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Abstract

In non-ergodic belief networks the posterior be-
lief of many queries given evidence may become
zero. The paper shows that when belief propaga-
tion is applied iteratively over arbitrary networks
(the so called, iterative or loopy belief propaga-
tion (IBP)) it is identical to an arc-consistency
algorithm relative to zero-belief queries (namely
assessing zero posterior probabilities). This im-
plies that zero-belief conclusions derived by be-
lief propagation converge and are sound. More
importantly, it suggests that the inference power
of IBP is as strong and as weak as that of arc-
consistency. This allows the synthesis of belief
networks for which belief propagation is use-
less on one hand, and focuses the investigation
on classes of belief networks for which belief
propagation may be zero-complete. Finally, we
show empirically that IBP’s accuracy is corre-
lated with extreme probabilities, therefore ex-
plaining its success over coding applications.

1 INTRODUCTION AND MOTIVATION

The paper proves that zero-belief conclusions made by it-
erative belief propagation are correct. The proof is done
using a transformation of the belief propagation algorithm
to an arc-consistency algorithm in constraint networks.

The belief propagation algorithm is a distributed algorithm
that computes posterior beliefs for tree-structured Bayesian
networks (poly-trees) [Pearl1988]. However, in recent
years it was shown to work surprisingly well in many ap-
plications involving networks with loops, including turbo
codes, when applied iteratively [McEliece et al.1997].

The success of Iterative Belief Propagation (IBP) inspired
extensions into a general class of Generalized belief prop-
agation [Yedidia et al.2001] algorithms that try to improve
on its performance. A class of such algorithms called iter-

ative join-graph propagation, IJGP(i) [Dechter et al.2002],
extends IBP into anytime algorithms. Algorithm IJGP ap-
plies the belief propagation idea to clusters of functions that
form a join-graph rather than to single functions, and its
parameter i allows the user to control the tradeoff between
complexity and accuracy. When the join-graph is a tree
the algorithm is exact. Empirical evaluation of this class of
algorithms showed that IJGP improves substantially over
IBP and provides anytime performance.

While there is still very little understanding as to why
and when IBP works well, some recent investigation
shows that when IBP converges, it converges to a sta-
tionary point of the Bethe energy, thus making connec-
tions to approximation algorithms developed in statistical
physics and to variational approaches to approximate in-
ference [Welling and Teh2001, Yedidia et al.2001]. How-
ever, these approaches do not explain why IBP is successful
where it is, and do not allow any performance guarantees
on accuracy.

This paper makes some simple observations that may shed
light on IBP’s behavior, and on the more general class of
IJGP algorithms. Zero-beliefs are variable-value pairs that
have zero conditional probability given the evidence. We
show that: if a value of a variable is assessed as having
zero-belief in any iteration of IBP, it remains a zero-belief
in all subsequent iterations; that IBP finitely converges rel-
ative to its set of zero-beliefs; and, most importantly that
the set of zero-belief decided by any of the iterative be-
lief propagation methods is sound. Namely any zero-belief
determined by IBP corresponds to a true zero conditional
probability relative to the given probability distribution ex-
pressed by the Bayesian network.

While each of these claims can be proved directly, our ap-
proach is to associate a belief network with a constraint
network and show a correspondence between IBP applied
to the belief network and an arc-consistency algorithm ap-
plied to the corresponding constraint network. Since arc-
consistency algorithms are well understood this correspon-
dence not only proves right away the targeted claims, but
may provide additional insight into the behavior of IBP and



IJGP. In particular, not only it immediately justifies the it-
erative application of belief propagation algorithms on one
hand, but it also illuminates its ”distance” from being com-
plete, on the other.

Section 2 provides preliminaries, section 3 describes the
class of dual join-graphs and defines IBP as an instance of
propagation on dual join-graphs, section 4 relates the belief
network to a constraint network and IBP to arc-consistency,
and describes classes of strong and weak inference power
for IBP, section 5 provides empirical evaluation and section
6 concludes.

2 PRELIMINARIES AND BACKGROUND

Belief networks. Belief networks provide a formalism for
reasoning about partial beliefs under conditions of uncer-
tainty. A belief network is defined by a directed acyclic
graph over nodes representing random variables. For-
mally, it is a quadruple BN =< X, D, G, P > (also
abbreviated < G, P > when X and D are clear) where
X = {X1, . . . , Xn} is a set of random variables, D =
{D1, ..., Dn} is the set of the corresponding domains, G
is a directed acyclic graph over X and P = {p1, ..., pn},
where pi = P (Xi|pai) (pai are the parents of Xi in G)
denote conditional probability tables (CPTs), each defined
on a variable and its parent set. The belief network rep-
resents a probability distribution over X having the prod-
uct form P (x1, . . . , xn) =

∏n

i=1 P (xi|xpai
), where an

assignment (X1 = x1, . . . , Xn = xn) is abbreviated to
x = (x1, . . . , xn) and where xs denotes the restriction of a
tuple x to the subset of variables S. An evidence set e is an
instantiated subset of variables. We use upper case letters
for variables and nodes in a graph and lower case letters
for values in variables’ domains. Given a function f , we
denote the set of arguments of f by scope(f). The family
of Xi, denoted by Fi, includes Xi and its parent variables.

Belief updating. The belief updating problem defined over
a belief network (also referred to as probabilistic inference)
is the task of computing the posterior probability P (Y |e)
of query nodes Y ⊆ X given evidence e. We will focus
on two cases: 1) when Y consists of a single variable Xi;
namely on computing Bel(Xi) = P (Xi = x|e), ∀Xi ∈
X, ∀x ∈ Di; 2) when Y consists of the scope of an
original CPT; that is, we compute Bel(Fi) = P (Fi =
t|e), ∀Fi family in B, ∀t ∈ ×Xi∈Fi

Di.

Constraint networks. A constraint network R =
(X, D, C) is defined over a set of variables X =
{X1, ..., Xn}, their respective domains of values D =
{D1, ..., Dn} and a set of constraints C = {C1, ..., Ct}.
Each constraint is a pair Ci = (Si, Ri), where Si ⊆ X is
the scope of the relation Ri, and Ri defines the allowed
combinations of values. In a binary constraint network
each constraint, denoted Rij , is defined over pairs of vari-
ables Xi and Xj . The primary query over constraint net-
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Figure 1: a) A belief network: P (g, f, d, c, b, a) =
P (g|f, d)· P (f |c, b)·P (d|b, a)·P (b|a)·P (c|a)·P (a); b) A
constraint network with relations having the same scopes;

works is to determine if there exists a solution, namely an
assignment x = (x1, . . . , xn) to all the variables that satis-
fies all the constraints (i.e. ∀i, xSi

∈ Ri), and if so, to find
one. A constraint networks can be associated with a con-
straint graph where each node represents a variable, and
any two variables appearing in the same constraint’s scope
are connected. We say that a constraint network R repre-
sents its set of all solutions sol(R).

Example 2.1 Figure 1a gives an example of a belief net-
work over 6 variables and Figure 1b shows a constraint
network over the same set of variables, with relations hav-
ing the same scopes as the functions of 1a.

DEFINITION 2.1 (dual graphs) Given a set of functions
F = {f1, ..., fl} over scopes S1, ..., Sl, the dual graph
of F is a graph DG = (V, E, L) that associates a node
with each function, namely V = F and an arc con-
nects any two nodes whose scope share a variable, E =
{(fi, fj)|Si ∩ Sj 6= φ} . L is a set of labels for the arcs,
each arc being labeled by the shared variables of its nodes,
L = {lij = Si ∩ Sj |(i, j) ∈ E}.

The definition of a dual graph is applicable both to
Bayesian networks and to constraint networks. It is known
that the dual graph of a constraint network transforms any
non-binary network into a binary one, where the domains
of the variables are the allowed tuples in each relation
and the constraints of the dual problem force equality over
shared variables labeling the arcs [Dechter1992].

Constraint propagation algorithms is a class of polyno-
mial time algorithms that are at the center of constraint pro-
cessing techniques. They were investigated extensively in
the past three decades and the most well known versions
are arc-, path-, and i-consistency [Dechter1992].

DEFINITION 2.2 (arc-consistency) [Mackworth1977]
Given a binary constraint network (X, D, C), the network
is arc-consistent iff for every binary constraint Rij ∈ C,
every value v ∈ Di has a value u ∈ Dj s.t. (v, u) ∈ Rij .

When a binary constraint network is not arc-consistent, arc-
consistency algorithms can enforce arc-consistency. The



algorithms remove values from the domains of the vari-
ables that violate arc-consistency until an arc-consistent
network is generated. A variety of improved performance
arc-consistency algorithms were developed over the years,
however for the sake of this paper we will consider a non-
optimal distributed version, which we call distributed arc-
consistency.

DEFINITION 2.3 (distributed arc-consistency) The algo-
rithm is a message passing algorithm. Each node main-
tains a current set of viable values Di. Let ne(i) be the set
of neighbors of Xi in the constraint graph. Every node Xi

sends a message to any node Xj ∈ ne(i), which consists of
the values in Xj’s domain that are consistent with the cur-
rent Di, relative to the constraint that they share. Namely,
the message that Xi sends to Xj , denoted by Dj

i , is:

Dj
i ← πj(Rji 1 Di) (1)

(where, join (1) and project (π) are the usual relational
operators) and in addition node i computes:

Di ← Di ∩ (1k∈ne(i) Di
k) (2)

Clearly the algorithm can be synchronized into iterations,
where in each iteration every node computes its current do-
main based on all the messages received so far from its
neighbors (eq. 2), and sends a new message to each neigh-
bor (eq. 1). Alternatively, equations 1 and 2 can be com-
bined. The message Xi sends to Xj is:

Dj
i ← πj(Rji 1 Di 1k∈ne(i) Di

k) (3)

The above distributed arc-consistency algorithm can be ap-
plied to the dual problem of any non-binary constraint net-
work as well. This is accomplished by the following rule
applied by each node in the dual graph. We call the algo-
rithm distributed relational arc-consistency.

DEFINITION 2.4 (distributed relational arc-consisten-
cy; DR-AC) Let Ri and Rj be two constraints sharing
scopes, whose arc in the dual graph is labeled by lij . The
message Ri sends to Rj denoted hj

i is defined by:

hj
i ← πlij

(Ri 1 (1k∈ne(i) hi
k)) (4)

Example 2.2 Figure 2 describes part of the execution of
DR-AC for a problem inspired by graph coloring, on the
graph of figure 1b. All variables have the same domain,
{1,2,3}, except for C which is 2, and G which is 3. Arcs in
figure 1b correspond to not equal constraints. The dual
graph of this problem is given in figure 2, and each ta-
ble shows the initial constraints (there are unary, binary
and ternary constraints). To initialize the algorithm, the
first messages sent out by each node are universal relations
over the labels. For this example, DR-AC actually solves
the problem and finds the unique solution A=1, B=3, C=2,
D=2, F=1, G=3.
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Figure 2: Part of the execution of DR-AC algorithm;

Proposition 1 Distributed relational arc-consistency con-
verges after O(t · r) iterations to the largest arc-consistent
network that is equivalent to the original network, where t
bounds the number of tuples in each constraint and r is the
number of constraints.

Proposition 2 (complexity) The complexity of distributed
arc-consistency is O(r2t2logt).

3 ITERATIVE BELIEF PROPAGATION
OVER DUAL JOIN-GRAPHS

Iterative belief propagation (IBP) is an iterative applica-
tion of Pearl’s algorithm that was defined for poly-trees
[Pearl1988]. Since it is a distributed algorithm, it is well
defined for any network. In this section we will present
IBP as an instance of join-graph propagation over variants
of the dual graph.

Consider a Bayesian network B =< X, D, G, P >. As
defined earlier, the dual graphDG of the Belief network B,
is an arc-labeled graph defined over the CPTs as its func-
tions. Namely, it has a node for each CPT and a labeled arc
connecting any two nodes that share a variable in the CPT’s
scope. The arcs are labeled by the shared variables. A dual
join-graph is a labeled arc subgraph of DG whose arc la-
bels are subsets of the labels of DG such that the running
intersection property, also called connectedness property,
is satisfied. The running intersection property requires that
any two nodes that share a variable in the dual join-graph
be connected by a path of arcs whose labels contain the
shared variable. Clearly the dual graph itself is a dual join-
graph. An arc-minimal dual join-graph is a dual join-graph
for which none of the labels can be further reduced while
maintaining the connectedness property.

Interestingly, there are many dual join-graphs of the same
dual graph and many of them are arc-minimal. We define
Iterative Belief Propagation on a dual join-graph. Each
node sends a message over an arc whose scope is identi-
cal to the label on that arc. Since Pearl’s algorithm sends
messages whose scopes are singleton variables only, we
highlight arc-minimal singleton dual join-graph. One such
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Figure 3: a) A belief network; b) A dual join-graph with
singleton labels; c) A dual join-graph which is a join-tree;

graph can be constructed directly from the graph of the
Bayesian network, labeling each arc with the parent vari-
able. It can be shown that:

Proposition 3 The dual graph of any Bayesian network
has an arc-minimal dual join-graph where each arc is la-
beled by a single variable.

Example 3.1 Consider the belief network on 3 variables
A, B, C with CPTs 1.P (C|A, B), 2.P (B|A) and 3.P (A),
given in Figure 3a. Figure 3b shows a dual graph with sin-
gleton labels on the arcs. Figure 3c shows a dual graph
which is a join tree, on which belief propagation can solve
the problem exactly in one iteration (two passes up and
down the tree).

We will next present IBP algorithm that is applicable to any
dual join-graph (Figure 4). The algorithm is a special case
of IJGP introduced in [Dechter et al.2002]. It is easy to
see that one iteration of IBP is time and space linear in the
size of the belief network, and when IBP is applied to the
singleton labeled dual graph it coincides with Pearl’s belief
propagation applied directly to the acyclic graph represen-
tation. For space reasons, we do not include the proof here.
Also, when the dual join-graph is a tree IBP converges af-
ter one iteration (two passes, up and down the tree) to the
exact beliefs.

4 FLATTENING THE BAYESIAN
NETWORK

Given a belief network B we will now define a flattening
of the Bayesian network into a constraint network called
flat(B) where all the zero entries in the CPTs are removed
from the corresponding relation. flat(B) is a constraint
network defined over the same set of variables and has the
same set of domain values as B. Formally, for every Xi

and its CPT P (Xi|pai) ∈ B we define a constraint RFi

over the family of Xi, Fi = {Xi} ∪ pai as follows: for
every assignment x = (xi, xpai

) to Fi,
(xi, xpai

) ∈ RFi
iff P (xi|xpai

) > 0.
The evidence set e = {e1, ..., er} is mapped into unary
constraints that assign the corresponding values to the evi-
dence variables.

Algorithm IBP
Input: An arc-labeled dual join-graph DJ = (V, E, L) for a
Bayesian network BN =< X, D, G, P >. Evidence e.
Output: An augmented graph whose nodes include the orig-
inal CPTs and the messages received from neighbors. Ap-
proximations of P (Xi|e), ∀Xi ∈ X . Approximations of
P (Fi|e), ∀Fi ∈ B.
Denote by: hv

u the message from u to v; ne(u) the neighbors
of u in V ; nev(u) = ne(u)−{v}; luv the label of (u, v) ∈ E;
elim(u, v) = scope(u) − scope(v).
• One iteration of IBP
For every node u in DJ in a topological order and back, do:
1. Process observed variables
Assign relevant evidence to the each pi and remove the relevant
variables from the labeled arcs.
2. Compute and send to v the function:

h
v
u =

∑

elim(u,v)

(pu ·
∏

{hu
i

,i∈nev(u)}

h
u
i )

Endfor
• Compute approximations of P (Fi|e), P (Xi|e):
For every Xi ∈ X let u be the vertex of family Fi in DJ ,
P (Fi|e) = α(

∏

hu
i

,u∈ne(i)
hu

i ) · pu;

P (Xi|e) = α
∑

scope(u)−{Xi}
P (Fi|e).

Figure 4: Algorithm Iterative Belief Propagation;

THEOREM 4.1 Given a belief network B and evidence e,
for any tuple t: PB(t|e) > 0⇔ t ∈ sol(flat(B, e)).

Proof. PB(t|e) > 0 ⇔ ΠiP (xi|xpai
)|t > 0 ⇔

∀i, P (xi|xpai
)|t > 0 ⇔ ∀i, (xi, xpai

)|t ∈ RFi
⇔ t ∈

sol(flat(B, e)), where |t is the restriction to t. 2

We next define an algorithm dependent notion of zero tu-
ples.

DEFINITION 4.1 (IBP-zero) Given a CPT P (Xi|pai), an
assignment x = (xi, xpai

) to its family Fi is IBP-zero if
some iteration of IBP determines that P (xi|xpai

, e) = 0.

It is easy to see that when IBP is applied to a constraint
network where sum and product are replaced by join and
project, respectively, it becomes identical to distributed re-
lational arc-consistency defined earlier. Therefore, a partial
tuple is removed from a flat constraint by arc-consistency
iff it is IBP-zero relative to the Bayesian network.

THEOREM 4.2 When IBP is applied in a particular vari-
able ordering to a dual join-graph of a Bayesian network
B, its trace is identical, relative to zero-tuples generation,
to that of DR-AC applied to the corresponding flat dual
join-graph. Namely, taking a snapshot at identical steps,
any IBP-zero tuple in the Bayesian network is a removed
tuple in the corresponding step of DR-AC over the flat dual
join-graph.

Proof. It suffices to prove that the first iteration of IBP and
DR-AC generates the same zero tuples and removed tuples,



respectively. We prove the claim by induction over the
topological ordering that defines the order in which mes-
sages are sent in the corresponding dual graphs.
Base case: By the definition of the flat network, when algo-
rithms IBP and DR-AC start, every zero probability tuple in
one of the CPTs PXi

in the dual graph of the Bayesian net-
work, becomes a removed tuple in the corresponding con-
straint RFi

in the dual graph of the flat network.
Inductive step: Suppose the claim is true after n corre-
spondent messages are sent in IBP and DR-AC. Suppose
the (n + 1)th message is scheduled to be the one from
node u to node v. Indexing messages by the name of
the algorithm, in the dual graph of IBP, node u contains
pu and hIBP

u
i , i ∈ nev(u), and in the dual graph of

DR-AC, node u contains Ru and hDR−AC
u
i , i ∈ nev(u).

By the inductive hypothesis, the zero tuples in pu and
hIBP

u
i , i ∈ nev(u) are the removed tuples in Ru and

hDR−AC
u
i , i ∈ nev(u), respectively. Therefore, the zero

tuples in the product (pu · (
∏

i∈nev(u))h
u
i ) correspond to

the removed tuples in the join (Ru 1 (1i∈nev(u))h
u
i ). This

proves that the zero tuples in the message of IBP
hIBP

v
u =

∑

elim(u,v)(pu · (
∏

i∈nev(u))h
u
i ), correspond to

the removed tuples in the message of DR-AC
hDR−AC

v
u = πluv

(Ru 1 (1i∈nev(u))h
u
i ).

The same argument can now be extended for every iteration
of the algorithms. 2

Corollary 1 Algorithm IBP zero-converges. Namely, its
set of zero tuples does not change after t · r iterations.

Proof. From Theorem 4.2 any IBP-zero is a no-good re-
moved by arc-consistency over the flat network. Since arc-
consistency converges, the claim follows. 2

THEOREM 4.3 When IBP is applied to a dual join-graph
of a Bayesian network, any tuple t that is IBP-zero satisfies
PB(t|e) = 0.

Proof. From Theorem 4.2 if a tuple t is IBP zero, it
is also removed from the corresponding relation by arc-
consistency over flat(B, e). Therefore this tuple is a no-
good of the network flat(B, e) and, from Theorem 4.1 it
follows that PB(t|e) = 0. 2

4.1 ZEROS ARE SOUND FOR ANY IJGP

The results for IBP can be extended to the more general
class of algorithms called iterative join-graph propagation,
IJGP [Dechter et al.2002]. IJGP can be viewed as a gener-
alized belief propagation algorithm and was shown to ben-
efit both from the virtues of iterative algorithms and from
the anytime characteristics of bounded inference provided
by mini-buckets schemes.

The message-passing of IJGP is identical to that of IBP.
The difference is in the underlying graph that it uses. IJGP
typically has an accuracy parameter i called i-bound, which
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Figure 5: a) A belief network; b) An arc-minimal dual join-
graph;

restricts the maximum number of variables that can appear
in a node (cluster). Each cluster contains a set of functions.
IJGP performs message-passing on a graph called minimal
arc-labeled join-graph.

It is easy to define a corresponding DR-AC algorithm that
operates on a similar minimal arc-label join-graph. Ini-
tially, each cluster of DR-AC can contain a number of re-
lations, which are just the flat correspondents of the CPTs
in the clusters of IJGP. The identical mechanics of the mes-
sage passing ensure that all the previous results for IBP can
be extended to IJGP.

4.2 THE INFERENCE POWER OF IBP

We will next show that the inference power of IBP is some-
times very limited and other times strong, exactly wherever
arc-consistency is weak or strong.

4.2.1 Cases of weak inference power

Example 4.4 Consider a belief network over 6 variables
X1, X2, X3, H1, H2, H3 where the domain of the X vari-
ables is {1, 2, 3} and the domain of the H variables is
{0, 1} (see Figure5a). There are three CPTs over the
scopes: {H1, X1, X2}, {H2, X2, X3}, and {H3, X1, X3}.
The values of the CPTs for every triplet of variables
{Hk, Xi, Xj} are:

P (hk = 1|xi, xj) =







1, if (3 6= xi 6= xj 6= 3);
1, if (xi = xj = 3);
0, otherwise;

P (hk = 0|xi, xj) = 1− P (hk = 1|xi, xj).

Consider the evidence set e = {H1 = H2 = H3 = 1}.
One can see that this Bayesian network expresses the prob-
ability distribution that is concentrated in a single tuple:

P (x1, x2, x3|e) =

{

1, if x1 = x2 = x3 = 3;
0, otherwise.

In other words, any tuple containing an assignment of
”1” or ”2” for any X variable has a zero probability.
The flat constraint network of the above belief network
is defined over the scopes S1 = {H1, X1, X2}, S2 =



{H2, X2, X3}, S3 = {H3, X1, X3}. The constraints are
defined by: RHk ,Xi,Xj

= {(1, 1, 2), (1, 2, 1), (1, 3, 3),
(0, 1, 1), (0, 1, 3), (0, 2, 2), (0, 2, 3), (0, 3, 1), (0, 3, 2)}.
Also, the prior probabilities for Xi’s become unary con-
straints equal to the full domain {1,2,3} (assuming the pri-
ors are non-zero). An arc-minimal dual join-graph which
is identical to the constraint network is given in Figure 5b.

In the flat constraint network, the constraints in each node
are restricted after assigning the evidence values (see Fig-
ure 5b). In this case, DR-AC sends as messages the full
domains of the variables and therefore no tuple is removed
from any constraint. Since IBP infers the same zeros as arc-
consistency, IBP will also not infer any zeros for any family
or any single variable. However, since the true probability
of most tuples is zero we can conclude that the inference
power of IBP on this example is weak or non-existent.

The weakness of arc-consistency as demonstrated in this
example is not surprising. Arc-consistency is known to be
a weak algorithm in general. It implies the same weakness
for belief propagation and demonstrates that IBP is very
far from completeness, at least as long as zero tuples are
concerned.

The above example was constructed by taking a specific
constraint network with known properties and expressing
it as a belief network using a known transformation. We
associate each constraint RS with a bi-valued new hidden
variable Xh, direct arcs from the constraint variables to this
new hidden variable Xh, and create the CPT such that:

P (xh = 1|xpah
) = 1 , iff xpah

∈ RS .
while zero otherwise [Pearl1988]. The generated belief
network conditioned on all the Xh variables being assigned
”1” expresses the same set of solutions as the constraint
network.

4.2.2 Cases of strong inference power

The relationship between IBP and arc-consistency ensures
that IBP is zero-complete whenever arc-consistency is. In
general, if for a flat constraint network of a Bayesian net-
work B, arc-consistency removes all the inconsistent do-
main values (it creates minimal domains), then IBP will
also discover all the true zeros of B. We next consider sev-
eral classes of constraints that are known to be tractable.

Acyclic belief networks. When the belief network is
acyclic, namely when it has a dual join-graph that is a
tree, the flat network is an acyclic constraint network that
can be shown to be solvable by distributed relational arc-
consistency [Dechter1992]. Note that acyclic Bayesian net-
works is a strict superset of polytrees. The solution requires
only one iteration (two passes) of IBP. Therefore:

Proposition 4 IBP is complete for acyclic networks, when
applied to the tree dual join-graph (and therefore it is also
zero-complete).
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Figure 6: a) A belief network that corresponds to a Max-
closed relation; b) An arc-minimal dual join-graph;

Example 4.5 We refer back to the example of Figure 3.
The network is acyclic because there is a dual join-graph
that is a tree, given in Figure 3c, and IBP will be zero-
complete on it. Moreover, IBP is known to be complete in
this case.

Belief networks with no evidence. Another interesting
case is when the belief network has no evidence. In this
case, the flat network always corresponds to the causal con-
straint network defined in [Dechter and Pearl1991]. The
inconsistent tuples or domain values are already explicitly
described in each relation, and new zeros do not exist. In-
deed, it is easy to see (either directly or through the flat
network) that:

Proposition 5 IBP is zero-complete for any Bayesian net-
work with no evidence.

In fact, it can be shown [Bidyuk and Dechter2001] that IBP
is also complete for non-zero posterior beliefs of many
variables when there is no evidence.

Max-closed constraints. Consider next the class of Max-
closed relations defined as follows. Given a domain D
that is linearly ordered let Max be a binary operator that
returns the largest element among 2. The operator can
be applied to 2 tuples by taking the pair-wise operation
[Jeavons and Cooper1996].

DEFINITION 4.2 (Max-closed relations) A relation is
Max-closed if whenever t1, t2 ∈ R so is Max(t1, t2). A
constraint network is Max-closed if all its constraints are
Max-closed.

It turns out that if a constraint network is Max-closed, it can
be solved by distributed arc-consistency. Namely, if no do-
main becomes empty by the arc-consistency algorithm, the
network is consistent. While arc-consistency is not guar-
anteed to generate minimal domains, thus removing all in-
consistent values, it can generate a solution by selecting the
maximal value from the domain of each variable. Accord-
ingly, while IBP will not necessarily discover all the zeros,
all the largest non-zero values in the domains of each vari-
able are true non-zeros.



Therefore, for a belief network whose flat network is Max-
closed IBP is likely to be powerful for generating zero tu-
ples.

Example 4.6 Consider the following belief network:
There are 5 variables {V, W, X, Y, Z} over domains
{1, 2, 3, 4, 5}. and the following CPTs:

P (x|z, y, w) 6= 0, iff 3x + y + z ≥ 5w + 1
P (w|y, z) 6= 0, iff wz ≥ 2y
P (y|z) 6= 0, iff y ≥ z + 2
P (v|z) 6= 0, iff 3v ≤ z + 1
P (Z = i) = 1/4, i ∈ {1, 2, 3, 4}

All the other probabilities are zero. Also, the domain of W
does not include 3 and the domain z does not include 5. The
problem’s acyclic graph is given in Figure 6a. It is easy to
see that the flat network is the set of constraints over the
above specified domains: w 6= 3, z 6= 5, 3v ≤ z + 1,
y ≥ z +2, 3x+y+z ≥ 5w+1, wz ≥ 2y. An arc-minimal
dual join-graph with singleton labels is given in Figure 6b.
It has 5 nodes, one for each family in the Bayesian net-
work. If we apply distributed relational consistency we
will get that the domains are: DV = {1}, DW = {4},
DX = {3, 4, 5}, DY = {4, 5} and DZ = {2, 3}. Since all
the constraints are Max-closed and since there is no empty
domain the problem has a solution given by the maximal
values in each domain: V = 1, W = 4, X = 5, Y = 5,
Z = 3. The domains are not minimal however: there is no
solution having X = 3 or X = 4.

Based on the correspondence with arc-consistency, we
know that applying IBP to the dual join-graph will indeed
infer all the zero domains except those of X , which vali-
dates that IBP is quite powerful for this example.

An interesting case for propositional variables is the class
of Horn clauses. A Horn clause can be shown to be Min-
closed (by simply checking its models). If we have an
acyclic graph, and we associate every family with a Horn
clause expressed as a CPT in the obvious way, then apply-
ing Belief propagation on a dual join-graph can be shown
to be nothing but the application of unit propagation until
there is no change. It is well known that unit propagation
decides the consistency of a set of Horn clauses (even if
they are cyclic). However, unit propagation will not neces-
sarily generate the minimal domains, and thus not infer all
the zeros, but it is likely to behave well.

Implicational constraints. Finally, a class that is known
to be solvable by path-consistency is implicational con-
straints, defined as follows:

DEFINITION 4.3 A binary network is implicational, iff for
every binary relation every value of one variable is consis-
tent either with only one or with all the values of the other
variable [Kirousis1993]. A Bayesian network is implica-
tional if its flat constraint networks is.
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Figure 7: Example of a finite precision problem;

Clearly, a binary function is an implicational constraint.
Since IBP is equivalent to arc-consistency only, we can-
not conclude that IBP is zero-complete for implicational
constraints. This raises the question of what corresponds to
path-consistency in belief networks, a question which we
do not attempt to answer at this point.

4.3 A FINITE PRECISION PROBLEM

Algorithms should always be implemented with care on fi-
nite precision machines. We mention here a case where
IBP’s messages converge in the limit (i.e. in an infinite
number of iterations), but they do not stabilize in any finite
number of iterations. Consider again the example in Figure
5 with the priors on Xi’s given in Figure 7. If all nodes
Hk are set to value 1, the belief for any of the Xi variables
as a function of iteration is given in the table in Figure 7.
After about 300 iterations, the finite precision of our com-
puter is not able to represent the value for Bel(Xi = 3),
and this appears to be zero, yielding the final updated be-
lief (.5, .5, 0), when in fact the true updated belief should
be (0, 0, 1). This does not contradict our theory, because
mathematically, Bel(Xi = 3) never becomes a true zero,
and IBP never reaches a quiescent state.

5 EMPIRICAL EVALUATION

We tested the performance of IBP and IJGP both on cases
of strong and weak inference power. In particular, we
looked at networks where probabilities are extreme and
checked if the properties of IBP with respect to zeros also
extend to ε small beliefs.

5.1 ACCURACY OF IBP ACROSS BELIEF
DISTRIBUTION

We investigated empirically the accuracy of IBP’s predic-
tion across the range of belief values from 0 to 1. Theoret-
ically, zero values inferred by IBP are proved correct, and
we hypothesize that this property extends to ε small beliefs.
That is, if the flat network is easy for arc-consistency and
IBP infers a posterior belief close to zero, then it is likely
to be correct.
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Figure 8: Coding, N=200, 1000 instances, w*=15;
0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 10

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

A
b

so
lu

te
 E

rr
o

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45

evidence = 0

P
er

ce
n

ta
g

e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 9: 10x10 grids, 100 instances, w*=15;

To capture the accuracy of IBP we computed its absolute
error per intervals of [0, 1]. Using names inspired by the
well known measures in information retrieval, we use Re-
call Absolute Error and Precision Absolute Error. Recall is
the absolute error averaged over all the exact posterior be-
liefs that fall into the interval. For Precision, the average is
taken over all the approximate posterior belief values com-
puted by IBP that fall into the interval. Our experiments
show that the two measures are strongly correlated. We
also show the histograms of distribution of belief for each
interval, for the exact and for IBP, which are also strongly
correlated. The results are given in Figures 8-11. The left
Y axis corresponds to the histograms (the bars), the right Y
axis corresponds to the absolute error (the lines). All prob-
lems have binary variables, so the graphs are symmetric
about 0.5 and we only show the interval [0, 0.5]. The num-
ber of variables, number of iterations and induced width w*
are reported for each graph.

Coding networks are the notorious case where IBP has
impressive performance. The problems are from the class
of linear block codes, with 50 nodes per layer and 3 parent
nodes. Figure 8 shows the results for three different val-
ues of channel noise: 0.2, 0.4 and 0.6. For noise 0.2, all
the beliefs computed by IBP are extreme. The Recall and
Precision are very small, of the order of 10−11. So, in this
case, all the beliefs are very small (ε small) and IBP is able
to infer them correctly, resulting in almost perfect accuracy
(IBP is indeed perfect in this case for the bit error rate).
When the noise is increased, the Recall and Precision tend
to get closer to a bell shape, indicating higher error for val-
ues close to 0.5 and smaller error for extreme values. The
histograms also show that less belief values are extreme as
the noise is increased, so all these factors account for an
overall decrease in accuracy as the channel noise increases.

Grid networks results are given in Figure 9. Contrary to
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Figure 10: Random, N=80, 100 instances, w*=15;
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Figure 11: CPCS54, 100 instances, w*=15; CPCS360, 5
instances, w*=20;

the case of coding networks, the histograms show higher
concentration around 0.5. The absolute error peaks closer
to 0 and maintains a plateau, as evidence is increased, indi-
cating less accuracy for IBP.

Random networks results are given in Figure 10. The his-
tograms are similar to those of the grids, but the absolute
error has a tendency to decrease towards 0.5 as evidence
increases. This may be due to the fact that the total number
of nodes is smaller (80) than for grids (100), and the evi-
dence can in many cases make the problem easier for IBP
by breaking many of the loops (in the case of grids evidence
has less impact in breaking the loops).

CPCS networks are belief networks for medicine, derived
from the Computer based Patient Case Simulation system.
We tested on two networks, with 54 and 360 variables. The
histograms show opposing trends in the distribution of be-
liefs. Although irregular, the absolute error tends to in-
crease towards 0.5 for cpcs54. For cpcs360 it is smaller
around 0 and 0.5.

We note that for all these types of networks, IBP has very
small absolute error for values close to zero, so it is able to
infer them correctly.

5.2 GRAPH-COLORING TYPE PROBLEMS

We also tested the behavior of IBP and IJGP on a special
class of problems which were designed to be hard for belief
propagation algorithms in general, based on the fact that
arc-consistency is poor on the flat network.

We consider a graph coloring problem which is a gener-
alization of example 4.4, with N = 20 X nodes, rather
than 3, and a variable number of H nodes defining the den-
sity of the constraint graph. X variables are 3-valued root



Table 1: Graph coloring type problems: 20 root variables

Absolute error

ε H=40, w*=5 H=60, w*=7 H=80, w*=9
0.0 0.4373 0.4501 0.4115

IBP 0.1 0.3683 0.4497 0.3869
0.2 0.2288 0.4258 0.3832
0.0 0.1800 0.1800 0.1533

IJGP(2) 0.1 0.3043 0.3694 0.3189
0.2 0.1591 0.3407 0.3022
0.0 0.0000 0.0000 0.0000

IJGP(4) 0.1 0.1211 0.0266 0.0133
0.2 0.0528 0.1370 0.0916
0.0 0.0000 0.0000 0.0000

IJGP(6) 0.1 0.0043 0.0000 0.0132
0.2 0.0123 0.0616 0.0256

nodes, H variables are bi-valued and each has two parents
which are X variables, with the CPTs defined like in exam-
ple 4.4. Each H CPT actually models a binary constraint
between two X nodes. All H nodes are assigned value 1.
The flat network of this kind of problems has only one so-
lution, where every X has value 3. In our experiments we
also added noise to the H CPTs, making probabilities ε and
1− ε rather than 0 and 1.

The results are given in Table 1. We varied parameters
along two directions. One was increasing the number of
H nodes, corresponding to higher densities of the con-
straint network (the average induced width w∗ is reported
for each column). The other was increasing the noise pa-
rameter ε. We averaged over 50 instances for each combi-
nation of these parameters. In each instance, the priors for
nodes X were random uniform, and the parents for each
node H were chosen randomly. We report the absolute er-
ror, averaged over all values, all variables and all instances.
We should note that these are fairly small size networks
(w*=5-9), yet they prove to be very hard for IBP and IJGP,
because the flat network is hard for arc-consistency. It is
interesting to note that even when ε is not extreme anymore
(0.2) the performance is still poor, because the structure of
the network is hard for arc-consistency. IJGP with higher
i-bounds is good for ε = 0 because it is able to infer some
zeros in the bigger clusters, and these propagate in the net-
work and in turn infer more zeros.

6 CONCLUSIONS

The paper investigates the behavior of belief propagation
algorithms by making analogies to well known and under-
stood algorithms from constraint networks. By a simple
transformation, called flattening of the Bayesian network,
IBP (as well as any generalized belief propagation algo-
rithm) can be shown to work similar to distributed rela-
tional arc-consistency relative to zero tuples generation. In
particular we show that IBP’s inference of zero beliefs con-
verges and is sound.

While the theoretical results presented here are straightfor-
ward, they help identify new classes of problems that are

easy or hard for IBP. Based on empirical work, we observe
that good performance of IBP and many small beliefs in-
dicate that the flat network is likely to be easy for arc-
consistency. On the other hand, when we generated hard
networks for arc-consistency, IBP was very poor in spite
of the presence of many zero beliefs. We believe that the
success of IBP for coding networks can be explained by
the presence of many small beliefs on one hand, and by an
easy-for-arc-consistency flat network on the other.
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