
Bayesian Inference in the Presence of Determinism

David Larkin and Rina Dechter
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425
{dlarkin,dechter}@ics.uci.edu

Abstract

In this paper, we consider the problem of
performing inference on Bayesian networks
which exhibit a substantial degree of deter-
minism. We improve upon the determinism-
exploiting inference algorithm presented in
[4], showing that the information brought to
light by constraint propagation may be ex-
ploited to a much greater extent than has
been previously possible. This is confirmed
with theoretical and empirical studies.

1 Introduction

Belief networks [9] are a popular model for reason-
ing with uncertainty in Artificial Intelligence. In gen-
eral, performing inference on a belief network is NP-
hard. However, tractable subclasses have been iden-
tified. The most important of these is the case when
the network graph can be embedded in a triangulated
(chordal) graph of bounded treewidth [8, 13, 3]. It is
also possible to efficiently process networks with a spe-
cial structure in their quantitative component, such as
the common case of Noisy-OR gates [9], or context-
specific independence [1]. In this paper, building upon
research reported in [4], we identify another tractable
class, the case when the network exhibits a high degree
of determinism. With a deterministic relation, such as
x + y = z, it is possible to perform exact logical de-
ductions, such as determining the value of z given x
and y. In a probabilistic model, however, knowledge
of x and y might tell us that z assumes a certain value
with a certain probability, but we cannot say anything
for sure. It is clear that in general deterministic rela-
tions are more informative, and it would seem likely
that special purpose algorithms can speed inference
when they are present. In [4] such an algorithm, Elim-
CPE, was indeed proposed and empirically shown to
be effective. It relied upon constraint propagation to

elucidate the determinism present in the network. In
this paper we seek to show that this information can be
exploited much more effectively by more sophisticated
algorithms. This can result in greatly improved run-
ning times for inference when determinism is present,
as we will demonstrate empirically and theoretically.

The main motivation for our study is the similarity
that exists between belief networks that exhibit many
functional relationships and deterministic networks,
such as constraint satisfaction problems [7, 2]. Since
these belief networks have a substantial determinis-
tic substructure beneath their probabilistic facade, it
would seem logical that the sophisticated techniques
developed by the constraint satisfaction community
might also be leveraged to speed Bayesian inference.
If the deterministic information present in the belief
network were represented explicitly as a set of con-
straints, then it would certainly be possible to run
a backtracking-style CSP algorithm to enumerate all
of the consistent variable assignments (i.e., with non-
zero probability) and to add up the probabilities of
each. Constraint propagation (i.e., arc-consistency)
would greatly speed this task. However, belief net-
works are in general less deterministic than constraint
networks. Except in the case of an exceptional query
or observation, they do not exhibit inconsistency, and
moreover they typically have a very large number of so-
lutions. Even the most efficient CSP solver could take
an unacceptably long time to enumerate the possibly
exponentially many solutions. Therefore we would like
to find a way to marry the techniques of CSP solving,
mainly constraint propagation, with standard, efficient
algorithms for general-purpose Bayesian inference to
handle this special class of networks.

Constraint propagation is essentially the search for de-
terministic information that is implied but not stated
explicitly in the input. In this paper we will con-
sider a hierarchy of four algorithms that exploit the
available deterministic information to an increasing
extent. This hierarchy is represented schematically



Elim-Bel

Elim-CPE

Elim-PD

Elim-Sparse

Figure 1: A Hierarchy of Determinism-Exploiting Al-
gorithms

in Figure 1. The simplest method is the standard
variable-elimination algorithm, Elim-Bel. It accepts
in the input a list of observations, or variables which
are known to be fixed at a certain value. All CPTs
mentioning these variables can be instantiated with
their values, thus reducing their size and complexity.
In effect the network graph is simplified by removing
all of the observed variables. The next three methods
go beyond Elim-Bel by actively searching for helpful
deterministic information, mainly by constraint prop-
agation. Elim-CPE, introduced in [4], attempts to in-
fer from the functional structure of the network and
the known variable values the fact that certain other
variables, not observed directly, must also be fixed
at certain values. These “hidden” observations can
be exploited exactly as in Elim-Bel. The next two
algorithms, contributed by this paper, also perform
constraint-propagation, but a much larger proportion
of the available information is effectively utilized to
speed inference. Elim-PD uses partial information
about variables to simplify the functions that men-
tion them without eliminating them entirely. If a vari-
able is known not to assume a certain value, its do-
main can effectively be treated as if it were smaller
and the effective table size of all the functions that
mention it can be correspondingly reduced. Finally,
Elim-Sparse, which is the main focus of this paper, is
the most aggressive in its attempt to exploit the avail-
able determinism. Instead of using information about
single variables only, it exploits the knowledge that an
assignment to a set of variables is known not to have
taken place. Functions are stored in a list represen-
tation that depends only on the number of non-zero
elements of the domain. If an assignment is discov-
ered to be inconsistent, all tuples mentioning it can
be removed from all functions. When the functions

have small lists (though individual variables may have
unrestricted domains), this can be very effective, but
when this is not true there is a substantial overhead
since a nearly full list of tuples is much more difficult
to search and maintain than a table.

This paper is divided into several parts. Following this
introduction, we outline basic definitions and concepts
in Section 2. Then in Sections 3, 4, 5, and 6, we define
Elim-Bel, Elim-CPE, Elim-PD, and Elim-Sparse, re-
spectively. In Section 7 we theoretically analyze their
expected behavior in a set of simple uniform random
scenarios, and in Section 8 we provide preliminary em-
pirical results on real and random networks. Finally
in Section 9 we conclude.

2 Preliminaries

A belief network is a tuple (X,D,G, P ) where X =
{X1,X2, ...,Xn} is a set of variables, D = {Di} is a
set of variable domains, G is a directed acyclic graph in
which the nodes correspond to variables, and P is a set
of conditional probability tables. The set of variables
attached to arcs pointing into a variable Xi is called
the parent set of Xi, pai. The conditional probability
of Xi assuming a certain value given an assignment
to its parents is given by the CPT P (Xi|pai). The
whole network defines a joint probability distribution∏

i P (Xi|pai).

The Bayesian inference problem is to calculate the
probability P (Xi|e) of a variable Xi assuming a certain
value given some observations e. The observations are
most commonly given as a set of variables which are
known to have certain values, but it is also possible to
include more complex observations, such as the knowl-
edge that a certain assignment to a subset of variables
is known not to have happened. In general we will
represent e as a set of constraints {C1, ..., Ck} on vari-
ables representing the available knowledge. The task
then is to infer the effect this knowledge has on our
beliefs in the unknown variables.

3 Elim-Bel

Elim-Bel, also known as variable elimination [13, 3], is
a standard belief-inference algorithm. It is well known
that its complexity is exponential in the treewidth of
the triangulated, moralized network graph, also known
as the induced width [3]. It is also known that it can
be simplified considerably by the presence of observa-
tions of fixed variables. These variables can be deleted
from the graph before inference begins. Elim-Bel does
not, however, make any effort to discover such fixed
variables, beyond those which are given directly in the
input.



Algorithm Elim-Bel

Input: Belief net B = (X, D, G, P ), evidence e.

Output: P (Xi|e).
Remove all observed variables by instantiation.

Set F = {C1, ..., Ck, P (X1|pa1), ..., P (Xn|pan)}.
For each variable Xj �= Xi, in some ordering,

Let Θ be the functions in F defined on Xj.
Let F := {F − Θ} ∪ {∑

Xj

∏
fr∈Θ

fr}.
Return F.

Figure 2: The Elim-Bel Algorithm

The basic inference problem is to find P (Xi|e). By the
use of a normalization constant, this can be reduced to
finding P (Xi ∧ e). Initially, the input should be sim-
plified by treating observed variables as constants and
deleting all explicit references to them. Then the main
inference algorithm can begin. During each step, we
will have a set of functions F = {f1, f2, ..., fm} and a
set of variables Y ⊆ X such that

∏
j fj = P (Y ∧ e), as

we will show by induction. Initially, Y is simply the set
of variables remaining after instantiating the observa-
tions, and F = {C1, ..., Ck, P (X1|pa1), ..., P (Xn|pan)}
is just the simplified input. Each Cj is taken as a
boolean 0-1 function, their product being the global
observed constraint. During the induction step, we
want to calculate P ({Y − Xj} ∧ e) for some vari-
able Xj . This is

∑
Xj

P (Y ∧ e) =
∑

Xj

∏
l fl. If θ

is the set of indices of functions in F that mention
Xj , and γ is the set of all other indices, then this
reduces to

∏
l∈γ fl

∑
Xj

∏
h∈θ fh =

∏
l∈γ flf

j , where
f j =

∑
Xj

∏
h∈θ fh is calculated and stored directly.

This completes the inductive proof.

After all variables but Xi have been eliminated, the in-
duction hypothesis tells us that the product of the re-
maining functions will be the desired quantity P (Xi ∧
e). Pseudo-code for Elim-Bel is given in Figure 2.

4 Elim-CPE

Elim-CPE, first presented in [4], goes beyond Elim-
Bel by actively looking for deterministic information
that is implied, but not stated directly, by the in-
put. It maintains a representation of the determin-
istic information in the network, which initially in-
cludes the evidence and a constraint corresponding
to each CPT, forbidding the tuples which have zero
probability under it. This deterministic “skeleton” of
the original network is then processed by constraint
propagation. In its original form [4], Elim-CPE used
directional unit resolution on CNF clauses. Here we
modify it to use generalized arc consistency, in order
to make it more comparable with the following algo-

Algorithm Enforce-GAC

Input: Constraints C = {C1, ..., Ck}.
Output: Set of pruned variable domains.

For each constraint Cj,

Prune domains to make Cj consistent.

If nothing was pruned, return final domains.

Otherwise execute the main loop again.

Figure 3: The Enforce-GAC Algorithm

Algorithm Elim-CPE

Input: Belief net B = (X, D, G, P ), evidence e.

Output: P (Xi|e).
Let constraint Kj represent P (Xj |paj).

Let C := {K1, ..., Kn} ∪ e.

Let D′ := Enforce-GAC(C).

Return Elim-Bel(B,e ∧ D′).

Figure 4: The Elim-CPE Algorithm

rithms. A constraint is generalized arc consistent if no
variable domain contains a value that cannot be ex-
tended consistently with it. If this is not the case, it
can be enforced by suitably pruning the domains. This
may cause other constraints to lose their arc consis-
tency. Therefore the GAC subroutine enforces consis-
tency on every constraint from first to last to the first
again, stopping when a complete pass is made without
changing any domains. Pseudo-code for this proce-
dure is given in Figure 3. It takes a set of constraints
as input and returns a set of pruned domains. These
are equivalent to unary constraints. Derived singleton
constraints which fix a variable’s value can be consid-
ered the same as direct observations. By appending
them to the original evidence, they are made explicit
and available to Elim-Bel, which can be called as a
subroutine, with reduced complexity. Pseudo-code for
Elim-CPE can be found in Figure 4.

5 Elim-PD

Enforcing generalized arc consistency can reveal a sub-
stantial amount of deterministic information. Elim-
CPE is capable of using the fact that certain variables
are known to be fixed at certain values, but it cannot
do anything if some variable domains are pruned only
a little bit. This deficiency is remedied by Elim-PD.

If a variable is observed, Elim-Bel can delete every
mention of it from the network. In fact the same thing
can be done by Elim-PD with variable values. Every
entry in an input function’s table that mentions the
value can be deleted, effectively rewriting the problem
so that variables have smaller domains. Since the size



Algorithm Elim-PD

Input: Belief net B = (X, D, G, P ), evidence e.

Output: P (Xi|e).
Let constraint Kj represent P (Xj |paj).

Let C := {K1, ..., Kn} ∪ e.

Let D′ := Enforce-GAC(C).

Rewrite B and e with smaller domains D′.

Let B′ and e′ be the simplified problem.

Return Elim-Bel(B′, e′ ∧ D′).

Figure 5: The Elim-PD Algorithm

of a function’s table is the product of the domain sizes
of its constituent variables, this can lead to substantial
savings. When a domain is reduced to a singleton, this
process is exactly the same as the instantiation done
by Elim-Bel. Pseudo code for this algorithm is given
in Figure 5.

6 Elim-Sparse

There may be substantial determinism present in a
network, even when the projection of the set of solu-
tions on any particular variable may not reveal that
any values should be pruned. For example, consider
the case when the network is completely connected
with equality constraints. Any domain value for any
single variable is possible, but there are still only d
solutions, where d is the domain size. To exploit the
determinism present in this case, a more sophisticated
algorithm is needed. Elim-Sparse is intended to meet
that need.

Elim-Sparse relies upon a sparse function representa-
tion. Instead of being recorded on a table as large
as the product of the domain sizes of all variables, a
function is maintained as a list of tuples with non-zero
probability. In the above example, with the equality
constraints, defining the set of solutions as a single
function would require a table of size dn for Elim-CPE
or Elim-PD, where n is the number of variables, but
only nd for Elim-Sparse (d tuples of size n each). Effi-
cient operations to work with these functions are also
available. These are mainly based on the Hash-Join
procedure which is well-known in database theory [6].
The product of two functions is computed by hashing
every tuple in the smaller function into a hash table on
the basis of its assignments to the common variables.
Then every tuple in the larger function is consulted,
checking the appropriate hash table entry to find all
consistent smaller tuples. Each consistent pair gener-
ates a tuple in the list of the output function, which
is associated with the product of their values. The
operation of summing a variable out of a function can

Algorithm Elim-Sparse

Input: Belief net B = (X, D, G, P ), evidence e.

Output: P (Xi|e).
Let constraint Kj represent P (Xj |paj).

Let D′ := Enforce-GAC({K1, ..., Kn} ∪ e).

Del. values �∈ D′ from B, e, compressing tables.
Cast B, e into sparse lists B′, e′.

Let F = {C′
1, ..., C

′
k, P ′(X1|pa1), ..., P

′(Xn|pan)}.
For every variable Xj �= Xi, in some ordering,

Let Θ be the functions in F defined on Xj.
Find f j :=

∑
Xj

∏
fr∈Θ

fr w/ sparse operations.

Let F := {F − Θ} ∪ {f j}.
Return F.

Figure 6: The Elim-Sparse Algorithm

also be accomplished efficiently with a hash table. The
average-case complexity of these operations is optimal,
being the sum of the sizes of the operands and the
output. The complete algorithm, making use of the
sparse data structure and the associated operations, is
given in Figure 6. Its overall complexity depends on
the amount of determinism in the problem. If enough
is present for the largest function lists to be compar-
atively short, it can be fairly efficient, but if it is not
present, the overhead of manipulating nearly full tuple
lists can be much larger than dealing with a table.

Other structured function representations, such as de-
cision trees [1] or rule-based systems [10] might seem
appropriate in this case. These systems partition the
domain space of functions into regions of equal value,
which only requires one function definition per region.
The regions are defined to be all tuples consistent
with some partial assignment. However, in general,
it is desirable to be able to remove zero-valued tuples
arbitrarily from the explicit representation, without
being constrained to respect the structure of partial-
assignment space. Therefore we employed our simpler
method for the purposes of this study. More sophis-
ticated sparse table methods [11] are also available.
Investigating the impact these might have is an open
question.

In previous work [5], sparse representations have been
used to speed Bayesian inference. The sum and prod-
uct operations have also been previously expressed
as relational database operators [12], which coincides
with our own interpretation. Our main contribution
here is to show how the sparse representation can am-
plify the gain that results from constraint propagation.
This can make higher levels of constraint propagation
worthwhile. We will make this clearer in the theoreti-
cal analysis of the following Section.



7 Theoretical Analysis

In this Section we will compare the expected perfor-
mance of the four algorithms on some uniform random
cases. We assume that there are n variables, each with
domain size d. The deterministic part of the network
is represented by m random binary constraints. An as-
signment to a constraint’s variables is consistent with
uniform probability q. When a variable is eliminated,
a new function is created which is defined on k vari-
ables.

We will use a version of Enforce-GAC that does only
one pass through the constraints. When a constraint
is processed, every variable value that cannot be ex-
tended consistently with it is flagged for deletion, but
not removed from the domain. The flagged domain
values are pruned after all constraints have been pro-
cessed once, then the algorithm stops. The actual
Enforce-GAC algorithm is harder to analyze, but since
it does more pruning, it is likely that the predicted
advantage of the determinism-exploiting algorithms
would increase under it.

We can expect n−k variable elimination steps to occur
before we are left with a set of functions defined on no
more than k variables. The effort required to compute
the desired probability at this point is no greater than
that needed to perform one more elimination step, so
we can consider the problem solved here. Elim-Bel
will produce a function of size dk for each elimination
step, for a total complexity of (n − k)dk. To calculate
the expected running times of the other algorithms, we
need three quantities. For Elim-CPE, we need to know
the probability ps that a variable will be reduced to a
singleton domain by the constraint propagation step.
These variables can be removed in the preprocessing
step. For Elim-PD, we also need the expected domain
size after propagation, ed. This will determine the
average complexity of a function over the pruned do-
mains. Finally Elim-Sparse’s complexity depends on
the probability that an assignment of unpruned values
will be listed in the function produced by eliminating
variable i. Since this depends on i, we will call it S(i).

When a constraint is processed, a variable value is
flagged for deletion if it cannot be extended to any
of the d possibilities for the other variable. This oc-
curs with probability (1 − q)d. So the value remains
unflagged with probability 1 − (1 − q)d. There are m
constraints, for a total of 2m domain-pruning checks,
2m/n of which will involve any particular variable.
For a domain value to remain unpruned, it must sur-
vive each check, which will happen with probability
pv = (1 − (1 − q)d)

2m
n . It will be the only survivor if

the d − 1 other values are pruned, which occurs with
probability pv(1 − pv)d−1. There are d possible sole

survivors, so the total chance that a domain will be
reduced to a singleton is ps = dpv(1 − pv)d−1. This is
the first quantity we were looking for. The expected
domain size after propagation ed is d ·pv. This was the
second requirement.

It is now necessary to find S(i). As stated before,
2m/n constraints can be expected to involve variable
i. We call a variable a neighbor of i if it is connected
to it by a constraint. The variables are eliminated
from last to first, so when i is removed only variables
1 through i − 1 will be left. So 2m

n · i−1
n−1 predecessors

of i can be expected to be neighbors, and 2m
n · n−i

n−1
successors. We call these two quantities Before[i] and
After[i], respectively. Looking at the internal structure
of the constraints, we want to find the expected num-
ber of unpruned values a given unpruned value can be
extended to. Before constraint propagation, this is qd.
From the point of view of a given constraint, almost all
of the domain pruning is done by other (independent)
constraints, so the expected probability that a given
pair of unpruned values is consistent under it after con-
straint propagation is still (approximately) q. Now,
suppose Enforce-GAC has finished deleting all domain
values, leaving the expected domain size at ed, and a
variable j has h neighbors. An assignment to all of the
neighbors can be extended consistently to a particu-
lar one of j’s values with probability qh. A particular
value of j cannot be part of a consistent extension
with probability 1− qh, and no extension to j is possi-
ble with probability (1−qh)ed . So then the assignment
to the h neighbors can be extended consistently with j
with probability PC[h] = 1−(1−qh)ed . Now, suppose
we are eliminating variable i by creating a new func-
tion on k variables. Any of i’s succeeding neighbors
was also a neighbor of 2m

n
k

n−1 of these k variables, in
the average case. An assignment to the k variables will
appear as a tuple in the function being created only if it
can be extended consistently to variable i and all of its
After[i] succeeding neighbors. Before[i] of the k vari-
ables will be neighbors of i. So a tuple will appear with
probability S(i) = PC[Before[i]] · PC[2m

n
k

n−1 ]After[i].
This is the last quantity we were looking for.

So, Elim-CPE will remove a fraction ps of the variables
by instantiation before the main inference step, which
will be carried out by Elim-Bel. So its expected cost is
(1− ps)(n− k)dk. Elim-PD will also instantiate these
variables, and moreover when a variable is eliminated
during the main inference the function created has size
ek
d. So its expected cost is (1 − ps)(n − k)ek

d. Finally,
when Elim-Sparse generates a function when eliminat-
ing variable i, it will have S(i)ek

d tuples. Elim-Sparse
is somewhat less efficient than the other algorithms in
generating the new function, because the complexity
is dependent not only on the size of the output but



m Elim-Bel Elim-CPE Elim-PD Elim-Sparse
350 1.831e12 1.801e12 2.115e10 2.768e10
400 1.831e12 1.787e12 1.111e10 2.374e9
450 1.831e12 1.768e12 5.829e9 3.670e8

Figure 7: Expected Costs Under Three Scenarios

m Elim-Bel Elim-CPE Elim-PD Elim-Sparse
350 66.6 65.1 0.76 1.0
400 578 564 3.5 1.0
450 6209 5995 20 1.0

Figure 8: Normalized Expected Costs

also the intermediate functions created by the pair-
wise product operations. The total size of the list of
the function generated by eliminating i is kS(i)ek

d, and
since this is much larger than the intermediate func-
tions calculated to produce it, it dominates the overall
cost. However to take into account the overhead from
these intermediate operations, we will assume Elim-
Sparse takes ckS(i)ek

d time to generate a new function,
for c > 1. Its total time then is (1−ps)

∑n
i=k ckS(i)ek

d.

These quantities were calculated by computer for some
sample scenarios. The number of variables n was 75,
the function arity k was 15, the domain size d was
5, the constraint looseness q was 1/2, and the Elim-
Sparse overhead factor c was 4. The number of con-
straints varied from 350 to 400 to 450. The results are
listed in Figure 7. The normalized complexities, where
the cost of Elim-Sparse is treated as 1, are given in
Figure 8.

It can be seen from this example that Elim-CPE gains
a fairly mild advantage over Elim-Bel as the determin-
ism present in the network, measured by the number of
constraints, goes up. Elim-PD gets a much more sig-
nificant improvement in efficiency, becoming orders of
magnitude faster as the determinism increases. Elim-
Sparse at the lowest level of determinism is somewhat
less efficient than Elim-PD, due mainly to the over-
head of the tuple lists. But as constraints are added
it clearly makes more effective use of the determin-
istic information, becoming three times faster at 400
constraints and 20 times faster at 450.

It should be noted that if we used the sparse function
representation alone, without performing constraint
propagation first, the efficiency gains would have been
considerably less. S(i), the chance of a tuple appear-
ing in a newly generated function, would be higher
in this case, since inconsistencies previously uncov-
ered by constraint propagation would go undetected.
Moreover the total cost would be approximately∑n

j=k ckS(i)dk instead of (1 − ps)
∑n

j=k ckS(i)ek
d,

which is the complexity of Elim-Sparse. Calculations

with this formula reveal that in the above scenarios,
Elim-Sparse can be expected to be orders of magni-
tude faster than sparse inference without constraint
propagation.

From this we may conclude that performing constraint
propagation may be expected to be very profitable un-
der certain uniform random conditions, provided that
a suitably aggressive determinism-exploiting algorithm
(like Elim-Sparse) is used.

8 Empirical Results

In this Section we discuss the results of preliminary
empirical tests of Elim-Bel, Elim-CPE, and Elim-
Sparse on a variety of real and random networks. Be-
cause of time constraints we were unable to implement
Elim-PD.

We tested six real life networks: Dia-
betes, Water, Mildew, Munin1, Hailfinder,
and Insurance. These can be found at
http://www.cs.huji.ac.il/labs/compbio/
Repository/networks.html. We also tested some
randomly generated networks. They had 30 variables,
with domain sizes ranging from 2 to 4. The network
DAG was constructed randomly, with 25 variables
getting four random parents and the other 5 getting
none. The CPTs were generated randomly. The level
of determinism present was controlled by a parameter
d. Each assignment to a variable’s parents had a d
percent chance of being deterministic, meaning that
the value of the child would be functionally deter-
mined in this case. We tested three classes of random
networks with varying determinism: Random1 with
d = 0.25, Random2 with d = 0.50, and Random3 with
d = 0.75.

The properties of the networks we used, and the
queries we submitted to them, are listed in Figure 9.
The first column V is the number of variables. D is
the average domain size, w∗ is the induced width or
treewidth of the network graph under a heuristically
chosen ordering, and R was the average ratio of forbid-
den to allowed entries in the CPTs and the evidence.
The next three columns list the query properties. O is
the number of observations in the query, or variables
declared to be fixed at some value. C is the number
of random binary constraints observed, each allowing
every assignment with probability L.

We generated 50 random queries for each network,
testing the three algorithms on each. The random net-
works were generated anew for each query. The aver-
age performance of the algorithms is given in Figure
10. EB is the time taken by Elim-Bel, EC is Elim-
CPE, and ES is Elim-Sparse. B/S is the ratio of Elim-



Network V. D. w∗ R. O. C. L.
Insurance 27 3 10 0.697 0 20 0.5
Random1 30 3 14 0.740 5 9 0.5
Random2 30 3 14 0.644 5 9 0.5
Random3 30 3 14 0.539 5 9 0.5
Water 32 3 15 0.615 1 10 0.75
Mildew 35 17 7 0.568 5 0 N/A
Hailfinder 56 3 7 0.743 2 20 0.5
Munin1 189 5 13 0.457 30 0 N/A
Diabetes 413 11 11 0.400 80 0 N/A

Figure 9: Network Statistics for Empirical Tests

Network EB EC ES B/S C/S
Insurance 3.56 1.05 0.24 14.83 4.38
Random1 4.10 2.00 2.89 1.42 0.69
Random2 2.66 1.99 1.17 2.27 1.70
Random3 2.15 1.49 0.21 10.24 7.10
Water 4.65 3.22 0.29 16.03 11.10
Mildew 7.64 4.51 0.94 8.15 4.81
Hailfinder 1.99 1.14 0.99 2.01 1.15
Munin1 15.92 3.58 0.84 18.95 4.26
Diabetes 18.77 12.20 9.67 1.94 1.26

Figure 10: Average Times

Bel’s time to Elim-Sparse’s, and C/S is the ratio of
Elim-CPE to Elim-Sparse.

The relative performance of Elim-Sparse to Elim-CPE
was subject to some variation. On the random net-
works, Elim-CPE was slightly faster when the deter-
minism was at its lowest, but Elim-Sparse rapidly im-
proved as the determinism increased, to the point of
being 7 times faster on Random3. This is roughly in
line with our theoretical results, which predict that
Elim-Sparse should broaden its advantage over the
other algorithms by orders of magnitude with increas-
ing determinism. It appears, however, that the high
constant factor that accrues with the manipulation of
tuple lists was enough to destroy its advantage when
the determinism was relatively low.

On the real-life networks the results are also some-
what mixed. Elim-Sparse was considerably faster than
Elim-CPE on Insurance, Water, Mildew, and Munin1
(by a factor of 4 or more), but less so on Hailfinder
and Diabetes (less than twice as fast).

We can conclude that Elim-Sparse is generally more
efficient than Elim-CPE on a significant class of net-
works.

9 Conclusion

In this paper, we presented new methods for exploiting
the deterministic information in a belief network that
is brought to light by constraint propagation. They
are able to exploit a considerably greater proportion

of the information than previous methods. We believe
this shows that the techniques applicable to determin-
istic networks, such as constraint satisfaction prob-
lems, show some promise in making belief networks
with many functional relationships and complex evi-
dence more tractable for inference. In further research
we hope to continue to investigate the connections be-
tween belief networks and CSPs and to apply more
classically deterministic techniques to belief inference.

References

[1] Craig Boutilier, Nir Friedman, Moises Gold-
szmidt, and Daphne Koller. Context-specific in-
dependence in bayesian networks. In Proc. Con-
ference on Uncertainty in Artificial Intelligence,
1996.

[2] R. Dechter and F. Rossi. Constraint satisfaction.
Survey ECS, 2000.

[3] Rina Dechter. Bucket elimination: a unifying
framework for reasoning. Artificial Intelligence,
113(1-2):41–85, September 1999.

[4] Rina Dechter and David Larkin. Hybrid process-
ing of beliefs and constraints. In Proceedings of
UAI ’01, 2001.

[5] F. Jensen and S. Andersen. Approximations in
bayesian belief universes for knowledge-based sys-
tems. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence, pages 162–169,
1990.

[6] Henry Korth and Abraham Silberschatz.
Database System Concepts. McGraw Hill, 1991.

[7] V. Kumar. Algorithms for constraint satisfaction
problems: A survey. A. I. Magazine, 13(1):32–44,
1992.

[8] S. L. Lauritzen and D. J. Spiegelhalter. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of the Royal Statistical Society,
Series B, pages 157–224, 1988.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems. Morgan Kaufmann, 1988.

[10] D. Poole. Probabilistic partial evaluation: Ex-
ploiting rule structure in probabilistic inference.
In Proc. Fifteenth International Joint Conference
in Artificual Intelligence, 1997.

[11] R. E. Tarjan and A. Yao. Storing a sparse table.
Communications of the ACM, 22(11), 1979.



[12] S. K. M. Wong. An extended relational data
model for probabilistic reasoning. Journal of
Intelligent Information Systems, 9(2):181–202,
1997.

[13] N.L. Zhang and D. Poole. A simple algorithm for
bayesian network computations. In Proc of the
tenth Canadian Conference on Artificial Intelli-
gence, pages 171–178, 1994.


