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Abstract

The paper is a second in a series of two pa-
pers evaluating the power of a new scheme
that generates search heuristics mechanically.
The heuristics are extracted from an approx-
imation scheme called mini-bucket elimina-
tion that was recently introduced. The �rst
paper introduced the idea and evaluated it
within Branch-and-Bound search. In the cur-
rent paper the idea is further extended and
evaluated within Best-First search. The re-
sulting algorithms are compared on coding
and medical diagnosis problems, using vary-
ing strength of the mini-bucket heuristics.

Our results demonstrate an e�ective search
scheme that permits controlled tradeo� be-
tween preprocessing (for heuristic genera-
tion) and search. Best-�rst search is shown
to outperform Branch-and-Bound, when sup-
plied with good heuristics, and su�cient
memory space.

1 Introduction

The paper is a second in a series of two papers eval-
uating the power of a new scheme that generates
search heuristics mechanically. In the �rst paper
[Kask and Dechter, 1999a], we proposed a new scheme
that uses the mini-bucket approximation methods to
generate heuristics for search algorithms. Since the
mini-bucket's approximation accuracy is controlled by
a bounding parameter, it allows heuristics having vary-
ing degrees of accuracy and results in a spectrum of
search algorithms that can tradeo� heuristic compu-
tation and search.

The idea was studied using a branch and bound search
for �nding the most probable explanation (MPE) in
Bayesian networks. Empirical evaluations demon-
strated good performance, superior to algorithms such

as bucket elimination or join-tree clustering, while im-
proving on mini-bucket approximations.

In the current paper we explore the power of the mini-
bucket heuristics within Best-First search. Since, as
shown, these heuristics are admissible and monotonic,
their use within Best-First search yields A* type al-
gorithms whose properties are well understood; the
algorithm is guaranteed to terminate with an optimal
solution; when provided with more powerful heuris-
tics it explores a smaller search space, but otherwise it
requires substantial space. It is also known that Best-
First algorithms are optimal. Namely, when given the
same heuristic information, Best-First search is the
most e�cient algorithm in terms of the size of the
search space it explores [Dechter and Pearl, 1985]. In
particular, Branch-and-Bound will expand any node
that is expanded by Best-First (up to some tie break-
ing conditions) and, in many cases it explores a larger
space. Still, Best-First may occasionally fail because
of its memory requirements.

The question we investigate here is to what extent
the mini-bucket heuristics can facilitate the solution of
larger and harder problems by Best-First search, and
how Best-First is compared with Branch-and-Bound,
when both have access to the same heuristic informa-
tion.

Mini-bucket is a class of parameterized approximation
algorithms based on the bucket-elimination framework
[Dechter, 1996]. The approximation uses a controlling
parameter which allows adjustable levels of accuracy
and e�ciency [Dechter and Rish, 1997]. The algo-
rithms were presented and analyzed for deterministic
and probabilistic tasks such as �nding the most prob-
able explanation (MPE), belief updating and �nding
the maximum a posteriori hypothesis. Encouraging
empirical results were reported on randomly gener-
ated noisy-or networks, on medical-diagnosis CPCS
networks, and on coding problems [Rish et al., 1998].
In some cases however the approximation is seriously
suboptimal even when using the highest feasible accu-



racy level. This can be determined by an error bound
produced by the mini-bucket scheme.

Branch-and-Bound searches the space of partial as-
signments in a depth-�rst manner. It will expand a
partial assignment only if its upper-bounding heuris-
tic function is larger than the currently known lower
bound solution. The virtue of branch-and-bound is
that it requires a limited amount of memory and can
be used as an anytime scheme; whenever interrupted,
branch-and-bound outputs the best solution found so
far. Best-First explores the search space in uniform
frontiers of partial instantiations, each having the same
value for the evaluation functions, while progressing in
waves of decreasing values.

In this paper, a Best-First algorithmwith Mini-Bucket
heuristics (BFMB) is evaluated empirically and com-
pared with a Branch and Bound algorithm using Mini-
Bucket heuristics (BBMB), with mini-bucket approx-
imation scheme and with iterative belief propagation,
over test problems such as coding networks, noisy-or
networks and CPCS networks.

We show that Best-First frequently outperforms
Branch and Bound, whenever Best-First terminates.
Namely, when the heuristics were strong enough, if
given enough time and when memory problems were
not encountered. Both search methods exploit heuris-
tics strength in a similar manner; on all problem
classes, the optimal tradeo� point between heuristic
generation and search lies in an intermediate range of
the heuristics' strength. This optimal point gradually
increases towards stronger heuristics, as problems be-
come larger and harder.

Section 2 provides preliminaries and background on
the mini-bucket algorithms. Section 3 describes the
heuristic function which is built on top of the mini-
bucket algorithm, proves its properties and embbed
the heuristic within Best-First search. Section 4
presents empirical evaluations while section 5 provides
discussion and conclusions.

1.1 Related work

Our approach applies the paradigm that heuristics can
be generated by consulting relaxed models, suggested
in [Pearl, 1984]. The mini-bucket heuristics can also
be viewed as an extension of bounded constraint prop-
agation algorithms that were investigated in the con-
straint community in the last decade [Dechter, 1992].

Here is some related work for �nding the most prob-
able explanation in Bayesian networks. It is known
that solving the MPE task is NP-hard. Complete algo-
rithms for MPE use either the cycle cutset (also called
conditioning) technique or the join-tree-clustering
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Figure 1: a) A belief network P (e; d; c; b; a) =
P (ejc; b)P (djb; a)P (bja)P (cja)P (a), b) Its moral graph

technique [Pearl, 1988] or bucket-elimination scheme
[Dechter, 1996]. However, these methods work well
only if the network is sparse enough to allow small
cutsets or small clusters. Following Pearl's stochastic
simulation algorithms for the MPE task [Pearl, 1988],
the suitability of Stochastic Local Search (SLS) algo-
rithms for MPE was studied in the context of med-
ical diagnosis applications [Peng and Reggia, 1989]
and more recently in [Kask and Dechter, 1999b].
Best �rst search algorithms were also proposed in
[Shimony and Charniak, 1991] as well as algorithms
based on linear programming [Santos, 1991].

2 Background

2.1 Notation and de�nitions

Belief Networks provide a formalism for reasoning
about partial beliefs under conditions of uncertainty.
They are de�ned by a directed acyclic graph over nodes
representing random variables of interest.

Definition 2.1 (Belief Networks) Given a set,
X = fX1; : : : ; Xng of random variables over mul-
tivalued domains D1; : : : ; Dn, a belief network is a
pair (G;P ) where G is a directed acyclic graph and
P = fPig. Pi = fP (Xi j pa (Xi) ) g are condi-
tional probability matrices associated with Xi. The
set pa(Xi) is called the parent set of Xi. An assign-
ment (X1 = x1; :::; Xn = xn) can be abbreviated to
x = (x1; :::; xn). The BN represents a probability dis-
tribution P (x1; ::::; xn) = �n

i=1P (xijxpa(Xi)), where,
xS is the projection of x over a subset S. An evi-
dence set e is an instantiated subset of variables. The
argument set of a function h are denoted S(h). An
example of a belief network is given in Figure 1.

Definition 2.2 (Most Probable Explanation)
Given a belief network and evidence e, the Most Prob-
able Explanation (MPE) task is to �nd an assignment
(xo1; : : : ; x

o
n) such that



P (xo1; : : : ; x
o
n) = maxX1;:::;Xn

nY

k=1

P (Xk j pa (Xk); e)

Definition 2.3 (graph concepts) An
ordered graph is a pair (G; d) where G is an undi-
rected graph and d = X1; :::; Xn is an ordering of the
nodes. The width of a node in an ordered graph is the
number of its earlier neighbors. The width of an or-
dering d, w(d), is the maximum width over all nodes.
The induced width of an ordered graph, w�(d), is the
width of the induced ordered graph obtained by process-
ing the nodes recursively, from last to �rst; when node
X is processed, all its earlier neighbors are connected.
The moral graph of a directed graph G is the undi-
rected graph obtained by connecting the parents of all
the nodes in G and then removing the arrows.

2.2 Bucket and mini-bucket algorithms

Bucket elimination is a unifying algorithmic frame-
work for dynamic-programming algorithms appli-
cable to probabilistic and deterministic reasoning
[Bertele and Brioschi, 1972, Dechter, 1996]. The in-
put to a bucket-elimination algorithm consists of a col-
lection of functions or relations (e.g., clauses for propo-
sitional satis�ability, constraints, or conditional prob-
ability matrices for belief networks). Given a vari-
able ordering, the algorithm partitions the functions
into buckets, each associated with a single variable.
A function is placed in the bucket of its latest argu-
ment in the ordering. The algorithm has two phases.
During the �rst, top-down phase, it processes each
bucket, from the last variable to the �rst. Each bucket
is processed by a variable elimination procedure that
computes a new function which is placed in a lower
bucket. For MPE, the bucket procedure generates the
product of all probability matrices and maximizes over
the bucket's variable. During the second, bottom-up
phase, the algorithm constructs a solution by assigning
a value to each variable along the ordering, consulting
the functions created during the top-down phase.

Theorem 2.1 [Dechter, 1996] The time and space
complexity of the algorithm Elim-MPE, the bucket
elimination algorithm for MPE, are exponential in the
induced width w�(d) of the network's ordered moral
graph along the ordering d. 2

Mini-bucket elimination is an approximation designed
to avoid the space and time problem of full bucket
elimination. In each bucket, all the functions are
partitioned into smaller subsets called mini-buckets
which are processed independently. Here is the ra-
tionale. Let h1; :::; hj be the functions in bucketp.

Algorithm Approx-MPE(i) (MB(i))
Input: A belief network BN = fP1; :::;Png; ordering d;
Output: An upper bound on the MPE, an assignment
and the set of ordered augmented buckets.
1. Initialize: Partition matrices into buckets. Let
S1; :::;Sj be the subset of variables in bucketp on which
matrices (old or new) are de�ned.
2. (Backward) For p n downto 1, do
� If bucketp contains Xp = xp, assign Xp = xp to each hi
and put each in appropriate bucket.
� else, for h1; h2; :::; hj in bucketp, generate an (i)-

partitioning, Q
0

= fQ1; :::;Qrg. For each Ql 2

Q
0

containing hl1 ; :::hlt generate function hl, hl =
maxXp�

t
i=1hli : Add hl to the bucket of the largest-index

variable in Ul  
Sj

i=1
S(hli )� fXpg.

3. (Forward) For i = 1 to n do, given x1; :::; xp�1 choose
a value xp of Xp that maximizes the product of all the
functions in Xp's bucket.
4. Output the ordered set of augmented buckets, an upper
bound and a lower bound assignment.

Figure 2: Algorithm Approx-MPE(i)

When Elim-MPE processes bucketp, it computes the

function hp: hp = maxXp
�j
i=1hi. The mini-bucket

algorithm, on the other hand, creates a partitioning
Q0 = fQ1; :::; Qrg where the mini-bucket Ql contains
the functions hl1 ; :::; hlk. The approximation will com-
pute gp = �r

l=1maxXp
�lihli . Clearly, h

p � gp. Thus,
the algorithm computes an upper bound on the prob-
ability of the MPE assignment. Subsequently, the
algorithm computes an assignment that provides a
lower bound. The quality of the upper bound depends
on the degree of the partitioning into mini-buckets.
Given a bound parameter i, the algorithm creates an i-
partitioning, where each mini-bucket includes no more
than i variables. Algorithm Approx-MPE(i) (some-
times called MB(i)), described in Figure 2, is param-
eterized by this i-bound. The algorithm outputs not
only an upper bound on the MPE and an assignment
(whose probability yields a lower bound), but also the
collection of augmented buckets. By comparing the
upper bound to the lower bound we can always have
a bound on the error for the given instance.

The algorithm's complexity is time and space
O(exp(i)) where i � n. When the bound i is large
enough (i.e. when i � w�), the mini-bucket algorithm
coincides with the full bucket elimination algorithm
Elim-MPE. In summary,

Theorem 2.2 [Dechter and Rish, 1997]
Algorithm Approx-MPE(i) generates an upper bound
on the exact MPE and its time and space complexity
is exponential in its bound i.

Example 2.3 Figure 3(b) illustrates how algorithms
Elim-MPE and Approx-MPE(i) for i = 3 process
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Figure 3: Execution of Elim-MPE and Approx-MPE

the network in Figure 1(a) along the ordering (A;
E;D; C;B). Algorithm Elim-MPE records new func-
tions hB(a; d; c; e), hC(a; d; e), hD(a; e), and hE(a).
Then, in the bucket of A, it computes MPE =
maxa P (a)h

E(a). Subsequently, an MPE assignment
(A = a0; B = b0; C = c0, D = d0, E = 0) (
E = 0 is an evidence) is computed for each vari-
able from A to B by selecting a value that maxi-
mizes the product of functions in the corresponding
bucket, conditioned on the previously assigned val-
ues. Namely, a0 = argmaxa P (a)hE(a), e0 = 0,
d0 = argmaxd h

C(a0; d; e = 0), and so on. The ap-
proximation Approx-MPE(3) splits bucket B into two
mini-buckets each containing no more than 3 variables,
and generates hB(e; c) and hB(d; a). An upper bound
on the MPE value is computed by maxaP (a) � hE(a) �
hD(a). A suboptimal MPE tuple is computed similarly
to MPE tuple by assigning a value to each variable
that maximizes the product of functions in the corre-
sponding bucket, given the assignments to the previous
variables.

3 Heuristic Search with Mini-Bucket

3.1 Notation

In the following discussion we will assume that the
mini-bucket algorithm was applied to a belief network
using a given variable ordering d = X1; :::; Xn, and
that the algorithm outputs an ordered set of aug-
mented buckets bucket 1,...,bucket p,...,bucket n, con-
taining the input functions and the newly generated
functions. Relative to such an ordered set of aug-
mented buckets we use the following convention.

� Ppj denotes the input conditional probability ma-
trices placed in bucket p, (namely, its highest-
ordered variable is Xp).

� hpj denotes an arbitrary function in bucket p gen-
erated by the mini-bucket algorithm.

� hpj denotes a function created by the j-th mini-
bucket in bucket p.

� �pj denotes an arbitrary function in bucket p.

We denote by buckets(1::p) the union of all functions in
the bucket ofX1 through the bucket ofXp. Remember
that S(f) denotes the set of arguments of function f .

3.2 The Heuristic Function

The idea, �rst presented in [Kask and Dechter, 1999a],
is given here for the completeness of the presentation.
We will show that the new functions recorded by the
mini-bucket algorithm can be used to express upper
bounds on the most probable extension of any partial
assignment. Therefore, they can serve as heuristics
in an evaluation function which guides a Best-First
search or as an upper bounding function for pruning
Branch-and-Bound search.

Definition 3.1 (Exact Evaluation Function)
Let �x = �xp = (x1; :::; xp). The probability of the most
probable extension of �xp, denoted f�(�xp) is:

maxfXp+1;:::;XnjXi=xi; 8 i; 1�i�pg

nY

k=1

P (Xk j pa (Xk); e)

The above product de�ning f� can be divided
into two smaller products expressed by the func-
tions in the ordered augmented buckets. In
the �rst product all the arguments are instanti-
ated, and therefore the maximization operation is
applied to the second product only. Denoting
g(�x) =

Q
Pi2 buckets(1::p)Pi(�xS(Pi)) and H�(�x) =

maxfXp+1;:::;XnjXi=xi; 8 1�i�pg

Q
Pi2buckets(p+1::n)

Pi;

we get f�(�x) = g(�x) � H�(�x): During search, the g
function can be evaluated over the partial assignment
�xp, while H� can be estimated by a heuristic function
H de�ned next.

Definition 3.2 Given an ordered set of augmented
buckets, the heuristic function H(�xp), is the product of
all the h functions that satisfy the following two prop-
erties: 1) They are generated in buckets (p + 1; :::; n),
and 2) They reside in buckets 1 through p. Namely,
H(�xp) =

Qp

i=1

Q
hk
j
2bucketi

hkj , where k > p, (i.e. hkj
is generated by a bucket processed before bucket p.)

The following proposition shows how g(�xp+1) and
H(�xp+1) can be updated recursively based on g(�xp)
and H(�xp) and functions residing in bucket p+ 1.



Proposition 1 Given a partial assignment �xp =
(x1; : : :xp), both g(�xp) and H(�xp) can be computed re-
cursively by

g(�xp) = g(�xp�1) ��jPpj (�x
p

S(Ppj )
) (1)

H(�xp) = H(�xp�1) ��khpk=�jh
p
j (2)

Theorem 3.1 (Mini-Bucket Heuristic) For every
partial assignment �x = �xp = (x1; :::; xp), of the �rst
p variables, the evaluation function f(�xp) = g(�xp) �
H(�xp) is: 1) Admissible - it never underestimates the
probability of the best extension of �xp. 2) Monotonic,
namely f(�xp+1)=f(�xp) � 1.

Proof. To prove monotonicity we will use the recur-
sive equations (1) and (2) from Proposition 1. For any
�xp and any value v in the domain of Xp+1, we have

f(�xp; v)=f(�xp) = (g(�xp; v)�H(�xp; v))=(g(�xp)�H(�xp)) =

= �i�(p+1)i (�x
p; v)=�jh

p+1
j (�xp):

Since hp+1j (�xp) is computed for each mini-bucket j in
bucket (p+1) by maximizingover variableXp+1, (elim-
inating variable Xp+1), we get

�i�(p+1)i (�x
p; v) � �jh

p+1
j (�xp; v)):

Thus, f(�xp; v) � f(�xp), concluding the proof of mono-
tonicity.

The proof of admissibility follows from monotonicity.
It is well known that if a heuristic function is monotone
and if it is exact for a full solution (which is our case,
since the heuristic is the constant 1 on a full solution)
then it is also admissible [Pearl, 1984]. 2

3.3 Search with Mini-Bucket Heuristics

The tightness of the upper bound generated by mini-
bucket approximation depends on its i-bound param-
eter. Larger values of i generally yield better upper-
bounds, but require more computation. Therefore,
both Branch-and-Bound search and Best-First search,
if parameterized by i, allow a controllable tradeo� be-
tween preprocessing and search, or between heuristic
strength and its overhead.

In Figures 4 and 5 we present algorithms BBMB and
BFMB. Both algorithms are initialized by running the
mini-bucket approximation algorithm that produces a
set of ordered augmented buckets.

Branch and bound with mini-bucket heuristics
(BBMB) traverses the search space in a depth-�rst
manner, instantiating variables from �rst to last.

Algorithm BBMB(i)
Input: A belief network BN = fP1; :::;Png; ordering d;
time bound t.
Output: An MPE assignment, or a lower bound and an
upper-bound on the MPE.
1. Initialize: Run MB(i) algorithm which generates a
set of ordered augmented buckets and an upper-bound on
MPE. Set lower bound L to 0. Set current variable index
p to 0.
2. Search: Execute the following procedure until variable
X1 has no legal values left, or out of time, in which case
output the current best solution.
� Expand: Given a partial instantiation �xp, compute
all partial assignments �xp+1 = (�xp; v) for each value v of
Xp+1. For each node �xp+1 compute its heuristic value
f(�xp+1) = g(�xp+1) �H(�xp+1) using
g(�xp+1) = g(�xp) ��jPp+1j and

H(�xp+1) = H(�xp) ��khp+1k=�jh
p+1
j .

Prune those assignments �xp+1 for which f(�xp+1) is smaller
than the lower bound L.
� Forward: If Xp+1 has no legal values left, goto Back-
track. Otherwise let �xp+1 = (�xp; v) be the best extension
to �xp according to f . If p + 1 = n, then set L = f(�xp+1)
and goto Backtrack. Otherwise remove v from the list of
legal values. Set p = p+ 1 and goto Expand.
� Backtrack: If p = 1, Exit. Otherwise set p = p�1 and
repeat the Forward step.

Figure 4: Algorithm BBMB(i)

Throughout the search, the algorithm maintains a
lower bound on the probability of the MPE assign-
ment, which corresponds to the probability of the best
full variable instantiation found thus far. When the
algorithm processes variable Xp, all the variables pre-
ceding Xp in the ordering are already instantiated, so
it can compute the heuristic value f(�xp�1; Xp = v) =
g(�xp�1; v) �H(�xp; v) for each extension Xp = v. The
algorithm prunes all values v whose heuristic estimate
(upper bound) f(�xp; Xp = v) is less or equal to the
current best lower bound, because such a partial as-
signment (x1; : : :xp�1; v) cannot be extended to an im-
proved full assignment. The algorithmassigns the best
value v to variable Xp, and proceeds to variable Xp+1,
and when variable Xp has no values left, it backtracks
to variable Xp�1. Search terminates when it reaches
a time-bound or when the �rst variable has no values
left. In the latter case, the algorithm has found an
optimal solution.

Algorithm Best-First with mini-bucket heuristics
(BFMB), starts by adding a dummy node x0 to the
list of open nodes. Each node corresponds to a partial
assignment �xp and has an associated heuristic value
f(�xp). Initially f(x0) = 1. The basic step of the algo-
rithm consists of selecting an assignment �xp from the
list of open nodes having the highest heuristic value
f(�xp), expanding it by computing all partial assign-
ments (�xp; v) for all values v ofXp+1, and adding them



Algorithm BFMB(i)
Input: A belief network BN = fP1; :::;Png; ordering d;
time bound t.
Output: An MPE assignment or just an upper bound
and a lower bound (produced by mini-bucket).
1. Initialize: Run MB(i) algorithm which generates a set
of augmented buckets, an upper-bound and a lower bound
assignment. Insert a dummy node �x0 in the set L of open
nodes. Set f(�x0) to 1.
2. Search:
� If out of time, output mini-bucket assignment.
� Select and remove a node �xp with the largest heuristic
value f(�xp) from the set of open nodes L.
� If n = p then �xp is an optimal solution. Exit.
� Expand �xp by computing all child nodes (�xp; v) for each
value v in the domain of Xp+1. For each node �xp+1 com-
pute its heuristic value f(�xp+1) = g(�xp+1)H(�xp+1), where
g(�xp) = g(�xp�1) ��jPpj and

H(�xp) = H(�xp�1) ��khpk=�jh
p
j

� Add all nodes (�xp; v) to L and goto Search.

Figure 5: Algorithm BFMB(i)

to the list of open nodes. The algorithm terminates
when it selects a complete assignment for expansion
which is guaranteed to be optimal.

4 Experimental Methodology

We tested the performance of our scheme on three
types of networks - random coding networks, Noisy-
OR networks and CPCS networks. On each problem
we ran both BBMB(i) and BFMB(i) using mini-bucket
approximationwith various i-bounds. On random cod-
ing networks we also ran for comparison the Iterative
Belief Propagation (IBP) [Pearl, 1988], the best algo-
rithm known for probabilistic decoding.

We used the min-degree heuristic for computing the
ordering of variables. It places a variable with the
smallest degree at the end of the ordering, connects all
of its neighbors, removes the variable from the graph
and repeats the whole procedure.

We treat all algorithms as approximation algorithms.
Algorithms BBMB and BFMB, if allowed to run until
completion will solve all problems exactly. However,
since we use a time-bound, both algorithms may re-
turn suboptimal solutions, especially for harder and
larger instances. BBMB outputs its best solution while
BFMB, if interrupted, outputs the mini-bucket solu-
tion. Consequently BFMB is e�ective only as a com-
plete algorithm.

The main measure of performance we used is the accu-
racy ratio opt = Palg=PMPE between the probability
of the solution found by the test algorithm (Palg) and
the probability of the optimal solution (PMPE), given

x x x x x

u u u u u0 1 2 3 4

0 1 2 3 4

y y y y y

y y y y y

u u u u u
0

0

1 2 3 4

1 2 3 4
x x x x x

Figure 6: Belief network for structured (10,5) block
code with parent set size P=3

a �xed time bound, whenever PMPE is available. We
also record the running time of each algorithm.

We recorded the distribution of problems with respect
to accuracy opt over 5 prede�ned ranges : opt � 0:95,
opt � 0:5, opt � 0:2, opt � 0:01 and opt < 0:01. How-
ever, because of space restrictions, we report only the
number of problems that fall in the accuracy range
opt � 0:95. Problems in this range were solved opti-
mally.

In addition, during the execution of both BBMB and
BFMB we also stored the current lower bound L at
regular time intervals. This allows reporting of accu-
racy as a function of time.

4.1 Random Coding Networks

Our random coding networks fall within the class of
linear block codes. They can be represented as four-
layer belief networks (Figure 6). The second and third
layers correspond to input information bits and parity
check bits respectively. Each parity check bit repre-
sents an XOR function of input bits ui. Input and
parity check nodes are binary while the output nodes
are real-valued. In our experiments each layer has the
same number of nodes because we use code rate of
R=K/N=1/2, where K is the number of input bits
and N is the number of transmitted bits.

Given a number of input bits K, number of parents
P for each XOR bit and channel noise variance �2,
a coding network structure is generated by randomly
picking parents for each XOR node. Then we simulate
an input signal by assuming a uniform random distri-
bution of information bits, compute the corresponding
values of the parity check bits, and generate an assign-
ment to the output nodes by adding Gaussian noise to
each information and parity check bit. The decoding
algorithm takes as input the coding network and the
observed real-valued output assignment and recovers
the original input bitvector by computing or approx-
imating an MPE assignment. In our experiments all
coding networks were generated by randomly picking



N= MB MB MB MB
100 BBMB BBMB BBMB BBMB
K= opt BFMB BFMB BFMB BFMB IBP
50 i=2 i=6 i=10 i=14
� # / time # / time # / time # / time

0.22 >0.95 86/0.04 89/0.06 97/0.32 99/3.26 100/
100/0.06 100/0.14 100/0.33 100/3.26 0.09
100/0.06 100/0.08 100/0.34 100/3.27

0.28 >0.95 74/0.04 70/0.06 86/0.34 97/3.13 100/
99/0.38 100/0.40 100/0.40 100/3.14 0.09
100/0.13 100/0.10 100/0.37 100/3.39

0.32 >0.95 45/0.05 56/0.06 71/0.34 81/3.34 99/
96/0.94 100/0.78 100/0.40 100/3.39 0.09
100/0.13 100/0.10 100/0.37 100/3.39

0.40 >0.95 14/0.04 20/0.06 44/0.32 62/3.07 90/
95/3.13 99/2.20 100/0.70 100/3.11 0.07
99/0.87 100/0.64 100/0.48 100/3.10

0.51 >0.95 3/0.04 8/0.06 13/0.34 18/3.38 32/
77/12.0 92/8.15 100/2.52 100/4.00 0.08
71/9.05 88/6.84 99/2.78 100/4.07

Table 1: Random coding, N=100 K=50. 100 samples.

4 parents for each XOR bit.

Tables 1 through 4 report on random coding networks.
In addition to BBMB and BFMB, we also ran Iterative
Belief Propagation (IBP) [Pearl, 1988].

For each � we generated and tested 100 samples di-
vided into 10 di�erent networks each simulated with
10 di�erent input bit vectors 1 We also tried to run
Elim-MPE on this set of problems, but the induced
width w� was too large and Elim-MPE failed to solve
any problems.

In Table 1 there are 5 horizontal blocks, each corre-
sponding to a di�erent value of channel noise �. Each
block reports a distribution over the 95% accuracy
range. Within each block we have 3 rows, one for each
of MB (mini-bucket), BBMB and BFMB. Columns 3
through 6 report the results on various i-bounds. Col-
umn 7 reports results for IBP.

Looking at the third block in Table 1 (corresponding to
� = 0:32), we see that MB with i=2 (column 3) solved
45% of the problems exactly (opt � 0:95), while tak-
ing 0.05 seconds on the average. On the same set of
problems, using mini-bucket heuristics, BBMB solved
96% of the problems exactly while taking 0.94 seconds
on the average, while BFMB solved all problems ex-
actly with average time of 0.13 seconds only. When
moving to the right to columns 4 through 6 in rows
corresponding to � = 0:32 and opt � 0:95 we see the
gradual change caused by higher level of mini-bucket
heuristic (higher values of i-bound). As expected, MB
solves more problems, while using more time. Focus-
ing on BFMB we see that it always solved all problems

1In the past ([Kask and Dechter, 1999a]) we have run
a large number of random coding experiments with di�er-
ent variable orderings. The results we report in this paper
(with min-degree ordering) are typical of all the experi-
ments we have run.

MB MB MB MB
N=100 BBMB BBMB BBMB BBMB
K=50 BFMB BFMB BFMB BFMB IBP
� i=2 i=6 i=10 i=14

0.22 0.006000 0.004600 0.001000 0.000400 0.000200
0.000200 0.000200 0.000200 0.000200
0.000200 0.000200 0.000200 0.000200

0.28 0.018200 0.021200 0.004800 0.000100 0.000200
0.001400 0.000200 0.000200 0.000200
0.000200 0.000200 0.000200 0.000200

0.32 0.044800 0.036200 0.025600 0.014800 0.002200
0.007200 0.002200 0.002200 0.002200
0.002200 0.002200 0.002200 0.002200

0.40 0.099600 0.099600 0.062800 0.040600 0.008800
0.019400 0.012000 0.008800 0.008800
0.011600 0.008800 0.008800 0.008800

0.51 0.191600 0.185200 0.163000 0.148600 0.080000
0.098000 0.083000 0.076200 0.076200
0.097400 0.082200 0.076600 0.076200

Table 2: Random coding BER, N=100 K=50. 100
samples.

with any i-bound, and its total running time as a func-
tion of i forms a U-shaped curve. At �rst (i=2) it is
high (0.13), then as i-bound increases the total time
decreases (when i=6 total time is 0.10), but then as
i-bound increases further the total time starts to in-
crease again.

The added amount of search on top of MB can be es-
timated by tsearch = ttotal � tMB . For each value of
�, as i increases the average search time tsearch de-
creases, and the overall accuracy of search increases
(more problems fall within higher ranges of opt). How-
ever, as i increases, the amount of MB preprocessing
increases as well.

Each line in the table demonstrates the tradeo� be-
tween the amount of preprocessing performed by MB
and the amount of subsequent search using the heuris-
tic cost function generated by MB. We observe that
the total time improves when i increases until a thresh-
old point and then worsens. When i is smaller than
this threshold, the heuristic cost function is weak and
search takes longer. When i is larger than this thresh-
old, the extra preprocessing is not cost e�ective.

We observe that as problems become harder (i.e. �
increases) both search algorithms achieve their best
performance for larger i when the mini-bucket heuris-
tics is stronger. For example, in Table 1, when � is
0.22, the optimal performance is for i = 2. When � is
0.40, the optimal point is i = 10.

One crucial di�erence between BBMB and BFMB is
that BBMB is an anytime algorithm - it always out-
puts an assignment, and as time increases, its solution
gets better. BFMB on the other hand, is an all-or-
nothing algorithm. It only outputs a solution when
it �nds an optimal solution. In our experiments, we
always used a time bound. If BFMB did not �nish
within the time bound, it outputed the MB assign-
ment. From Table 1 we see that when su�cient time



N= MB MB MB MB
200 BBMB BBMB BBMB BBMB
K= opt BFMB BFMB BFMB BFMB IBP
100 i=2 i=6 i=10 i=14
� # / time # / time # / time # / time

0.22 >0.95 79/0.09 84/0.12 90/0.73 95/8.00 100/
98/0.94 98/0.65 99/0.95 100/8.04 0.16
100/0.12 100/0.16 100/0.77 100/8.03

0.28 >0.95 41/0.09 45/0.12 59/0.72 71/7.95 100/
84/3.72 88/4.17 96/2.50 99/8.64 0.13
100/0.80 100/0.56 100/0.89 100/8.03

0.32 >0.95 18/0.09 21/0.12 31/0.73 46/8.06 99/
63/10.2 68/9.49 87/6.33 92/10.7 0.16
94/6.19 96/4.12 99/2.49 100/8.75

0.40 >0.95 N/A 0/- 5/0.73 6/7.77 77/
N/A 28/90.5 39/51.8 58/42.7 0.15
N/A 39/66.7 67/50.1 85/41.1

Table 3: Randomcoding, N=200 K=100. 100 samples.

is given (indicated by cases when both BBMB and
BFMB solve all problems) the average running time
of BFMB is never worse than BBMB and often better
by a factor of 5-10.

In Table 2 we report the Bit Error Rate (BER) for
the same problems and algorithms as in Table 1. BER
is a standard measure used in the coding literature
denoting the fraction of input bits that were decoded
incorrectly. We observe that when the noise is very
small (0.22, 0.28) BBMB and BFMB are equal to IBP
since both BBMB/BFMB and IBP solve all problems
exactly. However, when noise increases (0.51) BBMB
and BFMB outperform IBP when the i-bound is suf-
�ciently large. We ran 30 iterations of IBP on each
problem and noticed that usually it converged to the
�nal assignment after 5-10 iterations. Giving it more
time would not improve its performance.

This phenomenon is more pronounced in Tables 3 and
4, where we present results with K=100 input bits. In
this set of experiments we increased the time bound
from 30 sec to 60 seconds (for small noise) or to 180 sec-
onds (for large noise), while doubling the problem size.
Again, we see a similar pattern of preprocessing-search
tradeo� as with networks of K=50 bits. Also, we ob-
serve the superiority of BFMB over BBMB. Given the
same i-bound, BFMB can solve more problems than
BBMB and faster.

In Figures 7, 8 and 9 we provide an alternative view
of the performance of BBMB(i) and BFMB(i). Let
FBBMB(i)(t) (FBFMB(i)(t)) be the fraction of the
problems solved completely by BBMB(i) (BFMB(i))
by time t. Each graph in Figures 7, 8 and 9 plots
FBBMB(i)(t) and FBFMB(i)(t) for some speci�c value
of i.

Figures 7, 8 and 9 display a trade-o� between pre-
processing and search. Clearly, if FBBMB(i)(t) >
FBBMB(j)(t), then FBBMB(i)(t) completely dominates
FBBMB(j)(t). For example, in Figure 9 BBMB(10)

MB MB MB MB
N=200 BBMB BBMB BBMB BBMB
K=100 BFMB BFMB BFMB BFMB IBP

� i=8 i=10 i=12 i=14

0.22 0.004280 0.003780 0.002100 0.001200 0.000220
0.000680 0.000600 0.000340 0.000220
0.000220 0.000220 0.000220 0.000220

0.28 0.020260 0.020580 0.015320 0.009220 0.001040
0.007820 0.006040 0.002620 0.001360
0.001020 0.001020 0.001020 0.001020

0.32 0.042840 0.043740 0.038060 0.027600 0.002820
0.023780 0.021340 0.010980 0.007280
0.006660 0.006060 0.003520 0.002820

0.40 N/A 0.115200 0.105100 0.097300 0.011700
N/A 0.083500 0.054900 0.047400
N/A 0.081200 0.050900 0.026400

Table 4: Random coding BER, N=200 K=100. 100
samples.

Random Coding, K=100, noise 0.22
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Figure 7: Random Coding. K=100, � = 0:22.

completely dominates BBMB(6). When FBBMB(i)(t)
and FBBMB(j)(t) intersect, they display a trade-o� as
a function of time. For example, if we have only few
seconds, BBMB(6) is better than BBMB(14). How-
ever, when su�cient time is allowed, BBMB(14) is su-
perior to BBMB(6).

Figures 7, 8 and 9 also show that FBFMB(i)(t) always
dominates FBBMB(i)(t) for any value of i.

4.2 Random Noisy-OR Networks

RandomNoisy-OR networks were randomly generated
using parameters (N, K, C, P), where N is the number
of variables, K is their domain size, C is the number of
conditional probability matrices and P is the number
of parents in each conditional probability matrix.

The structure of each test problem is created by ran-
domly picking C variables out of N and for each,
randomly selecting P parents from preceding vari-



Random Coding, K=100, noise 0.28
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Figure 8: Random Coding. K=100, � = 0:28.

MB MB MB MB
N BBMB BBMB BBMB BBMB
C opt BFMB BFMB BFMB BFMB
P i=2 i=6 i=10 i=14

# / time # / time # / time # / time

128 >0.95 100/0.05 100/0.08 100/0.65 100/8.07
85 100/0.95 100/0.59 100/0.98 100/8.47
4 100/1.76 100/1.19 100/1.37 100/8.56
128 >0.95 99/0.06 99/0.09 99/0.74 99/9.06
95 100/1.68 100/1.68 100/1.69 100/9.70
4 100/2.68 100/2.58 100/2.47 100/9.96
128 >0.95 99/0.08 99/0.10 99/0.80 99/10.0
105 100/2.72 100/2.24 100/1.80 100/10.9
4 100/4.83 100/4.37 100/2.87 100/11.7

Table 5: Noisy-OR MPE. Pnoise=0.2, Pleak=0.01. 10
evidence variables.

ables, relative to some ordering. Each probability ta-
ble represents an OR-function with a given noise and
leak probabilities : P (X = 0jY1; :::; YP ) = Pleak �
�Yi=1Pnoise.

Table 5 presents results of experiments with random
Noisy-OR networks. Parameters N, K and P are �xed,
while C, controlling network's sparseness, is changing.

Here we see a similar pattern of tradeo� between mini-
bucket preprocessing and search. Mini-bucket algo-
rithm can solve most of the problems exactly, but it
takes a considerable amount of BBMB/BFMB search
time to actually prove the optimality of the mini-
bucket solution. We also see that here Branch and
Bound is slightly faster than Best-First. This is be-
cause the lower bound used by BBMB is optimal from
the beginning (MB solves the problem), the heuristic
function is accurate (f = f�) and there are many solu-
tions. However, Best-First expands many more nodes
before �nding a solution because we use a random tie-
breaking rule.

Random Coding, K=100, noise 0.32
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Figure 9: Random Coding. K=100, � = 0:32.

CPCS360b MB MB MB MB
100 BBMB BBMB BBMB BBMB

samples BFMB BFMB BFMB BFMB
10 evid. i=4 i=8 i=12 i=16

>0.95 93[0.91] 93[0.93] 96[1.99] 98[15.8]
100[0.93] 100[0.94] 100[2.00] 100[15.8]
100[0.98] 100[0.96] 100[2.00] 100[15.8]

CPCS422b MB MB MB MB
100 BBMB BBMB BBMB BBMB

samples BFMB BFMB BFMB BFMB
10 evid. i=4 i=8 i=12 i=16
>0.95 40[22.6] 46[23.1] 51[22.7] 59[39.0]

96[24.8] 98[24.5] 100[22.9] 100[39.0]
97[25.9] 97[24.5] 100[23.1] 100[39.1]

Table 6: CPCS networks. Time 30 and 45 resp.

4.3 CPCS Networks

As another realistic domain, we used the CPCS
networks derived from the Computer-Based Patient
Care Simulation system, and based on INTERNIST-
1 and Quick Medical Reference expert systems
[Pradhan et al., 1994]. The nodes in CPCS networks
correspond to diseases and �ndings. Representing it
as a belief network requires some simplifying assump-
tions, 1) conditional independence of �ndings given
diseases, 2) noisy-OR dependencies between diseases
and �ndings, and 3) marginal independencies of dis-
eases. For details see [Pradhan et al., 1994].

In Table 5 we have results of experiments with two
binary CPCS networks, cpcs360b (N = 360, C = 335)
and cpcs422b (N = 422, C = 348), with 100 instances
in both cases. Each instance had 10 evidence nodes
picked randomly.

Our results show a similar pattern of tradeo� between
MB preprocessing and BBMB/BFMB search. Since
cpcs360b network is solved quite e�ectively by the ap-



proximation scheme MB, we get very good heuristics
and therefore, the added search time is relatively small,
serving primarily to prove the optimality of MB solu-
tion. On the other hand, on cpcs422b MB can solve
less than half of the instances accurately when i is
small, and more as i increases. BBMB/BFMB are
roughly the same, both enhance MB's solution qual-
ity, signi�cantly. They can solve all instances accu-
rately for i � 12. For comparison, elim-mpe solved the
cpcs360 network (with no evidence) in 115 sec while
for cpcs422 it took 1697 sec. Processing the networks
with evidence is a much more challenging task, how-
ever.

5 Discussion and Conclusion

Our experiments demonstrate the potential of mini-
bucket heuristics in improving general search. The
mini-bucket heuristic's accuracy can be controlled to
yield an optimal tradeo� between preprocessing and
search. We demonstrated this property in the context
of both Branch-and-Bound [Kask and Dechter, 1999a]
and Best-First search. Although the best threshold
point cannot be predicted apriori a preliminary em-
pirical analysis can be informative when given a class
of problems that is not too heterogeneous.

The mini-bucket heuristics can facilitate Best-First
search on relatively sizable problems, thus extending
the boundaries of this search scheme which is compu-
tation optimal (relative to search algorithms having
access to the same heuristic) for achieving exact solu-
tion. Indeed, we showed that Best-First usually out-
performs Branch-and-Bound, sometimes by a factor of
5-10.

We showed that search can be competitive with the
best known approximation algorithms for probabilis-
tic decoding such as IBP when the networks are rel-
atively small, in which case search solved the prob-
lems optimally. Obviously when problem sizes increase
BBMB and BFMB require much more time. However,
as much as IBP is e�cient, its performance will not
improve with time.

Finally, since mini-bucket elimination is applicable
across many problem tasks such as probabilistic in-
ference and decision making the scheme proposed here
has potential of being widely applicable.
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