
Unifying Cluster-Tree Decompositions

for Reasoning in Graphical models∗

Kalev Kask∗, Rina Dechter∗, Javier Larrosa∗∗ and Avi Dechter∗∗∗

∗Bren School of Information and Computer Science,
University of California, Irvine, CA 92697-3425, USA

∗∗ Universitat Politcnica de Catalunya (UPC), Barcelona, Spain
∗∗∗ Business school, California State University, Northridge, CA, USA

April 7, 2005

Abstract

The paper provides a unifying perspective of tree-decomposition
algorithms appearing in various automated reasoning areas such as
join-tree clustering for constraint-satisfaction and the clique-tree al-
gorithm for probabilistic reasoning. Within this framework, we in-
troduce a new algorithm, called bucket-tree elimination (BTE), that
extends Bucket Elimination (BE) to trees, and show that it can pro-
vide a speed-up of n over BE for various reasoning tasks. Time-space
tradeoffs of tree-decomposition processing are analyzed.

1 Introduction

This paper provides a unifying perspective of tree-decomposition algorithms
that appear in a variety of automated reasoning areas. Its main contribution

∗This work was supported in part by NSF grant IIS-0086529 and by MURI ONR award
N0014-00-1-0617

1

is bringing together, within a single coherent framework, seemingly different
approaches that have been developed over the years within a number of
different communities 1.

The idea of embedding a database that consists of a collection of functions
or relations in a tree structure and, subsequently, processing it effectively by
a tree-processing algorithm, has been discovered and rediscovered in dif-
ferent contexts. Database researchers observed, almost three decades ago,
that relational database schemes that constitute join-trees enable efficient
query processing [22]. In fact, many of the important properties of tree-
based processing were discussed and proved within the database community
[2, 32]. Join tree transformations and their associated variable elimination
algorithms were proposed for the efficient solution of constraints satisfaction
problems [9] and their role was re-formalized and extended more recently
in [14]. In the area of belief networks, junction-tree clustering emerged as
the leading strategy for performing probabilistic inference [21]. Variants of
this approach were subsequently offered as a means to better address time-
space considerations [15, 28, 27]. Tree-decomposition techniques were also
introduced in the context of machine learning [12]. Finally, the notion of
tree-width, as a means for capturing the decomposition of a hyper-graph
into a hyper-tree, is well known in the area of theoretical computer science
for quite sometime [25, 1].

The aim of this paper is to present the central concepts and properties of
cluster-tree decomposition techniques by way of a single, unified, framework
for the purpose of making it more accessible to researchers in diverse areas
and facilitating the transfer of this methodology among these areas. Specifi-
cally, we demonstrate that join-tree clustering, junction-tree decomposition,
and hyper-tree decomposition that, as mentioned above, were developed in
different contexts and for different applications, are all instances of our uni-
fied scheme. Also, as we show, variable elimination algorithms can be viewed
as processing specific cluster-tree decompositions.

Our work is related in aim and content to the earlier work of Shenoy and
Shafer [4, 31], who presented a unifying, axiomatic, approach for reasoning
tasks. Several of the technical results described in this paper have parallels
in these earlier papers. Our work expands on this work in several ways.

1Earlier versions of some parts of this paper appear in [6] Chapter 9 (restricted to
constraint processing only) and in [19, 24].

2

First, we use a graph-based language, connecting our approach explicitly to
graphical models and using graph-based parameters for capturing algorith-
mic principles. In particular, we provide graph-based complexity analysis
that focuses on the time vs. space issue. Second, we emphasize the dis-
tinction between the generation of a structural tree-decomposition and the
tree-processing algorithms that are enabled by the decomposition. Third, we
show that variable elimination algorithms can be viewed as a specific tree-
processing schemes that can be generalized to full processing along special
tree-decompositions called bucket trees. Finally, we note how different tree-
decompositions of a given problem yield a spectrum of time-space complexity
characteristics using superbuckets.

Following a review of background concepts and definitions in Section 2,
Section 3 introduces the concept of reasoning problems over graphical mod-
els. In Section 4 we introduce the concept of cluster-tree decompositions,
present two algorithms for processing tree-decompositions and analyze their
time-space complexities. Section 5 introduces and analyzes the bucket-tree
elimination algorithm, and Section 5.4 briefly presents the superbuckets, a
general method that governs a transition between tree-decompositions and
permits a corresponding trade-off between time and space. Section 6 re-
views some existing decomposition methods and places them in the context
of cluster-tree decomposition and related work. In Section 7 we provide con-
cluding remarks.

2 Preliminaries

Notations: A reasoning problem is defined in terms of a set of variables
that take their values from finite domains and a set of functions defined over
these variables. We denote variables or sets of variables by uppercase letters
(e.g., X, Y, Z, S) and values of variables by lower case letters (e.g., x, y, z, s).
An assignment (X1 = x1, ..., Xn = xn) can be abbreviated as x = (x1, ..., xn).
For a set of variables S, DS denotes the Cartesian product of the domains of
variables in S. If X = {X1, ..., Xn} and S ⊆ X, xS denotes the projection of
x = (x1, ..., xn) over S. We denote functions by letters f , g, h, etc., and the
scope (set of arguments) of a function f by scope(f).

Definition 2.1 (elimination operators) Given a function h defined over
a subset of variables S, the functions (minX h), (maxX h), and (

∑
X h) where

3

X ∈ S, are defined over U = S − {X} as follows: For every U = u, and de-
noting by (u, x) the extension of tuple u by assignment X = x, (minX h)(u) =
minx h(u, x), (maxX h)(u) = maxx h(u, x), and (

∑
X h)(u) =

∑
x h(u, x). Given

a set of functions h1, ..., hk defined over the sets S1, ..., Sk, the product func-
tion Πjhj and the sum function

∑
j hj are defined over U = ∪jSj such that

for every u ∈ DU , (Πjhj)(u) = Πjhj(uSj
) and (

∑
j hj)(u) =

∑
j hj(uSj

).

Definition 2.2 (graph concepts) A directed graph is a pair G = {V, E},
where V = {V1, ..., Vn} is a set of vertices and E = {(Vi, Vj)|Vi, Vj ∈ V } is
the set of edges (arcs). If (Vi, Vj) ∈ E, we say that Vi points to Vj. The
degree of a variable is the number of arcs incident to it. For each variable
Vi, the set of parent vertices pa(Vi) or pai, is the set of variables pointing to
Vi in G, while the set of child vertices of Vi, denoted ch(Vi) or chi, comprises
the variables that Vi points to. The family of Vi, Fi, consists of Vi and its
parent variables. A directed graph is acyclic if it has no directed cycles.

Definition 2.3 (hyper-graph) A hyper-graph is a pair H = (V, S)
where S = {S1, ..., St} is a set of subsets of V , called hyper-edges.

Definition 2.4 (primal graph, dual graph) The primal graph of a hyper-
graph H = (V, S) is an undirected graph G = (V,E) such that there is an edge
(u, v) ∈ E for any two vertices u, v ∈ V that appear in the same hyper-edge
(namely, there exists Si, s.t., u, v ∈ Si). The dual graph of a hyper-graph
H = (V, S) is an undirected graph G = (S,E) that has a vertex for each
hyper-edge, and there is an edge (Si, Sj) ∈ E when the corresponding hyper-
edges share a vertex (Si ∩ Sj 6= ∅).

Definition 2.5 (hyper-tree) A hyper-graph is a hyper-tree, also called
acyclic hyper-graph if and only if its dual graph has an edge subgraph (one
that has the same set of vertices as the dual graph, but a subset of the edges)
that is a tree and that satisfies the connectedness property, namely all the
nodes in the dual graph that contain a common variable, form a connected
subgraph (see also definition in Section 4).

Definition 2.6 (induced-width) An ordered graph is a pair (G, d) de-
noted Gd where G is an undirected graph, and d = (X1, ..., Xn) is an ordering
of the vertices. The width of a vertex in an ordered graph is the number of its
earlier neighbors. The width of an ordered graph, w(Gd), is the maximum

4

width of all its vertices. The induced width of an ordered graph, w∗(Gd),
is the width of the induced ordered graph, denoted G∗

d, obtained by processing
the vertices recursively, from last to first; when vertex X is processed, all its
earlier neighbors are connected. The induced width of a graph, w∗(G), is the
minimal induced width over all its orderings [9].

3 Reasoning Tasks over Graphical Models

A graphical model is defined by a set of real-valued functions F over a set
of variables X, conveying probabilistic and deterministic information, whose
structure can be captured by a graph.

Definition 3.1 A graphical model R is a 4-tuple R =< X,D, F,
⊗

,>
where:

1. X = {X1, . . . , Xn} is a set of variables.

2. D = {D1, . . . , Dn} is a set of finite domains.

3. F = {f1, . . . , fr} is a set of real-valued functions over subsets of X.

4.
⊗

i fi ∈ {∏i fi,
∑

i fi, ./i fi} is a combination operator. The scope of
function fi, denoted scope(fi) ⊆ X, is the set of arguments of fi.

The graphical model represents the combination of all its functions or rela-
tions, namely the set

⊗r
i=1 fi.

Definition 3.2 (cost of a partial assignment) The cost of a partial as-
signment x̄ = (〈X1, x1〉, . . . , 〈Xi, xi〉) in a graphical model R =< X,D,
F,

⊗
,> is the combination of all the functions whose scopes are included

in the partial assignment, evaluated at the assigned values. Namely, c(x̄) =⊗
f |scope(f)⊆{X1,...Xi} f(x̄[scope(f)]).

There are various queries/tasks that can be posed over graphical models.
We refer to them all as reasoning problems. We need one more functional
operator, marginalization, to express most of the common queries.

5

Definition 3.3 (A reasoning problem) A reasoning problem over a
graphical model is defined by a marginalization operator and a set of vari-
able subsets. It is therefore a triplet P = (R,⇓Y , {Z1, . . . , Zt}) where R =
〈X,D,F,

⊗〉 is a graphical model and Z = {Z1, . . . , Zt} is a set of subsets

of variables of X. ⇓Y f ∈ { max
S−Y

f, min
S−Y

f, Π
S−Y

f,
∑

S−Y
f}, is a marginalization

operator, where S is the scope of function f and Y ⊆ X. The reasoning
problem is to compute:

⇓Z1

r⊗

i=1

fi, . . . ,⇓Zt

r⊗

i=1

fi

For optimization tasks we have Z = {Z1}, Z1 = ∅ and S = X. Often
we also seek an assignment to all the variables that optimizes (maximizes
or minimizes) the combined cost function f . Namely, we need to find x =
(x1, ..., xn) such that f(x) =⇓∅ ⊗r

i=1 fi, where ⇓∈ {min,max}.
For convenience sake we will sometime combine the reasoning problem

with its graphical model. In that case a reasoning problem P denotes a
six-tuple P =< X,D, F,

⊗
, ⇓Y , {Z1, ..., Zt} >.

We assume that functions are expressed in tabular form, having an entry
for every combination of values from the domains of their variables. There-
fore, the specification of such functions is exponential in their scopes (the
base of the exponent is the maximum domain size). Relations, or clauses,
can be expressed as functions that associate a value of ”0” or ”1” with each
tuple, depending on whether or not the tuple is in the relation (or satisfies
a clause). The combination operator takes a set of functions and generates
a new function. Note that

∏
i stands for a product when it is a combina-

tion operator and Πi for a projection when it is a marginalization operator.
The operators are defined explicitly as a list of possible specific operators.
However, they can be defined axiomatically, as we discuss later.

Definition 3.4 The hyper-graph of a graphical model has the vari-
ables as its vertices and the scopes of functions as its hyper-edges. The pri-
mal graph of a graphical model is the primal graph of the problem’s
hyper-graph. Namely, the variables are the vertices and any two variables
that belong to a function’s scope are connected by an edge.

We next elaborate on the special cases of reasoning tasks defined over
constraint networks and belief networks.

6

3.1 Constraint Networks

Constraint Satisfaction [6] is a framework for formulating real-world prob-
lems, such as scheduling, planning, etc., as a set of constraints between vari-
ables. For example, one approach for formulating a scheduling problem as
a constraint problem is to create a variable for each resource and time slice.
Values of variables would be tasks that need to be scheduled. Assigning a
task to a particular variable (corresponding to a resource at some time slice)
means that this resource starts executing the given task at the specified time.
Various constraints (such as that a given task takes a certain amount of time
to execute, or that a task can be executed at most once) can be modeled as
constraints between variables.

The Constraint Satisfaction problem is to find an assignment of values
to variables that does not violate any constraint, or else to conclude that
the problem is inconsistent. Such problems are graphically represented by
vertices corresponding to variables and edges corresponding to constraints
between variables.

Definition 3.5 (Constraint Networks, Constraint Satisfaction Problems)
A constraint network (CN) is defined by a triplet (X, D, C) where X is
a set of variables X = {X1, ..., Xn} associated with a set of discrete-valued
domains, D = {D1, ..., Dn}, and a set of constraints C = {C1, ..., Cr}. Each
constraint Ci is a pair (Si, Ri), where Ri is a relation Ri ⊆ DSi

defined on
a subset of variables Si ⊆ X called the scope of Ci. The relation denotes
all tuples of DSi

allowed by the constraint. The primal graph of a constraint
network is called a constraint graph. A solution is an assignment of
values to variables x = (x1, ..., xn), xi ∈ Di, such that each constraint is
satisfied, namely ∀ Ci ∈ C xSi

∈ Ri. The Constraint Satisfaction Problem
(CSP) is to determine whether a constraint network has a solution, and if
it does, to find a solution. A binary CSP is one where each constraint in-
volves at most two variables, namely |Si| ≤ 2. Sometimes (e.g., the Max-
CSP problem defined below), we express the relation Ri as the cost function
Ci(Xi1 = xi1 , ..., Xik = xik) = 0 if (xi1 , ..., xik) ∈ Ri, and 1 otherwise.

A constraint satisfaction problem is a reasoning task P = (R, Π, Z = ∅),
where R =< X, D,C, ./> is a constraint network, the combination opera-
tor is the join operator and the marginalization operator is the projection
operator. Namely, the problem is to find ⇓∅ ⊗

i fi = ΠX./ifi.

7

Figure 1: (a) Hyper, (b) Primal, (c) Dual graphs of a CSP.

Example 3.1 Figure 1 depicts the hyper-graph (a), the primal graph (b)
and the dual graph (c) representations of a constraint network with variables
A,B,C, D, E, F and with constraints on the scopes (ABC), (AEF), (CDE)
and (ACE). The specific constraints are irrelevant to the current discussion;
they can be arbitrary relations over domains of {0, 1}, such as C = A ∨ B,
F = A ∨ E, and so on.

Real-world problems are often over-constrained and do not have a so-
lution. In such cases, it is desirable to find an assignment that satisfies a
maximum number of constraints, called a Max-CSP assignment. A Max-
CSP problem as the name suggests is a maximization problem, it can also
be defined as a minimization problem. Instead of maximizing the number
of constraints that are satisfied, we minimize the number of constraints that
are violated.

8

Definition 3.6 (Max-CSP) Given a constraint network, R =< X, D, C, ./>
the Max-CSP task means finding an assignment x0 = (x0

1, .., x
0
n) that mini-

mize the number of violated constraints, namely
∑r

i=1 Ci(x
0
scope(Ci)

) = minx
∑r

i=1 Ci(xscope(Ci)).

A Max-CSP is a reasoning task P =< R,min, Z = ∅ >, where R =<
X, D, F,

∑
> where F is the set of cost functions assigning 0 to all allowed

tuples and 1 to all non-allowed tuples. The combination operator is summa-
tion and the marginalization operator is the minimization operator. Namely,
the task is to find ⇓∅ ⊗

i fi = minX
∑

i fi. It also requires an optimizing
assignment.

3.2 Belief Networks

Belief Networks [23] provide a formalism for reasoning about partial beliefs
under conditions of uncertainty. They are defined by a directed acyclic graph
over vertices representing variables of interest (e.g., the temperature of a
device, the gender of a patient, a feature of an object, the occurrence of an
event). The arcs signify the existence of direct causal influences between
linked variables quantified by conditional probabilities that are attached to
each cluster of parents-child vertices in the network.

Definition 3.7 (Belief Networks) Given a set X = {X1, . . . , Xn} of
variables over multi-valued domains D = {D1, ..., Dn}, a belief network
is a pair (G, P), where G is a directed acyclic graph over X and P = {Pi}
are conditional probability matrices Pi = {P (Xi | pa (Xi)) } associated with
each Xi and its parents. Given a subset of variables S, we will denote by
P (s) the probability P (S = s), where s ∈ DS. A belief network represents a
probability distribution over X, P (x1,, xn) = Πn

i=1P (xi|xpai
). An evidence

set e is an instantiated subset of variables. The primal graph of a belief
network is called a moral graph. It can be obtained by connecting the parents
of each vertex in G and making every directed arc, undirected. Equivalently,
it connects any two variables appearing in the same family.

Definition 3.8 (Belief Updating) Given a belief network and evidence
e, the belief updating task is to compute the posterior marginal probability
of assignment Xi = xi, conditioned on the evidence, namely,

Bel(Xi = xi) = P (Xi = xi|e) = α
∑

{x=(x1,...,xi−1,xi+1,...,xn)}

n∏

k=1

P (xk, e|xpak,Xi=xi
)

9

where α is a normalization constant.

When formulated as a reasoning task, functions in F denote conditional
probability tables and the scopes of these functions are determined by the
directed acyclic graph (DAG): Each function fi ranges over variable Xi and
its parents in the DAG. The combination operator is

⊗
j =

∏
j, the marginal-

ization operator is ⇓Xi
=

∑
X−Xi

, and Zi = {Xi}. Namely, ∀Zi,⇓Zi

⊗
i fi =∑

X−{Xi}
∏

i fi.

Definition 3.9 (Most Probable Explanation) Given a belief network
and evidence e, the most probable explanation (MPE) task is to find
a complete assignment which agrees with the available evidence, and which
has the highest probability among all such assignments, namely, to find an
assignment (xo

1, . . . , x
o
n) such that

P (xo
1, . . . , x

o
n) = P (x1, ..., xn, e) = max(x1,...,xn)

n∏

k=1

P (xk, e|xpak
)

When MPE is formalized as a reasoning task, the combination operator is
multiplication and the marginalization operator is maximization. An MPE
task is to find ⇓∅ ⊗

i fi = maxX
∏

i fi, where X is the set of variables and
fi is the set of conditional probability tables. It also requires an optimizing
assignment.

Example 3.2 Consider a belief network in Figure 2a. It contains variables
A,B,C, D, F,G and functions f(A,B), f(A,C), f(B, C, F), f(A,B,D), f(F,G),
modelling the dependency of the lawn being wet on various other phenom-
ena, such as rain, sprinkler system, etc. All variables, except Season have two
values. The domain of variable Season is {Winter, Spring, Summer, Fall} and
the prior probability associated with Season is P (Season) = {0.25, 0.25, 0.25, 0.25}.
All other variables are associated with a conditional probability. For exam-
ple, P (Rain|Winter) = 0.01, P (Rain|Spring) = 0.10, P (Rain|Summer) =
0.25, P (Rain|Fall) = 0.35; P (Sprinkler|Winter) = P (Sprinkler|Spring) =
0.3, P (Sprinkler|Summer) = P (Sprinkler|Fall) = 0.9; P (Wet|Rain, Sprinkler) =
0.95, P (Wet|Rain,¬Sprinkler) = 0.5, P (Wet|¬Rain, Sprinkler) = 0.75,
P (Wet|¬Rain,¬Sprinkler) = 0.05. It was observed that the lawn is wet
and we want to know what is the probability that it was raining and the
probability that the sprinkler was on. We can compute P (Rain|Wet) = 0.38

10

D

G

A

B C

F

Season

Rain
Automated

Sprinkler

Wet

Manuel
Watering

Slippery

A

B

D

F

C

G

F

A

B

C

G

D

(a) (b) (c)

Figure 2: (a) Belief network P (g, f, d, c, b, a), (b) its moral graph and (c) its
induced graph.

and P (Sprinkler|Wet) = 0.59. Figure 2c gives the induced-graph in (b)
along the ordering d = A,B, C, D, F, G.

4 Cluster-Tree Decomposition

Tree clustering schemes have been widely used for constraint processing,
probabilistic reasoning and for graphical models in general. The most popular
variants are join-tree clustering algorithms, also called junction-trees. The
schemes vary somewhat in their graph definitions as well as in the way tree-
decompositions are processed [22, 10, 21, 15, 14, 29, 30]. However, they all
involve a decomposition of a hyper-graph into a hyper-tree.

To allow a coherent discussion and extension of these methods, we present
a unifying (cluster-)tree-decomposition framework that borrows its notation
from the recent hyper-tree decomposition proposal for constraint satisfaction
presented in [14]. The exposition is declarative, separating the desired target
output from its generative process.

Definition 4.1 Let P =< R ⇓, {Zi} > be a reasoning problem over a
graphical model < X, D, F,

⊗
>. A tree-decomposition for P is a triple

< T, χ, ψ >, where T = (V, E) is a tree and χ and ψ are labelling functions
that associate with each vertex v ∈ V two sets, χ(v) ⊆ X and ψ(v) ⊆ F ,
that satisfy the following conditions:

11

1. For each function fi ∈ F , there is exactly one vertex v ∈ V such that
fi ∈ ψ(v).

2. If fi ∈ ψ(v), then scope(fi) ⊆ χ(v).

3. For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a con-
nected subtree of T . This is also called the running intersection or the
connectedness property.

4. ∀ i Zi ⊆ χ(v) for some v ∈ T .

The ”exactly one” requirement in the first condition of Definition 4.1
is needed to guarantee the correctness of the Cluster-Tree Elimination algo-
rithm we present next for problems like belief updating, or optimization prob-
lems, since each occurrence of each function might change the value of the
combined function. For CSPs (when the combination operator is join), this
requirement may be relaxed to ”at least one”, because adding a constraint to
more than one vertex is safe since this does not eliminate any solutions. In
general, if the combination operator

⊗
is idempotent (f

⊗
(f

⊗
g) = f

⊗
g,

for all f and g), ”exactly one” can be relaxed to ”at least one”.

Definition 4.2 (tree-width, hyper-width, separator) The width (also
called tree-width) of a tree-decomposition < T, χ, ψ > is max

v∈V
|χ(v)|, and its

hyper-width is max
v∈V

|ψ(v)|. Given two adjacent vertices u and v of a tree-
decomposition, a separator of u and v is defined as sep(u, v) = χ(u) ∩ χ(v).

Notice that it may be that sep(u, v) = χ(u) (that is, all variables in
vertex u belong to an adjacent vertex v). In this case the size of the tree-
decomposition can be reduced by merging vertex u into v without increasing
the tree-width of the tree-decomposition. A tree-decomposition is minimal
if sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v).

Example 4.1 Consider the belief network in Figure 2a. Any of the trees
in Figure 3 is a tree-decomposition for this problem where the functions
can be partitioned into clusters that contain their scopes. The labeling χ
are the sets of variables in each node. For example, Figure 3C shows a
cluster-tree decomposition with two vertices, and labelling χ(1) = {G,F}

12

Figure 3: Several tree-decompositions of the same belief network

and χ(2) = {A,B, C, D, F}. Any function with scope {G} must be placed in
vertex 1 because vertex 1 is the only vertex that contains variable G (placing
a function having G in its scope in another vertex will force us to add variable
G to that vertex as well). Any function with scope {A,B,C,D} or its subset
must be placed in vertex 2, and any function with scope {F} can be placed
either in vertex 1 or 2. Note that the trees in Figure 3 are drawn upside-down,
namely, the leaves are at the top and the root is at the bottom.

A tree-decomposition facilitates a solution to an automated reasoning
task. Cluster-tree elimination algorithm for processing a tree-decomposition
is presented as a message-passing algorithm Figure 4. Each vertex of the
tree sends a function or a relation to each of its neighbors. All the functions
in vertex u and all messages received by u from all its neighbors other than
v are combined using the combination operator. The combined function is
projected onto the separator of u and v using the marginalization operator
and the projected function is then sent from u to v. Functions that do not
share variables with the eliminated variables are passed along separately in
the message.

Vertex activation can be asynchronous and convergence is guaranteed. If
processing is performed from leaves to root and back, convergence is guaran-
teed after two passes, where only one message is sent on each edge in each
direction. If the tree contains m edges, then a total of 2m messages will be
sent.

Example 4.2 Consider a graphical model whose primal graph appears in

13

Algorithm cluster-tree elimination (CTE)
Input: A tree decomposition < T, χ, ψ > for a problem P =< X,D, F,

⊗
,⇓,

{Z1, ...Zt} >, X = {X1, ..., Xn}, F = {f1, ..., fr}.
Output: An augmented tree whose vertices are clusters containing the original
functions as well as messages received from neighbors. A solution computed from
the augmented clusters.
Compute messages:
For every edge (u, v) in the tree, do

• Let m(u,v) denote the message sent by vertex u to vertex v.

• Let cluster(u) = ψ(u) ∪ {m(i,u)|(i, u) ∈ T}.
• If vertex u has received messages from all adjacent vertices other than v,

then compute and send to v,

m(u,v) =⇓sep(u,v) (
⊗

f∈cluster(u),f 6=m(v,u)

f) (1)

Endfor
Note: functions whose scope does not contain elimination variables do not need
to be processed, and can instead be directly passed on to the receiving vertex.
Return: A tree-decomposition augmented with messages, and for every v ∈ T
and every Zi ⊆ χ(v), compute ⇓Zi

⊗
f∈cluster(v) f .

Figure 4: Algorithm Cluster-Tree Elimination (CTE)

14

A

B

C

D

E

F

F

A

B

C

D

E

A

B C

D

E

F

(a) (b)
(c)

Figure 5: A graph (a) and two of its induced graphs (b) and (c).

Figure 2(a). Assume all functions are on pairs of variables. Two tree-
decomspositions are described in Figure 6. The induced-graphs that cor-
respond to the two decompositions are given in Figure 5b,c respectively.

Example 4.3 Figure 7 shows the messages propagated for the tree-decomspoition
in Figure 6b. Assume that it expresses a constraint problem, so the functions
are relations. Since cluster 1 contains only one relation, the message from
cluster 1 to 2 is the projection of RFD over the separator between cluster 1
and 2, which is variable D. The message m(2,3) from cluster 2 to cluster 3
joins the relations in cluster 2 with the message m(1,2), and projects over the
separator between cluster 2 and 3, which is {B,C}, and so on.

Once all vertices have received messages from all their neighbors, a solu-
tion to the problem can be generated using the output augmented tree (as
described in the algorithm) in output linear time. For some tasks the whole
output tree is used to compute the solution (e.g., computing an optimal
tuple).

15

A,B,C,D

B,C,D,FD,G,F

G,F

A,B,C

B,C,F

A,B,D

(a) (b)

},,{ BDACAB fffψ

},,{ ADFCBF fffψ}{ FGfψ

}{ GFfψ

},{ CFBF ffψ

},{ ACAB ffψ

},{ ADBD ffψ

Figure 6: Two tree-decompositions of a graphical model

G,F

A,B,C

B,C,F

A,B,D

)()()2,1(GFF fFm ⇓=

)()()2,3()2,1(mffFm CFBFF ⊗⊗⇓=

)(),()3,4()2,3(mffCBm ACABBC ⊗⊗⇓=

)(),()3,2()4,3(mffBAm ACABAB ⊗⊗⇓=

)(),()3,4(ADBDAB ffBAm ⊗⇓=

)(),()2,1()3,2(mffCBm CFBFBC ⊗⊗⇓=

1

2

3

4

Figure 7: Example of messages sent by CTE
.

16

4.1 Correctness of CTE

Theorem 4.4 (soundness and Completeness) Assuming that the com-
bination operator

⊗
i and the marginalization operator ⇓Y satisfy the follow-

ing properties (these properties were first formulated by [31, 30]):

1. Order of marginalization does not matter:
⇓X−{Xi} (⇓X−{Xj} f(X)) =⇓X−{Xj} (⇓X−{Xi} f(X))

2. Commutativity: f
⊗

g = g
⊗

f

3. Associativity: f
⊗

(g
⊗

h) = (f
⊗

g)
⊗

h

4. Restricted distributivity:
⇓X−{Xk} [f(X − {Xk}) ⊗

g(X)] = f(X − {Xk}) ⊗ ⇓X−{Xk} g(X)

Algorithm CTE is sound and complete.

A proof of this theorem follows from the work of Shenoy [31, 30]. For
completeness we provide a proof which is different and we believe to be
clearer.
Proof. By definition, solving an automated reasoning problem P requires
computing a function F (Zi) =⇓Zi

⊗r
i=1 fi for each Zi. Using the four prop-

erties of combination and marginalization operators, the claim can be proved
by induction on the depth of the tree as follows.

Let < T, χ, ψ > be a cluster-tree decomposition for P . By definition,
there must be a vertex v ∈ T , such that Zi ⊆ χ(v). We create a partial
order of the vertices of T by making v the root of T . Let Tu = (Nu, Eu)
be a subtree of T rooted at vertex u. We define χ(Tu) =

⋃
w∈Nu

χ(w) and
χ(T − Tu) =

⋃
w∈{N−Nu} χ(w).

We rearrange the order in which functions are combined when F (Zi) is
computed. Let d(j) ∈ N, j = 1, ..., |N | be a partial order of vertices of the
rooted tree T , such that a vertex must be in the ordering before any of
its children. The first vertex in the ordering is the root of the tree. Let
Fu =

⊗
f∈ψ(u) f . We define

F
′
(Zi) =⇓Zi

|N |⊗

j=1

Fd(j)

17

Because of associativity and commutativity, we have F
′
(Zi) = F (Zi).

We define e(u) = χ(u) − sep(u,w), where w is the parent of u in the
rooted tree T . For the root vertex v, e(v) = X − Zi. In other words, e(u) is
the set of variables that are eliminated when we go from u to w. We define
e(Tu) =

⋃
w∈Nu

e(w), that is, e(Tu) is the set of variables that are eliminated
in the subtree rooted at u. Because of the connectedness property, it must be
that e(Tu)

⋂{Xi|Xi ∈ χ(T − Tu)} = ∅. Therefore, variables in e(Tu) appear
only in the subtree rooted at u.

Next, we rearrange the order in F
′
(Zi) in which the marginalization is

applied. If Xi 6∈ Zi and Xi ∈ e(d(k)) for some k, then the marginalization

eliminating Xi can be applied to
⊗|N |

j=k Fd(j) instead of
⊗|N |

j=1 Fd(j). This is
safe to do, because as shown above, if a variable Xi belongs to e(d(k)), then
it cannot be part of any Fd(j), j < k. Let ch(u) be the set of children of u
in the rooted tree T . If ch(u) = ∅ (vertex u is a leaf vertex), then we define
F u =⇓X−e(u) Fu. Otherwise we define F u =⇓X−e(u) (Fu

⊗
w∈ch(u) Fw). If v is

the root of T , we define
F
′′
(Zi) = F v

Because of properties 1 and 4, we have F
′′
(Zi) = F (Zi). However, F

′′
(Zi)

is exactly what the cluster-tree algorithm computes. The message that each
vertex u sends to its parent is F u. This concludes the proof. 2

4.2 Complexity of CTE

Algorithm CTE can be subtly varied to influence its time and space com-
plexities. The description in Figure 4 may imply an implementation whose
time and space complexity are the same. At first glance, it seems that the
space complexity is also exponential in w∗. Indeed, if we first record the com-
bined function in Equation 1 and subsequently marginalized on the separator,
we will have space complexity exponential in w∗. However, we can interleave
the combination and marginalization operations, and thereby make the space
complexity identical to the size of the sent message as follows. In Equation
1, we compute the message m, which is a function defined over the separa-
tor, sep, because all the variables in the eliminator, elim(u) = χ(u) − sep,
are eliminated by combination. This can be implemented by enumeration
(or search) as follows: For each assignment a to χ(u), we can compute its
combined functional value, and use this for accumulating the marginalization

18

value on the separator, sep, updating asep, of the message function m(sep).

Theorem 4.5 (Complexity of CTE) Let N be the number of vertices in
the tree decomposition, w its tree-width, sep its maximum separator size, r
the number of input functions in F , deg the maximum degree in T , and k
the maximum domain size of a variable. The time complexity of CTE is
O((r + N) · deg · kw) and its space complexity is O(N · ksep).

Proof. The time complexity of processing a vertex u is degu ·(|ψ(u)|+degu−
1) · k|χ(u)|, where degu is the degree of u, because vertex u has to send out
degu messages, each being a combination of (|ψ(u)| + degu − 1) functions,
and requiring the enumeration of k|χ(u)| combinations of values. The time
complexity of CTE, Time(CTE) is

Time(CTE) =
∑
u

degu · (|ψ(u)|+ degu − 1) · k|χ(u)|

By bounding the first occurrence of degu by deg and |χ(u)| by the tree-width
w, we get

Time(CTE) ≤ deg · kw ·∑
u

(|ψ(u)|+ degu − 1)

Since
∑

u |ψ(u)| = r we can write

Time(CTE) ≤ deg · kw · (r + N)

= O((r + N) · deg · kw)

For each edge CTE will record two functions. Since the number of edges
is bounded by N and the size of each function we record is bounded by ksep,
the space complexity is bounded by O(N · ksep).

If the cluster-tree is minimal (for any u and v, sep(u, v) ⊂ χ(u) and
sep(u, v) ⊂ χ(v)), then we can bound the number of vertices N by n. As-
suming r ≥ n, the time complexity of a minimal CTE is O(deg · r · kw).
2

4.3 Using more space to save time by ICTE

Algorithm CTE presented in Figure 4 is time inefficient in that when a vertex
is processed, many computations are performed repeatedly. By precomputing

19

intermediate functions we can reduce the time complexity of the algorithm by
a factor of the tree degree. This fact was first observed by Shenoy who pro-
posed a binary tree-architecture [29]. Here we give an alternative formulation
of the same idea.

When vertex u is processed, it contains two kinds of functions - original
functions (the number of which is |ψ(u)|) and messages that u received from
its neighbors (there are degu of these, one from each neighbor). When a vertex
u computes a message to be sent to an adjacent vertex v, it combines all
original functions ψ(u) with the degu−1 messages received from its neighbors
other than v, and marginalizes over the separator between u and v.

Let the neighbors of u be enumerated as v1, . . . , vdegu . We can define a
set of intermediate functions:

1. Let fu =
⊗

ψ(u).

2. Let m(i,j) =
⊗j

k=i m(vk,u).

A message that u sends to vk can be defined as

m(u,vk) =⇓sep(u,vk) (fu
⊗

m(1,k−1)
⊗

m(k+1,degu))

In Figure 8 we present an improved version of the CTE algorithm (called
ICTE) that precomputes intermediate functions for each vertex. The follow-
ing theorem proves that ICTE is faster than CTE by a factor of deg. However,
because ICTE needs to store intermediate functions, its space complexity is
exponential in the tree-width, and not in the separator size, as the case is
with CTE.

Theorem 4.6 (Complexity of ICTE) Let N be the number of vertices in
the tree decomposition, w be its tree-width, r be the number of input functions
in F , and k be the maximum domain size of a variable. The time complexity
of ICTE is O((r + N) · kw) and its space complexity is O(N · kw).

Proof: For each vertex u, ICTE has to first compute intermediate functions
fu, m(1,j) and m(j,degu), j = 2, . . . , degu−1, and then messages m(u,vk) for each
adjacent vertex v. Computing intermediate functions takes time O((|ψ(u)|+
2degu) ·kw) (note that m(1,k) can be computed as m(1,k) = m(1,k−1) ⊗

m(vk,u)).
Once intermediate functions are computed, we can compute messages to all
neighbors in time O(3degu · kw) (degu neighbors and O(3 · kw) per neighbor).

20

Algorithm improved-cluster-tree elimination (ICTE)
Input: A tree decomposition < T, χ, ψ > for a problem P =< X,D, F,

⊗
,⇓,

{Z1, ...Zt} >.
Output: An augmented tree whose vertices are clusters containing the original
functions as well as messages received from neighbors. A solution computed from
the augmented clusters.
1. Compute messages:
For every edge (u, vl) in the cluster tree, such that neighbors of u are enumerated
v1, . . . , vl, . . . , vdegu , do

• If vertex u has received messages from all adjacent vertices other than vl,
then Compute fu =

⊗
ψ(u), if not yet computed.

• For all j, 1 < j < degu, compute m(1,j) =
⊗j

k=1 m(vk,u) and m(j,degu) =⊗degu

k=j m(vk,u), if not yet computed.

• Compute m(u,v), the message that vertex u sends to vertex v,

m(u,vl) =⇓sep(u,vl) (fu
⊗

m(1,l−1)
⊗

m(l+1,degu))

2. Return: The cluster-tree augmented with messages and for every v ∈ T and
every Zi ⊆ χ(v), compute ⇓Zi

⊗
f∈cluster(v) f .

Figure 8: Algorithm Improved-Cluster-Tree Elimination (ICTE)

21

Therefore the time complexity of processing vertex u is O((|ψ(u)|+ 5degu) ·
kw). The time complexity of ICTE is

∑
u

O((|ψ(u)|+ 5degu) · kw)

Since
∑

u |ψ(u)| = r and
∑

u degu = 2(N − 1) time complexity of ICTE is
= O((r + N) · kw)

For each vertex u, we need to store O(2degu) intermediate functions of
size kw. By summing over all vertices, the space complexity of storing all
intermediate functions is O(N · kw). Also, for each edge, ICTE has to store
two messages of size ksep. Since the total number of edges is N−1, the space
complexity of storing messages is O(N · ksep). However, since sep ≤ w the
total space complexity of ICTE is O(N · kw). 2

As we have mentioned, Shenoy [29] introduced binary join trees to orga-
nize computations more efficiently. For any cluster-tree, there exists a binary
cluster-tree such that CTE has the same time and space complexity on the
binary tree as ICTE has on the original tree. So, our ICTE algorithm can
be viewed as a reformulation and rederivation of Shenoy’s result without the
actual construction of the binary tree. Our derivation also pinpoints the
associated space-time complexity tradeoff.

5 Bucket-Tree Elimination

This section extends the bucket elimination scheme into a message passing
algorithm along a bucket-tree, and shows that the extended algorithm is an
instance of the cluster-tree elimination scheme.

5.1 Bucket Elimination

Bucket elimination (BE) is a unifying algorithmic framework for dynamic-
programming algorithms applicable to any graphical model such as proba-
bilistic and deterministic networks. The input to a BE algorithm consists of
a collection of functions or relations of a reasoning problem. Given a variable
ordering, the algorithm partitions the functions into buckets, each associated
with a single variable. A function is placed in the bucket of its latest ar-
gument in the ordering. The algorithm processes each bucket, top-down,

22

Algorithm BE
Input: A problem description P =< X, D, F,

⊗
,⇓, ∅ >; F = {f1, ..., fr}, an or-

dering of the variables d = (X1, ..., Xn).
Output: Augmented buckets containing the original functions and all the
message-functions received.
1. Initialize: Partition the functions in F into buckets denoted BX1 , . . ., BXn ,
where initially BXi

contains all input functions whose highest variable is Xi. (ig-
nore instantiated variables).
During the algorithm’s execution BXi

= {h1, h2, ..., hj}
2. Backward: For p ← n down-to 1, process BXi

:

• Generate the function λp

λp =⇓Up

⊗

h∈BXi

h

where Up =
⋃

h∈BXi
scope(h)− {Xp}.

• Add λp to the bucket of the largest-index variable in Up.

3. Return: The set of augmented buckets and the function computed in the first
bucket.

Figure 9: Bucket Elimination Algorithm

from the last variable to the first, by a variable elimination procedure that
computes a new function using combination and marginalization operators
in each bucket. The new function is placed in the closest lower bucket whose
variable appear in the function’s scope. When the solution of the problem
requires a complete assignment (e.g., finding the most probable explanation
in belief networks) a second, bottom-up phase, assigns a value to each vari-
able along the ordering, consulting the functions created during the top-down
phase. For more information see [5].

For the sake of completeness we present in Figure 9 the BE algorithm [5].
It is well known that the complexity of BE is exponential in the induced-
width of the problem’s graph along the the order of processing. We provide
a formal result for the complexity of BE in Section 5.3.

23

5.2 Bucket-Tree Elimination

Definition 5.1 (singleton-optimality tasks) An automated reasoning prob-
lem P =< X, D, F,

⊗
,⇓, {Z1, ...Zt} >, where F = {f1, ..., fr}, is a singleton-

optimality problem if t = n and for all i, Zi = {Xi}. In this case, we
write Opt(Xi) =⇓Xi

⊗r
i=1 fi.

Singleton-optimality tasks, require repeated execution of the BE algo-
rithm, for example, when the belief distribution is required for every variable
in a belief network. Another example is computing the optimal cost associ-
ated with each value of every variable that is used to guide a search algorithm
[8]. In order to compute the singleton-optimality task, BE would have to be
run n times, each initiated by a different variable. We next propose a more
efficient alternative, extending bucket-elimination into a bucket-tree elimina-
tion (BTE) scheme. While the essence of this extension can be found in [30],
its derivation within the tree-decomposition framework adds clarity. It ex-
tends BE’s view as message-passing from leaves to root along a bucket-tree [5]
with a root-to-leaves message-passing phase similar to the recent suggestion
for probabilistic inference [3].

Let P =< X,D, F,
⊗

,⇓, {Zi} > be a reasoning problem and d be an
ordering d = (X1, ..., Xn). Let BX1 , ..., BXn denote a set of buckets, one for
each variable. Each bucket BXi

contains those functions in F whose latest
variable in d is Xi. A bucket-tree of a problem P has buckets as its nodes.
Bucket BX is connected to bucket BY if the function generated in bucket
BX by BE is placed in BY . The variables of BX , are those appearing in
the scopes of any of its new and old functions. Therefore, in a bucket tree,
every vertex BX other than the root, has one parent vertex BY and possibly
several child vertices BZ1 , ..., BZt . The structure of the bucket-tree can also
be extracted from the induced-ordered graph of P along d using the following
definition.

Definition 5.2 (bucket tree, graph-based) Let G∗
d be the induced graph

along d of a reasoning problem P whose primal graph is G. The vertices of
the bucket-tree are the n buckets each associated with a variable. Each vertex
BX points to BY (or, BY is the parent of BX) if Y is the latest neighbor of
X that appear before X in G∗

d. Each variable X and its earlier neighbors
in the induced-graph are the variables of bucket BX . If BY is the parent of

24

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(),(FFGλ

),(),(CBCFλ

),(),(BABDλ),(),(BABCλ

)(),(AABλ

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(),(FFGλ

),(),(CBCFλ
),(),(BABDλ

),(),(BABCλ

)(),(AABλ

(a) (b)

Figure 10: Execution of BE along the bucket-tree

BX in the bucket-tree, then the separator of X and Y is the set of variables
appearing in BX ∩BY , denoted sep(X,Y).

Example 5.1 Consider the Bayesian network defined over the DAG in Fig-
ure 2a. Figure 10a shows the initial buckets along the ordering d = A,B, C,
D, F,G, and the messages (labelled λ’s in this case) that will be passed by BE
from top to bottom. The message from BX to BY is denoted λ(X,Y). Notice
that the ordering is displayed bottom-up and messages are passed top-down
in the figure. Figure 10b displays the same computation as a message-passing
along its bucket-tree.

Theorem 5.2 A bucket tree of a reasoning problem P is a tree-decomposition
of P .

Proof. We need to provide two mappings, χ and ψ, and show that the
following two tree-decomposition properties hold for a bucket tree:

1. χ(BX) contains X and its earlier neighbors in the induced graph (G∗
d)

along ordering d.

2. ψ(BX) contains all functions whose highest-ordered argument is X.

By construction, the conditions 1,2 and 4 of tree-decomposition property
holds. In order to prove connectedness, let’s assume to the contrary that

25

there are two buckets BX and BY , both containing variable Z, but that on
the path between BX and BY , there is a bucket BU that does not contain
Z. Let Bi be the first bucket on the path from BX to BU containing Z, but
whose parent does not contain Z but whose parent does not contain Z. Let
Bj be the first bucket on the path from BY to BU containing Z. Because BU

is on the path between Bi and Bj, it must be that i 6= j. Since the parents of
Bi and Bj do not contain Z, variable Z must have been eliminated at nodes
Bi and Bj during the top-down phase of bucket-tree elimination. This is
impossible, however, because each variable is eliminated exactly once during
the top-down phase. Therefore, BU cannot exist. 2

Since the bucket-tree is a tree-decomposition, algorithm CTE is applica-
ble. The correctness of the extension of BE to that adds a bottom-up message
passing can be established by showing equivalence with CTE when applied
to the bucket-tree. Algorithm bucket-tree elimination (BTE) is given in Fig-
ure 11. We describe the algorithm using two types of messages, λs and πs,
as is common in some message propagation schemes. In the top-down phase,
each bucket receives λ messages from its children and sends a λ message to
its parent. This portion is equivalent to BE. In the bottom-up phase, each
bucket receives a π message from its parent and sends a π message to each
child.

Example 5.3 Figure 12 shows the complete execution of BTE along the
linear order of buckets and along the bucket-tree. The π and λ messages are
viewed as messages placed on the outgoing arcs in the lower portion of the
figure.

Theorem 5.4 Algorithm BTE is a special case of CTE applied to the bucket
tree using a specific order of message computation.

Proof: It is easy to see that messages computed by BTE are exactly the
same as those computed by CTE. Since a bucket-tree is a specific case of a
cluster-tree decomposition and CTE is correct and complete for cluster-tree
decompositions, it follows that BTE is correct and complete. Notice that the
actual computation of a message λ(X,Y) in the BTE algorithm is identical to
the computation of message m(BX ,BY) in CTE . We need only to show that
the order of message computation by BTE is also a valid order of message
computation for the CTE algorithm.

26

Algorithm bucket-tree elimination (BTE)
Input: A problem P =< X, D, F,

⊗
,⇓, {X1, ..., Xn} >, ordering d.

Output: Augmented buckets containing the original functions and all the π and
λ functions received from neighbors in the bucket-tree. A solution to P computed
from augmented buckets.
0. Pre-processing:
Place each function in the latest bucket along d that mentions a variable in its
scope. Connect two bucket nodes BX and BY if variable Y is the latest among
the earlier neighbors of X in the induced graph Gd.
1. Top-down phase: λ messages (BE)
For i = n to 1, process bucket BXi

:
Let h1, ..., hj be all the functions in BXi

at the time BXi
is processed. The message

λ(Xi,Y) sent from Xi to its parent Y , is computed over the separator by sep(Xi, Y)

λ(Xi,Y) =⇓sep(Xi,Y)

⊗

hi∈BXi

hi

2. Bottom-up phase: π messages
For i = 1 to n, process bucket BXi

:
Let h1, ..., hj be all the functions in BXi

at the time BXi
is processed, including

the original functions of P . BXi
takes the π message received from its parent Y ,

π(Y,Xi), and computes a message π(Xi,Zj) for each child bucket Zj over the separator
sep(Xi, Zj) by

π(Xi,Zj) =⇓sep(Xi,Zj) π(Y,Xi)

⊗
(

⊗

hi∈BXi
,hi 6=h(Zj,Xi)

hi

3. Compute optimal solution cost: In each augmented bucket compute:
⇓Xi

⊗
f∈BXi

f ,

Figure 11: Algorithm Bucket-Tree Elimination

27

Bucket G: P(G|F)

Bucket F: P(F|B,C)

Bucket D: P(D|A,B)

Bucket C: P(C|A)

Bucket B: P(B|A)

Bucket A: P(A)

)(),(FFGλ

),(),(CBCFλ

),(),(BABDλ),(),(BABCλ

)(),(AABλ

)(),(FGF∏

),(),(CBFC∏

),(),(BADB∏

),(),(BACB∏

)(),(ABA∏

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(),(FFGλ

),(),(CBCFλ

),(),(BABDλ

),(),(BABCλ

)(),(AABλ

)(),(FGFΠ

),(),(CBFCΠ

),(),(BADBΠ

),(),(BACBΠ

)(),(ABAΠ

Figure 12: Propagation of π’s and λ’s along the bucket-tree

Algorithm CTE specifies that a message m(BX ,BY) can be computed when
vertex BX has received messages from all neighbors other than BY . There-
fore, the top-down phase of the BTE, where a bucket BX sends a message to
its parent BY after it has received messages from all its children, is a valid
order of message computation for CTE. Also, the top-down phase is a valid
order of message computation for CTE, since by the time a bucket BX is
processed by BTE, it has received messages from all neighbors. 2

5.3 Complexity

Clearly, the induced-width w∗ along d is identical to the tree-width of the
bucket-tree when viewed as a tree-decomposition. We next provide a re-
fined complexity analysis of BE followed by complexity analysis of BTE
and IBTE.

Theorem 5.5 (Complexity of BE) Given a reasoning problem P =< X,D, F,
⊗

,⇓,
{X1, ..., Xn} >, let w∗ be the induced width of its primal graph G along order-
ing d, let k be the maximum domain size of any variable and r the number of

28

functions. The time complexity of BE is O(r ·kw∗+1) and its space complexity
is O(n · kw∗).

Proof. During BE, each bucket sends a λ message to its parent and since it
computes a function defined on all the variables in the bucket, the number of
which is bounded by w∗, the size of the computed function is exponential in
w∗. Since the number of functions that need to be consulted for each tuple
in the generated function in bucket BXi

is bounded by the number of its
original functions, denoted rXi

plus the number of messages received from its
children, which is bounded by degi, the overall computation, summing over
all buckets, is bounded by

∑

Xi

(rXi
+ degi − 1) · kw∗+1

The total complexity can be bound by O((r + n) · kw∗+1). Assuming r > n,
this becomes O(r · kw∗+1). The size of each λ message is O(kw∗). Since the
total number of λ messages is n− 1, the total space complexity is O(n · kw∗).
2

Theorem 5.6 (Complexity of BTE) Let P =< X, D, F,
⊗

,⇓, {X1, ..., Xn} >
be a reasoning problem, let w∗ be the induced width along ordering d, k be
the maximum size and let r be the number of functions. The time complexity
of BTE is O(r · deg · kw∗+1), where deg is the maximum degree of any vertex
in the bucket-tree. The space complexity of BTE is O(n · kw∗).

Proof: Since the number of buckets is n, and the induced width w∗ equals
w − 1, where w is the tree-width, it follows from Theorem 5.4 that the time
complexity of BTE is O((r + n) · deg · kw∗+1). Assuming that r > n we get
the desired bound for time complexity. Since the size of each message is ksep,
and since here sep = w∗, we get space complexity of O(n · kw∗). 2

We can apply the idea of precomputing intermediate functions described
in Section 8 to BTE, resulting in new algorithm IBTE. However, in this case,
we have an improvement in speed with no increase in space complexity.

Theorem 5.7 (Complexity of IBTE) Let w∗ be the induced width of G
along ordering d of a reasoning problem P =< X, D, F,

⊗
,⇓, {X1, ..., Xn} >

and let k be the maximum size and r the number of functions. The time
complexity of IBTE is O(r · kw∗+1) and the space complexity is O(n · kw∗+1).

29

Proof: Follows from Theorems 4.6 and 5.4. 2.
Speed-up of BTE vs n-BE. Next we will compare the complexity of

BTE and IBTE against running BE n times (n-BE) for solving the singleton
optimality task. While both BTE and n-BE have the same space complexity,
the space needs of IBTE is larger by a factor of k, where k is the domain size
of any variable.

In theory, the speedup expected from running BTE vs running n-BE
is at most n. This may seem insignificant compared with the exponential
complexity in w∗. However, in practice it can be significant, especially when
these computations are used as a procedure within more extensive search
algorithms [17]. The actual speedup of BTE relative to n-BE may be smaller
than n, however. We know that the complexity of n-BE is O(n · r · kw∗+1),
whereas the complexity of BTE is O(deg · r · kw∗+1). These two bounds
cannot be compared directly because we do not know how tight the n-BE
bound is. However, there are classes of problems (e.g., w-trees) for which the
complexity of n-BE is Θ(n · r · kw+1), and the maximum degree of a vertex
in the bucket tree can be bounded by w. Therefore, the speedup of BTE
over n-BE for these classes of problems would be Ω(n/deg) (also Ω(n/w)).
Similar considerations appear when comparing IBTE with n-BE. Clearly,
the speedup of IBTE over n-BE is at least as the speedup of BTE over n-BE.

5.4 Using more time to save space : Superbuckets

The main drawback of CTE is its memory demands. The space complexity
of CTE is exponential in the largest separator size. In Section 4.3 we showed
how we can save some time by using more space. Here we will go in the op-
posite direction. We will show how we can save space if we are willing to
allow weaker time bounds for the algorithm. This is because in practice, the
space complexity that is exponential in the separator size may be computa-
tionally prohibitive. To overcome this limitation time-space tradeoffs were
introduced [7]. The idea is to trade off space for time by combining adja-
cent vertices (that is, combining the variable/funcion labels), thus reducing
separator sizes, while increasing their width.

Proposition 1 If T is a tree-decomposition, then any tree obtained by merg-
ing adjacent vertices in T , is a tree-decomposition. 2

30

Proof: It is straightforward to verify that all the conditions of Definition 4.1
still hold. 2

Since a bucket tree is a tree-decomposition, by merging adjacent buck-
ets, we get what we call a super-bucket-tree (SBT). This means that in the
top-down phase of processing SBT, several variables are eliminated at once.
Note that one can always generate various tree-decompositions starting at a
bucket-tree and merging adjacent vertices. For illustration see Figure 3.

6 Comparing Tree-Decomposition Methods

In this section we will discuss the relationships between several known tree-
decomposition structuring schemes, their processing schemes and related
work.

6.1 Join-Tree Clustering

In both the constraint satisfaction and the Bayesian networks communities
the common tree-clustering methods, called join-tree (or junction-tree) clus-
tering ([10, 21]), are based on a triangulation algorithm that transforms the
primal graph G = (V,E) of a problem instance P into a chordal graph G

′
.

A graph is chordal, if any cycle of length 4 or more has a chord. To trans-
form a primal graph G into a chordal graph G

′
, the triangulation algorithm

processes G along the reverse order of an ordering d and connects any two
non-adjacent vertices if they are connected through a vertex later in the or-
dering. A join-tree clustering is defined as a tree T = (V,E), where V is a
set of maximal cliques of G

′
and E is a set of edges that form a tree between

cliques satisfying the connectedness property [22]. The width of a join-tree
clustering is the cardinality of its maximal clique, which coincides with the
induced-width (plus 1) along the order of triangulation. Subsequently, every
function is placed in one clique containing its scope. It is easy to see that a
join-tree satisfies the properties of tree-decomposition.

Proposition 2 Every join-tree clustering is a tree-decomposition. 2

Join-trees correspond to minimal tree-decompositions, where minimality,
as we defined earlier, means that separators are always strict subsets of their
adjacent clusters, thus excluding some decompositions that can be useful

31

(see [14]). Moreover, they are cluster-minimal, no vertex and its variables
can be partitioned further to yield a more refined tree-decomposition. This
restriction exclude the super-bucket methods that accomodates time-space
trade-offs.

Example 6.1 Consider a graphical model having functions defined on all
pairs of variables, whose graph is complete. Clearly, the only possible join-
tree will have one vertex containing all the variables and all the functions.
An alternative tree-decomposition has vertex C1 whose variables are {1, ..., n}
and whose functions are defined over the pairs of variables: {(1, 2)(3, 4),(i, i+
1)(i+2, i+3)....}. Then, there is a vertex, Ci,j, for each other function that is
not contained in C1, and the tree connects C1 with each other vertex. While
this is a legitimate tree-decomposition, it is not a legitimate join-tree. This
is an example of a hyper-tree decomposition, discussed next.

6.2 Hyper-tree Decomposition

Recently, Gottlob et.al [14] presented the notion of hyper-tree decompositions
for Constraint Satisfaction, and showed that for CSPs the hyper-width para-
meter can capture tractable classes that are not captured by tree-width.

Definition 6.1 (hyper-tree decomposition) [14] A (complete) hyper-tree
decomposition of a hyper-graph HG = (X, S) is a triple < T, χ, ψ >, where
T = (V,E) is a rooted tree, and χ and ψ are labelling functions which asso-
ciate with each vertex v ∈ V two sets χ(v) ⊆ X and ψ(v) ⊆ S, and which
satisfies the following conditions:

1. For each edge h ∈ S, there exists v ∈ V such that h ∈ ψ(v) and
scope(h) ⊆ χ(v) (we say that v strongly covers h).

2. For each variable Xi ∈ X, the set {v ∈ V |Xi ∈ χ(v)} induces a (con-
nected) subtree of T .

3. For each v ∈ V , χ(v) ⊆ scope(ψ(v)).

4. For each v ∈ V , scope(ψ(v)) ∩ χ(Tv) ⊆ χ(v), where Tv = (Vv, Ev) is
the subtree of T rooted at v and χ(Tv) = ∪u∈Vvχ(u).

The hyper-width hw, of a hyper-tree decomposition is hw = maxv|ψ(v)|.

32

A hyper-tree decomposition of a graphical model R is a hyper-tree-
decomposition of its hyper-graph that has the variables of R as its ver-
tices and the scopes of functions as its hyper-edges. In [14] the complexity
of processing hyper-tree decomposition for solving a constraint satisfaction
problem is analyzed as a function of the hyper-width hw. The processing
algorithm used for this analysis is similar to tree-clustering (T-C) algorithm
presented in [10] described as follows. Once a hyper-tree decomposition is
available, 1. join all the relations in each cluster, yielding a single relation
on each cluster. This step takes O((m + 1) · thw) time and space, where t
bounds relation size and m is the number of edges in the hyper-tree decompo-
sition, and it creates an acyclic constraint satisfaction problem. 2. Process
the acyclic problem by arc-consistency. This step can be accomplished in
O(m · hw · thw · logt) time.

Theorem 6.2 [13] Let m be the number of edges in the hyper-tree decom-
position of a constraint network R, hw its hyper-width and t be a bound on
the relation size. A hyper-tree decomposition of a constraint problem can be
processed in time

O(m · hw · logt · thw) (2)

and in space O(thw).

Not every hyper-tree decomposition is a tree-decomposition. Hyper-tree
decomposition allows a function to be placed in more than one vertex. This
cannot be allowed for general graphical models and it is therefore made illegal
in our definition of tree-clustering 4.1. We therefore define a restricted form
of hyper-tree decomposition.

Definition 6.2 A restricted hyper-tree decomposition is a complete hyper-
tree decomposition such that for every hyperedge h ∈ S there is exactly one
v ∈ V s.t. h ∈ ψ(v).

It is easy to see that,

Proposition 3 Any restricted hyper-tree decomposition of a reasoning prob-
lem P is a tree-decomposition of P . 2

33

Notice that the opposite is not true. There are tree-decompositions that
are not (restricted) hyper-tree decompositions, because hyper-tree decompo-
sitions require that the variables labelling a vertex will be contained in the
scope of its labelling functions (Condition 3 of Definition 6.1). This is not
required by the tree-decomposition definition 4.1. For example, consider a
single n-ary function f . It can be mapped into a bucket-tree with n vertices.
Vertex i contains all variables {1, 2, ...i} but no functions, while vertex n con-
tains all the variables and the input function. Both join-tree and hyper-tree
decomposition will allow just one vertex that include the function and all its
variables.

The complexity bound in EQ. (2) can be extended to any graphical model
that is absorbing relative to 0 element (a graphical model is absorbing rela-
tive to 0 element if its combination operator has the property that x

⊗
0 = 0;

for example, multiplication has this property while summation has not) as-
suming we use a restricted hyper-tree decomposition, and if the relational
nature of constraints is extended to functions in general graphical models.
The tabular representation of functions can be converted into relations by
removing their zero-cost tuples. For examples, in probabilistic networks all
the rows in a CPT that have zero probability can be removed (an idea that
was explored computationally in [18]).

In order to apply the hyper-width bound we will consider a specific imple-
mentation of the message computation expressed in equation 1 of algorithm
CTE. Recall that given a hyper-tree decomposition, each node u has to send
a single message to each neighbor v. We can compute m(u,v) as follows:

1. Combine all functions ψ(u) in node u yielding function h(u). namely,

h(u) =
⊗

f∈ψ(u)

f

This step can be done in time and space O(t|ψ(u)|).

2. For each neighbor c of u, c 6= v iterate the following:

h(u) ← h(u)
⊗ ⇓χ(u)∩χ(c) m(c,u)

This step can be accomplished in O(deg ·hw · logt ·thw) time and O(thw)
space.

34

3. Take m(u,v) ← h(u).

The complexity of the second step can be derived as follows. The mar-
ginalization step can be done in linear time in the size of the message sent
from c to u whose size is O(thw). The combination of a relation with one
that is defined on a subset of its scope can be done in a brute force way
quadratically in the size of the respective relations, namely O(t2hw). Or,
we can sort each relation first in O(thwlog(thw)) time and then combina-
tion can be accomplished in linear time in the largest relation, yielding,
O(hw · logt · thw). The space required to store the result is bounded by
O(thw). Since this computation must be done for every neighbor c, we get
complexity of O(deg ·hw · logt ·thw) time and O(thw) space. Finally, the above
computation must be accomplished for every neighbor v of u yielding overall
complexity of CTE of O(m · deg · hw · logt · thw) time and O(thw) space. The
discrepancy between this bound and the one in 6.4 is that the later requires
message passing in one direction only. We can conclude:

Theorem 6.3 A (restricted) hyper-tree decomposition of a reasoning prob-
lem absorbing relative to 0 element can be processed in time

O(m · deg · hw · logt · thw)

and O(thw) space, where m is the number of edges in the hyper-tree decom-
position hw its hyper-width and t is a bound on the size of the relational
representation of each function in R.

Theorem 6.3 does not apply for the general definition of tree-decomposition
4.1, even if we use relational representation. The main problem is that the
complexity analysis assumed Condition 3 of Definition 6.1 (which can be
thought of as ”every variable in a vertex of a tree must be covered by a func-
tion” in that node). We can remedy this problem if we think of all uncovered
variables in a node as having a unit-cost universal relation associated with
their scope. For a constraint problem this is the universal relation that al-
lows all combinations of values. For a general graphical model the universal
relation will assign each tuple a unit cost of ”1” assuming that combining
with ”1” is not changing the cost. Provided this, we can show

Theorem 6.4 [26] A tree-decomposition of a reasoning problem absorbing
relative to 0 element can be processed in time

O(m · deg · hw∗ · logt · thw∗)

35

by CTE, where N is the number of vertices in the hyper-tree decomposi-
tion, t is a bound on the relation size, and hw∗(v) = (|ψ(v)| + |{Xi|Xi 6∈
scope(ψ(v)}|) and hw∗ = max

v∈V
hw∗(v).

Proof. Once we add the universal relation on uncovered variables we
have a restricted hyper-tree decomposition to which we can apply the bound
in Theorem 6.3 assuming the same implementation of CTE. The number of
uncovered variables in a node v is n(v) = |{Xi|Xi 6∈ scope(ψ(v)}|. So time
processing of a node is O(thw ·kn(v)) when k bounds the domain size, yielding
O((max(t, k)hw∗). Assuming that t > k we can use the bound O(thw∗) time
and space. Subsequently, message passing between all nodes yields overall
complexity as in 6.3 when hw is replaced by hw∗. 2 =

Notice that in some cases the tree-width would provide a far better bound
on the complexity of CTE than the hyper-width while at other cases it does
not. To exploit both parameters when bounding the complexity of CTE we
can define hw∗

ψ′(v) relative to any subset of the functions ψ′ ⊆ ψ(v) as
follows. hw∗

ψ′(v) = |ψ′(v)| + |{Xi|Xi 6∈ scope(ψ′(v)}|. CTE’s performance
will be bounded by any selection of a subset ψ′(v) from ψ(v). In particular,
if we choose the empty function set, n(v) becomes equal to χ(v) yielding
hw∗ = w∗. Clearly finding ψ′v that minimize hw∗

ψ′(v) can be hard. In any
case for restricted hyper-tree decomposition the bound is obtained using
ψ′(v) = ψ(v), and hw∗ = hw, while when ψ′ = ∅ hw∗ = w∗.

6.3 Comparing the tree-processing algorithms

Algorithms processing a tree-decomposition are of two primary styles. One
class compiles all the functions in a cluster into a single function, and then
sends messages between clusters. The other class avoids precompilation into
a single function, and works similarly to CTE. Algorithm join-tree clustering
[9] for processing constraint networks first creates a single joined function
or relation from all the functions in each cluster and then applies message-
passing. The same idea is used in junction-tree algorithm [21] for probabilistic
networks. In the later case, the combined function is called ”potential”. The
time and space complexity of these algorithms are both exponential in the
tree-width. On the other hand, the so-called Shafer and Shenoy architecture

36

[31] for probabilistic networks is similar to CTE, and its time-space algo-
rithm presented in [11]. Like CTE, these variants have a more efficient space
complexity which is exponential in the separator’s width only.

6.4 More on Related Work

As noted, join-tree (junction-tree) in LS ([21], [20]) and Hugin ([16], [15])
architectures is a special case of a tree-decomposition, constructed from the
cliques of the triangulated moral graph of the problem’s graph. Each vertex
contains exactly one potential after combining all its functions, while Hugin
also records a potential on the separator. When a message is received by
a vertex, it updates its potential by incorporating the new message. To
avoid overcounting, LS architecture divides the potential of the vertex by
the outgoing inward message, while Hugin divides messages by the separator.
Both are designed for computing marginals in the Bayesian network.

Shenoy-Shafer architecture executes what is called the Fusion algorithm,
on a binary join-tree ([30]), for computing marginal probabilities in a Bayesian
network. As noted earlier, a binary join-tree is constructed by taking a join-
tree (or a collections of potentials) and then transforming it into a binary
tree.

7 Discussion and conclusions

The paper unifies and clarifies the language and algorithms of various com-
putational approaches associated with tree-decomposition. We present these
classes of algorithms by harnessing the formal notation appearing in [14],
(which is restricted there to constraint satisfaction). This allows separating
tree-structuring from tree-processing. In particular, we provide two variants
of tree-processing algorithms (CTE and ICTE) that have different time-space
performance qualities. We also show that the bucket-elimination algorithm,
BE, can be extended to a message propagation along a specialized tree-
decomposition called bucket-tree decomposition yielding algorithm BTE.

The main novelty of this work is that it provides a graph-based unifying
framework for tree-decomposition algorithms that draws on notations and
formalizations that appear in wide sources and in diverse communities, such
as probabilistic reasoning, optimization, constraint satisfaction and graph

37

theory. We believe that the current exposition adds clarity which will ben-
efit researchers in different communities and will accommodate technology
transfer. Several of the technical results described here have parallels in these
earlier papers, which we cite throughout.

References

[1] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs
with bounded decomposability - a survey. BIT, 25:2–23, 1985.

[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability
of acyclic database ochemes. Journal of the ACM, 30(3):479–513, 1983.

[3] F. G. Cozman. Generalizing variable-elimination in bayesian net-
works. In Workshop on Probabilistic reasoning in Bayesian networks
at SBIA/Iberamia 2000, pages 21–26, 2000.

[4] R. Dechter. Decomposing a relation into a tree of binary relations.
Journal of Computer and System Sciences, Special Issue on the Theory
of Relational Databases, 41:2–24, 1990.

[5] R. Dechter. Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence, 113:41–85, 1999.

[6] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[7] R. Dechter and Y. El Fattah. Topological parameters for time-space
tradeoff. Artificial Intelligence, 125:93–118, 2001.

[8] R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple
lower-bound computation in constraint optimization. Principles and
Practice of Constraint Programming (CP-2001), pages 346–360, 2001.

[9] R. Dechter and J. Pearl. Network-based heuristics for constraint satis-
faction problems. Artificial Intelligence, 34:1–38, 1987.

[10] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti-
ficial Intelligence, 38:353–366, 1989.

38

[11] Y. El-Fattah and R. Dechter. An evaluation of structural parameters for
probabilistic reasoning: results on benchmark circuits. In Uncertainty
in Artificial Intelligence (UAI-96), pages 244–251, 1996.

[12] B.J. Frey. Graphical models for machine learning and digital communi-
cation. MIT press, 1998.

[13] G. Gottlob, N. Leone, and F. Scarello. A comparison of structural csp
decomposition methods. IJCAI-99, pages 394–399, 1999.

[14] G. Gottlob, N. Leone, and F. Scarello. A comparison of structural csp
decomposition methods. Artificial Intelligence, pages 243–282, 2000.

[15] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in
causal probabilistic networks by local computations. Computational Sta-
tistics Quarterly, 4:269–282, 1990.

[16] F.V. Jensen, K.G. Olesen, and S.K. Andersen. An algebra of bayesian
belief universes for knowledge based systems. Networks, 20:637–659,
1990.

[17] K. Kask and R. Dechter. A general scheme for automatic generation of
search heuristics from specification dependencies. Artificial Intelligence,
129:91–131, 2001.

[18] D. Larkin and R. Dechter. Bayesian inference in the presence of deter-
minism. AI and Statistics(AISTAT03), 2003.

[19] J. Larrosa. On the time complexity of bucket elimination algorithms.
UCI Technical Report, 2000.

[20] S.L. Lauritzen and F.V. Jensen. Local computation with valuations
from commutative semigroups. Annals of Mathematics and Artificial
Intelligence, 21:51–69, 1997.

[21] S.L. Lauritzen and D.J. Spiegelhalter. Local computation with proba-
bilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B, 50(2):157–224, 1988.

[22] D. Maier. The theory of relational databases. In Computer Science
Press, Rockville, MD, 1983.

39

[23] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

[24] K. Kask R. Dechter and R. Mateescu. Iterative join-graph propagation.
In UAI 2002, pages 128–136, 2002.

[25] N. Robertson and P. Seymour. Graph minors a survey. In Anderson,
editor, Surveys in Combinatorics, pages 153–171, 1985.

[26] F. Scarello. Private communication. 2004.

[27] T. Schmidt and P.P. Shenoy. Some improvements to the shenoy-shafer
and hugin architecture for computing marginals. Artificial Intelligence,
102:323–333, 1998.

[28] G.R. Shafer and P.P. Shenoy. Probability propagation. Anals of Math-
ematics and Artificial Intelligence, 2:327–352, 1990.

[29] P.P. Shenoy. Binary join trees. Porceedings of the 12th Conference on
Uncertainty in Artificial Intelligence (UAI96), pages 492–499, 1996.

[30] P.P. Shenoy. Binary join trees for computing marginals in the shenoy-
shafer architecture. International Journal of Approximate Reasoning,
17(2-3):239–263, 1997.

[31] P.P. Shenoy and G. Shafer. Axioms for probability and belief-function
propagation. R.D. Shachter, T.S. Levitt, J.F. Lemmer and L.N. Kanal
(eds.), Uncertainty in Artificial Intelligence, North-Holland, Amster-
dam, 4:169–198, 1990.

[32] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs and selectively reduce
acyclic hypergraphs. SIAM Journal of Computation., 13(3):566–579,
1984.

40

