
Iterative Algorithms for Graphical Models 1

Robert Mateescu
School of Information and Computer Science

University of California, Irvine
mateescu@ics.uci.edu

http://www.ics.uci.edu/∼mateescu

June 30, 2003

1This report was presented as part of the Ph.D. candidacy exam of Robert Mateescu

Abstract

Probabilistic inference in Bayesian networks, and even reasoning within error bounds
are known to be NP-hard problems. Our research focuses on investigating approximate
message-passing algorithms inspired by Pearl’s belief propagation algorithm and by vari-
able elimination. We study the advantages of bounded inference provided by anytime
schemes such as Mini-Clustering (MC), and combine them with the virtues of iterative
algorithms such as Iterative Belief Propagation (IBP). Our resulting hybrid algorithm Iter-
ative Join-Graph Propagation (IJGP) is shown empirically to surpass the performance of
both MC and IBP on several classes of networks. IJGP can also be viewed as a General-
ized Belief Propagation algorithm, a framework which recently allowed connections with
approximate algorithms from statistical physics, showing that convergence points are in
fact stationary points of the Bethe (or the more general Kikuchi) free energy. Although
there is still little understanding why or when IBP works well, it exhibits tremendous per-
formance on different classes of problems, most notably coding and satisfiability problems.
We investigate the iterative algorithms for Bayesian networks by making connections with
well known constraint processing algorithms, which help explain when IBP infers correctly
extreme beliefs. This study gives an account of why iterating helps, and identifies classes
of easy and hard problems for IBP (and IJGP). Finally, we plan to investigate iterative
message-passing algorithms in other graph-based frameworks such as influence diagrams
and planning.

Contents

1 Introduction 1
1.1 Preliminaries . 2
1.2 Belief Networks . 2
1.3 Constraint networks . 3

2 Past Work 5
2.1 Mini-Clustering . 5

2.1.1 Tree-decomposition schemes . 6
2.1.1.1 Join-trees and cluster-tree-elimination 6

2.1.2 Mini-Clustering for belief updating 8
2.1.2.1 Lower-bounds and mean approximations 9
2.1.2.2 Partitioning strategies 10

2.1.3 Properties of Mini-Clustering . 11
2.1.3.1 Accuracy . 11
2.1.3.2 Normalization . 11

2.1.4 Empirical results . 12
2.1.5 Discussion . 17

2.2 Iterative Join-Graph Propagation . 19
2.2.1 Join-Graphs . 19

2.2.1.1 Join-tree propagation 19
2.2.2 Algorithm IJGP . 21
2.2.3 I-mappness of arc-labeled join-graphs 22
2.2.4 Bounded join-graphs . 24
2.2.5 Empirical results . 27
2.2.6 Discussion . 31

3 Current and Future Work 33
3.1 The Inference Power of Iterative Belief Propagation 33

3.1.1 Arc-consistency algorithms . 34
3.1.2 Iterative belief propagation over dual join-graphs 36
3.1.3 Flattening the Bayesian network 37

i

3.1.3.1 Zeros are sound for any IJGP 39
3.1.3.2 The inference power of IBP 40
3.1.3.3 A Finite Precision Problem 44

3.1.4 Empirical results . 44
3.1.4.1 Accuracy of IBP across belief distribution 45
3.1.4.2 Graph-coloring type problems 47

3.1.5 Discussion . 48
3.2 Partitioning Heuristics for Mini-Buckets 49

3.2.1 Empirical results . 51
3.2.2 Summary and future work . 53

3.3 Influence Diagrams and Planning . 54

Acknowledgments 55

A Tree Approximation for Belief Updating 56

B Iterative Join-Graph Propagation 64

C A Simple Insight into Iterative Belief Propagation’s Success 74

Bibliography 87

ii

List of Figures

2.1 a) A belief network; b) A join-tree decomposition; c)Execution of CTE-
BU; no individual functions appear in this case 7

2.2 Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU); 8
2.3 Procedure Mini-Clustering for Belief Updating (MC-BU) 9
2.4 Execution of MC-BU for i = 3 . 10
2.5 Convergence of IBP . 12
2.6 Absolute error for noisy-OR networks . 12
2.7 Absolute error for random networks . 13
2.8 BER for coding networks . 15
2.9 Absolute error and time for grid networks 15
2.10 Absolute error for CPCS422 . 17
2.11 An arc-labeled decomposition . 20
2.12 Algorithm Iterative Join-Graph Propagation (IJGP) 22
2.13 Algorithm Join-Graph Structuring(i) . 25
2.14 Procedure Schematic Mini-Bucket(i) . 25
2.15 Join-graph decompositions . 26
2.16 Join-graphs . 27
2.17 Random networks: KL distance . 28
2.18 Random networks: Time . 28
2.19 Grid 9x9: KL distance . 30
2.20 CPCS360: KL distance . 31

3.1 Part of the execution of DR-AC algorithm; 35
3.2 a) A belief network; b) A dual join-graph with singleton labels; c) A dual

join-graph which is a join-tree; . 37
3.3 Algorithm Iterative Belief Propagation; 38
3.4 a) A belief network; b) An arc-minimal dual join-graph; 40
3.5 a) A belief network that corresponds to a Max-closed relation; b) An arc-

minimal dual join-graph; . 43
3.6 Example of a finite precision problem; . 44
3.7 Coding, N=200, 1000 instances, w*=15; 45
3.8 10x10 grids, 100 instances, w*=15; . 45

iii

3.9 Random, N=80, 100 instances, w*=15; . 46
3.10 CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20; 46
3.11 Greedy Partitioning . 50
3.12 Heuristic KL Partitioning . 51
3.13 Random80, Heuristic KL vs. Greedy Partitioning 52
3.14 CPCS360, Heuristic KL vs. Greedy Partitioning 52
3.15 An influence diagram: the oil wildcatter problem 55

iv

List of Tables

2.1 Performance on Noisy-OR networks; . 13
2.2 Performance on random networks; . 14
2.3 BER for coding networks . 14
2.4 Performance on grid networks; . 16
2.5 Performance on CPCS54 network, w*=15 16
2.6 Performance on CPCS360 and CPCS422 networks 17
2.7 Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16 27
2.8 9x9 grid, K=2, 100 instances, w*=12 . 29
2.9 CPCS networks: CPCS54 50 instances, w*=15; CPCS360 10 instances,

w*=20 . 30
2.10 Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43 31

3.1 Graph coloring type problems: 20 root variables 47

v

Chapter 1

Introduction

Probabilistic inference is the principal task in Bayesian networks, and it is known to be
an NP-hard problem [Cooper1990]. Most of the commonly used exact algorithms such as
join-tree clustering [Lauritzen & Spiegelhalter1988, Jensen, Lauritzen, & Olesen1990] or
variable-elimination [Dechter1996, N. L. Zhang & Poole1994], exploit the network struc-
ture. Yet, they are time and space exponential in a graph parameter called induced width
(or tree-width), rendering them essentially intractable even for moderate size problems.
Approximate algorithms are therefore necessary for most of the practical problems, al-
though approximation within given error bounds is also NP-hard [Dagum & Luby1993,
Roth1996].

Our research is focused primarily on graph algorithms for the task of belief updating.
They are inspired by Pearl’s belief propagation algorithm [Pearl1988], which is known to
be exact for poly-trees, and by Mini-Buckets algorithm [Dechter & Rish1997], which an
anytime version of variable elimination. As a distributed algorithm, belief propagation is
also well defined for networks that contain cycles, and it can be applied iteratively in the
form of Iterative Belief Propagation (IBP), also known as loopy belief propagation. When
the networks contain cycles, IBP is no longer guaranteed to be exact, but in many cases it
provides very good approximations upon convergence, most notably in the case of coding
networks [R.J. McEliece & Cheng1997] and satisfiability zecchina02.

In our work, we investigate: 1. the quality of bounded inference in anytime schemes
such as Mini-Clustering, which is a generalization of Mini-Buckets to arbitrary tree-
decompositions; 2. the virtues of iterating message-passing algorithms, and the result of
combining the two in algorithms such as Iterative Join-Graph Propagation (IJGP). Our
recent work makes connections with well known understood consistency enforcing algo-
rithms for constraint satisfaction, giving strong support for iterating messages, and helping
identify cases of strong and weak inference power for IBP and IJGP.

The remaining of this chapter contains the necessary definitions and preliminaries.
Chapter 2 discusses our past work. Section 2.1 describes the Mini-Clustering algorithm,
Section 2.2 presents the Iterative Join-Graph Propagation algorithm, which is both anytime
and iterative. Chapter 3 summarizes our current and futures directions of research. Section

1

3.1 gives a an account of why iterating helps by making connections to Arc-consistency
algorithms from constraint satisfaction. It investigates the power of IBP to infer extreme
beliefs. It also provides a solid ground in explaining why IBP works well for coding net-
works, a question which we plan to investigate further. Section 3.2 looks at the problem
of partitioning in isolation, although this issue is relevant to many of the algorithms we
develop and would impact other areas of our research. Finally, Section 3.3 briefly touches
upon areas for our future work. We plan to study the applicability of our iterative algo-
rithms, or to adjust them to other graphical-based frameworks such as influence diagrams
and planning.

The published version of some of work presented in this report is given in Appen-
dices A [Mateescu, Dechter, & Kask2002], B [Dechter, Mateescu, & Kask2002] and C
[Dechter & Mateescu2003].

1.1 Preliminaries

The problems we address are in general expressed within two formalisms: Belief Networks
and Constraint Networks. We provide below the basic definitions and concepts.

A directed graph is a pair G = {V,E}, where V = {X1, . . . , Xn} is a set of nodes
and E = {(Xi, Xj)|Xi, Xj ∈ V, i 6= j} is a set of edges. If (Xi, Xj) ∈ E, we say that
Xi points to Xj . For each variable Xi, the set of parent nodes of Xi, denoted paXi

, or pai,
comprises the variables pointing to Xi in G.

The family of Xi, Fi, includes Xi and its parent variables. A directed graph is acyclic
if it has no directed cycles. In an undirected graph, the directions of the arcs are ignored:
(Xi, Xj) and (Xj, Xi) are identical.

DEFINITION 1.1.1 (Induced-graphs and induced width) [Dechter & Pearl1987] An or-
dered graph is a pair (G, d) where G is an undirected graph, and d = X1, ..., Xn is an
ordering of the nodes. The width of a node in an ordered graph is the number of the node’s
neighbors that precede it in the ordering. The width of an ordering d, denoted w(d), is the
maximum width over all nodes. The induced width of an ordered graph, w∗(d), is the width
of the induced ordered graph obtained as follows: nodes are processed from last to first;
when node X is processed, all its preceding neighbors are connected. The induced width
of a graph, w∗, is the minimal induced width over all its orderings. The tree-width of a
graph is the minimal induced width [Arnborg1985].

1.2 Belief Networks

Belief networks provide a formalism for reasoning about partial beliefs under conditions of
uncertainty. A belief network is defined by a directed acyclic graph over nodes representing
random variables of interest.

2

DEFINITION 1.2.1 (belief network, moral graph) A belief network is a quadruple
BN =< X,D,G, P >1 where X = {X1, . . . , Xn} is a set of random variables,
D = {D1, ..., Dn} is the set of the corresponding domains, G is a directed acyclic graph
overX and P = {p1, ..., pn}, where pi = P (Xi|pai) (pai are the parents ofXi inG) denote
conditional probability tables (CPTs).
The moral graph of a belief network is obtained by connecting all parents nodes having a
common child in G and removing directions.

The belief network represents a probability distribution overX having the product form
P (x) = P (x1, . . . , xn) =

∏n
i=1 P (xi|xpai

) where an assignment (X1 = x1, . . . , Xn = xn)
is abbreviated to x = (x1, . . . , xn) and where xs denotes the restriction of a tuple x to the
subset of variables S.

An evidence set e is an instantiated subset of variables. We use upper case letters for
variables and nodes in a graph and lower case letters for values in variables’ domains.
Given a function f , we denote by scope(f) the set of arguments of function f . The moral
graph of a directed graph is the undirected graph obtained by connecting the parent nodes
of each variable and eliminating direction.
Belief updating. The belief updating problem defined over a belief network (also referred
to as probabilistic inference) is the task of computing the posterior probability P (Y |e) of
query nodes Y ⊆ X given evidence e. We will focus on two cases:

1. when Y consists of a single variable Xi; namely on computing Bel(Xi) = P (Xi =
x|e), ∀Xi ∈ X, ∀x ∈ Di;

2. when Y consists of the scope of an original CPT; in this case, we computeBel(Fi) =
P (Fi = t|e), ∀Fi family in B, ∀t ∈ ×Xi∈Fi

Di.

Extensions of our algorithms to computing the updated belief in the general case when
Y is an arbitrary subset of X can be done by conditioning, and will be discussed later.

1.3 Constraint networks

DEFINITION 1.3.1 (constraint network) A constraint network R = (X,D,C) is de-
fined over a set of variables X = {X1, ..., Xn}, their respective domains of values
D = {D1, ..., Dn} and a set of constraints C = {C1, ..., Ct}. Each constraint is a pair
Ci = (Si, Ri), where Si ⊆ X is the scope of the relation Ri defined over Si, denoting the
allowed combinations of values.

In a binary constraint network each constraint is defined over pairs of variables Xi

and Xj , denoted Rij . The primary query over constraint networks is to determine if there
exists a solution, namely, an assignment x = (x1, . . . , xn) to all the variables that satisfies

1Also abbreviated< G,P > when X and D are clear.

3

all the constraints (i.e. ∀i, xSi
∈ Ri), and if so, to find one. A constraint networks can

be associated with a constraint graph where each node represents a variable, and any two
variables appearing in the same constraint’s scope are connected. We say that a constraint
networkR represents its set of all solutions sol(R).

4

Chapter 2

Past Work

This chapter contains most of our past work, which started by extending an anytime scheme
to general tree-decompositions and then moved towards making it iterative. Section 2.1
contains the Mini-Clustering (MC) algorithm, which is inspired by Mini-Buckets algo-
rithm [Dechter & Rish1997]. It is a message-passing algorithm guided by a user adjustable
parameter called i-bound, offering a flexible tradeoff between accuracy and efficiency in
anytime style (in general the higher the i-bound, the better the accuracy). MC algo-
rithm operates on a tree-decomposition, and similar to Pearl’s belief propagation algorithm
[Pearl1988] it converges in two passes, up and down the tree. We were motivated by the
success of Iterative Belief Propagation (IBP) in trying to make MC benefit from the appar-
ent virtues of iterating. The resulting algorithm, Iterative Join-Graph Propagation (IJGP)
is described in Section 2.2. IJGP is again a messages-passing algorithm, but it operates
on a general join-graph decomposition which may contain cycles. It still provides a user
adjustable i-bound that defines the maximum cluster size of the graph (and hence the com-
plexity), so it is both anytime and iterative. Since both MC and IJGP are approximate
schemes, empirical results on various classes of problems are included, shedding light on
their average case performance.

2.1 Mini-Clustering

In this section we present a parameterized anytime approximation scheme for probabilistic
inference called Mini-Clustering (MC), which extends the partition-based approximation
offered by mini-bucket elimination [Dechter & Rish1997], to general tree decompositions.
The benefit of this algorithm is that all single-variable beliefs are computed (approximately)
at once, using a two-phase message-passing process along the cluster tree. The resulting
approximation scheme allows adjustable levels of accuracy and efficiency, in anytime style.
Empirical evaluation against competing algorithms such as Iterative Belief Propagation and
Gibbs Sampling demonstrates the potential of the Mini-Clustering approximation scheme:
on several classes of problems (e.g. random noisy-or, grid networks and CPCS networks)

5

Mini-Clustering exhibited superior performance. A similar scheme was presented in a
general way in [Kask2001], and for optimization tasks in [Dechter, Kask, & Larrosa2001].
Here we adapt the scheme for the specific task of belief updating, and present the first
empirical evaluation for this specific task, showing its effectiveness.

2.1.1 Tree-decomposition schemes

We will describe our algorithms relative to a unifying tree-decomposition framework based
on [Gottlob, Leone, & Scarcello2000]. It generalizes tree-decompositions to include join-
trees, bucket-trees and other variants applicable to both constraint processing and proba-
bilistic inference.

DEFINITION 2.1.1 (tree-decomposition, cluster tree) Let BN =< X,D,G, P > be a
belief network. A tree-decomposition for BN is a triple < T, χ, ψ >, where T = (V,E)
is a tree, and χ and ψ are labeling functions which associate with each vertex v ∈ V two
sets, χ(v) ⊆ X and ψ(v) ⊆ P satisfying:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a connected subtree
of T . This is also called the running intersection property.

We will often refer to a node and its functions as a cluster and use the term tree-
decomposition and cluster tree interchangeably.

DEFINITION 2.1.2 (tree-width, hyper-width, separator, eliminator) The tree-width
[Arnborg1985] of a tree-decomposition< T, χ, ψ > is maxv∈V |χ(v)|, and its hyper-width
is maxv∈V |ψ(v)|. Given two adjacent vertices u and v of a tree-decomposition, the
separator of u and v is defined as sep(u, v) = χ(u) ∩ χ(v), and the eliminator of u with
respect to v is elim(u, v) = χ(u)− χ(v).

2.1.1.1 Join-trees and cluster-tree-elimination

In both Bayesian network and constraint satisfaction communities, the most used tree
decomposition method is called join-tree decomposition [Lauritzen & Spiegelhalter1988,
Dechter & Pearl1989]. Such decompositions can be generated by embedding the network’s
moral graph,G, in a chordal graph, often using a triangulation algorithm and using its max-
imal cliques as nodes in the join-tree. The triangulation algorithm assembles a join-tree by
connecting the maximal cliques in the chordal graph in a tree. Subsequently, every CPT
pi is placed in one clique containing its scope. Using the previous terminology, a join-
tree decomposition of a belief network (G,P) is a tree T = (V,E), where V is the set
of cliques of a chordal graph G

′
that contains G, and E is a set of edges that form a tree

between cliques, satisfying the running intersection property [Maier1983]. Such a join-tree

6

1

2

3

4

)},|(),|(),({)1(

},,{)1(

bacpabpap

CBA

=
=

ψ
χ

},|(),|({)2(

},,,{)2(

dcfpbdp

FDCB

=
=

ψ
χ

)},|({)4(

},,{)4(

fegp

GFE

=
=

ψ
χ

)},|({)3(

},,{)3(

fbep

FEB

=
=

ψ
χ

G

E

F

C D

B

A

(a) (b)

),|()|()(),()2,1(bacpabpapcbh
a

⋅⋅= �

),(),|()|(),()2,3(
,

)1,2(fbhdcfpbdpcbh
fd

⋅⋅= �

),(),|()|(),()2,4(
,

)3,2(cbhdcfpbdpfbh
dc

⋅⋅= �

),(),|(),()3,4()2,3(fehfbepfbh
e

⋅= �

),(),|(),()3,2()4,3(fbhfbepfeh
b

⋅= �
),|(),()3,4(fegGpfeh e==

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

(c)

Figure 2.1: a) A belief network; b) A join-tree decomposition; c)Execution of CTE-BU;
no individual functions appear in this case

satisfies the properties of tree-decomposition, therefore our derivation using cluster trees is
immediately applicable to join-trees.

There are a few variants for processing join-trees for belief updating
[Jensen, Lauritzen, & Olesen1990, Shafer & Shenoy1990]. The variant which we
use here, (similar to [Dechter, Kask, & Larrosa2001]), called cluster-tree-elimination
(CTE) is applicable to tree-decompositions in general and is geared toward space savings.
It is a message passing algorithm (either two-phase message passing, or in asynchronous
mode). , where messages are computed by summation over the eliminator between the
two clusters of the product of functions in the originating cluster. Algorithm CTE for
belief updating denoted CTE-BU is given in Figure 2.12. The algorithm pays a special
attention to the processing of observed variables since the presence of evidence is a
central component in belief updating. When a cluster sends a message to a neighbor,
the algorithm operates on all the functions in the cluster except the message from that
particular neighbor. The message contains a single combined function and individual
functions that do not share variables with the relevant eliminator. All the non-individual
functions are combined in a product and summed over the eliminator.

Example 2.1.1 Figure 2.1 describes a belief network (a) and a join-tree decomposition for
it (b). Figure 2.1c shows the trace of running CTE-BU. In this case no individual functions
appear between any of the clusters. To keep the figure simple, we only show the combined
functions h(u,v) (each of them being in fact the only element of the set H(u,v) that represents
the corresponding message between clusters u and v).

THEOREM 2.1.2 (Complexity of CTE-BU) [Dechter, Kask, & Larrosa2001, Kask2001]
The time complexity of CTE-BU is O(deg · (n + N) · dw∗+1) and the space complexity
is O(N · dsep), where deg is the maximum degree of a node in the tree, n is the number of
variables, N is the number of nodes in the tree decomposition, d is the maximum domain
size of a variable, w∗ is the tree-width and sep is the maximum separator size.

7

Algorithm CTE for Belief-Updating (CTE-BU)
Input: A tree decomposition < T,χ, ψ >, T = (V,E) for BN =< X,D,G, P >.
Evidence variables var(e).
Output: An augmented tree whose nodes are clusters containing the original CPTs and
the messages received from neighbors. P (Xi, e), ∀Xi ∈ X .

Denote by H(u,v) the message from vertex u to v, nev(u) the neighbors of u in T

excluding v.
cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• Compute messages:
For every node u in T , once u has received messages from all nev(u), compute message
to node v:

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u)

2. Compute the combined function:

h(u,v) =
∑

elim(u,v)

∏

f∈A

f.

where A is the set of functions in clusterv(u) whose scope intersects elim(u, v).
Add h(u,v) to H(u,v) and add all the individual functions in clusterv(u)−A
Send H(u,v) to node v.

• Compute P (Xi, e):
For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u). Compute P (Xi, e) =
∑

χ(u)−{Xi}(
∏

f∈cluster(u) f)

Figure 2.2: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU);

2.1.2 Mini-Clustering for belief updating

The time, and especially the space complexity of CTE-BU renders the algorithm infeasi-
ble for problems with large tree-width. In this section we introduce the Mini-Clustering,
a partition-based anytime algorithm which computes approximate values or bounds on
P (Xi, e) for every variable Xi in the network. It is a natural extension of the mini-bucket
idea to tree-decompositions. Rather than computing the mini-bucket approximation n
times, one for each variable as would be required by the mini-bucket approach, the algo-
rithm performs an equivalent computation with just two message passings along each arc
of the cluster tree. The idea is to partition each cluster into mini-clusters having at most
i variables, where i is an accuracy parameter. Node u partitions its cluster into p mini-

8

Procedure MC for Belief Updating (MC-BU(i))

2. Compute the combined mini-functions:

Make an (i)-size mini-clusters partitioning of clusterv(u), {mc(1), . . . ,mc(p)};

h1
(u,v) =

∑

elim(u,v)

∏

f∈mc(1) f

hi
(u,v) = maxelim(u,v)

∏

f∈mc(i) f i = 2, . . . , p

add {hi
(u,v)|i = 1, . . . , p} to H(u,v). Send H(u,v) to v.

Compute upper bounds on P (Xi, e):
For every Xi ∈ X let u ∈ V be a cluster such that Xi ∈ χ(u). Make (i) mini-clusters
from cluster(u), {mc(1), . . . ,mc(p)}; Compute
(
∑

χ(u)−Xi

∏

f∈mc(1) f) · (
∏p

k=2 maxχ(u)−Xi

∏

f∈mc(k) f).

Figure 2.3: Procedure Mini-Clustering for Belief Updating (MC-BU)

clusters mc(1), . . . , mc(p). Instead of computing h(u,v) =
∑

elim(u,v)

∏p
k=1

∏

f∈mc(k) f as
in CTE-BU, we can compute an upper bound by migrating the summation operator into
each mini-cluster. However, this would give

∏p
k=1

∑

elim(u,v)

∏

f∈mc(k) f which is an un-
necessarily large upper bound on h(u,v) in which each

∏

f∈mc(k) f is bounded by its sum
over elim(u, v). Instead, we rewrite h(u,v) =

∑

elim(u,v)(
∏

f∈mc(1) f) · (
∏p

i=2

∏

f∈mc(i) f).
Subsequently, instead of bounding

∏

f∈mc(i) f, (i ≥ 2) by summation over the eliminator,
we bound it by its maximum over the eliminator, which yields (

∑

elim(u,v)

∏

f∈mc(1) f) ·
∏p

k=2(maxelim(u,v)
∏

f∈mc(k) f). Therefore, if we are interested in an upper bound, we
marginalize one mini-cluster by summation and the others by maximization. Note that
the summation in the first mini-cluster must be over all variables in the eliminator, even if
some of them might not appear in the scope of functions in mc(1).

Consequently, the combined functions are approximated via mini-clusters, as follows.
Suppose u ∈ V has received messages from all its neighbors other than v (the message from
v is ignored even if received). The functions in clusterv(u) that are to be combined are
partitioned into mini-clusters {mc(1), . . . , mc(p)}, each one containing at most i variables.
One of the mini-clusters is processed by summation and the others by maximization over
the eliminator, and the resulting combined functions as well as all the individual functions
are sent to v.

2.1.2.1 Lower-bounds and mean approximations

We can also derive a lower-bound on beliefs by replacing the max operator with min
operator (see above derivation for rationale). This allows, in principle, computing both an

9

),|()|()(:),(1
)2,1(bacpabpapcbh

a

⋅⋅=�

),|(max:)(

),()|(:)(

,

2
)1,2(

1
)2,3(

,

1
)1,2(

dcfpch

fbhbdpbh

fd

fd

=

⋅=�

),|(max:)(

),()|(:)(

,

2
)3,2(

1
)2,1(

,

1
)3,2(

dcfpfh

cbhbdpbh

dc

dc

=

⋅=�

),(),|(:),(1
)3,4(

1
)2,3(fehfbepfbh

e

⋅=�

)()(),|(:),(2
)3,2(

1
)3,2(

1
)4,3(fhbhfbepfeh

b

⋅⋅=�

),|(:),(1
)3,4(fegGpfeh e==

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

Figure 2.4: Execution of MC-BU for i = 3

upper bound and a lower bound on the joint beliefs. Alternatively, if we yield the idea
of deriving a bound (and indeed the empirical evaluation encourages that) we can replace
max by a mean operator (taking the sum and dividing by the number of elements in the
sum), deriving an approximation of the joint belief.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU by replacing step
2 of the main loop and the final part of computing the upper bounds on the joint belief by
the procedure given in Figure 2.3.

2.1.2.2 Partitioning strategies

In the implementation we used for the experiments reported here, the partitioning was done
in greedy brute-force manner guided only by the sizes of the functions, and the choice of
the first mini-cluster for upper bound computation was random. This had the advantage
of adding a very small overhead to the Mini-Clustering algorithm. Clearly, more informed
schemes that take into account the actual information in the tables of the functions may
improve the overall accuracy. We discuss the greedy approach in more detail, as well as
new heuristic approaches, that we are currently investigating in Section 3.2.

Example 2.1.3 Figure 2.4 shows the trace of running MC-BU(3) on the problem in Figure
2.1. First, evidence G = ge is assigned in all CPTs. There are no individual functions to
be sent from cluster 1 to cluster 2. Cluster 1 contains only 3 variables, χ(1) = {A,B,C},
therefore it is not partitioned. The combined function h1

(1,2)(b, c) =
∑

a p(a)·p(b|a)·p(c|a, b)

is computed and the message H(1,2) = {h1
(1,2)(b, c)} is sent to node 2. Now, node 2 can

send its message to node 3. Again, there are no individual functions. Cluster 2 con-
tains 4 variables, χ(2) = {B,C,D, F}, and a partitioning is necessary: MC-BU(3) can
choose mc(1) = {p(d|b), h(1,2)(b, c)} and mc(2) = {p(f |c, d)}. The combined functions
h1

(2,3)(b) =
∑

c,d p(d|b) · h(1,2)(b, c) and h2
(2,3)(f) = maxc,d p(f |c, d) are computed and the

message H(4,3) = {h1
(2,3)(b), h

2
(2,3)(f)} is sent to node 3. The algorithm continues until

every node has received messages from all its neighbors. An upper bound on p(a,G = ge)

10

can now be computed by choosing cluster 1, which contains variable A. It doesn’t need
partitioning, so the algorithm just computes

∑

b,c p(a) · p(b|a) · p(c|a, b) ·h
1
(2,1)(b) ·h

2
(2,1)(c).

Notice that unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) never pro-
cesses more than 3 variables at a time.

2.1.3 Properties of Mini-Clustering

THEOREM 2.1.4 Algorithm MC-BU(i) with max (respectively min) computes an upper
(respectively lower) bound on the joint probability P (X, e) of each variable and each of its
values.

A similar mini-clustering scheme for combinatorial optimization was developed in
[Dechter, Kask, & Larrosa2001] having similar performance properties as MC-BU.

THEOREM 2.1.5 (Complexity of MC-BU(i)) [Dechter, Kask, & Larrosa2001] The time
and space complexity of MC-BU(i) is O(n · hw∗ · di) where n is the number of variables,
d is the maximum domain size of a variable and hw∗ = maxu|{f |scope(f) ∩ χ(u) 6= φ}|,
which bounds the number of functions that may travel to a neighboring cluster via message-
passing.

2.1.3.1 Accuracy

For a given i, the accuracy of MC-BU(i) can be shown to be not worse than that of executing
the mini-bucket algorithm MB(i) n times, once for each variable (an algorithm that we call
nMB(i)). Given a specific execution of MC-BU(i), we can show that for every variable Xi,
there exists an ordering of the variables and a corresponding partitioning such that MB(i)
computes the same approximation value for P (Xi, e) as does MC − BU(i). In empirical
analysis [Kask2001] it is shown that MC-BU has an up to linear speed-up over nMB(i).

2.1.3.2 Normalization

The MC-BU algorithm usingmax operator computes an upper bound P (Xi, e) on the joint
probability P (Xi, e). However, deriving a bound on the conditional probability P (Xi|e) is
not easy when the exact value of P (e) is not available. If we just try to divide (multiply)
P (Xi, e) by a constant, the result is not necessarily an upper bound on P (Xi|e). In prin-
ciple, if we can derive a lower bound P (e) on P (e), then we can compute P (Xi, e)/P (e)
as an upper bound on P (Xi|e). However, due to compound error, it is likely to be inef-
fective. In our empirical evaluation we experimented with normalizing the upper bound
as P (Xi, e)/

∑

Xi
P (Xi, e) over the values of Xi. The result is not necessarily an upper

bound on P(Xi|e). Similarly, we can also normalize the values when using mean or min
operators. It is easy to show that normalization with the mean operator is identical to
normalization of MC-BU output when applying the summation operator in all the mini-
clusters.

11

Random Bayesian N=50 K=2 P=2 C=48

Number of iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Av

g
ab

s
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

#ev=0
#ev=10
#ev=20
#ev=30

Figure 2.5: Convergence of IBP

Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Noisy-OR networks, N=50, P=3, evid=20, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Figure 2.6: Absolute error for noisy-OR networks

2.1.4 Empirical results

We tested the performance of our scheme on random noisy-or networks, random coding
networks, general random networks, grid networks, and three benchmark CPCS files with
54, 360 and 422 variables respectively (these are belief networks for medicine, derived
from the Computer based Patient Case Simulation system, known to be hard for belief
updating). On each type of network we ran Iterative Belief Propagation (IBP) - set to run
at most 30 iterations, Gibbs Sampling (GS) and MC-BU(i), with i from 2 to the tree-width
w∗ to capture the anytime behavior of MC-BU.

We immediately observed that the quality of MC-BU in providing upper or lower
bounds on the joint P (Xi, e) was ineffective. Although the upper bound decreases as the
accuracy parameter i increases, it still is in most cases greater than 1. Therefore, following
the ideas explained in the previous subsection 2.1.3.2 we report the results with normaliz-
ing the upper bounds (called max) and normalizing the mean (called mean). We notice
that MC-BU using the mean operator is doing consistently better.

For noisy-or networks, general random networks, grid networks and for the CPCS net-
works we computed the exact solution and used three different measures of accuracy: 1.
Normalized Hamming Distance (NHD) - We picked the most likely value for each variable

12

Noisy-OR networks, w*=10
N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0 9.0E-09 1.1E-05 0.102
IBP 0 3.4E-04 4.2E-01 0.081

0 9.6E-04 1.2E+00 0.062
0 0 1.6E-03 1.1E-03 1.9E+00 1.3E+00 0.056 0.057

MC-BU(2) 0 0 1.1E-03 8.4E-04 1.4E+00 1.0E+00 0.048 0.049
0 0 5.7E-04 4.8E-04 7.1E-01 5.9E-01 0.039 0.039
0 0 1.1E-03 9.4E-04 1.4E+00 1.2E+00 0.070 0.072

MC-BU(5) 0 0 7.7E-04 6.9E-04 9.3E-01 8.4E-01 0.063 0.066
0 0 2.8E-04 2.7E-04 3.5E-01 3.3E-01 0.058 0.057
0 0 3.6E-04 3.2E-04 4.4E-01 3.9E-01 0.214 0.221

MC-BU(8) 0 0 1.7E-04 1.5E-04 2.0E-01 1.9E-01 0.184 0.190
0 0 3.5E-05 3.5E-05 4.3E-02 4.3E-02 0.123 0.127

Noisy-OR networks, w*=16
N=50, P=3, 25 instances

10 NHD Abs. Error Rel. Error Time
|e| 20

30 max mean max mean max mean max mean

0 1.3E-04 7.9E-01 0.242
IBP 0 3.6E-04 2.2E+00 0.184

0 6.8E-04 4.2E+00 0.121
0 0 1.3E-03 9.6E-04 8.2E+00 5.8E+00 0.107 0.108

MC-BU(2) 0 0 5.3E-04 4.0E-04 3.1E+00 2.4E+00 0.077 0.077
0 0 2.3E-04 1.9E-04 1.4E+00 1.2E+00 0.064 0.064
0 0 1.0E-03 8.3E-04 6.4E+00 5.1E+00 0.133 0.133

MC-BU(5) 0 0 4.6E-04 4.1E-04 2.7E+00 2.4E+00 0.104 0.105
0 0 2.0E-04 1.9E-04 1.2E+00 1.2E+00 0.098 0.095
0 0 6.6E-04 5.7E-04 4.0E+00 3.5E+00 0.498 0.509

MC-BU(8) 0 0 1.8E-04 1.8E-04 1.1E+00 1.0E+00 0.394 0.406
0 0 3.4E-05 3.4E-05 2.1E-01 2.1E-01 0.300 0.308
0 0 2.6E-04 2.4E-04 1.6E+00 1.5E+00 2.339 2.378

MC-BU(11) 0 0 3.8E-05 3.8E-05 2.3E-01 2.3E-01 1.421 1.439
0 0 6.4E-07 6.4E-07 4.0E-03 4.0E-03 0.613 0.624
0 0 4.2E-05 4.1E-05 2.5E-01 2.4E-01 7.805 7.875

MC-BU(14) 0 0 0 0 0 0 2.075 2.093
0 0 0 0 0 0 0.630 0.638

Table 2.1: Performance on Noisy-OR networks;

Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Figure 2.7: Absolute error for random networks

for the approximate and for the exact, took the ratio between the number of disagreements
and the total number of variables, and averaged over the number of problems that we ran for
each class. 2. Absolute Error (Abs. Error) - is the absolute value of the difference between
the approximate and the exact, averaged over all values (for each variable), all variables
and all problems. 3. Relative Error (Rel. Error) - is the absolute value of the difference
between the approximate and the exact, divided by the exact, averaged over all values (for
each variable), all variables and all problems. For coding networks, we report only one
measure, Bit Error Rate (BER). In terms of the measures defined above, BER is the nor-
malized Hamming distance between the approximate (computed by an algorithm) and the
actual input (which in the case of coding networks may be different from the solution given
by exact algorithms), so we denote them differently to make this semantic distinction. We
also show the time taken by each algorithm.

In Figure 2.5 we show that IBP converges after about 5 iterations. So, while in our
experiments we report its time for 30 iterations, its time is even better when sophisticated
termination is used. These results are typical of all runs.

The random noisy-or networks and the random networks were generated using param-

13

Random networks, w*=10
N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.01840 0.00696 0.01505 0.100
IBP 0.19550 0.09022 0.34608 0.080

0.27467 0.13588 3.13327 0.062
0.50400 0.10715 0.26621 13.023

GS 0.51400 0.15216 0.57262 12.978
0.51267 0.18066 4.71805 13.321

0.11400 0.08080 0.03598 0.02564 0.07950 0.05628 0.055 0.055
MC-BU(2) 0.10600 0.08800 0.04897 0.03957 0.12919 0.10579 0.047 0.048

0.08667 0.07333 0.04443 0.03639 0.13096 0.10694 0.041 0.042
0.10120 0.06480 0.03392 0.02242 0.07493 0.04937 0.071 0.072

MC-BU(5) 0.06950 0.05850 0.03254 0.02723 0.08613 0.07313 0.063 0.065
0.03933 0.03400 0.02022 0.01831 0.05533 0.04984 0.059 0.060
0.05080 0.02680 0.01872 0.01030 0.04103 0.02262 0.216 0.221

MC-BU(8) 0.01550 0.01450 0.00743 0.00587 0.01945 0.01547 0.178 0.180
0.00600 0.00400 0.00228 0.00200 0.00597 0.00542 0.129 0.134

Random networks, w*=16
N=50, P=3, 25 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.03652 0.00907 0.01894 0.298
IBP 0.25200 0.08319 0.22335 0.240

0.34000 0.13995 0.91671 0.183
0.17304 0.04377 0.09395 0.140

MC-BU(2) 0.17600 0.11600 0.05930 0.04558 0.14706 0.11034 0.100 0.103
0.15067 0.14000 0.07658 0.06683 0.23155 0.19538 0.075 0.078
0.15652 0.04380 0.09398 0.158

MC-BU(5) 0.15600 0.11800 0.05665 0.04320 0.13484 0.10221 0.124 0.129
0.09467 0.09467 0.05545 0.05049 0.15000 0.13706 0.105 0.107
0.16783 0.04166 0.08904 0.602

MC-BU(8) 0.09800 0.08100 0.04051 0.03254 0.09923 0.07942 0.481 0.491
0.05467 0.04533 0.02939 0.02691 0.07865 0.07237 0.385 0.393
0.12087 0.03076 0.06550 2.986

MC-BU(11) 0.05500 0.04700 0.02425 0.01946 0.05644 0.04533 2.307 2.345
0.00800 0.00533 0.00483 0.00431 0.01307 0.01156 1.564 1.585
0.06348 0.01910 0.04071 14.910

MC-BU(14) 0.01400 0.01200 0.00542 0.00434 0.01350 0.01108 8.548 8.578
0.00000 0.00000 0.00089 0.00089 0.00212 0.00211 3.656 3.676

Table 2.2: Performance on random networks;

σ = .22 σ = .26 σ = .32 σ = .40 σ = .51

BER max mean max mean max mean max mean max mean Time

N=100, P=3, 50 instances, w*=7
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.022 0.022 0.088 0.088 0.00
GS 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 31.36

MC-BU(2) 0.002 0.002 0.004 0.004 0.024 0.024 0.068 0.068 0.132 0.131 0.08
MC-BU(4) 0.001 0.001 0.002 0.002 0.018 0.018 0.046 0.045 0.110 0.110 0.08
MC-BU(6) 0.000 0.000 0.000 0.000 0.004 0.004 0.038 0.038 0.106 0.106 0.12
MC-BU(8) 0.000 0.000 0.000 0.000 0.002 0.002 0.023 0.023 0.091 0.091 0.19

N=100, P=4, 50 instances, w*=11
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.013 0.013 0.075 0.075 0.00
GS 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 39.85

MC-BU(2) 0.006 0.006 0.015 0.015 0.043 0.043 0.093 0.094 0.157 0.157 0.19
MC-BU(4) 0.006 0.006 0.017 0.017 0.049 0.049 0.104 0.102 0.158 0.158 0.19
MC-BU(6) 0.005 0.005 0.011 0.011 0.035 0.034 0.071 0.074 0.151 0.150 0.29
MC-BU(8) 0.002 0.002 0.004 0.004 0.022 0.022 0.059 0.059 0.121 0.122 0.71

MC-BU(10) 0.001 0.001 0.001 0.001 0.008 0.008 0.033 0.032 0.101 0.102 1.87

Table 2.3: BER for coding networks

eters (N,K,C,P), where N is the number of variables (a square integer for grid networks),
K is their domain size (we used only K=2), C is the number of conditional probability
matrices and P is the number of parents in each conditional probability matrix. The grid
networks have the structure of a square, with edges directed to form a diagonal flow (all
parallel edges have the same direction). They were generated by specifying N (a square
integer) and K (we used K=2). We also varied the number of evidence nodes, denoted by
|e| in the tables. The parameter values are reported in each table.
Comment: We should note that since our evaluation measures are based on comparing
against exact figures, we had to restrict the instances to be relatively small or sparse enough
to be managed by exact algorithms.
For all the problems, Gibbs sampling performed consistently poorly so we only include
part of the results in the following tables and figures.

14

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

MC
IBP

Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it

E
rr

or
 R

at
e

0.06

0.08

0.10

0.12

0.14

0.16

0.18

MC
IBP

Figure 2.8: BER for coding networks

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

0.06

MC
IBP

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18
T

im
e

(s
ec

on
ds

)

0

2

4

6

8

10

12

MC
IBP

Figure 2.9: Absolute error and time for grid networks

Random noisy-or networks results are summarized in Table 2.1 and Figure 2.6. For
NHD, both IBP and MC-BU gave perfect results. For the other measures, we noticed that
IBP is more accurate for no evidence by about an order of magnitude. However, as evidence
is added, IBP’s accuracy decreases, while MC-BU’s increases and they give similar results.
We also notice that MC-BU gets better as the accuracy parameter i increases, which shows
its anytime behavior. We also observed a similar pattern of behavior when experimenting
with smaller noisy-or networks, generated with P=2 (w*=10).

General random networks results are summarized in Table 2.2 and Figure 2.7. They
are in general similar to those for random noisy-or networks. NHD is non-zero in this case.
Again, IBP has the best result only for few evidence variables. It is remarkable how quickly
MC-BU surpasses the performance of IBP as evidence is added. We also experimented with
larger networks generated with P=3 (w*=16) and observed a similar behavior.

Random coding networks results are given in Table 2.3 and Figure 2.8. The instances
fall within the class of linear block codes, (σ is the channel noise level). It is known that IBP
is very accurate for this class. Indeed, these are the only problems that we experimented
with where IBP outperformed MC-BU throughout. The anytime behavior of MC-BU can
again be seen in the variation of numbers in each column.

15

Grid 13x13, w*=21
N=169, 25 instances, mean operator

|e| = 0, 10, 20, 30 NHD Abs. Error Rel. Error Time
IBP 0.0102 0.0038 0.0083 0.053

0.0745 0.0323 0.0865 0.047
0.1350 0.0551 0.3652 0.044
0.1672 0.0759 0.2910 0.044

GS 0.5172 0.1111 0.2892 6.634
0.4901 0.1229 0.3393 6.667
0.5205 0.1316 0.7320 6.787
0.4921 0.1431 0.5455 6.806

MC-BU(2) 0.1330 0.0464 0.1034 0.044
0.1263 0.0482 0.1103 0.028
0.1388 0.0479 0.1117 0.026
0.1168 0.0513 0.1256 0.024

MC-BU(6) 0.1001 0.0337 0.0731 0.044
0.0863 0.0313 0.0697 0.040
0.0805 0.0268 0.0605 0.041
0.0581 0.0263 0.0610 0.036

MC-BU(10) 0.0402 0.0144 0.0310 0.235
0.0330 0.0115 0.0252 0.220
0.0223 0.0092 0.0211 0.206
0.0224 0.0086 0.0195 0.191

MC-BU(14) 0.0151 0.0056 0.0123 1.246
0.0151 0.0051 0.0113 1.340
0.0137 0.0044 0.0101 1.306
0.0124 0.0032 0.0073 1.256

MC-BU(17) 0.0088 0.0027 0.0059 6.916
0.0045 0.0018 0.0040 5.889
0.0030 0.0010 0.0022 5.219
0.0023 0.0008 0.0018 4.354

Grid 15x15, w*=22
N=225, 10 instances, mean operator

|e| = 0, 10, 20, 30 NHD Abs. Error Rel. Error Time
0.0094 0.0037 0.0080 0.071

IBP 0.0665 0.0665 0.0761 0.070
0.1205 0.0463 0.1894 0.068
0.1462 0.0632 0.1976 0.062
0.5178 0.1096 0.2688 9.339

GS 0.5047 0.5047 0.3200 9.392
0.4849 0.1232 0.4009 9.524
0.4692 0.1335 0.4156 9.220
0.1256 0.0474 0.1071 0.049

MC-BU(2) 0.1312 0.1312 0.1070 0.041
0.1371 0.0523 0.1205 0.042
0.1287 0.0512 0.1201 0.053
0.1050 0.0356 0.0775 0.217

MC-BU(6) 0.0944 0.0944 0.0720 0.064
0.0844 0.0313 0.0701 0.059
0.0759 0.0286 0.0652 0.120
0.0406 0.0146 0.0313 0.500

MC-BU(10) 0.0358 0.0358 0.0288 0.368
0.0337 0.0122 0.0272 0.484
0.0256 0.0116 0.0265 0.468
0.0233 0.0081 0.0173 2.315

MC-BU(14) 0.0209 0.0209 0.0152 2.342
0.0146 0.0055 0.0126 2.225
0.0118 0.0046 0.0105 2.350
0.0089 0.0031 0.0065 10.990

MC-BU(17) 0.0116 0.0116 0.0069 10.105
0.0063 0.0022 0.0048 9.381
0.0036 0.0017 0.0038 9.573

Table 2.4: Performance on grid networks;

N=54, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.01852 0.00032 0.00064 2.450
IBP 0.15727 0.03307 0.07349 2.191

0.20765 0.05934 0.14202 1.561
0.49444 0.07797 0.18034 17.247

GS 0.51409 0.09002 0.21298 17.208
0.48706 0.10608 0.26853 17.335

0.16667 0.07407 0.02722 0.01221 0.05648 0.02520 0.154 0.153
MC-BU(2) 0.11636 0.07636 0.02623 0.01843 0.05581 0.03943 0.096 0.095

0.10529 0.07941 0.02876 0.02196 0.06357 0.04878 0.067 0.067
0.18519 0.09259 0.02488 0.01183 0.05128 0.02454 0.157 0.155

MC-BU(5) 0.10727 0.07682 0.02464 0.01703 0.05239 0.03628 0.112 0.112
0.08059 0.05941 0.02174 0.01705 0.04790 0.03778 0.090 0.087
0.12963 0.07407 0.01487 0.00619 0.03047 0.01273 0.438 0.446

MC-BU(8) 0.06591 0.05000 0.01590 0.01040 0.03394 0.02227 0.369 0.370
0.03235 0.02588 0.00977 0.00770 0.02165 0.01707 0.292 0.294
0.11111 0.07407 0.01133 0.00688 0.02369 0.01434 2.038 2.032

MC-BU(11) 0.02818 0.01500 0.00600 0.00398 0.01295 0.00869 1.567 1.571
0.00353 0.00353 0.00124 0.00101 0.00285 0.00236 0.867 0.869

Table 2.5: Performance on CPCS54 network, w*=15

Grid networks results are given in Table 2.4 and Figure 2.9. We only report results with
mean operator for a 15x15 grid for which the induced width is w*=22. We notice that IBP
is more accurate for no evidence and MC is better as more evidence is added. The same
behavior was consistently manifested for smaller grid networks that we experimented with
(from 7x7 up to 14x14).

CPCS networks results We also tested on three CPCS benchmark files. The results are
given in Tables 2.5 and 2.6 and in Figure 2.10. It is interesting to notice that the MC

16

CPCS360, w*=20
N=360, 5 instances, mean operator

|e| = 0, 20, 40 NHD Abs. Error Rel. Error Time
0.0000 0.0027 0.0054 82

IBP 0.0112 0.0256 3.4427 76
0.0363 0.0629 736.1080 60
0.0056 0.0125 0.0861 16

MC-BU(8) 0.0041 0.0079 0.0785 14
0.0113 0.0109 0.2997 9
0.0000 0.0080 0.0636 38

MC-BU(11) 0.0000 0.0048 0.0604 39
0.0088 0.0102 0.1733 33
0.0000 0.0030 0.0192 224

MC-BU(14) 0.0012 0.0045 0.0502 232
0.0056 0.0070 0.0693 200
0.0000 0.0016 0.0073 1433

MC-BU(17) 0.0006 0.0026 0.0266 1455
0.0013 0.0006 0.0045 904

CPCS422, w*=23
N=422, 1 instance, mean operator

|e| = 0, 20, 40 NHD Abs. Error Rel. Error Time
0.0024 0.0062 0.0150 2838

IBP 0.0721 0.0562 7.5626 2367
0.0654 0.0744 37.5096 2150
0.0687 0.0455 1.4341 161

MC-BU(3) 0.0373 0.0379 0.9792 85
0.0366 0.0233 2.8384 48
0.0545 0.0354 0.1531 146

MC-BU(7) 0.0249 0.0253 0.3112 77
0.0262 0.0164 0.5781 45
0.0166 0.0175 0.0738 152

MC-BU(11) 0.0448 0.0352 0.6113 95
0.0340 0.0237 0.6978 63
0.0024 0.0039 0.0145 526

MC-BU(15) 0.0398 0.0278 0.5338 564
0.0183 0.0113 0.5248 547

Table 2.6: Performance on CPCS360 and CPCS422 networks
CPCS 422, evid=0, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

CPCS 422, evid=10, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

Figure 2.10: Absolute error for CPCS422

scheme scales up even to fairly large networks, like the real life example of CPCS422
(induced width 23). IBP is again slightly better for no evidence, but is quickly surpassed
by MC when evidence is added.

2.1.5 Discussion

We presented in this chapter an approximation scheme for probabilistic inference, one of
the most important task over belief networks. The scheme, called Mini-Clustering, is gov-
erned by a controlling parameter that allows adjustable levels of accuracy and efficiency in
an anytime style.

We presented empirical evaluation of mini-cluster approximation on several classes of
networks, comparing its anytime performance with competing algorithms such as Gibbs
Sampling and Iterative Belief Propagation, over benchmarks of noisy-or random networks,
general random networks, grid networks, coding networks and CPCS type networks. Our
results show that, as expected, IBP is superior to all other approximations for coding net-
works. However, for random noisy-or, general random networks, grid networks and the
CPCS networks, in the presence of evidence, the mini-clustering scheme is often superior
even in its weakest form. Gibbs sampling was particularly bad and we believe that en-
hanced variants of Monte Carlo approach, such as likelihood weighting and importance

17

sampling, should be compared with [Cheng & Druzdzel2000]. The empirical results are
particularly encouraging as we use an unoptimized scheme that exploits a universal princi-
ple applicable to many reasoning tasks. Our contribution beyond recent works in this area
[Dechter & Rish1997, Dechter, Kask, & Larrosa2001] is in: 1. Extending the partition-
based approximation for belief updating from mini-buckets to general tree-decompositions,
thus allowing the computation of the updated beliefs for all the variables at once. This ex-
tension is similar to the one proposed in [Dechter, Kask, & Larrosa2001] but replaces op-
timization with probabilistic inference. 2. Providing for the first time empirical evaluation
demonstrating the effectiveness of the partition-based idea for belief updating.

There are many potential ways for improving the MC scheme. Among the most impor-
tant, the partitioning step can be further elaborated, and we discuss such approaches in 3.2.
In the work presented here, we used only a brute-force approach for partitioning.

One extension of this work [Dechter, Mateescu, & Kask2002] is an iterative ver-
sion of MC called Iterative Join-Graph Propagation (IJGP), which is both anytime
and iterative and belongs to the class of generalized belief propagation methods
[Yedidia, Freeman, & Weiss2001]. Rather than assuming an underlying join-tree, IJGP
works on a join-graph that may contain loops. IJGP is related to MC in a similar way as
IBP is related to BP (Pearl’s belief propagation). Experimental work shows that in most
cases iterating improves the quality of the MC approximation even further, especially for
low i-bounds. We will discuss this algorithm in detail in Section 2.2.

18

2.2 Iterative Join-Graph Propagation

This section contains our work on Iterative Join-Graph Propagation. The original moti-
vation for designing this algorithm was in trying to combine the anytime feature of Mini-
Clustering (MC) and the iterative virtues of Iterative Belief Propagation (IBP). MC is an
anytime algorithm but it works on tree-decompositions and it converges in two passes, so
iterating doesn’t change the messages. IBP is an iterative algorithm that converges in most
cases, and when it converges it does so very fast. Allowing it more time doesn’t improve
the accuracy. IJGP was designed to benefit from both these directions. It works on a gen-
eral join-graph which may contain cycles. The cluster size of the graph is user adjustable
by the i-bound (providing the anytime nature), and the cycles in the graph allow iterating.
The precise mechanics of the algorithm are given in the following sections. Empirical re-
sults are also provided, showing that in many cases IJGP is superior to both MC and IBP
on several classes of problems.

2.2.1 Join-Graphs

We will describe our algorithms relative to a join-graph decomposition framework using
recent notation proposed by [Gottlob, Leone, & Scarcello2000]. The notion of join-tree
decompositions was introduced in relational databases [Maier1983].

DEFINITION 2.2.1 (join-graph decompositions) A join-graph decomposition for
BN =< X,D,G, P > is a triple D =< JG, χ, ψ >, where JG = (V,E) is a
graph, and χ and ψ are labeling functions which associate with each vertex v ∈ V two
sets, χ(v) ⊆ X and ψ(v) ⊆ P such that:

1. For each pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

2. (connectedness) For each variable Xi ∈ X , the set {v ∈ V |Xi ∈ χ(v)} induces a
connected subgraph of G. The connectedness requirement is also called the running
intersection property.

We will often refer to a node and its CPT functions as a cluster1 and use the term join-
graph-decomposition and cluster graph interchangeably. A join-tree-decomposition or a
cluster tree is the special case when the join-graph JG is a tree.

2.2.1.1 Join-tree propagation

The well known join-tree clustering algorithm first converts the belief network into a cluster
tree and then sends messages between clusters. We call the second message passing phase

1Note that a node may be associated with an empty set of CPTs

19

1,2,4 2,3,4

1,3,4

2,4

3,41,4

A

B

C

1,2,4 2,3,4

1,3,4

2,4

31,4

A

B

C

a) b)

Figure 2.11: An arc-labeled decomposition

join-tree propagation. The complexity of join-tree clustering is exponential in the num-
ber of variables in a cluster (tree-width), and the number of variables in the intersections
between adjacent clusters (separator-width), as defined below.

DEFINITION 2.2.2 (tree-width, separator-width) Let D =< JT, χ, ψ > be a tree de-
composition of a belief network < G,P >. The tree-width of D [Arnborg1985] is
maxv∈V |χ(v)|. The tree-width of < G,P > is the minimum tree-width over all its join-tree
decompositions. Given two adjacent vertices u and v of JT , the separator of u and v is
defined as sep(u, v) = χ(u) ∩ χ(v), and the separator-width is max(u,v)|sep(u, v)|.

The minimum tree-width of a graph G can be shown to be identical to a related pa-
rameter called induced-width. A join-graph decomposition D is arc-minimal if none of its
arcs can be removed while still satisfying the connectedness property of Definition 2.2.1.
If a graph-decomposition is not arc-minimal it is easy to remove some of its arcs until it
becomes arc-minimal. In our preliminary experiments we observed immediately that when
applying join-tree propagation on a join-graph iteratively, it is crucial to avoid cycling mes-
sages relative to every single variable. The property of arc-minimality is not sufficient to
ensure such acyclicity though. What is required is that, for every node X , the arc-subgraph
that contains X be a tree.

Example 2.2.1 The example in Figure 2.11a shows an arc minimal join-graph which con-
tains a cycle relative to variable 4, with arcs labeled with separators. Notice however that
if we remove variable 4 from the label of one arc we will have no cycles (relative to single
variables) while the connectedness property will still be maintained.

To allow more flexible notions of connectedness we refine the definition of join-graph
decompositions, when arcs can be labeled with a subset of their separator.

DEFINITION 2.2.3 ((minimal) arc-labeled join-graph decompositions) An arc-labeled
decomposition for BN =< X,D,G, P > is a four-tuple D =< JG, χ, ψ, θ >, where
JG = (V,E) is a graph, χ and ψ associate with each vertex v ∈ V the sets χ(v) ⊆ X and
ψ(v) ⊆ P and θ associates with each edge (v, u) ⊂ E the set θ((v, u)) ⊆ X such that:

1. For each function pi ∈ P , there is exactly one vertex v ∈ V such that pi ∈ ψ(v), and
scope(pi) ⊆ χ(v).

20

2. (arc-connectedness) For each arc (u, v), θ(u, v) ⊆ sep(u, v), such that ∀Xi ∈ X ,
any two clusters containing Xi can be connected by a path whose every arc’s label
includes Xi.

Finally, an arc-labeled join-graph is minimal if no variable can be deleted from any label
while still satisfying the arc-connectedness property.

DEFINITION 2.2.4 (separator, eliminator) Given two adjacent vertices u and v of JG,
the separator of u and v is defined as sep(u, v) = θ((u, v)), and the eliminator of u with
respect to v is elim(u, v) = χ(u)− θ((u, v)).

Arc-labeled join-graphs can be made minimal by deleting variables from the labels. It
is easy to see that a minimal arc-labeled join-graph does not contain any cycle relative to
any single variable. That is, any two clusters containing the same variable are connected
by exactly one path labeled with that variable.

2.2.2 Algorithm IJGP

Applying join-tree propagation iteratively to join-graphs yields algorithm Iterative Join-
Graph Propagation (IJGP) described in Figure 2.12. One iteration of the algorithm applies
message-passing in a topological order over the join-graph, forward and back.

When node i sends a message (or messages) to a neighbor node j it operates on all
the CPTs in its cluster and on all the messages sent from its neighbors excluding the ones
received from j. First, all individual functions that share no variables with the eliminator
are collected and sent to j. All the rest of the functions are combined in a product and
summed over the eliminator between i and j.

It is known that:

THEOREM 2.2.2 1. [Lauritzen & Spiegelhalter1988] If IJGP is applied to a join-tree
decomposition it reduces to join-tree clustering and it therefore is guaranteed to com-
pute the exact beliefs in one iteration.

2. [Larrosa, Kask, & Dechter2001] The time complexity of one iteration of IJGP is
O(deg · (n + N) · dw∗+1) and its space complexity is O(N · dθ), where deg is the
maximum degree of a node in the join-graph, n is the number of variables, N is the
number of nodes in the graph decomposition, d is the maximum domain size, w∗ is
the maximum cluster size and θ is the maximum label size.

However, when applied to a join-graph the algorithm is neither guaranteed to converge
nor to find the exact posterior.
Proof. The number of cliques in the chordal graph G

′
corresponding to G is at most n, so

the number of nodes in the join-tree is at most n. The complexity of processing a node u in
the join-tree is degu ·(|ψ(u)|+degu−1)·d|χ(u)|, where degu is the degree of u. By bounding

21

Algorithm Iterative Join Graph Propagation (IJGP)

Input An arc-labeled join-graph decomposition < JG,χ, ψ, θ >, JG = (V,E) for BN =<
X,D,G, P >. Evidence variables var(e).

Output An augmented graph whose nodes are clusters containing the original CPTs and the mes-
sages received from neighbors. Approximations of P (Xi|e), ∀Xi ∈ X .

Denote by h(u,v) the message from vertex u to v, nev(u) the neighbors of u in JG excluding v.
cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message from v to u.

• One iteration of IJGP:
For every node u in JG in some topological order d and back,do

1. Process observed variables:
Assign relevant evidence to all pi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V

2. Compute individual functions:
Include in H(u,v) each function in clusterv(u) whose scope does not contain variables in
elim(u, v). Denote by A the remaining functions.

3. Compute and send to v the combined function: h(u,v) =
∑

elim(u,v)

∏

f∈A f .
Send h(u,v) and the individual functions H(u,v) to node v.

Endfor
• Compute P (Xi, e):

For every Xi ∈ X let u be a vertex in T such that Xi ∈ χ(u).
Compute P (Xi|e) = α

∑

χ(u)−{Xi}
(
∏

f∈cluster(u) f)

Figure 2.12: Algorithm Iterative Join-Graph Propagation (IJGP)

degu by deg, |ψ(u)| by n and χ(u) by w∗+1 and knowing that deg < N , by summing over
all nodes, we can bound the entire time complexity by O(deg · (n+N) · dw∗+1).

For each edge JTC records functions. Since the number of edges in bounded by n and
the size of each message is bounded by dsep we get space complexity of O(n · dsep). 2

2.2.3 I-mappness of arc-labeled join-graphs

The success of IJGP, no doubt, will depend on the choice of cluster graphs it operates on.
The following paragraphs provide some rationale to our choice of minimal arc-labeled join-
graphs. First, we are committed to the use of an underlying graph structure that captures as
many of the distribution independence relations as possible, without introducing new ones.
That is, we restrict attention to cluster graphs that are I-maps of P [Pearl1988]. Second, we
wish to avoid cycles as much as possible in order to minimize computational over-counting.

Indeed, it can be shown that any join-graph of a belief network is an I-map of the
underlying probability distribution relative to node-separation. It turns out that arc-labeled

22

join-graphs display a richer set of independencies relative to arc-separation.

DEFINITION 2.2.5 (arc-separation in (arc-labeled) join-graphs) Let D =<
JG, χ, ψ, θ >, JG = (V,E) be an arc-labeled decomposition. Let NW , NY ⊆ V
be two sets of nodes, and EZ ⊆ E be a set of edges in JG. Let W,Y, Z be their
corresponding sets of variables (W = ∪v∈NW

χ(v), Z = ∪e∈EZ
θ(e)). EZ arc-separates

NW and NY in D if there is no path between NW and NY in the graph JG with the edges
in EZ removed. In this case we also say that W is separated from Y given Z in D, and
write < W |Z|Y >D. Arc-separation in a regular join-graph is defined relative to its
separators.

THEOREM 2.2.3 Any arc-labeled join-graph decomposition D =< JG, χ, ψ, θ > of a
belief network BN =< X,D,G, P > is an I-map of P relative to arc-separation.

Proof. Let MG be the moral graph of BN . Since MG is an I-map of P , it is enough
to prove that JG is and I-map of MG.

Let NW , NZ, NY be three disjoint set of nodes in JG, and W,Z, Y be their correspond-
ing sets of variables in MG. We will prove:

< NW |NZ |NY >JG=⇒< W |Z|Y >MG

by contradiction.
Since the setsW,Z, Y may not be disjoint, we will actually prove that< W −Z|Z|Y −

Z >G holds, this being equivalent to < W |Z|Y >G.
Supposing < W − Z|Z|Y − Z >MG is false, then there exists a path α =

γ1, γ2, . . . , γn−1, β = γn in MG that goes from some variable α = γ1 ∈ W − Z to some
variable β = γn ∈ Y − Z without intersecting variables in Z.

Let Nv be the set of all nodes in JG that contain variable v ∈ X , and let’s consider the
set of nodes:

S = ∪n
i=1Nγi

−NZ

We argue that S forms a connected sub-graph in JG.
First, the running intersection property ensures that every Nγi

, i = 1, . . . , n, remains
connected in JG after pulling out the nodes in NZ (otherwise, it must be that there was a
path between the two disconnected parts in the original JG, which implies that a γi is part
of Z, which is a contradiction).

Second, the fact that (γi, γi+1), i = 1, . . . , n− 1, is an edge in the moral graph MG im-
plies that there is a conditional probability table (CPT) on both γi and γi+1, i = 1, . . . , n−1
(and perhaps other variables). From property 1 of the definition of the join-graph, it follows
that for all i = 1, . . . , n − 1 there exists a node in JG that contains both γi and γi+1. This
proves the existence of a path in the mutilated join-graph (JG with NZ pulled out) from a
node in NW containing α = γ1 to the node containing both γ1 and γ2 (Nγ1

is connected),

23

then from that node to the one containing both γ2 and γ3 (Nγ2
is connected), and so on until

we reach a node in NY containing β = γn.
This shows that < NW |NZ |NY >JG is false, concluding the proof by contradiction.

2

Interestingly however, removing arcs or labels from arc-labeled join-graphs whose clus-
ters are fixed will not increase the independencies captured by arc-labeled join-graphs. That
is:

Proposition 1 Any two (arc-labeled) join-graphs defined on the same set of clusters, shar-
ing (V , χ ψ), express exactly the same set of independencies relative to arc-separation.

Consequently, all such decomposition are correct and are isomorphic I-maps.

THEOREM 2.2.4 Any arc-labeled join-graph decomposition of a belief network BN =<
X,D,G, P > is a minimal I-map of P relative to arc-separation.

Hence, the issue of minimizing computational over-counting due to cycles appears to be
orthogonal to maximizing independencies via minimal I-mappness. Nevertheless, to avoid
over-counting as much as possible, we still prefer join-graphs that minimize cycles relative
to each variable. That is, we prefer to apply IJGP to minimal arc-labeled join-graphs.

2.2.4 Bounded join-graphs

Since we want to control the complexity of IJGP we will define it on decompositions having
bounded cluster size. If the number of variables in a cluster is bounded by i, the time and
space complexity of one full iteration of IJGP(i) is exponential in i. How can good graph-
decompositions of bounded cluster size be generated?

Since we want the join-graph to be as close as possible to a tree, and since a tree has a
tree-width 1, we may try to find a join-graph JG of bounded cluster size whose tree-width
(as a graph) is minimized. While we will not attempt to optimally solve this task, we will
propose one method for generating i-bounded graph-decompositions.

DEFINITION 2.2.6 (external and internal widths) Given an arc-labeled join-graph de-
composition D =< JG, χ, ψ, θ > of a network < G,P >, the internal width of D is
maxv∈V |χ(v)|, while the external width of D is the tree-width of JG as a graph.

Clearly, if D is a tree-decomposition its external width is 1 and its internal width equals
its tree-width. For example, an edge minimal dual decomposition has an internal width
equal to the maximum scope of each function, m, and external width w∗ which is the tree-
width of the moral graph of G. On the other hand, a tree-decomposition has internal width
of w∗ and external width of 1.

24

Algorithm Join-Graph Structuring(i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the variables
of the nodes are those appearing in the mini-bucket, the original functions are
those in the mini-bucket.

3. Keep the arcs created by the procedure (called out-edges) and label them by the
regular separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by
in-edges labeled by the single variable of the bucket.

Figure 2.13: Algorithm Join-Graph Structuring(i)

Procedure Schematic Mini-Bucket(i)

1. Order the variables from X1 to Xn minimizing (heuristically) induced-width,
and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. For j = n to 1 do:
Partition the functions in bucket(Xj) into mini-buckets having at most i vari-
ables.
For each mini-bucket mb create a new scope-function (message) f where
scope(f) = {X |X ∈ mb}−{Xi} and place scope(f) in the bucket of its highest
variable. Maintain an arc between mb and the mini-bucket (created later) of f .

Figure 2.14: Procedure Schematic Mini-Bucket(i)

Using this terminology we can now state our target decomposition more clearly. Given
a graph G, and a bounding parameter i we wish to find a join-graph decomposition of G
whose internal width is bounded by i and whose external width is minimized. The bound i
controls the complexity of one iteration of IJGP while the external width provides some
measure of its accuracy.

One class of such decompositions is partition-based. It starts from a given tree-
decomposition and then partitions the clusters until the decomposition has clusters bounded
by i. The opposite approach is grouping-based. It starts from an arc-minimal dual-graph
decomposition (where each cluster contains a single CPT) and groups clusters into larger
clusters as long as the resulting clusters do not exceed the given bound. In both methods
we should attempt to reduce the tree-width of the generated graph-decomposition. Our
partition-based approach inspired by the mini-bucket idea [Dechter & Rish1997] is as fol-
lows.

Given a bound i, algorithm join-graph structuring(i) applies procedure schematic mini-

25

(b)(a)

CDB

CAB

BA

A

CB

P(D|B)

P(C|A,B)

P(A)

BA

P(B|A)

FCD

P(F|C,D)

GFE

EBF

BF

EF

P(E|B,F)

P(G|F,E)

B

CD

BF

A

F

G: (GFE)

E: (EBF) (EF)

F: (FCD) (BF)

D: (DB) (CD)

C: (CAB) (CB)

B: (BA) (AB) (B)

A: (A) (A)

Figure 2.15: Join-graph decompositions

bucket(i), described in Figure 2.14. The procedure only traces the scopes of the functions
that would be generated by the full mini-bucket procedure, avoiding actual computation.
The algorithm then connects the mini-buckets’ scopes minimally to obtain the running
intersection property, as described in Figure 2.13.

Example 2.2.5 Figure 2.15a shows the trace of procedure schematic mini-bucket(3) ap-
plied to the problem described in Figure 2.1a. The decomposition in Figure 2.15b is cre-
ated by the algorithm graph structuring. The only cluster partitioned is that of F into two
scopes (FCD) and (BF), connected by an in-edge labeled with F.

Procedure schematic mini-bucket ends with a collection of trees rooted in mini-buckets
of the first variable. Each of these trees is minimally arc-labeled. Then, in-edges are labeled
with only one variable, and they are added only to obtain the running intersection property
between branches of these trees. It can be shown that:

Proposition 2 Algorithm join-graph structuring(i), generates a minimal arc-labeled join-
graph decomposition having bound i.

Example 2.2.6 Figure 2.16 shows a range of arc-labeled join-graphs. On the left extreme
we have a graph with smaller clusters, but more cycles. This is the type of graph IBP
works on. On the right extreme we have a tree decomposition, which has no cycles but
has bigger clusters. In between, there could be a number of join-graphs where maximum
cluster size can be traded for number of cycles. Intuitively, the graphs on the left present
less complexity for IJGP because the cluster size is small, but they are also likely to be
less accurate. The graphs on the right side are computationally more complex, because of
larger cluster size, but are likely to be more accurate.

26

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F
H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Figure 2.16: Join-graphs

Table 2.7: Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.02988 0.03055 0.02623 0.02940 0.06388 0.15694 0.05677 0.07153 0.00213 0.00391 0.00208 0.00277 0.0017 0.0036 0.0058 0.0295

1 5 0.06178 0.04434 0.04201 0.04554 0.15005 0.12340 0.12056 0.11154 0.00812 0.00582 0.00478 0.00558 0.0013 0.0040 0.0052 0.0200
10 0.08762 0.05777 0.05409 0.05910 0.23777 0.18071 0.14278 0.15686 0.01547 0.00915 0.00768 0.00899 0.0013 0.0040 0.0036 0.0121
0 0.00829 0.00636 0.00592 0.00669 0.01726 0.01326 0.01239 0.01398 0.00021 0.00014 0.00015 0.00018 0.0066 0.0145 0.0226 0.1219

5 5 0.05182 0.00886 0.00886 0.01123 0.12589 0.01967 0.01965 0.02494 0.00658 0.00024 0.00026 0.00044 0.0060 0.0120 0.0185 0.0840
10 0.08039 0.01155 0.01073 0.01399 0.21781 0.03014 0.02553 0.03279 0.01382 0.00055 0.00042 0.00073 0.0048 0.0100 0.0138 0.0536
0 0.00828 0.00584 0.00514 0.00495 0.01725 0.01216 0.01069 0.01030 0.00021 0.00012 0.00010 0.00010 0.0130 0.0254 0.0436 0.2383

10 5 0.05182 0.00774 0.00732 0.00708 0.12590 0.01727 0.01628 0.01575 0.00658 0.00018 0.00017 0.00016 0.0121 0.0223 0.0355 0.1639
10 0.08040 0.00892 0.00808 0.00855 0.21782 0.02101 0.01907 0.02005 0.01382 0.00028 0.00024 0.00029 0.0109 0.0191 0.0271 0.1062

0 0.04044 0.04287 0.03748 0.08811 0.09342 0.08117 0.00403 0.00435 0.00369 0.0159 0.0173 0.0552
MC 5 0.05303 0.05171 0.04250 0.12375 0.11775 0.09596 0.00659 0.00636 0.00477 0.0146 0.0158 0.0532

10 0.06033 0.05489 0.04266 0.14702 0.13219 0.10074 0.00841 0.00729 0.00503 0.0119 0.0143 0.0470

MC(i) vs. IJGP(i). As can be hinted by our structuring of a bounded join-graph, there
is a close relationship between MC(i) and IJGP(i). In particular, one iteration of IJGP(i)
is similar to MC(i) (MC(i) is an algorithm that approximates join-tree clustering and was
shown to be competitive with IBP and Gibbs Sampling [Mateescu, Dechter, & Kask2002]).
Indeed, while we view IJGP(i) as an iterative version of MC(i), the two algorithms differ
in several technical points, some may be superficial, due to implementation, others may be
more principled. We will leave the discussion at that and will observe the comparison of
the two approaches in the empirical section.

2.2.5 Empirical results

We tested the performance of IJGP(i) on random networks, on M-by-M grids, on two
benchmark CPCS files with 54 and 360 variables, respectively (these are belief networks

27

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

a) Performance vs. i-bound

Random networks, N=50, K=2, P=3, evid=5, w*=16

Number of iterations

0 5 10 15 20 25 30 35

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IBP
IJGP(2)
IJGP(10)

b) Convergence with iterations

Figure 2.17: Random networks: KL distance

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0
IJPG 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 20 it

Figure 2.18: Random networks: Time

for medicine, derived from the Computer based Patient Case Simulation system, known to
be hard for belief updating) and on coding networks. On each type of networks, we ran
Iterative Belief Propagation (IBP), MC(i) and IJGP(i), while giving IBP and IJGP(i) the
same number of iterations.

We use the partitioning method described in Section 2.2.4 to construct a join-graph. To
determine the order of message computation, we recursively pick an edge (u,v), such that
node u has the fewest incoming messages missing.

For each network except coding, we compute the exact solution and compare the accu-
racy of algorithms using: 1. Absolute error - the absolute value of the difference between
the approximate and the exact, averaged over all values, all variables and all problems. 2.
Relative error - the absolute value of the difference between the approximate and the ex-
act, divided by the exact, averaged over all values, all variables and all problems. 3. KL
distance - Pexact(X = a) · log(Pexact(X = a)/Papproximation(X = a)) averaged over all
values, all variables and all problems. We also report the time taken by each algorithm.
For coding networks we report Bit Error Rate (BER) computed as follows: for each ap-
proximate algorithm we pick the most likely value for each variable, take the number of
disagreements with the exact input, divide by the total number of variables, and average
over all the instances of the problem. We also report time.

28

Table 2.8: 9x9 grid, K=2, 100 instances, w*=12

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.03524 0.05550 0.04292 0.03318 0.08075 0.13533 0.10252 0.07904 0.00289 0.00859 0.00602 0.00454 0.0010 0.0053 0.0106 0.0426

1 5 0.05375 0.05284 0.04012 0.03661 0.16380 0.13225 0.09889 0.09116 0.00725 0.00802 0.00570 0.00549 0.0016 0.0041 0.0092 0.0315
10 0.07094 0.05453 0.04304 0.03966 0.23624 0.14588 0.12492 0.12202 0.01232 0.00905 0.00681 0.00653 0.0013 0.0038 0.0072 0.0256
0 0.00358 0.00393 0.00325 0.00284 0.00775 0.00849 0.00702 0.00634 0.00005 0.00006 0.00007 0.00010 0.0049 0.0152 0.0347 0.1462

5 5 0.03224 0.00379 0.00319 0.00296 0.11299 0.00844 0.00710 0.00669 0.00483 0.00006 0.00007 0.00010 0.0053 0.0131 0.0309 0.1127
10 0.05503 0.00364 0.00316 0.00314 0.19403 0.00841 0.00756 0.01313 0.00994 0.00006 0.00009 0.00019 0.0036 0.0127 0.0271 0.0913
0 0.00352 0.00352 0.00232 0.00136 0.00760 0.00760 0.00502 0.00293 0.00005 0.00005 0.00003 0.00001 0.0090 0.0277 0.0671 0.2776

10 5 0.03222 0.00357 0.00248 0.00149 0.11295 0.00796 0.00549 0.00330 0.00483 0.00005 0.00003 0.00002 0.0096 0.0246 0.0558 0.2149
10 0.05503 0.00347 0.00239 0.00141 0.19401 0.00804 0.00556 0.00328 0.00994 0.00005 0.00003 0.00001 0.0090 0.0223 0.0495 0.1716

0 0.05827 0.04036 0.01579 0.13204 0.08833 0.03440 0.00650 0.00387 0.00105 0.0106 0.0142 0.0382
MC 5 0.05973 0.03692 0.01355 0.13831 0.08213 0.03001 0.00696 0.00348 0.00099 0.0102 0.0130 0.0342

10 0.05866 0.03416 0.01075 0.14120 0.07791 0.02488 0.00694 0.00326 0.00075 0.0099 0.0116 0.0321

The random networks were generated using parameters (N,K,C,P), where N is the num-
ber of variables, K is their domain size, C is the number of conditional probability tables
(CPTs) and P is the number of parents in each CPT. Parents in each CPT are picked ran-
domly and each CPT is filled randomly. In grid networks, N is a square number and each
CPT is filled randomly. In each problem class, we also tested different numbers of evi-
dence variables. The coding networks are from the class of linear block codes, where σ
is the channel noise level. Note that we are limited to relatively small and sparse problem
instances since our evaluation measured are based on comparing against exact figures.

Random network results with networks of N=50, K=2, C=45 and P=3 are given in Table
2.7 and Figures 2.17 and 2.18. For IJGP(i) and MC(i) we report 3 different values of i-
bound: 2, 5, 8; for IBP and IJGP(i) we report 3 different values of number of iterations:
1, 5, 10; for all algorithms we report 3 different values of number of evidence: 0, 5, 10.
We notice that IJGP(i) is always better than IBP (except when i=2 and number of iterations
is 1), sometimes as much as an order of magnitude, in terms of absolute and relative error
and KL distance. IBP rarely changes after 5 iterations, whereas IJGP(i) solution can be
improved up to 15-20 iterations. As we predicted, IJGP(i) is about equal to MC(i) in terms
of accuracy for one iteration. But IJGP(i) improves as the number of iterations increases,
and is eventually better than MC(i) by as much as an order of magnitude, although it clearly
takes more time when the i-bound is large.

Figure 2.17a shows a comparison of all algorithms with different numbers of iterations,
using the KL distance. Because the network structure changes with different i-bounds, we
do not see monotonic improvement of IJGP with i-bound for a given number of iterations
(as is the case with MC). Figure 2.17b shows how IJGP converges with iteration to smaller
KL distance than IBP. As expected, the time taken by IJGP (and MC) varies exponentially
with the i-bound (see Figure 2.18).

Grid network results with networks of N=81, K=2, 100 instances are very similar to
those of random networks. They are reported in Table 2.8 and in Figure 2.19, where we

29

Grid network, N=81, K=2, evid=5, w*=12

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

a) Performance vs. i-bound

Grid network, N=81, K=2, evid=5, w*=12

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 2.19: Grid 9x9: KL distance

Table 2.9: CPCS networks: CPCS54 50 instances, w*=15; CPCS360 10 instances, w*=20

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8

CPCS54
0 0.01324 0.03747 0.03183 0.02233 0.02716 0.08966 0.07761 0.05616 0.00041 0.00583 0.00512 0.00378 0.0097 0.0137 0.0146 0.0275

1 5 0.02684 0.03739 0.03124 0.02337 0.05736 0.09007 0.07676 0.05856 0.00199 0.00573 0.00493 0.00366 0.0072 0.0094 0.0087 0.0169
10 0.03915 0.03843 0.03426 0.02747 0.08475 0.09156 0.08246 0.06687 0.00357 0.00567 0.00506 0.00390 0.005 0.0047 0.0052 0.0115
0 0.00031 0.00016 0.00123 0.00110 0.00064 0.00033 0.00255 0.00225 7.75e-7 0.00000 0.00002 0.00001 0.0371 0.0334 0.0384 0.0912

5 5 0.01874 0.00058 0.00092 0.00098 0.04067 0.00124 0.00194 0.00203 0.00161 0.00000 0.00001 0.00001 0.0337 0.0215 0.0260 0.0631
10 0.03348 0.00101 0.00139 0.00144 0.07302 0.00215 0.00298 0.00302 0.00321 0.00001 0.00003 0.00002 0.0290 0.0144 0.0178 0.0378
0 0.00031 0.00009 0.00014 0.00015 0.00064 0.00018 0.00029 0.00031 7.75e-7 0.0000 0.00000 0.00000 0.0736 0.0587 0.0667 0.1720

10 5 0.01874 0.00037 0.00034 0.00038 0.04067 0.00078 0.00071 0.00080 0.00161 0.00000 0.00000 0.00000 0.0633 0.0389 0.0471 0.1178
10 0.03348 0.00058 0.00051 0.00057 0.07302 0.00123 0.00109 0.00122 0.00321 4.0e-6 3.0e-6 4.0e-6 0.0575 0.0251 0.0297 0.0723
0 0.02721 0.02487 0.01486 0.05648 0.05128 0.03047 0.00218 0.00171 0.00076 0.0144 0.0125 0.0333

MC 5 0.02702 0.02522 0.01760 0.05687 0.05314 0.03713 0.00201 0.00186 0.00098 0.0103 0.0126 0.0346
10 0.02825 0.02504 0.01600 0.06002 0.05318 0.03409 0.00216 0.00177 0.00091 0.0094 0.0090 0.0295

CPCS360
1 10 0.26421 0.14222 0.13907 0.14334 7.78167 2119.20 2132.78 2133.84 0.17974 0.09297 0.09151 0.09255 0.7172 0.5486 0.5282 0.4593

20 0.26326 0.12867 0.12937 0.13665 370.444 28720.38 30704.93 31689.59 0.17845 0.08212 0.08269 0.08568 0.6794 0.5547 0.5250 0.4578
10 10 0.01772 0.00694 0.00121 0.00258 1.06933 6.07399 0.01005 0.04330 0.017718 0.00203 0.00019 0.00116 7.2205 4.7781 4.5191 3.7906

20 0.02413 0.00466 0.00115 0.00138 62.99310 26.04308 0.00886 0.01353 0.02027 0.00118 0.00015 0.00036 7.0830 4.8705 4.6468 3.8392
20 10 0.01772 0.00003 3.0e-6 3.0e-6 1.06933 0.00044 8.0e-6 7.0e-6 0.01771 5.0e-6 0.0 0.0 14.4379 9.5783 9.0770 7.6017

20 0.02413 0.00001 9.0e-6 9.0e-6 62.9931 0.00014 0.00013 0.00004 0.02027 0.0 0.0 0.0 13.6064 9.4582 9.0423 7.4453
MC 10 0.03389 0.01984 0.01402 0.65600 0.20023 0.11990 0.01299 0.00590 0.00390 2.8077 2.7112 2.5188

20 0.02715 0.01543 0.00957 0.81401 0.17345 0.09113 0.01007 0.00444 0.00234 2.8532 2.7032 2.5297

can see the impact of having evidence (0 and 5 evidence variables) on the algorithms.
IJGP at convergence gives the best performance in both cases, while IBP’s performance
deteriorates with more evidence and is surpassed by MC with i-bound 5 or larger.

CPCS network results with CPCS54 and CPCS360 are given in Table 2.9 and Figure
2.20, and are even more pronounced than those of random and grid networks. When evi-
dence is added, IJGP(i) is more accurate than MC(i), which is more accurate than IBP, as
can be seen in Figure 2.20a.

Coding network results are given in Table 2.10. We tested on large networks of 400
variables, with tree-width w*=43, with IJGP and IBP set to run 30 iterations (this is more
than enough to ensure convergence). IBP is known to be very accurate for this class of

30

CPCS360, evid=10, w*=20

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
IJGP 1 it
IJGP 10 it
IJGP 20 it
MC
IBP 1 it
IBP 10 it
IBP 20 it

a) Performance vs. i-bound

CPCS360, evid=10, w*=20

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L

di
st

an
ce

0

1e-6

2e-6

3e-6

4e-6

5e-6

6e-6
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 2.20: CPCS360: KL distance

Table 2.10: Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43

Bit Error Rate
i-bound

σ 2 4 6 8 10 IBP
0.22 IJGP 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

MC 0.00501 0.00800 0.00586 0.00462 0.00392
0.28 IJGP 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064

MC 0.02170 0.02968 0.02492 0.02048 0.01840
0.32 IJGP 0.00238 0.00238 0.00238 0.00238 0.00238 0.00242

MC 0.04018 0.05004 0.04480 0.03878 0.03558
0.40 IJGP 0.01202 0.01188 0.01194 0.01210 0.01192 0.01220

MC 0.08726 0.09762 0.09272 0.08766 0.08334
0.51 IJGP 0.07664 0.07498 0.07524 0.07578 0.07554 0.07816

MC 0.15396 0.16048 0.15710 0.15452 0.15180
0.65 IJGP 0.19070 0.19056 0.19016 0.19030 0.19056 0.19142

MC 0.21890 0.22056 0.21928 0.21904 0.21830
Time

IJGP 0.36262 0.41695 0.86213 2.62307 9.23610 0.019752
MC 0.25281 0.21816 0.31094 0.74851 2.33257

problems and it is indeed better than MC. It is remarkable however that IJGP converges
to smaller BER than IBP even for small values of the i-bound. Both the coding network
and CPCS360 show the scalability of IJGP for large size problems. Notice that here the
anytime behavior of IJGP is not clear.

2.2.6 Discussion

In this section we presented an iterative anytime approximation algorithm called Iterative
Join-Graph Propagation (IJGP(i)), that applies the message passing algorithm of join-tree
clustering to join-graphs rather than join-trees, iteratively. The algorithm borrows the it-
erative feature from Iterative Belief Propagation (IBP) on one hand and is inspired by the
anytime virtues of mini-clustering MC(i) on the other. We show that the success of IJGP is
facilitated by extending the notion of join-graphs to minimal arc-labeled join-graphs, and
provide a structuring algorithm that generates minimal arc-labeled join-graphs of bounded
size.

The empirical results are extremely encouraging. We experimented with randomly gen-

31

erated networks, grid-like networks, medical diagnosis CPCS networks and coding net-
works. We showed that IJGP is almost always superior to both IBP and MC(i) and is
sometimes more accurate by an order of several magnitudes. One should note that IBP
cannot be improved with more time, while MC(i) requires a large i-bound for many hard
and large networks to achieve reasonable accuracy. There is no question that the iterative
application of IJGP is instrumental to its success. In fact, IJGP(2) in isolation appears to
be the most cost effective variant.

One question which we did not answer in this section is why propagating the mes-
sages iteratively helps. Why is IJGP upon convergence, superior to IJGP with one iteration
and is superior to MC(i)? One clue can be provided when considering deterministic con-
straint networks which can be viewed as ”extreme probabilistic networks”. It is known
that constraint propagation algorithms, which are analogous to the messages sent by belief
propagation, are guaranteed to converge and are guaranteed to improve with convergence.
The propagation scheme presented here works like constraint propagation relative to the
flat network abstraction of P , (where all non-zero entries are normalized to a positive con-
stant), and is guaranteed to be more accurate for that abstraction at least. It is precisely
these issues that we address in Section 3.1 of next chapter.

32

Chapter 3

Current and Future Work

3.1 The Inference Power of Iterative Belief Propagation

A good fraction of our current research is devoted to studying the properties of Iterative
Belief Propagation (IBP), and of the generalized belief propagation version Iterative Join-
Graph Propagation (IJGP). We are particularly interested in making connections to well
known algorithms from constraint networks, like Arc-consistency, which may help explain
when and why IBP has strong or weak inference power.

The belief propagation algorithm is a distributed algorithm that computes posterior be-
liefs for tree-structured Bayesian networks (poly-trees) [Pearl1988]. However, in recent
years it was shown to work surprisingly well in many applications involving networks with
loops, including turbo codes, when applied iteratively [R.J. McEliece & Cheng1997]. An-
other recent result [Mézard, Parisi, & Zecchina2002] shows impressive performance for
an iterative message passing scheme used for very large satisfiability problems. While
there is still very little understanding as to why and when IBP works well, some recent
investigation shows that when IBP converges, it converges to a stationary point of the
Bethe energy, thus making connections to approximation algorithms developed in statis-
tical physics and to variational approaches to approximate inference [Welling & Teh2001,
Yedidia, Freeman, & Weiss2001]. However, these approaches do not explain why IBP is
successful where it is, and do not allow any performance guarantees on accuracy.

The work we present here is based on some some simple observations that may shed
light on IBP’s behavior, and on the more general class of IJGP algorithms. Zero-beliefs
are variable-value pairs that have zero conditional probability given the evidence. We show
that: if a value of a variable is assessed as having zero-belief in any iteration of IBP, it
remains a zero-belief in all subsequent iterations; that IBP finitely converges relative to
its set of zero-beliefs; and, most importantly that the set of zero-beliefs decided by any
of the iterative belief propagation methods is sound. Namely any zero-belief determined
by IBP corresponds to a true zero conditional probability relative to the given probability
distribution expressed by the Bayesian network.

33

While each of these claims can be proved directly, our approach is to associate a be-
lief network with a constraint network and show a correspondence between IBP applied
to the belief network and an arc-consistency algorithm applied to the corresponding con-
straint network. Since arc-consistency algorithms are well understood this correspondence
not only proves right away the targeted claims, but may provide additional insight into the
behavior of IBP and IJGP. In particular, not only it immediately justifies the iterative appli-
cation of belief propagation algorithms on one hand, but it also illuminates its ”distance”
from being complete, on the other.

3.1.1 Arc-consistency algorithms

Constraint propagation algorithms is a class of polynomial time algorithms that are at
the center of constraint processing techniques. They were investigated extensively in the
past three decades and the most well known versions are arc-, path-, and i-consistency
[Dechter1992].

DEFINITION 3.1.1 (arc-consistency) [Mackworth1977] Given a binary constraint net-
work (X,D,C), the network is arc-consistent iff for every binary constraint Rij ∈ C,
every value v ∈ Di has a value u ∈ Dj s.t. (v, u) ∈ Rij.

When a binary constraint network is not arc-consistent, arc-consistency algorithms can
enforce arc-consistency. The algorithms remove values from the domains of the variables
that violate arc-consistency until an arc-consistent network is generated. A variety of im-
proved performance arc-consistency algorithms were developed over the years, however
we will consider here a non-optimal distributed version, which we call distributed arc-
consistency.

DEFINITION 3.1.2 (distributed arc-consistency; DAC) The algorithm is a message pass-
ing algorithm. Each node maintains a current set of viable values Di. Let ne(i) be the set
of neighbors of Xi in the constraint graph. Every node Xi sends a message to any node
Xj ∈ ne(i), which consists of the values in Xj’s domain that are consistent with the cur-
rent Di, relative to the constraint that they share. Namely, the message that Xi sends to
Xj, denoted by Dj

i , is:
Dj

i ← πj(Rji 1 Di) (3.1)

(where, join (1) and project (π) are the usual relational operators) and in addition node i
computes:

Di ← Di ∩ (1k∈ne(i) D
i
k) (3.2)

Clearly the algorithm can be synchronized into iterations, where in each iteration ev-
ery node computes its current domain based on all the messages received so far from its

34

A

B C

D F

G

A

AB AC

ABD BCF

DFG

AB

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

4

1

5

3

6

2

2
4h

2
5h

6
5h

=6
5h 3

1

F

B

4
6h

D

4
5h

B

F

()== 6
56

4
6 hRh Dπ

2
D

()== 4
5

4
64

2
4 hhRh ABπ

3
B

1
A5

6h

()== 6
56

5
6 hRh Fπ 1

F

()=== 5
65

2
5

4
5 hRhh Bπ

3
B

1
2h A

()== 2
5

2
42

1
2 hhRh Aπ 1

A

1R
2R

4R

3R

5R

6R

Figure 3.1: Part of the execution of DR-AC algorithm;

neighbors (eq. 3.2), and sends a new message to each neighbor (eq. 3.1). Alternatively,
equations 3.1 and 3.2 can be combined. The message Xi sends to Xj is:

Dj
i ← πj(Rji 1 Di 1k∈ne(i) D

i
k) (3.3)

Let us mention again the definition of the dual graphs, which we will be using in this
section:

DEFINITION 3.1.3 (dual graphs) Given a set of functions F = {f1, ..., fl} over scopes
S1, ..., Sl, the dual graph of F is a graph DG = (V,E, L) that associates a node with each
function, namely V = F and an arc connects any two nodes whose scope share a variable,
E = {(fi, fj)|Si ∩ Sj 6= φ} . L is a set of labels for the arcs, each arc being labeled by the
shared variables of its nodes, L = {lij = Si ∩ Sj|(i, j) ∈ E}.

The above distributed arc-consistency algorithm can be applied to the dual problem of
any non-binary constraint network as well. This is accomplished by the following rule
applied by each node in the dual graph. We call the algorithm distributed relational arc-
consistency.

DEFINITION 3.1.4 (distributed relational arc-consistency; DR-AC) Let Ri and Rj be
two constraints sharing scopes, whose arc in the dual graph is labeled by lij . The mes-
sage Ri sends to Rj denoted hj

i is defined by:

hj
i ← πlij (Ri 1 (1k∈ne(i) h

i
k)) (3.4)

and each node updates its current relation according to:

Ri ← Ri ∩ (1k∈ne(i) h
i
k) (3.5)

35

Example 3.1.1 Figure 3.1 describes part of the execution of DR-AC for a graph coloring
problem, having the constraint graph shown on the left. All variables have the same do-
main, {1,2,3}, except for C which is 2, and G which is 3. The arcs correspond to not equal
constraints, and the relations are RA, RAB , RAC , RABD, RBCF , RDFG. The dual graph
of this problem is given on the right side of the figure, and each table shows the initial
constraints (there are unary, binary and ternary constraints). To initialize the algorithm,
the first messages sent out by each node are universal relations over the labels. For this
example, DR-AC actually solves the problem and finds the unique solution A=1, B=3, C=2,
D=2, F=1, G=3.

Proposition 3 Distributed relational arc-consistency converges after O(t · r) iterations to
the largest arc-consistent network that is equivalent to the original network, where t bounds
the number of tuples in each constraint and r is the number of constraints.

Proposition 4 (complexity) The complexity of distributed arc-consistency isO(r2t2 log t).

Proof. One iteration can be accomplished in O(r · t · log t), and there can be at most
r · t iterations. 2

3.1.2 Iterative belief propagation over dual join-graphs

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm that was
defined for poly-trees [Pearl1988]. Since it is a distributed algorithm, it is well defined for
any network. In this section we will present IBP as an instance of join-graph propagation
over variants of the dual graph.

Consider a Bayesian network B =< X,D,G, P >. As defined earlier, the dual graph
DG of the Belief network B, is an arc-labeled graph defined over the CPTs as its functions.
Namely, it has a node for each CPT and a labeled arc connecting any two nodes that share
a variable in the CPT’s scope. The arcs are labeled by the shared variables. A dual join-
graph is a labeled arc subgraph of DG whose arc labels are subsets of the labels of DG

such that the running intersection property, also called connectedness property, is satisfied.
The running intersection property requires that any two nodes that share a variable in the
dual join-graph be connected by a path of arcs whose labels contain the shared variable.
Clearly the dual graph itself is a dual join-graph. An arc-minimal dual join-graph is a
dual join-graph for which none of the labels can be further reduced while maintaining the
connectedness property.

Interestingly, there are many dual join-graphs of the same dual graph and many of them
are arc-minimal. We define Iterative Belief Propagation on a dual join-graph. Each node
sends a message over an arc whose scope is identical to the label on that arc. Since Pearl’s
algorithm sends messages whose scopes are singleton variables only, we highlight arc-
minimal singleton dual join-graph. One such graph can be constructed directly from the

36

A

B C

a)

A

AB ABC

b)

A

AB ABC

c)

A A

B

A

AB

2 1

3

2 1

3

Figure 3.2: a) A belief network; b) A dual join-graph with singleton labels; c) A dual
join-graph which is a join-tree;

graph of the Bayesian network, labeling each arc with the parent variable. It can be shown
that:

Proposition 5 The dual graph of any Bayesian network has an arc-minimal dual join-
graph where each arc is labeled by a single variable.

Example 3.1.2 Consider the belief network on 3 variables A,B,C with CPTs
1.P (C|A,B), 2.P (B|A) and 3.P (A), given in Figure 3.2a. Figure 3.2b shows a dual
graph with singleton labels on the arcs. Figure 3.2c shows a dual graph which is a join
tree, on which belief propagation can solve the problem exactly in one iteration (two passes
up and down the tree).

For complete reference, we will next present IBP algorithm that is applicable to any
dual join-graph (Figure 3.3). The algorithm is a special case of IJGP introduced in
[Dechter, Mateescu, & Kask2002]. It is easy to see that one iteration of IBP is time and
space linear in the size of the belief network, and when IBP is applied to the singleton la-
beled dual graph it coincides with Pearl’s belief propagation applied directly to the acyclic
graph representation. For space reasons, we do not include the proof here. Also, when the
dual join-graph is a tree IBP converges after one iteration (two passes, up and down the
tree) to the exact beliefs.

3.1.3 Flattening the Bayesian network

Given a belief network B we will now define a flattening of the Bayesian network into a
constraint network called flat(B) where all the zero entries in the CPTs are removed from
the corresponding relation. flat(B) is a constraint network defined over the same set of
variables and has the same set of domain values as B. Formally, for every Xi and its CPT
P (Xi|pai) ∈ B we define a constraint RFi

over the family of Xi, Fi = {Xi} ∪ pai as
follows: for every assignment x = (xi, xpai

) to Fi,
(xi, xpai

) ∈ RFi
iff P (xi|xpai

) > 0.
The evidence set e = {e1, ..., er} is mapped into unary constraints that assign the corre-
sponding values to the evidence variables.

37

Algorithm IBP
Input: An arc-labeled dual join-graph DJ = (V,E, L) for a Bayesian network BN =<
X,D,G, P >. Evidence e.
Output: An augmented graph whose nodes include the original CPTs and the messages received
from neighbors. Approximations of P (Xi|e), ∀Xi ∈ X . Approximations of P (Fi|e), ∀Fi ∈ B.
Denote by: hv

u the message from u to v; ne(u) the neighbors of u in V ; nev(u) = ne(u)− {v};
luv the label of (u, v) ∈ E; elim(u, v) = scope(u)− scope(v).
• One iteration of IBP

For every node u in DJ in a topological order and back, do:
1. Process observed variables

Assign evidence variables to the each pi and remove them from the labeled arcs.
2. Compute and send to v the function:

hv
u =

∑

elim(u,v)

(pu ·
∏

{hu

i
,i∈nev(u)}

hu
i)

Endfor
• Compute approximations of P (Fi|e), P (Xi|e):

For every Xi ∈ X let u be the vertex of family Fi in DJ ,
P (Fi|e) = α(

∏

hu

i
,u∈ne(i) h

u
i) · pu;

P (Xi|e) = α
∑

scope(u)−{Xi}
P (Fi|e).

Figure 3.3: Algorithm Iterative Belief Propagation;

THEOREM 3.1.3 Given a belief network B and evidence e, for any tuple t: PB(t|e) > 0⇔
t ∈ sol(flat(B, e)).

Proof. PB(t|e) > 0⇔ΠiP (xi|xpai
)|t > 0⇔∀i, P (xi|xpai

)|t > 0⇔∀i, (xi, xpai
)|t ∈ RFi

⇔ t ∈ sol(flat(B, e)), where |t is the restriction to t. 2

We next define an algorithm dependent notion of zero tuples.

DEFINITION 3.1.5 (IBP-zero) Given a CPT P (Xi|pai), an assignment x = (xi, xpai
) to

its family Fi is IBP-zero if some iteration of IBP determines that P (xi|xpai
, e) = 0.

It is easy to see that when IBP is applied to a constraint network where sum and product
are replaced by join and project, respectively, it becomes identical to distributed relational
arc-consistency defined earlier. Therefore, a partial tuple is removed from a flat constraint
by arc-consistency iff it is IBP-zero relative to the Bayesian network.

THEOREM 3.1.4 When IBP is applied in a particular variable ordering to a dual join-
graph of a Bayesian network B, its trace is identical, relative to zero-tuples generation,
to that of DR-AC applied to the corresponding flat dual join-graph. Namely, taking a
snapshot at identical steps, any IBP-zero tuple in the Bayesian network is a removed tuple
in the corresponding step of DR-AC over the flat dual join-graph.

38

Proof. It suffices to prove that the first iteration of IBP and DR-AC generates the same
zero tuples and removed tuples, respectively. We prove the claim by induction over the
topological ordering that defines the order in which messages are sent in the corresponding
dual graphs.
Base case: By the definition of the flat network, when algorithms IBP and DR-AC start,
every zero probability tuple in one of the CPTs PXi

in the dual graph of the Bayesian
network, becomes a removed tuple in the corresponding constraint RFi

in the dual graph of
the flat network.
Inductive step: Suppose the claim is true after n correspondent messages are sent in IBP
and DR-AC. Suppose the (n + 1)th message is scheduled to be the one from node u to
node v. Indexing messages by the name of the algorithm, in the dual graph of IBP, node
u contains pu and hIBP

u
i , i ∈ nev(u), and in the dual graph of DR-AC, node u contains

Ru and hDR−AC
u
i , i ∈ nev(u). By the inductive hypothesis, the zero tuples in pu and

hIBP
u
i , i ∈ nev(u) are the removed tuples in Ru and hDR−AC

u
i , i ∈ nev(u), respectively.

Therefore, the zero tuples in the product (pu · (
∏

i∈nev(u))h
u
i) correspond to the removed

tuples in the join (Ru 1 (1i∈nev(u))h
u
i). This proves that the zero tuples in the message of

IBP
hIBP

v
u =

∑

elim(u,v)(pu · (
∏

i∈nev(u))h
u
i), correspond to the removed tuples in the message

of DR-AC
hDR−AC

v
u = πluv

(Ru 1 (1i∈nev(u))h
u
i).

The same argument can now be extended for every iteration of the algorithms. 2

Corollary 1 Algorithm IBP zero-converges. Namely, its set of zero tuples does not change
after t · r iterations.

Proof. From Theorem 3.1.4 any IBP-zero is a no-good removed by arc-consistency
over the flat network. Since arc-consistency converges, the claim follows. 2

THEOREM 3.1.5 When IBP is applied to a dual join-graph of a Bayesian network, any
tuple t that is IBP-zero satisfies PB(t|e) = 0.

Proof. From Theorem 3.1.4 if a tuple t is IBP zero, it is also removed from the correspond-
ing relation by arc-consistency over flat(B, e). Therefore this tuple is a no-good of the
network flat(B, e) and, from Theorem 3.1.3 it follows that PB(t|e) = 0. 2

3.1.3.1 Zeros are sound for any IJGP

The results for IBP can be extended to the more general class of algorithms called iterative
join-graph propagation, IJGP [Dechter, Mateescu, & Kask2002]. IJGP can be viewed as a

39

3
1
2
X3

31
2
1
X2

1
1
H2

X1

X2

X3H1

H2

H3

a)

X1

X2

X3H1X1 X2

H2 X2 X3

H3X1 X3

b)

X1

X1

X2

X2

X3

X3
3
1
2
X2

31
2
1
X1

1
1
H1

3
2
1
X1

3
1
2
X3

31
2
1
X1

1
1
H3

3
2
1
X2

3
2
1
X3

Figure 3.4: a) A belief network; b) An arc-minimal dual join-graph;

generalized belief propagation algorithm and was shown to benefit both from the virtues of
iterative algorithms and from the anytime characteristics of bounded inference provided by
mini-buckets schemes.

The message-passing of IJGP is identical to that of IBP. The difference is in the under-
lying graph that it uses. IJGP typically has an accuracy parameter i called i-bound, which
restricts the maximum number of variables that can appear in a node (cluster). Each clus-
ter contains a set of functions. IJGP performs message-passing on a graph called minimal
arc-labeled join-graph.

It is easy to define a corresponding DR-AC algorithm that operates on a similar minimal
arc-label join-graph. Initially, each cluster of DR-AC can contain a number of relations,
which are just the flat correspondents of the CPTs in the clusters of IJGP. The identical me-
chanics of the message passing ensure that all the previous results for IBP can be extended
to IJGP.

3.1.3.2 The inference power of IBP

We will next show that the inference power of IBP is sometimes very limited and other
times strong, exactly wherever arc-consistency is weak or strong.

3.1.3.2.1 Cases of weak inference power

Example 3.1.6 Consider a belief network over 6 variables X1, X2, X3, H1, H2, H3 where
the domain of the X variables is {1, 2, 3} and the domain of the H variables is {0, 1}
(see Figure3.4a). There are three CPTs over the scopes: {H1, X1, X2}, {H2, X2, X3}, and
{H3, X1, X3}. The values of the CPTs for every triplet of variables {Hk, Xi, Xj} are:

P (hk = 1|xi, xj) =











1, if (3 6= xi 6= xj 6= 3);
1, if (xi = xj = 3);
0, otherwise;

P (hk = 0|xi, xj) = 1− P (hk = 1|xi, xj).

40

Consider the evidence set e = {H1 = H2 = H3 = 1}. One can see that this Bayesian
network expresses the probability distribution that is concentrated in a single tuple:

P (x1, x2, x3|e) =

{

1, if x1 = x2 = x3 = 3;
0, otherwise.

In other words, any tuple containing an assignment of ”1” or ”2” for anyX variable has a
zero probability. The flat constraint network of the above belief network is defined over the
scopes S1 = {H1, X1, X2}, S2 = {H2, X2, X3}, S3 = {H3, X1, X3}. The constraints are
defined by: RHk ,Xi,Xj

= {(1, 1, 2), (1, 2, 1), (1, 3, 3), (0, 1, 1), (0, 1, 3), (0, 2, 2), (0, 2, 3),
(0, 3, 1), (0, 3, 2)}. Also, the prior probabilities for Xi’s become unary constraints equal
to the full domain {1,2,3} (assuming the priors are non-zero). An arc-minimal dual join-
graph which is identical to the constraint network is given in Figure 3.4b.

In the flat constraint network, the constraints in each node are restricted after assigning
the evidence values (see Figure 3.4b). In this case, DR-AC sends as messages the full
domains of the variables and therefore no tuple is removed from any constraint. Since IBP
infers the same zeros as arc-consistency, IBP will also not infer any zeros for any family
or any single variable. However, since the true probability of most tuples is zero we can
conclude that the inference power of IBP on this example is weak or non-existent.

The weakness of arc-consistency as demonstrated in this example is not surprising.
Arc-consistency is known to be a weak algorithm in general. It implies the same weakness
for belief propagation and demonstrates that IBP is very far from completeness, at least as
long as zero tuples are concerned.

The above example was constructed by taking a specific constraint network with known
properties and expressing it as a belief network using a known transformation. We associate
each constraintRS with a bi-valued new hidden variableXh, direct arcs from the constraint
variables to this new hidden variable Xh, and create the CPT such that:

P (xh = 1|xpah
) = 1 , iff xpah

∈ RS.
while zero otherwise [Pearl1988]. The generated belief network conditioned on all the Xh

variables being assigned ”1” expresses the same set of solutions as the constraint network.

3.1.3.2.2 Cases of strong inference power The relationship between IBP and arc-
consistency ensures that IBP is zero-complete whenever arc-consistency is. In general,
if for a flat constraint network of a Bayesian network B, arc-consistency removes all the
inconsistent domain values (it creates minimal domains), then IBP will also discover all
the true zeros of B. We next consider several classes of constraints that are known to be
tractable.
Acyclic belief networks. When the belief network is acyclic, namely when it has a dual
join-graph that is a tree, the flat network is an acyclic constraint network that can be shown
to be solvable by distributed relational arc-consistency [Dechter1992]. Note that acyclic
Bayesian networks is a strict superset of polytrees. The solution requires only one iteration
(two passes) of IBP. Therefore:

41

Proposition 6 IBP is complete for acyclic networks, when applied to the tree dual join-
graph (and therefore it is also zero-complete).

Example 3.1.7 We refer back to the example of Figure 3.2. The network is acyclic because
there is a dual join-graph that is a tree, given in Figure 3.2c, and IBP will be zero-complete
on it. Moreover, IBP is known to be complete in this case.

Belief networks with no evidence. Another interesting case is when the belief network
has no evidence. In this case, the flat network always corresponds to the causal constraint
network defined in [Dechter & Pearl1991]. The inconsistent tuples or domain values are
already explicitly described in each relation, and new zeros do not exist. Indeed, it is easy
to see (either directly or through the flat network) that:

Proposition 7 IBP is zero-complete for any Bayesian network with no evidence.

In fact, it can be shown [Bidyuk & Dechter2001] that IBP is also complete for non-zero
posterior beliefs of many variables when there is no evidence.

Max-closed constraints. Consider next the class of Max-closed relations defined as fol-
lows. Given a domain D that is linearly ordered let Max be a binary operator that returns
the largest element among 2. The operator can be applied to 2 tuples by taking the pair-wise
operation [Jeavons & Cooper1996].

DEFINITION 3.1.6 (Max-closed relations) A relation is Max-closed if whenever t1, t2 ∈ R
so is Max(t1, t2). A constraint network is Max-closed if all its constraints are Max-closed.

It turns out that if a constraint network is Max-closed, it can be solved by distributed
arc-consistency. Namely, if no domain becomes empty by the arc-consistency algorithm,
the network is consistent. While arc-consistency is not guaranteed to generate minimal
domains, thus removing all inconsistent values, it can generate a solution by selecting the
maximal value from the domain of each variable. Accordingly, while IBP will not neces-
sarily discover all the zeros, all the largest non-zero values in the domains of each variable
are true non-zeros.

Therefore, for a belief network whose flat network is Max-closed IBP is likely to be
powerful for generating zero tuples.

Example 3.1.8 Consider the following belief network: There are 5 variables
{V,W,X, Y, Z} over domains {1, 2, 3, 4, 5}. and the following CPTs:

P (x|z, y, w) 6= 0, iff 3x + y + z ≥ 5w + 1
P (w|y, z) 6= 0, iff wz ≥ 2y
P (y|z) 6= 0, iff y ≥ z + 2
P (v|z) 6= 0, iff 3v ≤ z + 1
P (Z = i) = 1/4, i ∈ {1, 2, 3, 4}

42

Z

Y

X

V

W

a)

Z

YZ

XZYW

VZ

WYZ

b)

Z

Z

Z Z

Y

Y

W

Figure 3.5: a) A belief network that corresponds to a Max-closed relation; b) An arc-
minimal dual join-graph;

All the other probabilities are zero. Also, the domain of W does not include 3 and the
domain z does not include 5. The problem’s acyclic graph is given in Figure 3.5a. It is
easy to see that the flat network is the set of constraints over the above specified domains:
w 6= 3, z 6= 5, 3v ≤ z+1, y ≥ z+2, 3x+y+ z ≥ 5w+1, wz ≥ 2y. An arc-minimal dual
join-graph with singleton labels is given in Figure 3.5b. It has 5 nodes, one for each family
in the Bayesian network. If we apply distributed relational consistency we will get that the
domains are: DV = {1}, DW = {4}, DX = {3, 4, 5}, DY = {4, 5} and DZ = {2, 3}.
Since all the constraints are Max-closed and since there is no empty domain the problem
has a solution given by the maximal values in each domain: V = 1, W = 4, X = 5,
Y = 5, Z = 3. The domains are not minimal however: there is no solution having X = 3
or X = 4.

Based on the correspondence with arc-consistency, we know that applying IBP to the
dual join-graph will indeed infer all the zero domains except those of X , which validates
that IBP is quite powerful for this example.

The above example is suggested by a general scheme for creating belief networks that
correspond to Max-closed constraints (or any other language of constraints): First, create
an acyclic graph, then, associate with each node and its parents a max-closed probability
constraint.

An interesting case for propositional variables is the class of Horn clauses. A Horn
clause can be shown to be Min-closed (by simply checking its models). If we have an
acyclic graph, and we associate every family with a Horn clause expressed as a CPT in the
obvious way, then applying Belief propagation on a dual join-graph can be shown to be
nothing but the application of unit propagation until there is no change. It is well known
that unit propagation decides the consistency of a set of Horn clauses (even if they are
cyclic). However, unit propagation will not necessarily generate the minimal domains, and
thus not infer all the zeros, but it is likely to behave well.

Implicational constraints. Finally, a class that is known to be solvable by path-consistency
is implicational constraints, defined as follows:

43

DEFINITION 3.1.7 A binary network is implicational, iff for every binary relation every
value of one variable is consistent either with only one or with all the values of the other
variable [Kirousis1993]. A Bayesian network is implicational if its flat constraint networks
is.

Clearly, a binary function is an implicational constraint. Since IBP is equivalent to
arc-consistency only, we cannot conclude that IBP is zero-complete for implicational con-
straints. This raises the question of what corresponds to path-consistency in belief net-
works, a question which we do not attempt to answer at this point.

3.1.3.3 A Finite Precision Problem

X1

X2

X3H1

H2

H3

.1

.45

.45

P (Xi)

3

2

1

Xi

0……1

3

1

2

Xj

1

1

1

P (Hk | Xi , Xj)

31

2

1

Xi

1

1

Hk

100
True
belief

0.5.5300

1e-260……200

1e-129……100

.49986

.49721

.45

Bel(Xi = 2)

.00027

.00545

.1

Bel(Xi = 3)

.499863

.49721

.45

Bel(Xi = 1)

2

1

#iterPrior for Xi

CPT for Hk

Figure 3.6: Example of a finite precision problem;

Algorithms should always be implemented with care on finite precision machines. We
mention here a case where IBP’s messages converge in the limit (i.e. in an infinite number
of iterations), but they do not stabilize in any finite number of iterations. Consider again
the example in Figure 3.4 with the priors on Xi’s given in Figure 3.6. If all nodes Hk are
set to value 1, the belief for any of the Xi variables as a function of iteration is given in
the table in Figure 3.6. After about 300 iterations, the finite precision of our computer is
not able to represent the value for Bel(Xi = 3), and this appears to be zero, yielding the
final updated belief (.5, .5, 0), when in fact the true updated belief should be (0, 0, 1). This
does not contradict our theory, because mathematically,Bel(Xi = 3) never becomes a true
zero, and IBP never reaches a quiescent state.

3.1.4 Empirical results

We tested the performance of IBP and IJGP both on cases of strong and weak inference
power. In particular, we looked at networks where probabilities are extreme and checked if
the properties of IBP with respect to zeros also extend to ε small beliefs.

44

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.60

0

0.01

0.02

0.03

0.04

0.05

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

noise = 0.20

P
er

ce
n

ta
g

e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 3.7: Coding, N=200, 1000 instances, w*=15;

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 10

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 0

P
er

ce
n

ta
g

e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 3.8: 10x10 grids, 100 instances, w*=15;

3.1.4.1 Accuracy of IBP across belief distribution

We investigated empirically the accuracy of IBP’s prediction across the range of belief
values from 0 to 1. Theoretically, zero values inferred by IBP are proved correct, and we
hypothesize that this property extends to ε small beliefs. That is, if the flat network is easy
for arc-consistency and IBP infers a posterior belief close to zero, then it is likely to be
correct.

To capture the accuracy of IBP we computed its absolute error per intervals of [0, 1].
Using names inspired by the well known measures in information retrieval, we use Recall
Absolute Error and Precision Absolute Error. Recall is the absolute error averaged over
all the exact posterior beliefs that fall into the interval. For Precision, the average is taken
over all the approximate posterior belief values computed by IBP that fall into the interval.
Our experiments show that the two measures are strongly correlated. We also show the
histograms of distribution of belief for each interval, for the exact and for IBP, which are
also strongly correlated. The results are given in Figures 3.7-3.10. The left Y axis corre-
sponds to the histograms (the bars), the right Y axis corresponds to the absolute error (the
lines). All problems have binary variables, so the graphs are symmetric about 0.5 and we
only show the interval [0, 0.5]. The number of variables, number of iterations and induced

45

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 10

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 0

P
er

ce
n

ta
g

e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 3.9: Random, N=80, 100 instances, w*=15;

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

cpcs54, evidence = 10

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

cpcs360, evidence = 20

P
er

ce
n

ta
g

e

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

cpcs360, evidence = 30

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 3.10: CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20;

width w* are reported for each graph.
Coding networks are the notorious case where IBP has impressive performance. The
problems are from the class of linear block codes, with 50 nodes per layer and 3 parent
nodes. Figure 3.7 shows the results for three different values of channel noise: 0.2, 0.4 and
0.6. For noise 0.2, all the beliefs computed by IBP are extreme. The Recall and Precision
are very small, of the order of 10−11. So, in this case, all the beliefs are very small (ε
small) and IBP is able to infer them correctly, resulting in almost perfect accuracy (IBP is
indeed perfect in this case for the bit error rate). When the noise is increased, the Recall
and Precision tend to get closer to a bell shape, indicating higher error for values close to
0.5 and smaller error for extreme values. The histograms also show that less belief values
are extreme as the noise is increased, so all these factors account for an overall decrease in
accuracy as the channel noise increases.
Grid networks results are given in Figure 3.8. Contrary to the case of coding networks,
the histograms show higher concentration around 0.5. The absolute error peaks closer to 0
and maintains a plateau, as evidence is increased, indicating less accuracy for IBP.

Random networks results are given in Figure 3.9. The histograms are similar to those
of the grids, but the absolute error has a tendency to decrease towards 0.5 as evidence
increases. This may be due to the fact that the total number of nodes is smaller (80) than

46

Table 3.1: Graph coloring type problems: 20 root variables

Absolute error

ε H=40, w*=5 H=60, w*=7 H=80, w*=9
0.0 0.4373 0.4501 0.4115

IBP 0.1 0.3683 0.4497 0.3869
0.2 0.2288 0.4258 0.3832
0.0 0.1800 0.1800 0.1533

IJGP(2) 0.1 0.3043 0.3694 0.3189
0.2 0.1591 0.3407 0.3022
0.0 0.0000 0.0000 0.0000

IJGP(4) 0.1 0.1211 0.0266 0.0133
0.2 0.0528 0.1370 0.0916
0.0 0.0000 0.0000 0.0000

IJGP(6) 0.1 0.0043 0.0000 0.0132
0.2 0.0123 0.0616 0.0256

for grids (100), and the evidence can in many cases make the problem easier for IBP by
breaking many of the loops (in the case of grids evidence has less impact in breaking the
loops).
CPCS networks are belief networks for medicine, derived from the Computer based Pa-
tient Case Simulation system. We tested on two networks, with 54 and 360 variables. The
histograms show opposing trends in the distribution of beliefs. Although irregular, the ab-
solute error tends to increase towards 0.5 for cpcs54. For cpcs360 it is smaller around 0
and 0.5.

We note that for all these types of networks, IBP has very small absolute error for values
close to zero, so it is able to infer them correctly.

3.1.4.2 Graph-coloring type problems

We also tested the behavior of IBP and IJGP on a special class of problems which were
designed to be hard for belief propagation algorithms in general, based on the fact that
arc-consistency is poor on the flat network.

We consider a graph coloring problem which is a generalization of example 3.1.6, with
N = 20 X nodes, rather than 3, and a variable number of H nodes defining the density of
the constraint graph. X variables are 3-valued root nodes, H variables are bi-valued and
each has two parents which are X variables, with the CPTs defined like in example 3.1.6.
Each H CPT actually models a binary constraint between two X nodes. All H nodes are
assigned value 1. The flat network of this kind of problems has only one solution, where
every X has value 3. In our experiments we also added noise to the H CPTs, making
probabilities ε and 1− ε rather than 0 and 1.

The results are given in Table 3.1. We varied parameters along two directions. One
was increasing the number of H nodes, corresponding to higher densities of the constraint
network (the average induced width w∗ is reported for each column). The other was in-
creasing the noise parameter ε. We averaged over 50 instances for each combination of

47

these parameters. In each instance, the priors for nodes X were random uniform, and the
parents for each node H were chosen randomly. We report the absolute error, averaged
over all values, all variables and all instances. We should note that these are fairly small
size networks (w*=5-9), yet they prove to be very hard for IBP and IJGP, because the flat
network is hard for arc-consistency. It is interesting to note that even when ε is not extreme
anymore (0.2) the performance is still poor, because the structure of the network is hard
for arc-consistency. IJGP with higher i-bounds is good for ε = 0 because it is able to infer
some zeros in the bigger clusters, and these propagate in the network and in turn infer more
zeros.

3.1.5 Discussion

The work presented in this section investigates the behavior of belief propagation algo-
rithms by making analogies to well known and understood algorithms from constraint net-
works. By a simple transformation, called flattening of the Bayesian network, IBP (as
well as any generalized belief propagation algorithm) can be shown to work similar to dis-
tributed relational arc-consistency relative to zero tuples generation. In particular we show
that IBP’s inference of zero beliefs converges and is sound.

Theorem 3.1.5 provides a justification for applying the belief propagation algorithm
iteratively. We know that arc-consistency algorithms improve with iteration, generating
the largest arc-consistent network that is equivalent to the original network. Therefore
by applying IBP iteratively the set of zero tuples concluded grows monotonically until
convergence.

While the theoretical results presented here are straightforward, they help identify new
classes of problems that are easy or hard for IBP. Non-ergodic belief networks with no
evidence, max-closed or implicational belief networks are expected to be cases of strong
inference power for IBP. Based on empirical work, we observe that good performance
of IBP and many small beliefs indicate that the flat network is likely to be easy for arc-
consistency. On the other hand, when we generated hard networks for arc-consistency, IBP
was very poor in spite of the presence of many zero beliefs. We believe that the success
of IBP for coding networks can be explained by the presence of many extreme beliefs on
one hand, and by an easy-for-arc-consistency flat network on the other. We plan to conduct
more experiments on coding networks and study the influence of the good accuracy of IBP
for extreme beliefs combined with the ε-cutset effect described in [Bidyuk & Dechter2001].

48

3.2 Partitioning Heuristics for Mini-Buckets

This section describes one of the issues we are currently investigating. The partitioning
problem is relevant to many of the algorithms that we develop, and improving its accuracy
would impact other areas of our research. We present here some preliminary results which
may help suggest how much computational effort is worth investing in the partitioning step.

Both Mini-Buckets and Mini-Clustering algorithms rely on a procedure which is ap-
plied every time the number of variables to be processed in a bucket (cluster) exceeds the
i-bound. This procedure takes the functions that are to be processed and partitions them
into mini-buckets (or mini-clusters) such that the number of variables in each one of them
does not exceed the i-bound. Although we presented the Mini-Clustering algorithm in this
report, we will refer the relevant entities by bucket and mini-bucket from now on.

Obviously, in most cases the partitioning can be performed in many different ways,
each one having a different impact on the overall accuracy of the algorithm. The problem
we would like to address here is precisely the partitioning step. We will investigate the
problem by describing it in isolation, although the benefit can only be fully understood
when we plug it in the main algorithm and see the overall result.

In short, we want to find the best partitioning strategy for buckets into mini-buckets
containing no more than i variables, such that the distance between the exact function
to be computed and the approximate one which is computed is minimized. Formally, a
bucket is a collection of functions F = {f1, . . . , fk}. The exact Bucket Elimination al-
gorithm computes the message hexact =

∑

elim

∏

f∈F f , where elim are the variables to be
eliminated. The Mini-Bucket algorithm partitions F into mini-buckets mb(1), . . . , mb(p),
each containing at most i variables and computes a collection of messages hj

approx =
∑

elim

∏

f∈mb(j) f, j = 1, . . . , p. This collection of messages amounts to an approximate
message happrox =

∏p
j=1 h

j
approx. If D is a distance measure, the optimization problem we

want to solve is to minimizeD(happrox, hexact) over all possible partitionings. The distance
D can have different forms. Some of the most relevant ones for belief updating are the
Kullback-Leibler (KL) distance and the absolute error.

We should note that finding the optimal partitioning with respect toD is a hard problem.
However, expressing what we need to optimize suggests a number of heuristic approaches
which can help guide the partitioning procedure. The time cost of such heuristic schemes
is crucial, but we are right now interested to determine how much they gain in accuracy
compared to the greedy procedure presented below.

The initial version of Mini-Bucket uses a greedy procedure for partitioning, described
in Figure 3.11. Procedure Greedy Partitioning simply tries to create as few mini-buckets
as possible. It sorts the functions by the size of their scopes, creates a mini-bucket for the
largest function, and then places the other functions in already existing mini-buckets if the
scope does not exceed the i-bound. If a function can be placed in more than one mini-
bucket, the one with most functions is preferred. This is based on empirical observations
which tend to show that unbalanced partitions yield better accuracy. If no existing mini-

49

bucket can accommodate the new function, a new mini-bucket is created.

Procedure Greedy Partitioning

Input: {h1, . . . , hk}, i-bound;
Output: A partitioning mb(1), . . . ,mb(p) such that everymb(i) contains at most i-bound
variables;
1. Sort functions by the size of their scopes. Let {h1, . . . , hk} be the sorted array of
functions, with h1 having the largest scope.
2. for i = 1 to k

if hi can be placed in existing mini-buckets without making the scope
greater than the i-bound, place it in the one with the most functions.

else create a new mini-bucket an place hi in it.
endfor

Figure 3.11: Greedy Partitioning

Proposition 8 The time complexity of the Greedy Partitioning is O(k2), where k is the
number of functions in the bucket.

Proof. Step 1 takes O(k log(k)), and step 2 takes O(k2). 2

This greedy procedure has the advantage of being very simple and adding very little
overhead. It is important nevertheless to investigate whether more elaborate partitioning
schemes could improve the accuracy at the expense of time. The greedy partitioning only
takes into consideration the size of the tables (functions) that need to be processed, but
does not use the contents of these tables. Therefore our goal is to improve the partitioning
by using the contents of the tables. We chose the distance measure D to be the Kullback-
Leibler (KL) distance.

The procedure Heuristic KL Partitioning, given in Figure 3.12, starts by placing each
function in a mini-bucket of its own, and merging them by subsumption of their scopes.
Then it combines two mini-buckets at a time, until no more mini-buckets can be merged.
The procedure runs a while loop and decides at each step which is the best pair of mini-
buckets that can be merged. The decision is taken by looking at this subpoblem in isolation,
and studying the error in terms of KL distance between sending separate messages from
each mini-bucket, and grouping them and sending a combined message. The function
fapprox is the result of separate processing of the mini-buckets, and fexact is the result of
combining them and sending the exact message. Intuitively, if the error (KL distance)
between fapprox and fexact is small, then the algorithm should give lower priority to merging
the two minibuckets. If the error is big however, the algorithm should try to combine them.

The error measure that we use is average KL distance. That is fapprox ·
log(fapprox/fexact) averaged over all the the instantiations of the variables in the scope.

50

Procedure Heuristic KL Partitioning

Input: {h1, . . . , hk}, i-bound;
Output: A partitioning mb(1), . . . ,mb(p) such that everymb(i) contains at most i-bound
variables;
1. Initially, place each function in one mini-bucket.
2. Merge mini-buckets by subsumption of their scopes.
3. while (there exist mini-buckets that can be combined)

for (every mb(i), mb(j) that can be combined, i 6= j)

Compute :

{

fapprox = (
∑

elim

∏

h′∈mb(i) h
′)× (

∑

elim

∏

h′′∈mb(j) h
′′)

fexact = (
∑

elim

∏

h∈mb(i)∪mb(j) h)

score[i, j] = AverageKL(fapprox, fexact).
endfor
Combine mb(i), mb(j) for which score[i, j] is largest.

endwhile

Figure 3.12: Heuristic KL Partitioning

This allows us to make a reasonable comparison between KL distances taken over pairs of
tables of different sizes.

Proposition 9 The time complexity of the Heuristic KL Partitioning is O(k3 · di) where k
is the number of functions in the bucket, d is the maximum domain size of the variables in
the bucket and i is the i-bound.

Proof. Computing fapprox and fexact and the KL distance amounts to O(di), the for
loop can be executed at most k2 times, and the while loop at most k times. 2

3.2.1 Empirical results

We investigated empirically the performance of Mini-Clustering when using the two dif-
ferent partitioning schemes. The measure of accuracy was KL distance with respect to the
exact, for each of the schemes. More precisely, if Pexact is the exact posterior probability
distribution and Papprox is the approximate one (greedy or heuristic), the KL distance is
Papprox(X = a) · log(Papprox(X = a)/Pexact(X = a)) averaged over all values a for each
variable, all variables X and all instances of the problems. We also used absolute error in-
stead of KL distance in the heuristic procedure, and the results are very strongly correlated,
yielding almost the same accuracy, and we do not report them here.

51

We tried different types of networks: CPCS, random uniform, random noisy-or, grids.
The results are very similar for most of them, and we only include here random networks
and CPCS.

Random80, 10 evidence

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

2 3 4 5 6 7 8 9 10

i-bound

K
L

 d
is

ta
n

ce

Greedy KL

Heuristic KL

Random80, 20 evidence

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

2 3 4 5 6 7 8 9 10

i-bound

K
L

 d
is

ta
n

ce

Greedy KL

Heuristic KL

Random80, 50 instances

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

i-bound

T
im

e
(s

ec
o

n
d

s)

Greedy

Heuristic

Exact

Figure 3.13: Random80, Heuristic KL vs. Greedy Partitioning

3.2.1.0.1 Random networks We generated networks with 80 variables, having induced
width w∗ = 15. We ran 50 instances for different values of evidence (0, 10, 20). Figure
3.13 shows the results for 10 and 20 evidence nodes. The heuristic partitioning is only
better for small i-bounds, and this is a behavior we observed for all types of networks in
general. The third graph in the figure shows time: the heuristic partitioning is slower, and
takes more time even than the exact for i-bounds greater than 8.

CPCS360, 10 evidence

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

2 3 4 5 6 7 8 9 10

i-bound

K
L

 d
is

ta
n

ce

Greedy KL

Heuristic KL

Time

0

20

40

60

80

100

120

140

160

180

200

2 3 4 5 6 7 8 9 10

i-bound

T
im

e
(s

ec
o

n
d

s)

Greedy

Heuristic

Time

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8 9 10

i-bound

T
im

e(
se

co
n

d
s)

Greedy

Heuristic

Exact

Figure 3.14: CPCS360, Heuristic KL vs. Greedy Partitioning

3.2.1.0.2 CPCS networks We show results for CPCS360 network, for 10 instances and
10 evidence in Figure 3.14. The induced width of the graph is w∗ = 20 Again, the heuristic
partitioning is slightly better for smaller values of the i-bound. The first time diagram
shows, as expected, that the heuristic partitioning is slower than the greedy (by a cubic
factor in the number of functions in a cluster). However, since this is a large network, the
time taken by the heuristic is still small compared to the exact algorithm, even for i = 10,
as can be seen in the second time graph.

52

3.2.2 Summary and future work

So far our preliminary results do not indicate that a more computationally intensive heuris-
tic for partitioning improves the accuracy in a significant way. However we must experi-
ment with networks that are less regular in order to determine the value of this method or
any related one in terms of accuracy. If we will find that a more computationally intensive
partitioning stategy yields substantial improvement in approximation we will then investi-
gate ways of reducing the time overhead. The current approach does not look cost-effective
at all based on our preliminary results. Based on our results so far, we can see that a con-
clusion of this work may either be a better partitioning approach, or a conclusive empirical
demonstration that more computation in making the partitioning more effective is not the
right approach. In fact, increasing the i-bound is likely to be a better way of investing any
additional time or space.

53

3.3 Influence Diagrams and Planning

Influence diagrams [Howard & Matheson1984] provide a formalism for solving multiple
decision problems in Bayesian theory. They extend belief networks by adding decision
variables and reward functional components. An influence diagram is an acyclic graph
with: random nodes, decision nodes and reward nodes. Formally

DEFINITION 3.3.1 (influence diagram) An influence diagram is a quadruple denoted by
ID = (X,D, P,R), where X = {X1, . . . , Xn} is a set of chance variables on multivalued
domains, D = {D1, . . . , Dm} is a set of decision (action) nodes, P = {P1, . . . , Pn} is a
set of conditional probability tables (each Pi corresponding to Xi) and R = {r1, . . . , rj}
is a set of rewards, each ri being defined on a scope of chance and decision nodes.

The main task in influence diagrams is to find the decision rules that maximize the
total reward. In general, influence diagrams are required to satisfy a number of constraints.
There must be a directed path that contains all the decision variables. Also, most variants
assume a property of no-forgetting, in the sense that every decision node should depend on
all the previous decision nodes. It is also possible not to enforce these requirements, and
we give an example in which we do not insist upon no-forgetting.

Example 3.3.1 (oil wildcatter) The graph in Figure 3.15 illustrates the famous problem
of the oil wildcatter, adapted from [N. L. Zhang & Poole1994]. The chance variables are
round, the decision variables are squared and the reward ones are diamonds. The graph
shows that the decision to Test is made based on no information. The Test results depend
on this decision and on the chance variable Seismic structure, which in turn depends on
the unobservable variable Oil underground. The decision to Drill depends on the previous
decision to Test and on the Test result. The decision on Oil sale policy is to be made con-
sidering the Market information and the amount of Oil produced. Other dependencies and
independencies can be read from the graph in the same manner. There are four diamond
nodes, the cost or reward nodes and the problem is to find the decisions that maximize the
total reward.

Influence diagrams are also a suitable framework for expressing planning problems
under uncertainty, if they are formulated as Markov Decision Processes (MDP). Influence
diagrams subsume finite horizon MDPs and partially observable MDPs (POMDPs).

There are many variants of variable elimination algorithms for influence di-
agrams [Shachter1986, Shachter1988, Shachter1990, Tatman & Shachter1990,
Shachter & Peot1992, Shenoy1992, Zhang1998, F. Jensen & Dittmer1994]. A bucket
elimination framework which allows a complexity characterization based on graph param-
eters and an improvement over previous algorithms is presented in [Dechter2000b]. An
initial investigation of anytime schemes for influence diagrams inspired by the mini-bucket
idea is given in [Dechter2000a].

54

Test

Drill Oil sale
policy

Test
result

Seismic
structure

Oil
underground

Oil
produced

Test
cost

Drill
cost

Sales
cost

Oil
sales

Market
information

Figure 3.15: An influence diagram: the oil wildcatter problem

We plan to adapt and extend our algorithms for Bayesian networks to influence dia-
grams, and to investigate other types of possible hybrid algorithms which would be more
suitable. An influence diagram without decision and reward nodes reduces to a Bayesian
network. Therefore, influence diagrams provide a richer formalism and the extension of
our algorithms is not necessarily an easy task. For example, for an iterative algorithm
the semantics of the messages between different types of nodes (chance, decision, reward)
needs to be addressed, as they are different than in Bayesian networks. Nevertheless, itera-
tive algorithms similar to IBP have the advantage of being very fast and may provide good
approximations for large networks.

Acknowledgments

I would like to thank my advisor, Professor Rina Dechter, for her guidance and support
in doing this work. The ideas presented in section 3.2 emerged from discussions with
Professor Sandy Irani. The experiments were done using the REES Toolkit developed by
Radu Marinescu, with the base engine written by Kalev Kask. This work was supported in
part by the NSF grant IIS-0086529 and MURI ONR award N00014-00-1-0617.

55

Appendix A

Tree Approximation for Belief Updating

Robert Mateescu, Rina Dechter and Kalev Kask

In Proceedings of The Eighteenth National Conference on Artificial Intelligence (AAAI-02),
Edmonton, Canada.

56

Appendix B

Iterative Join-Graph Propagation

Rina Dechter, Kalev Kask and Robert Mateescu

In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI-
02), Edmonton, Canada.

64

Appendix C

A Simple Insight into Iterative Belief
Propagation’s Success

Rina Dechter and Robert Mateescu

In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-
03), Acapulco, Mexico, forthcoming.

74

Bibliography

[Arnborg1985] Arnborg, S. A. 1985. Efficient algorithms for combinatorial problems on
graphs with bounded decomposability - a survey. BIT 25:2–23.

[Bidyuk & Dechter2001] Bidyuk, B., and Dechter, R. 2001. The epsilon-cuset effect in
bayesian networks, http://www.ics.uci.edu/˜csp/r97a.pdf. Technical report, UCI.

[Cheng & Druzdzel2000] Cheng, J., and Druzdzel, M. 2000. AIS-BN: An adaptive impor-
tance sampling algorithm for evidential reasoning in large bayesian networks. Journal
of Artificial Intelligence Research 13:155–188.

[Cooper1990] Cooper, G. 1990. The computational complexity of probabistic inferences.
Artificial Intelligence 393–405.

[Dagum & Luby1993] Dagum, P., and Luby, M. 1993. Approximating probabilistic in-
ference in bayesian belief networks is np-hard. In National Conference on Artificial
Intelligence (AAAI-93).

[Dechter & Mateescu2003] Dechter, R., and Mateescu, R. 2003. A simple insight into
iterative belief propagation’s success. In Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence (UAI’03). To appear.

[Dechter & Pearl1987] Dechter, R., and Pearl, J. 1987. Network-based heuristics for con-
straint satisfaction problems. Artificial Intelligence 34:1–38.

[Dechter & Pearl1989] Dechter, R., and Pearl, J. 1989. Tree clustering for constraint
networks. Artificial Intelligence 353–366.

[Dechter & Pearl1991] Dechter, R., and Pearl, J. 1991. Directed constraint networks: A
relational framework for causal reasoning. In IJCAI-91, 1164–1170.

[Dechter & Rish1997] Dechter, R., and Rish, I. 1997. A scheme for approximating prob-
abilistic inference. In Proceedings of Uncertainty in Artificial Intelligence (UAI’97),
132–141.

84

[Dechter, Kask, & Larrosa2001] Dechter, R.; Kask, K.; and Larrosa, J. 2001. A general
scheme for multiple lower bound computation in constraint optimization. Principles
and Practice of Constraint Programming (CP2000).

[Dechter, Mateescu, & Kask2002] Dechter, R.; Mateescu, R.; and Kask, K. 2002. Iterative
join-graph propagation. In Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence (UAI’02), 128–136.

[Dechter1992] Dechter, R. 1992. Constraint networks. Encyclopedia of Artificial Intelli-
gence 276–285.

[Dechter1996] Dechter, R. 1996. Bucket elimination: A unifying framework for prob-
abilistic inference algorithms. In Uncertainty in Artificial Intelligence (UAI’96), 211–
219.

[Dechter2000a] Dechter, R. 2000a. An anytime approximation for optimizing policies
under uncertainty. In Workshop of Decision Theoretic Planning in (AIPS-2000).

[Dechter2000b] Dechter, R. 2000b. A new perspective on algorithms for optimizing poli-
cies under uncertainty. In International Conference on Artificial Intelligence Planning
Systems (AIPS-2000), 72–81.

[F. Jensen & Dittmer1994] F. Jensen, F. J., and Dittmer, S. 1994. From influence diagrams
to junction trees. In Tenth Conference on Uncertainty in Artificial Intelligence, 367–363.

[Gottlob, Leone, & Scarcello2000] Gottlob, G.; Leone, N.; and Scarcello, F. 2000. A
comparison of structural CSP decomposition methods. Artificial Intelligence 243–282.

[Howard & Matheson1984] Howard, R. A., and Matheson, J. E. 1984. Influence diagrams.

[Jeavons & Cooper1996] Jeavons, P. G., and Cooper, M. C. 1996. Tractable constraints
on ordered domains. Artificial Intelligence 79:327–339.

[Jensen, Lauritzen, & Olesen1990] Jensen, F.; Lauritzen, S.; and Olesen, K. 1990.
Bayesian updating in causal probabilistic networks by local computation. Computa-
tional Statistics Quarterly 4:269–282.

[Kask2001] Kask, K. 2001. Approximation algorithms for graphical models. Technical
report, Ph.D. thesis, Information and Computer Science, University of California, Irvine,
California.

[Kirousis1993] Kirousis, L. M. 1993. Fast parallel constraint satisfaction. Artificial Intel-
ligence 64:147–160.

85

[Larrosa, Kask, & Dechter2001] Larrosa, J.; Kask, K.; and Dechter, R. 2001. Up and
down mini-bucket: a scheme for approximating combinatorial optimization tasks. Sub-
mitted.

[Lauritzen & Spiegelhalter1988] Lauritzen, S., and Spiegelhalter, D. 1988. Local compu-
tation with probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B 50(2):157–224.

[Mackworth1977] Mackworth, A. K. 1977. Consistency in networks of relations. Artificial
Intelligence 8(1):99–118.

[Mézard, Parisi, & Zecchina2002] Mézard, M.; Parisi, G.; and Zecchina, R. 2002. Ana-
lytic and algorithmic solution of random satisfiability problems. Science 297:812–815.

[Maier1983] Maier, D. 1983. The theory of relational databases. In Computer Science
Press, Rockville, MD.

[Mateescu, Dechter, & Kask2002] Mateescu, R.; Dechter, R.; and Kask, K. 2002. Tree ap-
proximation for belief updating. In Proceedings of The Eighteenth National Conference
on Artificial Intelligence (AAAI’02), 553–559.

[N. L. Zhang & Poole1994] N. L. Zhang, R. Q., and Poole, D. 1994. A computational
theory of decision networks. International Journal of Approximate Reasoning 83–158.

[Pearl1988] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann.

[R.J. McEliece & Cheng1997] R.J. McEliece, D. M., and Cheng, J.-F. 1997. Turbo de-
coding as an instance of pearl’s belief propagation algorithm. IEEE J. Selected Areas in
Communication.

[Roth1996] Roth, D. 1996. On the hardness of approximate reasoning. 82(1-2):273–302.

[Shachter & Peot1992] Shachter, R., and Peot, M. 1992. Decision making using prob-
abilistic inference methods. In Proceedings of Uncertainty in Artificial Intelligence
(UAI92), 276–283.

[Shachter1986] Shachter, R. 1986. Evaluating influence diagrams. Operations Research
34.

[Shachter1988] Shachter, R. 1988. Probabilistic inference and influence diagrams. Oper-
ations Research 36.

[Shachter1990] Shachter, R. D. 1990. An ordered examination of influence diagrams.
Networks 20:535–563.

86

[Shafer & Shenoy1990] Shafer, G. R., and Shenoy, P. 1990. Probability propagation.
Annals of Mathematics and Artificial Intelligence 2:327–352.

[Shenoy1992] Shenoy, P. 1992. Valuation-based systems for bayesian decision analysis.
Operations Research 40:463–484.

[Tatman & Shachter1990] Tatman, J., and Shachter, R. 1990. Dynamic programming and
influence diagrams. IEEE Transactions on Systems, Man, and Cybernetics 365–379.

[Welling & Teh2001] Welling, M., and Teh, Y. W. 2001. Belief optimization for binary
networks: a stable alternative to loopy belief propagation. In UAI2001.

[Yedidia, Freeman, & Weiss2001] Yedidia, J. S.; Freeman, W.; and Weiss, Y. 2001. Gen-
eralized belief propagation. In ANIPS-13.

[Zhang1998] Zhang, N. L. 1998. Probabilistic inference in influence diagrams. Computa-
tional Intelligence 475–497.

87

