
Looking at Full Looking Ahead �

Daniel Frost and Rina Dechter
Dept. of Information and Computer Science

University of California, Irvine, CA 92717-3425 U.S.A.
fdfrost, dechterg@ics.uci.edu

Frost: (714) 824-1084
Dechter: (714) 824-6556
Fax: (714) 824-4056

Abstract

Haralick and Elliott's full looking ahead algorithm [4] was presented in

the same article as forward checking, but is not as commonly used. We
give experimental results which indicate that on some types of constraint

satisfaction problems, full looking ahead outperforms forward checking.
We also present three new looking ahead algorithms, all variations on full

looking ahead, which were designed with the goal of achieving performance

equal to the better of forward checking and full looking ahead on a variety of
constraint satisfaction problems. One of these new algorithms, called smart

looking ahead, comes close to achieving our goal.

Keywords: Constraint Satisfaction, Algorithms, Forward Checking,
Experimental Analysis

�This work was partially supported by NSF grant IRI-9157636, by the Electrical Power Research
Institute (EPRI), and by grants from Toshiba of America, Xerox Northrop and Rockwell.

1

1 Introduction

In 1980, Haralick and Elliott [4] introduced the forward checking algorithm, as well
as two variants which they called partial looking ahead and full looking ahead. All
three algorithms can be used to solve constraint satisfaction problems, that is, to
�nd one or more consistent solutions, or to prove that no consistent solution exists.
Over the last 15 years, forward checking has become one of the primary algorithms
in the CSP-solver's arsenal, while partial and full looking ahead have received little
attention. This neglect is due, no doubt, in large part to the conclusions reached
in [4]: \The checks of future with future units do not discover inconsistencies often
enough to justify the large number of tests required."

In this paper we have three goals. First, we will demonstrate that the full look-
ing ahead algorithm is more useful than usually supposed, and in fact substantially
outperforms forward checking on problems with relatively tight constraints and rel-
atively sparse constraint graphs. Second, we analyze the behavior of full looking
ahead, both on problems where it is better than forward checking and on problems
where it is worse than forward checking. Because we �nd experimentally that each
algorithm is superior to the other on certain types of problems, we are interested
in the possibility of automatically recognizing and using the superior heuristic for
any individual problem. Our analysis shows several ways that this may be accom-
plished. The paper's third contribution is a set of new variants of looking ahead
called truncated looking ahead, self-adjusting looking ahead, and smart looking
ahead. Our purpose in developing these algorithms is to �nd an approach which
usually performs similarly to the better of forward checking and full looking ahead,
and sometimes outperforms either. Experimental evidence indicates that with the
smart looking ahead algorithm we are near but not at this goal: its performance is
almost always quite good, and in some cases surpasses both forward checking and
full looking ahead.

2 De�nitions, Algorithms, Problems

2.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a set of n variables, X1; . . . ;Xn;
their respective value domains, D1; . . . ;Dn; and a set of constraints. A constraint is
a subset of the Cartesian product Di1 � . . .�Dij , consisting of all tuples of values
for a subset (Xi1 ; . . . ;Xij) of the variables which are compatible with each other.
A solution to a CSP is an assignment of values to all the variables such that no
constraint is violated; a problem with a solution is termed satis�able or consistent.
Sometimes it is desired to �nd all solutions; in this paper, however, we focus on the
task of �nding one solution, or proving that no solution exists. A binary CSP is
one in which each of the constraints involves at most two variables; in this paper we

2

consider only binary CSPs. A constraint satisfaction problem can be represented by
a constraint graph which has a node for each variable and an arc connecting each
pair of variables that are contained in a constraint.

2.2 Forward Checking

The essential idea of forward checking [4] is that when a variable X is instantiated
with a value x from its domain, the domain of each future (uninstantiated) variable
Y is examined, and if a value y is found such that X = x con
icts with Y = y,
then the value y is temporarily removed from the domain of Y . When Y is reached
and has to be instantiated, the only values remaining in its domain will be those
consistent with all earlier variables and their current values. Of course, if later on in
the search X becomes uninstantiated, then y has to be restored to the domain of Y .
It is therefore convenient to maintain not just the domain D of each variable, but a
two-dimensional table of \current" domains,D0. D0

d;f is the (possibly proper) subset
of Df which is consistent with the partial instantiation (X1 = x1;X2 = x2; . . . ;Xd =
xd).

Fig. 1 has detailed pseudo-code of the forward checking algorithm. At the top
level is a tree-search algorithm which determines the variable and value to be pro-
cessed. It is called with an argument Alg which determines whether full looking
ahead (\FLA") or any of the variants we present later is to be run.

Our forward checking and full looking ahead algorithms are essentially the same
as the ones presented in [4], with several di�erences worth noting. Most immedi-
ately apparent, we do not present the algorithms recursively, primarily because this
follows our implementation in C. Another signi�cant di�erence has to do with our
reliance on a dynamic variable ordering heuristic embodied in the SelectNextVar()
function. This function always selects a variable with an empty current domain,
if one is available. Therefore, when our version of the algorithm detects that se-
lecting a certain value x will lead to an empty domain in the future, it does not
immediately reject x (as does the procedure in [4]). Instead, the tree-depth variable
d is incremented, and on the next level of the search the empty-domain variable
is encountered. This variable is a dead-end, and d is then decremented. There
is no di�erence between the two approaches in terms of consistency checks, and a
negligible di�erence in CPU time.

Another small di�erence is that our algorithm does not call full-looking-
ahead() (called \look-future" in [4]) if an empty domain has been detected.

In addition to SelectNextVar, our pseudo-code refers to two other functions which
are not explicitly de�ned. ConstraintBetween returns a boolean value which is true if
there exists a constraint which includes the two variables speci�ed in the function's
arguments, and false otherwise. This function can be implemented with a static
table created before processing begins. Its use can signi�cantly speed up processing.

The Relation(X,x,Y,y) function is based on one with the same name in [4]. It

3

tree-search(Alg)
1 d 1 /* d is depth in search tree */
2 D0

1;i Di for all i /* initialize the �rst D0's */
3 X1 SelectNextV ar()
4 while 1 � d � n /* n = the number of variables */
5 if D0

d;d = ; /* dead-end? */
6 then d d� 1 /* yes: backtrack */
7 if d = 1
8 then D0

d;i Di for all i > d
9 else D0

d;i D0

d�1;i for all i > d
10 else select xd 2 D0

d;d /* choose a value */
11 D0

d;d D0

d;d � fxdg
12 forward-checking(d)
13 if Alg = \FLA" and smallest-future-domain > 0
14 then full-looking-ahead(d)
15 d d+ 1 /* go to next level in search tree */
16 if d � n
17 then Xd SelectNextV ar()
18 D0

d;i D0

d�1;i for all i
19 if d = 0
20 then return \No solution"
21 else return (X1 = x1;X2 = x2; . . . ;Xn = xn)

forward-checking(d)
1 for k d + 1 to N
2 if ConstraintBetween(Xd;Xk)
3 then for each y 2 D0

d;k

4 if Relation(Xd; xd;Xk; y) = false
5 then D0

d;k D0

d;k � fyg
6 if D0

d;k = ;
7 then return

Figure 1: The forward checking algorithm.

4

full-looking-ahead(d)
1 for k d+ 1 to N
2 for each y 2 D0

d;k

3 for j d+ 1 to N
4 if ConstraintBetween(Xk ;Xj)
5 then match false
6 for each z 2 D0

d;j

7 if Relation(Xk; y;Xj; z) = true
8 then match true
9 break z loop

10 if match = false
11 then D0

d;k D0

d;k � fyg
12 if D0

d;k = ;
13 then return

Figure 2: The Full Looking Ahead variant of Forward Checking.

returns true if the assignments of x to X and y to Y do not violate any constraint.

2.3 Full Looking Ahead

The full looking ahead algorithm is similar to forward checking, but it does more ex-
tensive processing after each variable is instantiated. The purpose of this processing
is to remove more values from the domains of future variables which cannot possibly
be part of a solution. This reduces the branching factor of the remaining search,
and may also lead to earlier detection of a future variable that will be a dead-end.

The additional processing done by full looking ahead is a limited form of arc-
consistency, in e�ect performing a single iteration of the \revise" procedure described
in [5]. Suppose there are three future variables, X with current domain fa; bg, Y
with current domain fa; bg and Z with current domain fbg. There is an inequality
constraint (as in graph coloring) between X and Y and between Y and Z. Full
looking ahead will process X and reject neither of its values, since they both have a
compatible value in the domain of Y . When full looking ahead processes Y , it will
remove the value b because there is no allowable match for b in the domain of Z.
Arc consistency would later go back and remove a from the X's domain, because it
no longer has a consistent match in Y 's domain, but full looking ahead does not do
this.

See Fig. 2 for detailed pseudo-code of full looking ahead.

5

2.4 Dynamic Variable Ordering

The order in which variables are considered while solving a constraint satisfaction
problem with forward checking or any looking ahead method can have a substantial
impact on the amount of work required to �nd a solution. In a dynamic variable
ordering, the order of variables is determined as the search progresses, and can vary
from one branch of the search tree to another. We use a dynamic variable ordering
scheme proposed in [4] and widely adopted today: always select next the variable
with the smallest remaining current domain (i.e. D0). If D0

d;i is empty for some
uninstantiated variable Xi, then Xi is moved to be the next variable, and a dead-
end occurs immediately. The technique for breaking ties is important, as there are
often many variables with the same domain size. In our implementation we maintain
the uninstantiated variables in decreasing order of the number of constraints they
participate in in the original problem. In case of a tie for domain size (and for
the �rst variable), the �rst variable in this ordering is selected. This scheme gives
substantially better performance than picking one of the tying variables at random.

2.5 Random Problem Generator

The experiments reported in this paper were run on random instances generated
using a model that takes four parameters: N, K, T and C. The problem instances
are binary CSPs with N variables, each having a domain of size K. The parameter
T (tightness) speci�es a fraction of the K2 value pairs in each constraint that are
disallowed by the constraint. The value pairs to be disallowed by the constraint are
selected randomly from a uniform distribution, but each constraint has the same
fraction T of such incompatible pairs. T ranges from 0 to 1, with a low value of
T, such as 1/9, termed a loose or relaxed constraint. The parameter C speci�es
the number of constraints in each problem, out of the N � (N � 1)=2 possible. The
speci�c constraints are chosen randomly from a uniform distribution.

Certain combinations of parameters generate problems of which about 50% are
satis�able; such problems are on average much more di�cult than those which
almost all have solutions (under-constrained) or which almost never have solutions
(over-constrained) [1, 6]. Such a set of parameters is sometimes called a cross-over
point. The experiments reported in this paper were all conducted with parameters
at or very near the cross-over point.

3 Experiments with full looking ahead

Our �rst experiment was designed to indicate under what circumstances full
looking ahead might be a worthwhile alternative to forward checking, when coupled
with the dynamic variable ordering heuristic described above. We selected a diverse
set of parameters for our random problem generator, all at the 50% solvable cross-

6

Problem Parameters Mean CPU seconds
K T N C FC FLA
3 1/9 150 1112 6.70 54.56
3 2/9 175 546 41.23 1.57

3 3/9 150 244 39.26 0.27

6 4/36 50 710 15.80 40.52
6 8/36 70 452 23.25 36.44
6 12/36 90 344 25.78 14.23

6 16/36 100 246 22.52 1.30

9 18/81 35 293 4.19 9.25
9 27/81 50 253 11.86 16.49
9 36/81 70 234 49.55 16.88

Figure 3: Comparison of forward checking (FC) and full looking ahead (FLA). Each
number is the mean of 500 instances; the lower mean on each row is in boldface.

over point, and with each set of parameters generated 500 problems. These problems
were then solved using both forward checking and full looking ahead. The results
of this experiment are reported in Fig. 3. The trend seems to be that full looking
ahead is superior on problems with tighter constraints, with this trend being less
pronounced as the size of the domain increases. This is not surprising, given the
nature of the full looking ahead algorithm (refer to Fig. 2). For a given value
of N (number of variables) and K (domain size), T (tightness) and C (number of
constraints) will have an inverse relationship among sets of parameters at the cross-
over point. Fewer and tighter constraints means that the test on line 4 of Fig. 2 will
fail more often, and when it does succeed, it is more likely for match to be false and
the value y to be removed. Thus we would expect that on problems generated with
a higher value of T (e.g. 3/9, 16/36, 36/81), full looking ahead will generally have
to do less work with better results.

Fig. 3 shows only one large value of N for each combination of K and T. To show
that these numbers are indicative of the trend as N increases, Fig. 4 presents the
results of comparing forward checking and full looking ahead over a variety of values
for N, for K=3. The �gure also shows consistency checks and nodes expanded in
the search tree, as well as CPU time. Consistency checks (which are calls to the
Relation subroutine in Figs. 1 and 2) are a common measure of the work done by
constraint satisfaction algorithms. Because calling Relation is quite fast (at least in
our implementation), and because full looking ahead trades extra calls to Relation
for a smaller search space, just reporting consistency checks would be misleading.
The middle boxes in each row of Fig. 4 report the number of search tree nodes,
which is the number of times lines 10{14 of tree-search are executed. This data
indicates the size of the search tree, which is almost always much smaller for full

7

K=3
T=1/9

CC

75 100 125 150

105

106

107

�

�

�

�
�

�

�

�

NODES

75 100 125 150

103

104

�

�

�

�

�

�

�

�

CPU

75 100 125 150

1

10

�

�

�

�

�

�

�

�

K=3
T=2/9

CC

75 100 125 150 175 200

104

105

�

�

�

�

�

�

�

�

�

�

�

NODES

75 100 125 150 175 200

102

103

104

105

�

�

�

�
�

�
�

�
�

�
�

CPU

75 100 125 150 175 200

:1

1

10

�

� �

�

�

�

�

�

�

�

�

K=3
T=3/9

CC

75 100 125 150 175 200

104

105

�

�

�

�

�

�
�

�

NODES

75 100 125 150 175 200

102

103

104

�

�

�

�
� �

� �

CPU

75 100 125 150 175 200

:1

1

10

�

�

�

�

�

�

�
�

Figure 4: Comparison of forward checking (indicated by a bullet: �) and full looking
ahead (a circle: �). Each data point is the mean of 500 instances generated with
K=3, T=1/9 (�rst row), T=2/9 (second row) or T=3/9 (third row), and N as
indicated along the x-axis. The value of C was set to put the problems at the cross-
over point. The leftmost boxes on each row show consistency checks, the middle
boxes show nodes expanded in the search tree, and the right most boxes show CPU
time in seconds. Note that the y-axes are logarithmic.

8

T=1/9T=2/9

T=3/9

10 25 50 75 100 125 150

:1

:2

Figure 5: The fraction of future variable domain values removed by full looking
ahead (along the y-axis), as a function of depth in the search tree (along the x-axis).
Each line represents the mean over 500 instances, for a single set of parameters with
T=3, K=1/9, 2/9 or 3/9, and N and C as in Fig. 3.

looking ahead than for forward checking.

4 Variants of full looking ahead

In this section we report on a method we used to analyze the behavior of full looking
ahead. This analysis led to the development of three new algorithms. In each case,
our hope was that the new algorithm would do only a small amount of work beyond
that done by forward checking, while reaping most of the bene�ts of full looking
ahead.

To help us understand why full looking ahead is better for certain classes of
problem than for others, we modi�ed our program to report what fraction of the
values in the domains of future variables are removed during the full looking ahead
process. This fraction is a measure of the e�ectiveness of full looking ahead. In
terms of our pseudo-code in Fig. 2, we measured the ratio of times a value y is
removed in line 11 to the number of values of y generated in line 2. We tabulated
this ratio relative to the value of d, the depth in the search tree. The results are
shown in Fig. 5.

Studying Fig. 5 prompted the observation that when full looking ahead is most
successful (that is, for K=3/9), most of its power seems to come at shallow levels
in the search tree (where d is small). When the constraints are loose (e.g. T=1/9),
full looking ahead is most likely to remove values somewhat deeper in the tree, but
in such cases the cost to do so does not seem to be justi�ed.

We therefore developed a version of full looking ahead which we call truncated
looking ahead (TLA). The modi�cation is simple: the extra processing associated
with full looking ahead is done only when the newly instantiated variable is at depth
10 or less in the search tree. At depth greater than 10, truncated looking ahead is

9

Add two lines to tree-search():
14.1 if Alg = \TLA" and d � 10 and smallest-future-domain > 0
14.2 then full-looking-ahead(d)

Figure 6: Truncated Looking Ahead

Add two lines to tree-search():
14.1 if Alg = \SLA" and smallest-future-domain > 1
14.2 then smart-looking-ahead(d)

smart-looking-ahead(d)
Lines 1|11 are the same as full-looking-ahead(). Change lines 12 and 13 to
read:

12 if sizeof(D0

d;k) = 0 or 1
13 then return

Figure 7: Smart Looking Ahead

identical to forward checking. Pseudo-code for truncated looking ahead is given in
Fig. 6.

Another promising variant of full looking ahead is called self-adjusting looking
ahead (SALA). This algorithm starts the full looking ahead process at every level
in the search tree, but stops if progress is not being made. Progress is de�ned as
removing a su�cient fraction of the values in the domains of future variables, and is
controlled by a parameter called Credit. See Fig. 8 for the pseudo-code. Each time a
future variable is considered and no value in its domain is removed, the credit level c
is decremented by one. If a value is removed, the credit level is increased by Credit.
Determining the most e�ective setting for Credit must be done experimentally. The
best results may arise from adjusting Credit to have di�erent values at di�erent
levels of the search tree (our implementation of self-adjusting looking ahead does
not do this). In the experiments reported below, we tried settings of 5 and 10 for
Credit.

A third variation of full looking ahead is closely coupled with the dynamic vari-
able ordering scheme. One advantage of performing full looking ahead is that values

10

Add two lines to tree-search():
14.1 if Alg = \SALA" and smallest-future-domain > 0
14.2 then self-adjusting-looking-ahead(d)

self-adjusting-looking-ahead(d)
0 c Credit
1 for k d+ 1 to N
2 for each y 2 D0

d;k

3 for j d+ 1 to N
4 if ConstraintBetween(Xk ;Xj)
5 then match false
6 for each z 2 D0

d;j

7 if Relation(Xk; y;Xj; z) = true
8 then match true
9 break z loop

10 if match = false
11 then D0

d;k D0

d;k � fyg
12 if D0

d;k = ;
13 then return

14 if any value was removed from D0

d;k

15 then c c+ Credit
16 else c c� 1
17 if c = 0
18 then return

Figure 8: Self Adjusting Looking Ahead. Lines 1{13 are the same as in full-
looking-ahead().

11

Add two lines to tree-search():
14.1 if Alg = \PLA" and smallest-future-domain > 0
14.2 then partial-looking-ahead(d)

partial-looking-ahead(d)
The same as full-looking-ahead(), except that line 3 is changed to read:

3 for j k + 1 to N /* is j d + 1 in full-looking-ahead */

Figure 9: Parital Looking Ahead

in the domains of future variables are removed. This leads to another advantage:
the dynamic variable ordering heuristic is more likely to �nd a future variable which
has a very small domain size. In the absence of a dead-end, we hope to �nd a
future variable with a domain size of 1, as instantiating this single value represents
a forced choice that will have to be made eventually. The smart looking ahead
(SLA) algorithm performs the full looking ahead level of consistency enforcing, but
stops when the current domain of some future variable becomes 0 or 1 (see Fig. 7).
Once a dead-end or single-value domain is found, the smart looking ahead procedure
returns to tree-search(), and the variable with that 0 or 1 size domain will be
made the next variable in the ordering. The goal is to do enough looking ahead to
e�ectively guide the variable ordering heuristic.

It would be remiss not to mention one of the original variants of looking ahead,
called partial looking ahead [4]. This scheme checks each future variable only with
other future variables later than it, thus performing directional arc consistency at
each step [2]. As noted in [4], partial looking ahead makes about half the consistency
checks of full looking ahead. Partial looking ahead is described in Fig. 9.

A comparison of all algorithms discussed in the paper is shown in Fig. 10. No
one new variant completely realizes our goal of always being equal to the better
of forward checking and full looking ahead. However, smart looking ahead comes
reasonably close: it is best or near-best in three out of the 11 sets of problems, and
it takes more than twice as much time as the best algorithm only for problems with
K=3 and T=3/9. Also, smart look ahead has the smallest maximum average CPU
time (23.37) of any of the algorithms we experimented with.

12

Problem Parameters Mean CPU seconds

K T N C FC TLA SALA-5 SALA-10 SLA PLA FLA

3 1/9 150 1112 6.70 10.76 20.88 28.88 12.02 54.80 54.56
3 2/9 175 546 41.23 25.22 1.70 1.02 1.22 2.68 1.57

3 3/9 150 244 39.26 13.95 14.70 0.11 3.38 5.41 0.27

3 3/9 175 281 29.12 6.93 1.27 10.40 38.93 0.37

6 4/36 50 710 15.80 30.60 31.93 38.09 20.86 39.04 40.52
6 8/36 70 452 23.25 25.29 29.76 33.95 23.37 47.59 36.44

6 12/36 90 344 25.78 13.13 11.72 12.74 12.54 28.20 14.23
6 16/36 100 246 22.52 2.61 1.14 1.17 1.75 4.14 1.30

9 18/81 35 293 4.19 9.25 8.41 9.21 6.14 9.04 9.25
9 27/81 50 253 11.86 15.38 15.13 16.33 12.34 20.10 16.49

9 36/81 70 234 49.55 12.71 22.80 20.39 12.62 36.81 16.88

Figure 10: Comparison of six algorithms: forward checking (FC), truncated looking
ahead (TLA), self-adjusting looking ahead with Credit= 5 (SALA-5) and 10 (SALA-
10), smart looking ahead (SLA), partial looking ahead (PLA), and full looking ahead
(FLA). Each number is the mean of 500 instances. The best time in each row (or
best two when there is a near-tie) is in boldface. The FC column is blank where we
were unable to run all 500 instances because too much CPU time was required.

5 Discussion

The experimental results in this paper have to be considered in the context of the
dynamic variable ordering heuristic we used. In particular, self-adjusting looking
ahead, smart looking ahead, and partial looking ahead are all a�ected by the order
of the future variables. In our implementation, the future variables are kept in
decreasing order of degree in the original constraint graph. A di�erent scheme
might have a signi�cant impact on these algorithms.

Another limitation of our experimental results is that we only generated problems
at the cross-over point. We think it very likely that the usefulness of the algorithms
considered would be much di�erent on over- or under-constrained problems. As
a general rule of thumb, on easy problems pre-processing such as is done by full
looking ahead is unlikely to pay o�. In fact, even forward checking may do too much
work in advance. We have cast scheduling problems in the constraint satisfaction
framework, and some of these problems are under-constrained (they have a large
number of solutions) but have thousands of variables. On such problems the look-
ahead that forward checking does is too time-consuming, and the bene�ts too small,
as future dead-ends are rarely uncovered. It may be better do perform minimal
forward checking as suggested in [3], or backtracking or backjumping with no look-
ahead component. Taking a larger perspective than we adopt in the body of this
paper, the ideal might be an algorithm always does the \right" amount of looking
ahead, from as little as backtracking, through forward checking and full looking

13

ahead, to full arc consistency at each instantiation.

6 Conclusion

We have presented experimental evidence that the full looking ahead algorithm de-
veloped in [4] is often preferable to forward checking, at least in conjunction with
dynamic variable ordering and on hard problems with tight constraints. Three new
looking ahead algorithms, truncated looking ahead, self-adjusting looking ahead,
and smart looking ahead, were shown experimentally to have some desirable charac-
teristics. In particular, smart looking ahead, which stops comparing future variables
with other future variables whenever a domain size is reduced to 1 or 0, seems to be
a promising method for achieving the best of both forward checking and full looking
ahead.

References

[1] Peter Cheeseman, Bob Kanefsky, and WilliamM. Taylor. Where the really hard
problems are. In Proceedings of the International Joint Conference on Arti�cial
Intelligence, pages 331{337, 1991.

[2] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-
satisfaction problems. Arti�cial Intelligence, 34:1{38, 1987.

[3] M. J. Dent and R. E. Mercer. Minimal forward checking. Technical Report 374,
The University of Western Ontario, Dept. of Computer Science, 1993.

[4] R. M. Haralick and G. L. Elliott. Increasing Tree Search E�ciency for Constraint
Satisfaction Problems. Arti�cial Intelligence, 14:263{313, 1980.

[5] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,
8(1):99{118, 1977.

[6] David Mitchell, Bart Selman, and Hector Levesque. Hard and Easy Distributions
of SAT Problems. In Proceedings of the Tenth National Conference on Arti�cial
Intelligence, pages 459{465, 1992.

14

