximation algorithm for set multi-cover problem to find w-
cutset of a tree decomposition. When applied to a tree decomposition T=<V,E> overX , it is guaranteed to
find a solution within factorO(1+lnm) of optimal wherem is the maximum # of clusters of size> (w+1)
sharing the same node. To avoid loss of generality, we consider the weighted version of each problem.

The mapping is as follows. Given any w-cutset problem of a tree-decomposition T=<V,E> over X, each
cluster node Vi ∈ V of the tree becomes a node of universal set U. A covering set SXj

={Vi ∈ V |Xj ∈ Vi}
is created for each node Xj ∈ X . The cost of SXj

equals the cost of Xj . The cover requirement is ri =
|Vi| − (w+ 1). Covering a node in SMC with a set SXj

corresponds to removing node Xj from each cluster
in T. Then, the solution to a set multi-cover is a w-cutset of T. Let C be a solution to the SMC problem. For
each Ui ∈ U , the set C contains at least ri subsets SXj

that contain Ui. Consequently, since Ui = Vi, then
|Vi ∩ C| ≥ ri and |Vi\C| ≤ |Vi| − ri = |Vi| − |Vi| + (w + 1) = w + 1. By definition, C is a w-cutset. An
example is shown in Figure 3.4. This duality is important because the properties of SC and SMC problems
are well studied and any algorithms previously developed for SMC can be applied to solve w-cutset problem.

A well-known polynomial time greedy algorithm exists for weighted SMC [Vazirani 2001] that chooses
repeatedly set Si that covers the most ”live” (covered less than ri times) nodes fi at the cost ci: a set that
minimizes the ratio ci/fi. In the context of w-cutset, fi is the number of clusters whose size still exceeds
(w+1) and ci is the cost of nodeXi. As discussed earlier, ci maybe defined as the size of the domain of node
Xi or its log. When applied to solve the w-cutset problem, we will refer to the algorithm as GWC (Greedy
W -Cutset). It is formally defined in Figure 3.5. We define here the approximation algorithm metrics:

DEFINITION 3.4.1 (factor δ approximation) An algorithmA is a factor δ, δ > 0, approximation algorithm
for minimization problem P if A is polynomial and for every instance I ∈ DP it produces a solution s such
that: cost(s) ≤ δ ∗ costOPT (s), δ > 1.
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Figure 3.4: (a) A tree decomposition T=<V ,E> where V ={V1, ..., V4} overX={A,B,C,D,E, F}; (b) the
corresponding set multi-cover problem <U ,S> where U={V1, V2, V3, V4} and S={SA, SB , SC , SD, SF };
here, set SXi

contains a cluster Vj iff Xi ∈ Vj . The 1-cutset of T is a solution to the set multicover with
covering requirements r1=r2=r3=r4=1: when node Vi ∈ V is ”covered” by set SXi

, node Xi is removed
from each cluster.

Greedy w-Cutset Algorithm (GWC)
Input: A set of clusters V = {V1, ..., Vm} of a tree-decomposition over X = {X1, ..., Xn} where ∀Vi ∈ V ,
Vi ⊂ X ; the cost of each node Xi is ci.
Output : A set C ⊂ X s.t. |Vi\C| ≤ w.
Set C = ∅,t=0.
While ∃Vi s.t. |Vi| > w do
1. ∀Xi ∈ X , compute fi = |{Vj}| s.t. |Vj | > w and Xi ∈ Vj .
2. Find node Xi ∈ X that minimizes the ratio ci/fi.
3. Remove Xi from all clusters: ∀Vi ∈ V, Vi = Vi\Xi.
4. Set X = X\Xi, C = C ∪ {Xi}.
End While
Return C

Figure 3.5: Greedy w-cuset Algorithm.

GWC is a factor O(1 + lnm) approximation algorithm [Rajagopalan & Vazirani 1998] where m is the
maximum number of clusters sharing the same node (same as the maximum set size in SMC).

This bound is nearly the best possible for a polynomial algorithm due to strong inapproximability results
for the set cover problem, the special case of set multi-cover problem. Approximation guarantee better
than O(lnm) is not possible for any polynomial time algorithm unless P=NP [Bellare et al. 1993; Lund &
Yannakakis 1994]. Furthermore, ∃C,∆0 s.t. for all ∆ ≥ ∆0 no polynomial-time algorithm can approximate
the optimum within a factor of ln ∆− C ln ln ∆ unless P=NP [Trevisan 2001].

3.5 Experiments
We use Bayesian networks as input reasoning problems. In all experiments, we started with a moral graph
G of a Bayesian network B which was used as the input to the minimal w-cutset problem. The tree-
decomposition of G was obtained using min-fill algorithm [Kjaerulff 1990].

Our benchmarks are two CPCS networks from UAI repository: cpcs360b with N=360 nodes and induced
width w∗=22 and cpcs422b with N=422 nodes and induced width w∗=27, one instance each. Our other
benchmarks are layered random networks, meaning that each node is assigned a set of parents selected ran-
domly from previous layer. One set of random networks consisted of 4 layers of L = 50 nodes each, total
of N=50x4=200 nodes, each node assigned P = 3 parents. The second set of random networks consisted
of 8 layers of L = 25 nodes each, total of N=25x8=200 nodes, each node assigned P = 3 parents. For
random networks, the results are averaged over 100 instances. We compare the performance of two greedy
heuristic algorithms- MGA (Modified Greedy Algorithm due to [Becker & Geiger 1996]) and DGR (Deter-



ministic Greedy Algorithm due to [Geigher & Fishelson 2003])- to our proposed algorithms: GWC (Greedy
W -Cutset) and its variants.

The MGA algorithm is adapted from minimum cost cycle-cutset algorithm of [Becker & Geiger 1996] that
iteratively removes all singly-connected nodes from the graph and adds to cutset the node that minimizes
cost to degree ratio. The algorithm stops when remaining subgraph is cycle-free. The MGA is a factor 4
approximation algorithm. In [Vazirani 2001], a factor 2 approximation algorithm is defined based on layering.
However, it can not be easily adapted to finding minimalw-cutset forw > 1. For MGA, the only modification
required to find w-cutset is to stop when original graph with cutset nodes removed can be decomposed into
a cluster tree of width w or less (using min-fill heuristics). In our implementation, MGA algorithm uses the
GWC heuristics to break ties: if two nodes have the same degree, the node found in most of the clusters of
size > w is added to the cutset.

The DGR algorithm is the Deterministic Greedy Algorithm for finding an elimination order of the variables
that yields a tree-decomposition of bounded width defined in [Geigher & Fishelson 2003]. DGR obtains a
w-cutset while computing the elimination order of the variables. When eliminating some node X yields a
cluster that is too large (size > w + 1), the algorithm uses greedy heuristics to pick a cutset node among all
the nodes that are not in the ordering yet. Specifically, the deterministic algorithm adds to the cutset a node
X that maximizes expression

√

|NX |CX , where NX is a set of neighbours of X that are not eliminated yet
and CX =

∏

Ui∈NX
|D(Ui)|. As we ignore domain sizes in this empirical study, we defined CX = |NX | in

which case DGR adds to cutset a node of maximum degree in the subgraph over nodes that are not eliminated.
The GWC algorithm was implemented as described earlier picking at each iteration a node found in most

clusters of size > w + 1 with a secondary heuristics (tie breaking) that selects the node contained in most of
the clusters. Several variants of GWC with different tie breaking heuristics were tested that were allowed to
rebuild a tree decomposition after removing a cutset node:
GWCA - breaks ties by selecting the node found in most of the clusters of the tree decomposition;
GWCM - breaks ties by selecting the node found in most of the clusters of maximum size;
GWCD - breaks ties by selecting the node of highest degree (the degree of the node is computed on the
subgraph with all cutset nodes removed and all resulting singly-connected nodes removed). Note that GWC
and GWCA only differ in that GWCA rebuilds a cluster-tree after removing a cutset node. Also note that
MGA and GWCD have their primary and tie-breaking heuristics switched.

Table 3.1: w-cutset. Networks: I=cpcs360b, II=cpcs422b, III=4-layer random networks, L=50, N=200, P=3;
IV =8-layer random networks, L=25, N=200, P=3.

w 1 2 3 4 5 6 7 8 9 10
I MGA 30 22 20 18 16 15 14 13 12 10
w*=20 DGR 36 22 19 18 16 14 13 12 11 10

GWC 27 20 17 16 15 14 13 12 11 10
GWCA 27 21 18 16 15 14 13 12 11 10
GWCD 27 21 18 16 15 14 13 12 11 10

II MGA 80 70 65 60 54 49 44 41 38 36
w*=22 DGR 84 70 63 54 49 43 38 32 27 23

GWC 78 66 58 52 46 41 36 31 26 22
GWCA 78 65 57 51 45 40 35 30 25 21
GWCD 78 65 57 51 45 40 35 30 25 21

III MGA 87 59 54 52 50 48 47 45 44 43
w*=49 DGR 80 57 52 50 48 46 44 43 42 40

GWC 78 61 53 49 46 44 43 42 41 39
GWCA 74 56 50 47 44 42 41 39 38 37
GWCD 74 56 49 47 44 42 41 39 38 37

IV MGA 99 74 69 66 63 61 59 56 54 51
w*=24 DGR 90 71 65 61 58 55 52 49 47 44

GWC 93 77 68 63 59 55 52 49 46 43
GWCA 87 70 62 57 54 51 48 45 42 39
GWCD 86 70 62 57 54 51 48 45 42 39

w 11 12 13 14 15 16 17 18 19 20
I MGA 9 8 7 6 5 4 3 2 1 0
w*=20 DGR 9 8 7 6 5 4 3 2 1 0

GWC 9 8 7 6 5 4 3 2 1 0
GWCA 9 8 7 6 5 4 3 2 1 0
GWCD 9 8 7 6 5 4 3 2 1 0

II MGA 33 30 28 9 8 7 6 5 4 2
w*=22 DGR 21 19 16 9 8 7 5 4 3 2

GWC 19 16 13 10 8 6 5 4 3 2
GWCA 18 15 12 9 8 6 5 4 3 2
GWCD 18 15 12 9 8 6 5 4 3 2

III MGA 41 40 39 37 36 35 34 33 31 30
w*=49 DGR 39 38 36 36 34 33 32 31 30 29

GWC 38 37 36 35 34 33 32 31 30 29
GWCA 36 35 34 33 32 31 30 29 28 27
GWCD 36 34 34 33 32 31 30 29 28 27

IV MGA 49 47 44 41 39 36 34 31 28 26
w*=24 DGR 41 38 36 33 31 28 25 23 21 19

GWC 40 37 35 32 29 27 25 23 20 18
GWCA 37 34 32 30 27 25 23 21 19 17
GWCD 37 35 32 30 28 25 24 21 19 17

The results are presented in Table 3.1. For each benchmark, the table provides the five rows of results
corresponding to the five algorithms (labelled in the second column). Columns 3-12 are the w-cutset sizes for
the w-value. The upper half of the table entires provides results for w in range [1, 10]; the lower half of the



table provides results for w in range [11, 20]. The results for cpcs360b and cpcs422b correspond to a single
instance of each network. The result for random networks are averaged over 100 instances. The best entries
for each w are highlighted.

As Table 3.1 shows, it pays to rebuild a tree decomposition: with rare exceptions, GWCA finds a cutset
as small as GWC or smaller. On average, GWCA, GWCM, and GWCD computed the same-size w-cutsets.
The results for GWCM are omitted since they do not vary sufficiently from the others.

The performance of MGA algorithm appears to depend on the network structure. In case of cpcs360b, it
computes the same size w-cutset as GWC variants for w ≥ 10. However, in the instance of cpcs422b, MGA
consistently finds larger cutsets except for w=20. On average, as reflected in the results for random networks,
MGA finds larger cutset than DGR or any of the GWC-family algorithms. In turn, DGR occasionally finds a
smaller cutset compared to GWC, but always a larger cutset compared to GWCA and GWCD.

We measured the GWC algorithm approximation parameterM in all of our benchmarks. In cpcs360b and
cpcs422b we have M = 86 and M = 87 yielding approximation factor of 1 + lnM ≈ 5.4. In random
networks, M varied from 29 to 47 yielding approximation factor ∈ [4.3, 4.9]. Thus, if C is the w-cutset
obtained by GWC and Copt is the minimum size w-cutset, then on average:

|C|
|Copt|

≤ 5

Looking at the results as solutions to the sequence w-cutset problems, we can inspect the sequence and
suggest good w’s by analysing the function f(i) = |Ci| + i as described in section 3.2. To illustrate this we
focus on algorithm GWCA for CPC364, CPCS424 and 4-layer random networks (See Table 3.2).

Table 3.2: Function f(i) for i=1...16, GWCA. Networks: I=cpcs360b, II=cpcs422b, III=4-layer random,
L=50, N=200, P=3.

f(i)
i 1 2 3 4 5 6 7 8 9 10
I 28 23 21 20 20 20 20 20 20 20
II 79 67 60 55 50 46 42 38 34 31
III 75 57 53 51 49 48 48 47 47 47

f(i)
i 11 12 13 14 15 16 17 18 19 20
I 20 20 20 20 20 20 20 20 20 20
II 29 27 25 23 23 22 22 22 22 22
III 47 47 47 47 47 47 47 47 47 47

For cpcs360b we observe a small range of values for f(i), namely f(i) ∈ {20, 21, 23, 28}. In this case
the point of choice is w = 4 because f(1) = 28, f(2) = 23, f(3) = 21 while at i = 4 we obtain reduction
f(4) = 20 which stays constant for i ≥ 4. Therefore, we can have the same time complexity for w-cuset as
for exact inference (w∗ = 20) while saving a lot in space, reducing space complexity from exponential in 20
to exponential in 4 only. For w-cutset sampling this implies sampling 20 variables (out of 360) and for each
variable doing inference exponential in 4.

The results are even more interesting for cpcs422b where we see a fast decline in time complexity with
relatively slow decline in space complexity for the range i = 1, ..., 11. The decline is more moderate for
i ≥ 11 but is still cost-effective: for i = 16 we get the same time performance as i = 20 and therefore i = 16
represents a more cost-effective point.

Finally, for the case of 4-layer random networks, on average the function f(i) decreases for i = 1...8 and
then remains constant. This suggests that if space complexity allows, the best point of operation is w = 8.

3.6 Related Work and Conclusions
In this chapter, we formally defined the minimal w-cutset problem applicable to any reasoning problem
with graphical model such as constraint networks and Bayesian networks. The minimum w-cutset problem
extends the minimum cycle-cutset problem corresponding to w = 1. The motivation for finding a minimal
w-cutset is to bound the space complexity of the problem (exponential in the width of the graph) while
minimizing the required additional processing time (exponential in the width of the graph plus the size of
cutset). The cycle-cutset problem corresponds to the well-known weighted vertex-feedback set problem and
can be approximated within factor 2 of optimal by a polynomial algorithm. We show that the minimal w-
cutset problem is harder by reduction from the set multi-cover problem [Vazirani 2001]: the set multi-cover
problem, and subsequently the w-cutset problem, cannot have constant-factor polynomial approximation
algorithm unless P=NP. Empirically, we show that the minimal cycle-cutset heuristics based on the degree of
a node is not competitive with the tree-decomposition of the graph.



To our knowledge, only heursitics related to the node elimination order were used before in finding a w-
cutset. In [Rish & Dechter 2000; Larossa & Dechter 2003] and [Geigher & Fishelson 2003], the w-cutset
is obtained while computing elimination order of the nodes. The next elimination node is added to the
cutset in [Rish & Dechter 2000; Larossa & Dechter 2003] if its bucket size exceeds the limit. A similar
approach was explored in [Geigher & Fishelson 2003] in DGR algorithm (presented in the empirical section)
except that the cutset node was chosen heuristically among all the nodes that were not eliminated yet. The
immediate drawback of either approach is that it does not permit to change the order of the nodes already
eliminated. As the empirical results demonstrate, DGR usually finds smaller cutset than MGA but bigger
than GWC/GWCA/GWCD.

The research results presented in this chapter have been accepted for publication in [Bidyuk & Dechter
2004].

3.7 Future Work
The main objective of our future work is to find good heuristics for w-cutset problem that are independent
from tree-decomposition of a graph since the minimal w-cutset of a tree-decomposition provides only an
upper bound on the minimal w-cutset of a graph. So far, we only looked at the degree of the node as possible
heuristics and found emprically that GWC heuristics are usually superior. There are also open questions
remaining regarding the relationship between w-cutset of a graph and a w-cutset of its tree-decomposition.
As mentioned earlier, the w-cutset of a tree decomposition of a graph only provides an upper bound on the
optimal w-cutset of the graph and it is not clear, for example, whether the minimal w-cutset of a graph is a
w-cutset of one of its minimum width tree-decompositions.



Chapter 4

Epsilon-cutset effect on Iterative Belief
Propagation

This chapter investigates the behavior of iterative belief propagation algorithm (IBP) in Bayesian networks
with loops. In a multiply-connected network, IBP is only guaranteed to converge in linear time to the correct
posterior marginals when evidence nodes form a loop-cutset. We propose an ε-cutset criteria that IBP will
converge and compute posterior marginals close to correct when a single value in the domain of each loop-
cutset node receives very strong support compared to other values thus producing an effect similar to the
observed loop-cutset. We investigate the support for this criteria analytically and empirically and show that
it is consistent with previous observations of IBP performance in multiply-connected networks.

4.1 Introduction
The paper investigates the correctness of iterative belief propagation (IBP) algorithm, also known as sum-
product algorithm, in Bayesian networks with loops. Pearl [Pearl 1988] proposed iterative belief propagation
algorithm for singly connected Bayesian networks and proved that the algorithm converges in number of
iterations equals to the diameter of the network to the correct posterior values. Iterative belief propagation can
be applied to networks with loops to derive approximate inference where exact methods such as loop-cutset
conditioning, bucket-elimination, and tree-clustering [Pearl 1988; Dechter 1999; Lauritzen & Spiegelhalter
1988] become impractical due to exponential growth in time and memory as network width increases. In
general, IBP does not always converge and does not produce correct posterior values for Bayesian networks
with loops.

However, empirically it was demonstrated that IBP can be successfully applied to several classes of
Bayesian networks with loops used in practical applications, especially for coding networks [R.J. McEliece &
Cheng 1997; Kschischang & Frey 1998; Frey & MacKay 1997], where it was shown to outperform variational
decoder [Frey & MacKay 1997] and mini-bucket approximation algorithm [I. Rish & Dechter 1998]. It also
performs well on noisy-or networks (used in diagnostics) and pyramid networks (used in image recognition)
[K. P. Murphy & Jordan 1999].

We now have gained better understanding of IBP behavior in networks with a single loop. Weiss [Weiss
2000] proved using the Markov network model that IBP always converges on a single-loop networks and
defined the error in posterior marginals obtained by IBP as a function of eigenvalues of a matrix computed
from the conditional probability tables of all the variables in a loop. Also, for a single loop networks, he
established the correlation between the accuracy of posterior marginals computed by IBP and convergence
rate. That is, the faster IBP converges, the more accurate the posterior marginals are.

The behavior of IBP in loopy networks of arbitrary topology so far is best understood in the context of
minimizing system free energy. It was proved that in general case, stationary points of belief propagation
algorithm correspond to the local minima of the Bethe free energy of the system [Yedidia, Freeman, & Weiss
2001]. That was an important result from which a modified version of belief propagation algorithm was
derived, the generalized belief propagation, that minimizes the Kikuchi free energy [Yedidia, Freeman, &
Weiss 2001]. Based on the same result, Welling and Teh proposed a method for optimizing Bethe free energy
directly for binary networks.

Still, we lack the general criteria that would enable us to predict convergence of IBP algorithm for a given
network and to evaluate the quality of posterior beliefs computed by IBP without computing exact posterior
beliefs. While the relationship between IBP algorithm and free energy functions is important one, it does
not provide us with any means of evaluating the quality of answers produced by IBP in general. Even for
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a single-loop network, the parameters used by Weiss [Weiss 2000] to describe the convergence rate of IBP
and to predict the error are only available after we have executed the algorithm and stored information from
previous iterations.

We investigate the accuracy of IBP in directed Bayesian networks as a function of loop size, CPT values,
prior beliefs, and evidence support. We derive anlytical expression for an error value in the posterior marginal
belief computed by IBP in a single-loop Bayesian network without evidence (see section 4.6). For this special
case, we conclusively prove from the derived expression that accuracy of IBP improves as:

1. Size of the loop increases.

2. Prior belief for a single value of root node approaches 1.

Those results are supported by empirical study of average error in posterior marginal beliefs of single-loop
networks as a function of loop size and root priors (see section refsec:evidence).

For general class of directed Bayesian networks, we define a concept of ε-support for a node X in a
Bayesian network. We say that Bayesian network has ε-cutset when all of its loop-cutset receive ε-support.
We prove (in section 4.5) that in a Bayesian network with ε-cutset, posterior marginals computed by IBP for
a node X P ′(x|e) will converge to the correct posterior marginal P (x|e) as ε converges to 0. A single loop
without evidence and with extreme root priors is a special case of Bayesian network with ε-cutset. Thus, our
results for a single-loop network from section 4.6 are a special case of ε-cutset effect.

Our theoretical results regarding ε-cutset effect on the accuracy of IBP are supported by the empirical
evidence on 2-layer Noisy-Or and random Noisy-Or networks (see section 4.8).

4.2 Background
DEFINITION 4.2.1 (graph concepts) A directed graph is a pair G = {V,E}, where V = {X1, ..., Xn} is a
set of nodes, or variables, and E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges. Given (Xi, Xj) ∈ E, Xi

is called a parent of Xj , and Xj is called a child of Xi. The set of Xi’s parents is denoted pa(Xi), or pai,
while the set of Xi’s children is denoted ch(Xi), or chi. The family of Xi includes Xi and its parents.

The underlying graph G of a directed graph D is the undirected graph formed by ignoring the directions
of the edges in D.

A node X in a directed graph D is called a root if no edges are directed into X. A node X in a directed graph
D is called a leaf if all of its adjacent edges are directed into X. A cycle in G is a path whose two end-points
coincide. A cycle-cutset of undirected graph G is a set of vertices that contains at least one node in each
cycle in G. A loop in D is a subgraph of D whose underlying graph is a cycle. A vertex v is a sink with respect
to loop L if the two edges adjacent to v in L are directed into v. A vertex that is not a sink with respect to a
loop L is called an allowed vertex with respect to L. A loop-cutset of a directed graph D is a set of vertices
that contains at least one allowed vertex with respect to each loop in D. (We borrowed loop-cutset definition
from [Becker, Bar-Yehuda, & Geiger 1999]).

A directed graph is acyclic if it has no directed cycles. A graph is singly connected (also called a polytree),
if its underlying undirected graph has no cycles. Otherwise, it is called multiply connected.

DEFINITION 4.2.2 (belief networks) Let X = {X1, ..., Xn} be a set of random variables over multi-valued
domains D1, ..., Dn. A belief network (BN) is a pair (G,P ) where G is a directed acyclic graph on X and
P = {P (Xi|pai)|i = 1, ..., n} is the set of conditional probability matrices associated with each Xi. An
assignment (X1 = x1, ..., Xn = xn) can be abbreviated as x = (x1, ..., xn). The BN represents a joint
probability distribution P (x1, ...., xn) = Πn

i=1P (xi|xpa(Xi)), where xS is the projection of vector x on a
subset of variables S. An evidence E is an instantiated subset of variables.

DEFINITION 4.2.3 (d-separation) If X, Y, and Z are three disjoint subsets of nodes in a DAG G, then Z is
said to d-separate X from Y, denoted d(X,Z, Y )G, if and only if there is not path from a node in X to a
node in Y along which the following two conditions hold: (1) every node with converging arrows either is or
has a descendant in Z, and (2) every other node is outside Z. A path satisfying the conditions above is to be
active; otherwise it is said to be blocked (by Z). By path we mean a sequence of consecutive edges (of any
directionality) in the DAG.

4.3 Iterative Belief Propagation Algorithm
Iterative Belief Propagation (IBP) algorithm computes posterior belief P (x|e), where E is set of evidence
nodes, for every variable X in a Bayesian network. It applies Pearl’s belief propagation algorithm [Pearl
1988], developed for singly-connected networks, to a multiply-connected networks, ignoring cycles. Belief
is propagated by sending messages between the nodes:
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Figure 4.1: Flow of messages between variables X and its parent Ui and child Yj during belief propagation.

Iterative Belief Propagation (IBP)
Input: A Belief Network BN = {P1, ..., Pn}, evidence e, an activation schedule A, the number of iterations I .
Output: Belief in every variable.

1. Initialize λ and π.
For evidence node xi = j, set λxi

(k) to 1 for j = k and to 0 for j 6= k.
For node x having no parents set πx to prior P (x).
Otherwise, set λx and πx to (1, ..., 1).

2. For iterations 1 to I:
For each node x along A, do:
/* α is a normalization constant */
• For each x = j, compute λx,ui

(j) = α
∑

j
λx(j)

∑

ul:l6=i
P (x = j | u1, ..., um)

∏

l 6=i
πul,x

• For each x = j, compute πx,yi
(j) = α

∏

k 6=i
λyk,x(j)

∑

ul
P (x = j | u1, ..., um)

∏

l
πul,x.

3. Belief update: For each x along A
• For each x = j, compute
λx(j) =

∏

i
λyi,x(j), where yi are x’s children.

• For each x = k, compute
πx(j) =

∑

u1,...,um
P (x = j | u1, ..., um)

∏

i
πui,x,

where ui are x’s parents.
• Compute BEL(x) = αλxπx.

Figure 4.2: Iterative Belief Propagation (IBP) Algorithm

During each iteration (t+ 1), each node X sends causal support messages π(t+1)
Yj

(x) to each child Yj (see
figure 4.1):

π
(t+1)
Yj

(x) = αλX (x)
∏

k 6=j

λ
(t)
Yk

(x)
∑

u

P (x|u)
∏

i

π
(t)
X (ui) (4.1)

and diagnostic support messages λt
x(ui) to each parent Ui:

λ
(t+1)
X (ui) = α

∑

x

λX(x)
∏

j

λ
(t)
Yj

(x)
∑

uk ,k 6=i

P (x|u)
∏

k 6=i

π
(t)
X (uk) (4.2)



The flow of messages between node X and its parent Ui and child Yj is shown in figure 4.1. Node X sends
message λX (Ui) to its parent Ui and message πYj

(X) to its child Yj . In turn, parent Ui sends message
πX(Ui) to X and child Yj sends message λYj

(X) to X. Messages exchanged between X and Ui are vectors
of dimension equal to the domain size of Ui: |λX (Ui)| = |πX (Ui)| = |D(Ui)|. Message exchanged between
X and Yj are vectors of dimension equal to the domain size of X: |λYj

(X)| = |πYj
(X)| = |D(X)|.

In equations 4.1 and 4.2, α is a normalization constant such that
∑

ui
λX (ui) = 1 and

∑

X πYj
(X) = 1.

Message λX (X) is introduced to incorporate evidence information into the equation (similar to [K. P. Murphy
& Jordan 1999]). If node X is not observed, ∀xk ∈ DX , λX (X = xk) = 1. If node X is observed and xe is
the evidence value, then ∀xk ∈ Dx, xk 6= xe, λX (X = xk) = 0 and λX (x = xe) = 1.

The posterior belief is computed for each nodeX by combining πX(ui) messages received from its parents
ui and λYj

(X) messages received from its children:

P (t)(x) = αλX (x)
∏

j

λ
(t)
Yj

(x)
∑

u

P (x|u)
∏

i

π
(t)
X (ui) (4.3)

It is convenient to use the following notation in the context of belief propagation algorithm:

λ(t)(x) = λX(x)
∏

j

λ
(t)
Yj

(x) (4.4)

π(t)(x) =
∑

u

P (x|u)
∏

i

π
(t)
X (ui) (4.5)

Namely, causal supports from all parents and diagnostic support from all children are combined into vectors
πx and λx, respectively.

Then, we can rewrite the definition of a posterior belief for a varaible X after iteration t as follows:

P (t)(x) = αλ(t)(X)π(t)(X) (4.6)
Normalization of π and λ messages is recommended to avoid numerical underflow although it does not

affect the computation of the posterior beliefs. Namely, we can show that P n(X |E) = K ∗P un(X |E) where
Pn(X |E) is a belief in X computed using normalized messages, P un(X |E) computed without normaliza-
tion, and K is constant independent on the value of X, which will disappear by normalization (see appendix
1).

An activation schedule (variable ordering) specifies the order in which the nodes are processed (activated).
After all nodes are processed, the next iteration of belief propagation begins, updating the messages computed
during the previous iteration. Algorithm IBP(t) stops after t iterations. Figure 4.2 summarizes the algorithm.

4.4 IBP, loop-cutset and irrelevant subnetworks
In this section, we demonstrate that IBP automatically exploits conditional independence introduced by ob-
served nodes and automatically ignores irrelevant portions of the network that contain no evidence.

Utilizing the notion of conditional independence, we can often reduce a seemingly complex Bayesian
network to a singly-connected one. It is well-known that if evidence nodes form a loop-cutset, then we can
transform multiply-connected Bayesian network to an equivalent singly-connected network which can be
solved by belief propagation, leading to the loop-cutset conditioning method [Pearl 1988].

Also, unobserved nodes that have only unobserved descendents are irrelevant to the beliefs of the remaining
nodes and therefore, processing can be restricted to the relevant subgraphs.

Combining the above two properties, it is clear that if evidence nodes constitute a loop-cutset of a relevant
subgraph of a query node X, then its posterior belief can be computed by applying belief-propagation only to
the relevant subgraph which can be transformed into a singly-connected network.

We show in subsections 4.4.1 and 4.4.2 that IBP exploits the above two properties, of observed and unob-
served nodes, automatically, without requiring any outside action for network transformation. As a result, the
correctness and convergence of IBP on node X in a multiply-connected Bayesian network will be determined
by the structure of the relevant subgraph of node X as opposed to the structure of a complete network. If
the relevant subnetwork of node X is singly-connected relative to the evidence, IBP will converge to correct
posterior marginals for node X.

While these conclusions are fairly straightforward, we believe they deserve to be stated towards the under-
standing of IBP’s boundaries as an approximate scheme.

In section 4.5, we will discuss the effect of increasing the level of support for a single value of a variable (for
example, from its observed children) in the approximation of the conditional independence, effectively weak-
ening dependence between the node’s children and parents. We further argue that in a multiply-connected
Bayesian network, as each loop-cutset node receives stronger support for one value, the closer the approxi-
mation to the loop-cutset condition becomes, leading to the improvements in IBP convergence and accuracy.



4.4.1 Evidence nodes
An observed node X in a Bayesian network G blocks the path between its parents and its children as defined in
d-separation criteria. In other words, it creates conditional independence between its parents and its children.

In this section we establish that IBP automatically exploits evidence nodes blocking information flow
between their parents and their children. Namely, messages that an observed node X sends to its children are
independent from any messages that node X receives. Similarly, message that observed node X sends to its
parents are independent from messages that node X receives from its children.

LEMMA 4.4.1 (Information flow blocking) Let X be an observed node in a Bayesian network G. Then for
any child Yj of node X, theBEL(Yj) computed by IBP is not dependent on the messages that X receives from
its parents Ui or the messages that node X receives from its other children Yk, k 6= j.

Lemma 4.4.1 allows us to understand fully the behavior of IBP in a Bayesian network where observed
nodes form a loop-cutset.

THEOREM 4.4.1 (IBP on loop-cutset) If evidence nodes constitute a loop-cutset, then IBP converges to the
correct posteriors in linear time.

The proof for lemma 4.4.1 and theorem 4.4.1 is given in appendix 2.

4.4.2 Irrelevant nodes
Unobserved nodes that have only unobserved descendents are irrelevant to the beliefs of the remaining nodes
and therefore, processing can be restricted to the relevant subgraphs. In IBP, this property is expressed by the
fact that irrelevant nodes (that are not observed and do not have observed descendents) send diagnostic support
messages that equally support each value in the domain of a parent and thus do not affect the computation of
marginal posteriors of its parents.

LEMMA 4.4.2 Let X be a node in a loopy Bayesian network G such that it is not observed and it does not
have observed descendents and let G′ be a subnetwork obtained by removing node X and its descendents
from the network. Then for any Y ∈ G′, the posterior belief of Y as computed by IBP over G is identical to
the posterior belief of Y computed by IBP applied to G′ only.

We can immediately conclude that in a loopy network without evidence, IBP will always converge after 1
iteration because only propagation of π messages affects the computation of posterior beliefs and π messages
do not change. Also in that case, IBP converges to the correct marginals for any node whose parents do not
have common ancestors. This is because the relevant subnetwork that contains only the node and its ancestors
is singly-connected. Therefore, by lemma 4.4.2 they are the same as the posterior marginals computed by
applying IBP to the complete network. In summary,

THEOREM 4.4.2 (Irrelevant unobserved nodes) Let G be a Bayesian network and let G’ be a network ob-
tained by recursively eliminating all its unobserved leaf nodes. If observed nodes in G constitute a loop-cutset
of G′, then for all the nodes in G’, IBP applied to G converges to the correct posterior marginals. For a node
outside G′, IBP will converge (not necessarily to correct posteriors) only if it converges for all of its parents.

Lemma 4.4.2 and theorem 4.4.2 are proved in appendix 2.

THEOREM 4.4.3 (Corollary) If Bayesian network does not contain any observed nodes or only has observed
root nodes, then IBP always converges.

Corollary follows from theorem 4.4.2 is that IBP is guaranteed to converge for any Bayesian network that
has no observed nodes or that has the observed root nodes only.

4.5 ε-cutset effect
Consider Bayesian network B. Let X be a node in B. Let PIBP (x|e) represent posterior beliefs computed by
IBP. Let P (x|e) denote correct posterior beliefs. As noted above, in multiply-connected networks, IBP is only
guaranteed to converge to the correct posterior marginals for all nodes if evidence nodes form a loop-cutset.

Let C = {C1, C2, ...Ck} be a subset of nodes that form loop-cutset in B. An observed loop-cutset node
Ci effectively breaks the loop by blocking the flow of information between its parents and its children. Now,
assume that node Ci is not observed but receives a very strong support for one value in its domain c′i due to
a strong prior for x′ or strong evidential support form a child node, or a combination of those. We will call
it ε-support. Then, when node Ci has strong ε support, we intuitively expect it to have an effect similar to



observed nodes. When all nodes in C have ε-support, we could expect IBP to compute values PIBP (x|e) that
would be close to PIBP (x|e, c′); at the same time, we could expect that P (x|e, c′) is close to P (x|e). Now,
let us formally define ε-support criteria and ε-cutset.

DEFINITION 4.5.1 (ε-support) Let G be a Bayesian network. Let X be a node in a Bayesian network. Let
π(x) denote messages X sends to its children. Let λx(pa(x)) denote messages X sends to its parents. Let
λ′x(pa(x)) denote messages X would send if it was observed given the same input messages from its neigh-
bours. We will say that we have ε-support for node X in G when following conditions hold: ∃x ∈ D(X) such
that

PIBP (x|e) > 1− ε
∀j, πj(x) > 1− ε
∃j, s.t.λj(x) > 1− ε

C is an ε-cutset of B, if C is a loop-cutset and every Ci ∈ C has ε-support in a value c′i ∈ D(Ci). Denote
by {c′1, c′2, ...c′k} the tuple of corresponding values.

DEFINITION 4.5.2 (ε-cutset) A subset of nodes C in Bayesian network B is an ε-cutset of B if C is a loop-
cutset of network B and ε-support conditions are satisfied for each loop-cutset node Ci ∈ C.

Intuitively, when a Bayesian network B has an ε-cutset, we expect that P (x|e) will be close to P (x|e, c)
for small ε. We prove that in following theorem 4.5.1.

THEOREM 4.5.1 (Observed Cutset) Let B be a Bayesian network, and let E be a set of observed variables.
Let C = {C1, C2, ..., Ck} be a subset of variables such that C

⋃

E constitute a loop-cutset of B. Let Xi be
a variable in the network. Let cji represent a j-th value in the domain of variable Ci. Let Xi be a variable in
the network. Given ε > 0, if ∀Ci ∈ C, ∃c′i such that:

P (c′i|e) ≥ 1− εi ≥ 1− ε
0 ≤ εi ≤ ε

then
|P (x|e)− P (x|e, c′)| ≤

∑

i

εi ≤ kε

The proof is provided in Appendix 4.
We establsihed that when loop-cutset nodes Ci ∈ C are observed, IBP algorithm computes correct pos-

terior belief P (x|e, c). We denote by P ′(x|e) valus computed by BP in a given network if convergence is
achieved. Assuming that C is an ε-cutset with extreme in C = c, we conjecture that P ′(x|e) converges to
P (x|e) for every node X /∈ C ⋃

E as ε decreases.

CONJECTURE 4.5.1 (ε-cutset effect) IfC is an ε-cutset of Bayesian network (B), then approximate posterior
probability distribution P ′(x|e) will converge to the correct posterior probability distribution P (x|e) as ε
decreases.

In the next section, we derive, in theorem 4.6.1, an analytical expression for error δ in the approximate
posterior belief P ′(d|e) of sink node D in a single-loop Bayesian network without evidence. In section 4.7,
we prove an error bound on the ndoes in B as a function of ε which proves the conjecture above for Bayesian
networks without evidence. In this case, root node A consitutes an ε-cutset when prior P (a) > 1−ε for some
value a in domain D(A). Our empirical evidence further supports the ε-cutset effect theory as we evaluate
average error δ = |P (x|e) − P ′(x|e)| as a function of ε in single-loop networks and random networks with
ε-cutset in section 4.8.

4.6 Single Loop Bayesian Network without Evidence
In this section, we will analyze the performance of belief propagation algorithm in a single-loop Bayesian
network with binary nodes as shown in fig 4.3. Without evidence, the posterior marginals of all nodes except
the sink node D will be computed correctly due to theorem 4.4.2. Thus, we focus here on computing the error
produced by IBP in the posterior marginal values of sink node D. Let G(D) be correct posterior belief:

G(D) =
∑

Bn,Cm

P (D|Bn, Cm)
∑

A

P (Bn|A)P (Cm|A)P (A) (4.7)

In a Bayesian network without observed nodes, all λ messages sent from children to parents provide same
support for all parent values ( λ will be vectors with all values set to 1). Therefore, only π messages contribute
to the computation of the marginal beliefs. If we create activation schedule such that parents of a node are
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Figure 4.3: A single loop Bayesian network.

processed first, then one iteration of belief propagation is sufficient for convergence. The messages sent in
future iterations would be identical to the messages sent during first iteration. Then, it is easy to derivethe
posterior marginals of node D G∗(D) computed by IBP:

G∗(D) = α
∑

Bn,Cm

P (D|Bn, Cm)π(Bn)π(Cm) =

= α
∑

Bn,Cm

P (D|Bn, Cm)(
∑

A

P (Bn|A)P (A))(
∑

A

P (Cm|A)P (A)) (4.8)

where α is a normalization constant. We can show that α = 1 when neither D nor any of its descendents are
observed. In other words, G∗(D) does not require normalization.

THEOREM 4.6.1 Let G be a single-loop Bayesian network as shown in figure 4.3 Assume all nodes are binary
and there are no observed nodes in the loop. Let us define:

P (A) = (ε, 1− ε)
βi

0 = P (Bi = 0|Bi−1 = 0), βi
1 = P (Bi = 0|Bi−1 = 1)

γj
0 = P (Cj = 0|Cj−1 = 0), γj

1 = P (Cj = 0|Cj−1 = 1)

Then the error δ(D) = G∗(D) − G(D) in the posterior marginals of node D computed by Iterative Belief
Propagation will be:

δ(D) = (ε− ε2)((−1)Bn(−1)Cm

∑

Bn,Cm

P (D|Bn, Cm))

n
∏

i=1

(βi
0 − βi

1)

m
∏

j=1

(γj
0 − γj

1) (4.9)

We prove this theorem in Appendix 3. Let dij = P (D = 0|Bn = i, Cm = j). Then, for D=0:

δ(D) = ε(1− ε)(d00 − d01 − d10 + d11)
∏

i=1,n

(βi
0 − βi

1)
∏

j=1,m

(γj
0 − γj

1) (4.10)

From equation 4.10, it is clear that the accuracy of IBP improves:



1. As prior beliefs for a root node(s) approach boundary values: limε→0,1 δ = 0

2. As λ support messages from the children of allowed nodes in the loop approach boundary values:
limλ(B),λ(C),λ(A)→0,1 δ = 0

3. As number of nodes in a loop increases: limn→∞,m→∞ δ = 0

4. As conditional probabilities for the same value of X in different rows get closer:

lim
βk
0
−βk

1
→0,γk

0
−γk

1
→0

δ = 0 (4.11)

It is also easy to see that when one of the allowed nodes is observed, δ = 0. When node A is initialized,
either ε = 0 or (1 − ε) = 0. When one of the nodes Bi or Cj is observed, it is equivalent to having
β0(Bi) = β1(Bi) = 0|1 or γ0(Cj) = γ1(Cj) = 0|1 yielding δ = 0.

D

A

CB

A P(A)
0 0.5
1 0.5

A P(B=0|A) P(B=1|A)
0 0 1
1 1 0

A P(C=0|A) P(C=1|A)
0 0 1
1 1 0

BC P(D=0|BC) P(D=1|BC)
00 1 0
01 0 1
10 0 1
11 1 0

Result: D P(D) P'(D)
0 1 0.5
1 0 0.5

Error: 0.5 0.5

A P(A)
0 0.5
1 0.5

A P(B=0|A) P(B=1|A)
0 0.1 0.9
1 0.9 0.1

A P(C=0|A) P(C=1|A)
0 0.1 0.9
1 0.9 0.1

BC P(D=0|BC) P(D=1|BC)
00 0.9 0.1
01 0.1 0.9
10 0.1 0.9
11 0.9 0.1

Result: D P(D) P'(D)
0 0.756 0.5
1 0.244 0.5

Error: 0.256 0.256

Figure 4.4: An example demonstrating the tightness of the worst-case bound δ(D) = 2ε(1−ε) on the absolute
error |P ′(D)−P (D)|, where P ′(D) = Pibp(D) and P (D) is exact. We show single loop Bayesian network
(left), an instance of the network with deterministic CPTs where δ(D) = 2 ∗ 0.5 ∗ 0.5 = 0.5 is exact; an
instance of the network with relaxed CPTs where δ(D) = 0.256 << 0.5.

In the worst case, when d00 = d11 = 1 and d01 = d10 = 0 and ∀i, |βi
0 − βi

1| = 1 and ∀j, |γj
0 − γj

1 | = 1,
the error bound obatined in theorem 4.6.1 evaluates to:

δ(D) = 2ε(1− ε)
Since the function f(ε) = ε(1−ε) reaches its maximum value of 0.25 at ε = 0.25, the worst case error bound
is 0.5. We simulate the worst case scenario above on the example of a minimal loop network consisting
of four nodes as shown in Figure 4.6, left. Under the deterministic CPT assignments shown in Figure 4.6,
middle, the exact absolute error in the posterior marginals of node D reaches the maximum value of 0.5.

Thus, the bound 2ε(1− ε) is tight although in many instances the exact absolute error will be a lot smaller
as any one small factor |βi

0 − βi
1| or |γj

0 − γj
1 | or |d00 − d01 − d10 + d11| will reduce the bound on the error

value. As we show in the Figure 4.6, right, relaxing the deterministic probabilities in the condition probability
tables by replacing each 0 with 0.1 and, correspondingly, each 1 with 0.9, we obtain a much smaller absolute
error 0.256.

The conditional probability table values for D can actually become the driving factor in the reduction of
the error. It is easy to show that marginals obtained by IBP in absence of evidence are always bounded by
maxpa(D)P (D|pa(D)) and minpa(D)P (D|pa(D)):

minpa(D)P (D|pa(D)) ≤ P (D) ≤ maxpa(D)P (D|pa(D))
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Figure 4.5: (a) A Bayesian network has a cycle-cutset consisting of node C. (b) An equivalent Bayesian
network where two copies of C are created: C1 and C2. (c) The ancestor tree of node X over ancestor set
{C1, C2, A}.

Thereofre, when the interval [minpa(D) P (D|pa(D)),maxpa(D) P (D|pa(D)) is small, the Pibp(D) becomes
relatively stable.

4.7 Bayesian Network Without Evidence
A more general result can be obtained for a Bayesian network without evidence and with bi-valued nodes.
First, we give a recursive definition of the complete ancestor set of X.

DEFINITION 4.7.1 (complete set of ancestors) Parents of node X constitute a complete ancestor set of node
X. If A={A1, ..., Ak} is a complete set of ancestors of node X and Pi, 1 ≤ i ≤ k, is a set of parents of node
Ai, then A′ = (A\Ai) ∪ Pi is a complete ancestor set of X.

DEFINITION 4.7.2 (ancestor subgraph) Let X be a node in graph G. Let A be a complete ancestor set of
X. A subgraph containing node X, its complete ancestor set A, and every node on a directed path from each
ancestor Ai ∈ A to X and all the edges between those nodes is an ancestor subgraph of X on A.

Now, we define the transformation of the directed acycling graph G with respect to its cycle-cutset C. For
every node Ci ∈ C and for each child chj of Ci, create a new copy Cij of Ci. Replace edge from Ci to chj

with edge from Cij to chj . Create edge from Ci to each Cij . Define a deterministic probability table for Cij

s.t. P (Cij = c|Ci = c) = 1. It is easy to see that this transformation produces a new graph G′ where all
probabilities are preserved because ∀j, Pibp(Ci) = P (Cij). We will call G′ a cutset transformation of G.
The process is demonstrated in Figure 4.5a,b.

It is easy to see that C ′={C11, ..., C1m1
, C21, ..., C2m2

, ..., Ck1, ..., Ckmk
} is a cutset of G′. Any node X

in G′ has a complete set of ancestors A such that each Ai ∈ A is either a root node or a node in cutset C ′

of G′. The proof is by construction. We start with an ancestor set consisting of parents of X. Replace each
ancestor node that is not a cutset node and not a root node with its parents. Continue until no such nodes left.
The cycle-cutset nodes will guarantee that we can obtain such ancestor set and that the ancestor subgraph of
X over A is a tree. Proof by contradiction. Assume that a node Y in ancestor set of X is neither a cutset nor
is a root node. Assume that we cannot replace node Y with its ancestor set without creating a cycle because
one of its parents is already in the ancestor tree. That would indicate that there is a loop that does not cotain
any of the cycle-cutset nodes which contradicts properties of the cycle-cutset. Thus, the ancestor subgraph of
X over A is a tree and A contains only root nodes and cutset nodes in C ′.



It is easier to analyze behavior of IBP in G′ compared to G. Assume that C is an ε-cutset in G. Then
∀Ci ∈ C∃c′i ∈ D(Ci) such that:

Pibp(c′i) > 1− εi
Let C’ and G’ be obtained from C and G using transformation above. Now, let A be a complete ancestor set
of X in G where all nodes in A are either root nodes or are in C ′. The Pibp(x) depends only on propagation
of π-messages in the ancestor subtree of X over A. In absences of evidence, for root nodes Ri ∈ A, the
π(Ri) = Pibp(Ri) = P (Ri). Then, we can obtain a closed form error bound on P (X) in G′ that is
equivalent to the Pibp(X) in G. as expressed in the next theorem.

THEOREM 4.7.1 (IBP Error Bound) Given a Bayesian network B without evidence where all nodes have
domain size 2 and given ε-cutset C={C1, C2, ..., Ck} s.t ∀Ci ∈ C:

P (ci) = (εi, 1− εi)
Pibp(ci) = (ε′i, 1− ε′i)

εi − ε′i = δi

Then, for any node X in B:

|P (x) − Pibp(x)| ≤ 2
∑

ci∈c

diε
′
i(1− ε′i) +

∑

ci∈c

di|δi|

where di is the number of children of node Ci ∈ C.

The proof of the theorem is provided in Appendix 6. This theorem subsumes the single-loop case described
above. Observing that in the instance of single loop δa = 0 because P (X) = π(A) bounding (d00 − d01 −
d10 + d11) ≤ 2 and boudning the products of

∏

i(β
i
0 − βi

1) ≤ 1 and
∏

j(γ
j
0 − γj

1) ≤ 1, we obtain for single
loop with sink node D and a root node A with P (A) = (ε, 1− ε):

δD ≤ 2ε(1− ε)
Theorem 4.7.1 above proves the ε-cutset conjecture for Bayesian networks without evidence with bi-valued

nodes. The theorem bound is expressed via posterior marginals of cycle-cutset nodes computed by IBP and
error deltai in each of those marginals. Each δi can be estimated recursively by arranging cutset nodes in
topological order. Then:

δ1 = 0

δ2 ≤ 2d1ε
′
1 + 3δ1 = 2d1ε

′
1

δ3 ≤ 2d1ε
′
1 + 2d2ε

′
2 + 3δ1 + 3δ2 = 7d1ε

′
1 + 2d2ε

′
2

And so on. This bound is likely to be impractical for empirical evaluation. However, it provides a theoretical
foundation for ε-cutset effect in Bayesian networks without evidence as it clearly shows that as ε′ → 0, then
∀i, δi → 0 and δx → 0. In general, we expect the error value δi to be small when ε′i is small as demonstrated
empirically in [Dechter & Mateescu 2003].

4.8 Empirical Results
In this section, we empirically investigate the accuracy and convergence of IBP in networks with loops. In all
experiments, unless specified otherwise, the conditional probabilities were represented by noisy-or:

P (Child = 0|Parents) = e−θ0−
∑

i
θiParenti (4.12)

where θ0, the ’leak’ term was fixed at 0.005 and individual noise factors θi were chosen uniformly from the
range [0,1]. The number of iterations for approximate inference was fixed at 50: we established experimen-
tally that 50 iterations was sufficient for IBP to converge if it was going to converge at all. All experimental
results are consistent with conclusions in sections 4.5, 4.6 (theorem 4.6.1), and 4.7 (theorem 4.7.1).

For each network used in empirical evaluation, we applied belief propagation algorithm to obtain
approximate posterior marginals Pibp(xi|e) and a variable elimination algorithm ([Kask et al. 2001;
Dechter 2001]) to obtain exact posterior marginals P (xi|e) . To evaluate the quality of approximations,
we computed average absolute error.



4.8.1 Single Loop
The first set of experiments was focused on evaluating the performance of IBP on a small single-loop network
with controlled parameters. Each network consisted of 1 root node A, 1 sink node D, and two directed pathes
from root to node D: {A,B1, ..., Bk, D} and {A,C1, ..., Ck, D}. Each loop node A, D, Bi, i=1...k, and
Cj , j=1...k, was also assigned a child that was observed unless stated otherwise. Single loop networks (see
fig 4.3) containing 4, 6, 8, and 10 nodes (k ∈ [1, 2, 3, 4]) were constructed.

The average absolute error in posterior marginals obtained by IBP was measure as a function of priors
P (A) = (ε, 1− ε), the size of the loop (expressed by parametr k), and the posterior probabilities of one of the
loop nodes Ci ∈ {C1, ..., Ck} that was induced by extreme evidence support λ(Ci) received from its child.
All nodes were bi-valued with domain size 2 which implied that absolute error in Pibp(x

0
i |e) is the same as

that in Pibp(x
1
i |e) The absolute error for each loop node was averaged over the instances of the network:

∆avg(Xi) =
1

M

∑

Xi∈Xm\E

|Pibp(x0
i |e)− P (x0

i |e)|

The error value was averaged over 1000 instances. We did not measure convergence of IBP in the single-loop
networks because IBP was shown to always converge when a network has only 1 loop ([Weiss 2000]).
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Figure 4.6: Average error ∆avg(D) in a single loop, k ∈ [1, 2, 3, 4]; D is a sink node.

First, we collected emprical evidence in support of analytical result obtained in theorem 4.6.1 in loops of
different sizes without evidence. We varied prior values P (A) = (ε, 1 − ε) of root node A and measured
average absolute error in node D as function of ε. The results are shown in Figure 4.8. For all nodes, except
root node, the average error value peaked at P (A) = 0.5, as expected, since ε = 0.5 is the maximum of the
function f(ε) = ε(1 − ε). The average error for a root node consistently had a minimum at P (A) = 0.5
which we cannot explain analytically at this point and plan to investigate in the future. Note that the maximum
average error is reduced by an order of magnitude as size of the loop increases. We do not show the bound
ε(1− ε) graphically as the estimated bound would be considerable bigger compared to actual error values.

The remainder of experiments with single-loop networks were conducted in presence of evidence in order
to obtain the empirical support for ε-cutset conjecture. The figures 4.7 and 4.8 show the average error
∆avg(Xi) as a function of priors (Figure 4.7):

∆avg ∼ f(ε)

and support λ(Ci) (Figure4.8):
∆avg ∼ f(λ(Ci)

for the 6-node loop (k=2) ( the results are are typical of other loop networks which we leave out for concise-
ness). For all nodes and all loop sizes, the average error was approaching zero as ε → 0, 1 (Figure 4.7) and
as λ(Ci)→ 0, 1 (Figure4.8) as we expected.
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4.8.2 2-layer noisy-or networks, ε-cutset
In 2-layer networks, the absolute error was average over all nodes in the network and then over all the
instances generated:

∆avg =
1

M

M
∑

m=1

1

N

∑

Xi∈Xm\E

1

D(Xi)

∑

xi∈D(Xi)

|P (xi|e)− P (xi|e)|

Additionally, we measure the convergence of IBP as a percent of nodes where IBP has converged. The IBP
was considered as converged if the differenced between estimates obtained in the last two iterations did not
exceed threshold θ=1E-10:

|P T−1
ibp (xi|e)− P T

ibp(xi|e)| ≤ θ

2-layer,�100�instances,�Ave�Err�P(x|e)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1E-10 1E-07 0.0001 0.05 0.3 0.6 0.9 0.999 1

root�priors

5-20

7-23

10-40

(a) Average error

2-layer,�100�instances,�%�nodes�converged

0

20

40

60

80

100

120

1E-10 1E-07 0.0001 0.05 0.3 0.6 0.9 0.999 1

root�priors

5-20

7-23

10-40

(b) Percent of converged nodes

Figure 4.9: 2-layer networks. Average error (a) and percent of converged nodes (b) are plotted agains root
node priors.

We measured the accuracy and convergence of IBP in 2-layer noisy-or networks. Number of root nodes
m and total number of nodes n was fixed in each test set (indexed m − n). Each leaf node Yj was added to
the list of children of root node Ui with probability 0.5. All leaf nodes were observed. Loop-cutset nodes
were selected from root nodes using mga algorithm [Becker, Bar-Yehuda, & Geiger 1999]. The results (in
Figures 4.9(a) and 4.9(b)) were averaged over 100 instances. We have observed in our experiments that
initially, as priors of loop-cutset nodes become lower, the convergence and accuracy of IBP worsen. This
effect was previously reported by Murphy, Weiss, and Jordan [K. P. Murphy & Jordan 1999] for 2-layer
noisy-or networks with low root node priors. However, as priors of loop-cutset nodes continue to approach 0
and 1, the average error value approaches 0 and the number of converged nodes reaches 100%.
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Figure 4.10: 2-layer Noisy-Or. Performance of IBP as the number of cutset nodes with ε-support increases
towards loop-cutset.

4.8.3 2-layer networks, partial loop-cuset and ε-cutset
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Figure 4.11: 2-layer Noisy-Or. Average error and number of converged nodes are measured as number of
observed loop-cutset nodes increases.

In a separate set of experiments with 2-layer networks, we have measured the average error and con-
vergence of IBP while 1) increasing the number of observed loop-cutset nodes; 2) increasing the number
of loop-cutset nodes with ε-support. We computed the loop-cutset of each network using mga algorithm
[Becker, Bar-Yehuda, & Geiger 1999] which consisted of a susbset of root nodes.

In order to investigate the accuracy and convergence of IBP with respect to different subsets of loop-
cutset nodes with ε-support, we fixed the prior values for some of the loop-cutset nodes (primary source
of ε-support) to (1-ε, ε) and set the rest of the priors to (0.5,0.5). We computed the average error (over all
nodes except evidence nodes) in the posterior marginals computed by IBP and percent of converged nodes
while verying the size of the subset of loop-cutset nodes with ε-support. The results are presented in figure
4.8.3 with ε=1E-10. which show that IBP does not improve monotonically with the size of the subset with
ε-support although eventually average error converges to some small value. We obtained similar results in
experiments with other values of ε (two order of magnitude bigger and smaller).

Next, we fixed all priors to (0.5, 0.5) and computed the average error (over all nodes except evidence
nodes) in the posterior marginals computed by IBP and percent of converged nodes while verying the number
of observed loop-cutset nodes. Observed value was chosen at random with uniform probability The results are
presented in figure 4.11. As the number of observed loop-cutset nodes increases, we observe the monotonic
decrease in the average error value and increase in the number of points where IBP converged.



4.8.4 Random noisy-or networks, ε-cutset
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Figure 4.12: Average error in P (X |E) is plotted
against λYk
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(Xk).

Randomm−n networks of size n were constructed by designating first m nodes as roots, last m nodes as
leaves, and then adding each node Xi, i > m, to the list of children of node Xj , j > i, with probability 0.2.
All leaf nodes were observed. Loop-cutset nodes were selected using mga algorithm proposed in [Becker,
Bar-Yehuda, & Geiger 1999]. For each loop-cutset node, an extra child nodeYk was added with a symmetrical
CPT. To control λYk

(Xk) messages, P (Yk|pa(Yk)) was varied. Results were averaged over 100 instances. As
results demonstrate (figures 4.12 and 4.13), the average error approaches 0 and convergence of IBP reaches
100% as λYj

(X)→ 0, 1.

4.8.5 Random Noisy-Or networks, partial loop-cuset and ε-cutset
We have generated a set of instances of Random Noisy-Or networks with binary variables, where, again, only
some of the loop-cutset nodes were observed or only some of the loop-cutset nodes had ε-support. The goal
of those experiments was to find out whether accuracy and convergence of belief propagation algorithm will
improve monotonically as the number of observed loop-cutset nodes or the number of loop-cutset nodes with
ε-support increases.

Our results demonstrate that performance of belief propagation algorithm may improve monotonically
for some values of loop-cutset nodes. It appears that depending on which domain value of a loop-cutset
node receives ε-support, the improvement in the IBP estimates may be monotonic (perhaps, ε-cutset effect
cascades through the network increasing the number of nodes with strong ε-support) or have an opposit effect
degrading performance of IBP.

Similar results were obtained for the case when we gradually increase the number of observed loop-cutset
nodes. In figure 4.8.5, number of observed nodes gradually increases. And again the process lacks monotonic-
ity. First, average error in posterior marginal increases as number of observed loop-cutset nodes increases.
Average error decreases only when majority of loop-cutset nodes are observed. We observed the same for
convergence. Apparently, even though observed loop-cutset nodes break some loops in the network, they can
negatively affect the computation in the remaining loops.

4.9 Related work and conclusions
Empirical study of the performance of belief propagation algorithm [I. Rish & Dechter 1998; Frey & MacKay
1997] in different types of coding networks including Humming codes, low-density parity check, and tur-
bocodes, demonstrated that accuracy of IBP is considerably better when noise level σ is low. The notion of
ε-cutset effect defined in section 4.5 (which we prove for Bayesian networks without evidence) offers some
explanation for those results. Lower noise level means that code nodes receive stronger support for a sinle
value from their observed children limσ→0 λ(Ui)→ 0, 1. As a result, for small σ, root nodes become ε-cutset
of the network.

An investigation into the distribution of cycle lengths in coding networks has demonstrated that a node has
a low probability (less than 0.01) of being in a cycle of length less than or equal to 10 [Ge, Eppstein, & Smyth
1999]. Furthermore, the CPTs derived for edges with low Gaussian noise σ define very strong correlation
between parent/child node values. Thus, observed child node will send quite strong support for the observed
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Figure 4.14: Random noisy-or networks. Average error, maximum error and number of converged nodes are
plotted against the number of loop-cutset nodes with ε-support for value 1: λ(X = 1)→ 1 increases.
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Figure 4.15: Random noisy-or networks. Average error, maximum error, and number of converged nodes are
plotted agains the number of loop-cutset nodes with ε-support for value 0; λ(X = 0)→ 1.

value to the parent. Both of the above observations combined with our empirical findings, provide an insight
into excellent performance of IBP in coding networks. Coding networks have good parameters for two
different factors influencing convergence and accuracy of IBP: large loop size and strong ε-support.

The work presented here has two novelties. First, it provides a direct analytical connection between loop
size, root priors, and evidence support and the error in the posterior marginals computed by IBP. We derived
an exact expression for the error value only for a special case of a node in a single-loop network without
evidence. However, the empirical evidence leads us to the same conclusions as our analytical findings which
indicates that the mechanics behind the performance of IBP in single-loop network and multiple-loop net-
works with or without evidence is the same.

The second novelty is extending well-known loop-cutset criteria that guarantees convergence and correct-
ness of IBP in loopy networks when evidence nodes constitute a loop-cutset to instances where loop-cutset
nodes are not observed, but receive an ε-support. The proposed ε-cutset criteria guarantees the convergence
and certain degree of accuracy when ε is sufficiently small. The next step in our research is to devise means
of estimating the threshold ε value that will guarantee the convergence of IBP and desired degree of accuracy
in posterior marginals computed by IBP.
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Chapter 5

Future Work

In chapter 2, we have proposed a new sampling scheme called w-cutset that achieves a reduction in sam-
pling variance and improvement in the convergence of the estimates via collapsing of the sampling space,
specifically, sampling only a subset of variables. This scheme combines sampling with exact inference. The
sampled variables are carefully selected to simplify the structure of the Bayesian network and control the
complexity of exact inference. We demonstrated the efficiency of the proposed scheme empirically for a set
of benchmark networks. In chapter 3, we investigated the related problem of finding minimal w-cutset.

The primary objective of the future work is to define alternative means of reducing variance and improving
convergence of sampling in Bayesian networks by exploiting the structure of the graph. One possibility is
to seek efficient implementation of the known statistical variance reduction methods. Alternatively, we can
combine sampling with approximate inference such as Iterative Belief Propagation presented in chapter 4
when combination of sampling and exact inference is not feasible.

The auxiliary research question remaining is that of investigating the methods for finding minimal w-
cutset with respect to the original graph of the Bayesian network as opposed to finding a w-cutset of its
tree-decomposition.

Finally, we plan to continue work related to computing error bounds for IBP algorithm. The goal is to
define criteria, computable in polynomial time, that will establish convergence of IBP and realistic bounds
on the IBP estimates at least for some of the variables in the network. The promising results have been
previously obtained on convergence points of IBP for Markov networks by [Tatikonda & Jordan 2002] and
on posterior bound estimation by [Leisink & Kappen 2003].

5.1 Restricting Maximal Correlation in Gibbs Sampler
An obvious extension to the regular Gibbs sampling over variables X is to sample highly correlated variables
simultaneously as proposed in [J. Liu & Kong 1994] resulting in the blocking Gibbs sampler. However, the
grouping method previously proposed implementation in [Jensen, Kong, & Kjaerulff 1995] focuses on man-
aging the complexity of simultaneously sampling the block of variables rather then identifying and grouping
of highly correlated variables.

In w-cutset sampling, parameter w controls the complexity of computing necessary joint probabilities
P (x1, ..., xk, e). There is additional cost incurred by sampling a block of variables that grows exponentially
with the size of the block. Consider sampling a group variables {X1, ... , Xk} with domains of size 2 and
the task of generating new sample using systematic scan Gibbs sampler. Sampled individually, the variables
will require computing their joint probability 2 ·∑k

i=1 |D(Xi)| = 2 · k times, 2 for each variable: P (x0
i |x(t)

−i)

and P (x1
i |x(t)

−i). When sampled simultaneously, we need to compute and record
∏k

i=1 |D(Xi)| = 2k joint
probability distributions. Hence, sampling very large blocks of variables simultaneously maybe prohibitive
and in practical applications. Enforcing the limit on the maximum block size we can manage the additional
cost of blocking Gibbs sampler and focus on identifying and grouping highly correlated variables.

By enforcing a bound on state transition probabilitiesP (xi|x(t)
−i) will can enforce the bound on the maximal

correlation between two states. Given a systematic scan Gibbs sampler over three variables {X1, X2, X3},
the transition probability pij from state x(i) is state x(j) can be evaluated as follows:

pij ≤ max
x1,x2,x3

P (x1|x2, x3)P (x2|x1, x3)P (x3|x1, x2)

pij ≤ maxP (x1|x2, x3) maxP (x2|x1, x3) maxP (x3|x1, x2)

56



Blocking two variables together, for example X1 and X3, we obtain bound:

p′ij ≤ max
x1,x3,x2

P (x1, x3|x2)P (x2|x1, x3)

p′ij ≤ maxP (x3|x1, x2) maxP (x2|x1, x3) maxP (x1|x2)

It is easy to show that maxP (x1|x2) < maxP (x1|x2, x3) when all probabilities are > 0. Therefore, in
choosing to groupX1 and X3, we should try to maximize the ∆-function:

∆ = |max pij −max p′ij | = maxP (x2|x1, x3) maxP (x3|x1, x2)(maxP (x1|x2, x3)−maxP (x1|x2))

A more a rigorous analysis of this problem is necessary to obtain conclusive results. However, we believe
that we can find good candidates for grouping by pre-sampling and evaluating P (xi|x(t)

−i).
A special of highly correlated variables is when the variables in fact have a deterministic relationship.

As we have discussed in 2.2, when deterministic probabilistic relations are present, Gibbs sampler does
not converge. On the contrary, when it is likely to get ”stuck” in one area of the sampling space. Many
applications yield networks where some of the probabilities are deterministic. In some networks with regular
structure, we can easily identify an ergodic subspace. For example, in coding networks, it is easy to see that
sampling space over coding bits of the network is ergodic. In other instances, as in the case of Hailfinder
network used in experiments in

5.2 section:ccsExperiments
, we only know that some of the nodes have deterministic entries in their conditional probabilities table and
cannot immediately if a cutset sampling space is ergodic or not.

Recent results obtained by Dechter and Mateescu in [Dechter & Mateescu 2003] indicate that IBP al-
ways correctly identifies zero marginals. In the course of empirical evaluation of the w-cutset sampling,
we observed an improvement in the convergence of the full Gibbs sampler if we first identified nodes with
zero marginals using IBP and instantiated them. In some instances, that was sufficient to obtain an ergodic
sampling space although it is still not resolved whether IBP finds all zero marginals ([Dechter & Mateescu
2003]).

However, identifying zero marginals using IBP is not sufficient. More generally, we want to establish, when
adding the next node Ck into into the w-cutset {C1, ..., Ck−1} whether ∃c1, ..., ck−1 ∈ D(C1, ..., Ck−1) and
∃ck ∈ D(Ck) s.t. P (ck|c1...ck−1) = 0.

5.3 Monte Carlo Sampling Variance Reduction Schemes
There is a number of statistical variance reduction methods for Monte Carlo sampling that modify the sam-
pling procedure. Some of the more prominent are subsampling, multi-grid sampling, and stratified sampling
([Liu 2001]). In short, subsampling generally means discarding some of the samples. The multi-grid sampling
creates a hierarchy of coarse to fine-grain grids over sampling space, performs sampling separately on each
grid layers, and defines contraction and expansion operators to transfer information between grids. Finally,
the stratified sampling is based on dividing the sampling space S into a set of subspace S = S1∪...∪Sq called
strata, drawing samples from each strata independently, and then averaging the estimates obtained from each
strata.

Each of those approaches guarantees a reduction in sampling variance and increase in the convergence
speed of the sampling scheme but under special conditions. Furthermore, adapting those special sampling
techniques to the Gibbs sampler is not well-defined.

The basic subsampling schemes attempt to reduce the correlation between samples by discarding some of
the intermediate samples and using for example only every kth sample or implement a randomized scheme
for selecting samples that are included in the estimation. However, it was shown previously ([MacEachern
& Berliner 1994]) we usually obtain better estimates if make use of all the samples. A more sophisticated
subsampling scheme for a random scan sampler is discussed in ([MacEachern & Peruggia 2000]). Yet, we
cannot obtain qunatifiable guarantees. Furthermore, it appears that comparative performance of random scan
Gibbs sampler and systematic scan Gibbs sampler was never investigated rigorously enough (in particular, in
context of Belief networks) to conclude that one is better than the other. The last study of random scan and
system scan Gibbs sampler dates back to 1997 ([Roberts & Sahu 1997]). Therefore, there is no conclusive
indication that a significant improvement (or any) can be achieve by subsampling.

The multi-grid Monte Carlo sampling was originally formulated for statistical physics problems in [Good-
man & Sokal 1989] and then adapted to conditional probability-based sampling by [Liu & Sabatti 2000].
Roughly, the coarser grid is designed to combine slow evolving components and speed-up the propagation of



information. The potential advantage of this method in application to Bayesian networks is that we can avoid
re-sampling variables whose values change rarely (which maybe in part to high correlation between variables)
in the coarser-grid. However, the definition of the coarser grids as well as contraction and expansion oper-
ators so far have been constructed on the case by case basis (see [Liu & Sabatti 2000]) and the generalized
implementation of multi-grid Monter Carlo sampling for Bayesian networkss requires further development.

In the ramainder of this section, we focus on stratified sampling and its implications in the context of
Baysian networks.

Stratified sampling can lead to the reduction in sampling variance if the estimated function is ”smoother”
in each area Si compared to the whole sampling space S, meaning the range of values of function of interest
f f(x) is considerably smaller over Si than its total range of values over S. Assuming we can predict smooth
regions of f(x) and estimate the number of samples Ti that we need to draw from each region , we first obtain
an estimate f̂i(X) of f(x) over each region Si:

f̂i(X) =
1

Ti
f(x(t))

and then compute their average:

f̂(X) =
1

q

q
∑

i=1

f̂i(X)

In the basic population sampling, the number of samples Ti drawn from each subspace Si is proportional
to the size of the population in Si. In special applications, the number of samples drawn from each region
maybe proportional to the importance of that region to the objective function f(x). In Bayesian networks,
the number of samples should be proportional to the probabilistic mass of the sampled region. Therefore, we
need to solve two problems: 1) predicting subspace Si where the range of values of posterior marginals of
interest P (xi|e) is smooth; 2) predicting the number of samples to be drawn from each region.

In [Bouchaert 1994], authors used stratified sampling in combination with likelyhood weighting. They
defined strata as a set of disjoint interval covering the range between 0 and 1. Each instantiation of sample
variables was assigned to an interval; the length of the interval determined the estimated probability mass of
the instantion. A random number chosen uniformly between 0 and 1 determined the next sample instantiation.
The proposed scheme has potential problem tracking instantiations and computing starta intervals when the
number of variables in the sample increases.

We propose to associate each strata with an instatiation of a subset of variables Y such that their number
of instances D(Y ) is tractable. An estimate obtained over subspace y ∈ D(Y ) is then an estimate of the
conditional probabilitly distribution P (xi|y, e). The number of samples Ty from each subspace must be
proportional to its probability mass P (y|e). Therefore, the main problem is that of obtaining a good estimate
of P (y|e).

An easy special case is when we want to estimate the posterior marginal of variableXi that is independent
from Y conditional on evidence e and, as a result, P (xi|y, e) = P (xi|e). Then, relative to Xi, we can draw
equal number of samples from each subspace Yi and compute an average. The subset of sampling variables
Y such that Xi is independent from Y can be easily obtained by examining the structure of the Bayesian
network.

Such an implementation of stratified sampling also relates to an observation made in [MacEachern &
Peruggia 2000] that variance of a systematic scan Gibbs sampler can be reduced if we equally weight the
samples corresponding to the instantiations of a subset Y such that function of interest f(x) is independent
from Y .

In a more general case, we can approximately predict that the smooth regions of a function P (xi, e)
exploiting the structure of the graph. The nodes that are far fromXi in the network usually will have a lesser
effect on its marginal probabilities. Therefore, we can associated stratas with instantiations of nodes Y in the
its local neighborhood.

Now, we are faced with the problem of evaluating P (y|e) before we can apply stratified sampling. We can
estimate P (y|e) by first pre-sampling the P (e) and P (y, e) for each instance y:

P̂ (y|e) =
P̂ (y, e)

P̂ (e)

We can use a form of importance sampling such as Likelyhood Weighting to obtain estimates P (e) and
P (y, e). However, further analysis of this problem is necessary.



5.4 Hybrid Inference Methods
The w-cutset sampling scheme proposed in chapter 2 combines sampling and exact inference. As we re-
duce sampling set size, induced width w increases until exact inference eventually can become infeasible.
When exact inference is no longer feasible and further reduction in sampling is desired, we can replace exact
computation of sampling probabilities P (ci|c(t)−1, e) with approximate inference. Iterative Belief Propagation
algorithm is a good candidate for this scheme because it is fast (the inference time is linear in the size of the
network) and it generally produces good approximations when it converges.

In particular, we have observed in our empirical evaluation of IBP in section 4.8 that IBP tends to improve
monotonically (with respect to both the convergence and the precision of the estimates) as the number of
observed cutset variables increases. Therefore, when estimates Pibp(xi, e) are not satisfactory due to lack
of convergence or lack of confidence in the estimates, we maybe able to improve by combining IBP with
conditioning. If selected cutset C is small, we can sum over all instances of C the estimated probabilities
computed to IBP (similar to cutset conditioning):

P ′(xi|e) =
∑

c

Pibp(xi|c, e)Pibp(c|e)

When the cutset C becomes large, we can sample c from P (c|e):

ci ← Pibp(c
(t)
−i, e)

resulting in estimates:

P ′(xi|e) =
1

T

T
∑

t=1

Pibp(xi|c(t), e)

The hybrid scheme combining sampling and IBP has a potential to improve over pure sampling or pure
IBP. Previosly, a combination of importance sampling and IBP was proposed in [Yuan & j. Druzdzel 2003]
where IBP is used to update the trial distribution. The resulting hybrid scheme reportedly outperformed
previous state-of-the-art importance sampling algorithm [Cheng & Druzdzel 2000]. Therefore, it is likely
that proposed combination of Gibbs sampling and IBP will perform well too.

5.5 Backward Cluster Sampling
The backward sampling scheme was proposed in [Fung & del Favero 1994] the nodes in a Bayesian network
were processed and assigned a new sample value in reverse topological order, the opposite of the forward
smpling-based methods (including Logic sampling Likelyhood Weighting) that process nodes in topological
order and, as result, often sample from trial distribution very different from P (x|e) because evidence nodes
often are found at the bottom of the network (we typically observed the manifestations and symptoms of
events as opposed to the events themselves). Backwards sampling helps to ensure that evidence nodes are
processed early and trial distribution is close to P (x|e).

Using the idea of backward sampling, namely processing evidence nodes early, we maybe able to im-
prove the efficiency of the cluster sampling as previously described in [Koller, Lerner, & Angelov 1998] and
[Kjærulff 1995].

The exact algorithms relying on the cluster-tree decomposition [Lauritzen & Spiegelhalter 1988; Dechter
1999; Jensen, Lauritzen, & Olesen 1990; F. Jensen & Dittmer 1994] hult when the size of the separators
between clusters requires recording prohibitively large probability distribution functions (exponential in the
size of the separator). The cluster sampling scheme scheme defined in [Koller, Lerner, & Angelov 1998]
(extending the work in [Kjærulff 1995]) samples the separator function estimating and recording only non-
zero probability tuples generated while sampling. The sampling essentially helps us to identify tuples with
high-probability mass. This cluster sampling scheme encounters problems with the evidence propagation
because initially we sample separator function taking into account evidence information embedded in distant
clusters.

On the other hand, a bucket elimination scheme ([Kask et al. 2001; Dechter 2001]) evidence nodes are
eliminated first and then the remaining nodes are organized into clusters called buckets. Otherwise, bucket
elimination is quite similar to cluster-tree propagation and encounters similar problems when separator sizes
between the buckets are too big. Previously, a mini-bucket approximation scheme was proposed to manage
the networks with large separator sizes ([Larossa, Kask, & Dechter 2001]). However, we have no good heuris-
tics for identifying mini-buckets and, as a result, the performance of mini-bucket scheme is non-monotonous:
as we increase maximum separator function size, the performance of the algorithm in some instances will
deteriorate. Alternatively, we can sample the separator function similar to [Larossa, Kask, & Dechter 2001],



but avoiding the problem of propagating evidence information. Furthermore, this quality of the estimates ob-
tained in this scheme are likely to improve monotonically as we increase the maximum size of the recorded
function and allow to record more samples.

The proposed combination of bucket elimination and sampling is so far only developed conceptually.
Further analysis of the convergence and implementation trade-offs for this scheme is necessary before any
conclusive results can be obtained.
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