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Abstract

A well-studied problem in the electric power industry is that of optimally schedul-
ing preventative maintenance of power generating units within a power plant. We
show how these problems can be cast as constraint satisfaction problems and provide
an \iterative learning" algorithm which solves the problem in the following manner.
In order to �nd an optimal schedule, the algorithm solves a series of CSPs with suc-
cessively tighter cost-bound constraints. For the solution of each problem in the series
we use constraint learning, which involves recording additional constraints that are
uncovered during search. However, instead of solving each problem independently,
after a problem is solved successfully with a certain cost-bound, the new constraints
recorded by learning are used in subsequent attempts to �nd a schedule with a lower
cost-bound.

We show empirically that on a class of randomly generated maintenance schedul-
ing problems iterative learning reduces the time to �nd a good schedule. We also
provide a comparative study of the most competitive CSP algorithms on the main-
tenance scheduling benchmark.

1 Introduction

This paper focuses on a well-studied problem of the electric power industry: optimally
scheduling preventative maintenance of power generating units within a power plant.
We de�ne a formal model which captures most of the interesting characteristics of
these problems, cast the model as a constraint satisfaction problem (CSP), and then
evaluate some of the most powerful constraint solving algorithms for its solution.

�The authors thank the Electric Power Research Institute for its support through grant RP 8014-06.
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A typical power plant consists of one or two dozen power generating units which
can be individually scheduled for preventive maintenance. Both the required duration
of each unit's maintenance and a reasonably accurate estimate of the power demand
that the plant will be required to meet throughout the planning period are known in
advance. The general purpose of determining a maintenance schedule is to determine
the duration and sequence of outages of power generating units over a given time
period, while minimizing operating and maintenance costs over the planning period,
subject to various constraints. A maintenance schedule is often prepared in advance
for a year at a time, and scheduling is done most frequently on a week-by-week basis.
The power industry generally considers shorter term scheduling, up to a period of one
or two weeks into the future, to be a separate problem called \unit commitment."

Computational approaches to maintenance scheduling have been intensively stud-
ied since the mid 1970's. Dopazo and Merrill [5] formulated the maintenance schedul-
ing problem as a 0-1 integer linear program. Zurm and Quintana [18] used a dynamic
programming approach. Egan [6] studied a branch and bound technique. More re-
cently, techniques such as simulated annealing, arti�cial neural networks, genetic
algorithms, and tabu search have been applied [13].

We propose an approach to maintenance scheduling based on the constraint satis-
faction problem framework [4]. In this model, there are a �nite number of variables,
and associated with each variable is a �nite domain of values. A solution to a CSP
assigns to each variable a value from its domain, subject to a set of constraints that
specify that some combinations of assignments are not allowed. Algorithms for CSPs
usually �nd one or more solutions, or report that no solution exists. Many CSP search
algorithms are based on backtracking, or depth-�rst, search. The general constraint
satisfaction problem is NP-complete.

We report the results of applying some of the most powerful constraint processing
techniques developed in recent years [9, 8, 10, 3, 16] to the maintenance scheduling
problem. Most of the empirical evaluation of constraint algorithms was done with
purely random binary CSPs. Applying the algorithms to maintenance scheduling-
based CSPs (MSCSPs) provides a testbed of problem instances that have an interest-
ing structure and non-binary constraints. Our preliminary empirical results indicate
that algorithms which are superior on random uniform binary CSPs are also superior
on maintenance scheduling problems, thus providing some validation to the empirical
approach based on pure random problems.

The constraint framework consists entirely of so-called hard constraints, those
which must be satis�ed for a solution to be valid. Optimization problems can be
viewed as having also soft constraints, which can be partially satis�ed. The problem
then is to �nd the \best" partially satis�ed solution. To avoid explicit soft constraints,
or objective functions as they are called in the Operations Research literature, we
approach optimization as solving a series of related CSPs, each consisting solely of
hard constraints. The CSPs in the series di�er in that a hard constraint (or group
of constraints) corresponding to the objective function with a particular cost-bound
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is tighter in each succeeding problem in the series. The tighter constraints result
from a reduced cost-bound in the function being optimized. An optimal solution is
found by determining the lowest cost-bound for which the corresponding constraint
satisfaction problem has a solution. A similar approach was used recently to �nd a
shortest plan using satis�ability and CSP techniques [12, 2].

We present experiments with �ve algorithms that have proven most useful when
tested on random problems. In general, when an algorithm is applied to a main-
tenance problem instance, it solves each of the corresponding CSPs independently.
For the new \iterative learning" procedure, an algorithm that learns new constraints
during the search is used, and constraints learned during one instance of the series
are applied on later instances. This approach was particularly bene�cial for the
optimization task.

2 Maintenance Scheduling Problem Descrip-

tion

As a problem for an electric power plant operator, maintenance scheduling must take
into consideration such complexities as local holidays, weather patterns, constraints
on suppliers and contractors, national and local laws and regulations, and other
factors that are germane only to a particular power plant. Our simpli�ed model is
similar to those appearing in most scholarly articles, and follows closely the approach
of Yellen and his co-authors [1, 17]. The maintenance scheduling problem can be
represented by a rectangular matrix (see Fig. 1). Each entry in the matrix represents
the status of one generating unit for one week. We will use the terms week and time
period interchangeably. A unit can be in one of three states: on, off, or maint.

2.1 Parameters

A speci�c maintenance scheduling problem, in our formulation, is de�ned by a set
of parameters, which are listed in Fig. 2. Parameters U , the number of units, and
W , the number of weeks, control the size of the schedule. Many power plants have
a �xed number of crews which are available to carry out the maintenance; therefore
the parameter M speci�es the maximum number of units which can be undergoing
maintenance at any one time.

In this paragraph and elsewhere in the paper we adopt the convention of quanti-
fying the subscript i over the number of units, 1 � i � U , and the subscript t over
the number of weeks, 1 � t � W . Several parameters specify the characteristics of
the power generating units. The costs involved in preventative maintenance, mit, can
vary from unit to unit and from week to week; for instance, hydroelectric units are
cheaper to maintain during periods of low water 
ow. The predicted operating cost
of unit i in week t is given by cit. This quantity varies by type of unit and also in
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Figure 1: A diagrammatic representation of a maintenance scheduling constraint satisfac-
tion problem. Each circle stands for a variable representing the status of one unit in one
week. The dashed vertical ovals indicate constraints between all of the units in one week:
meeting the minimum power demand and optimizing the cost per week. The horizontal
ovals represent constraints on one unit over the entire period: scheduling an adequate
period for maintenance.

response to fuel costs. For example, the fuel costs of nuclear units are low and change
little over the year, while oil-�red units are typically more expensive to operate in
the winter, when oil prices often increase.

Parameter ki speci�es the maximum power output of unit i. Most formulations of
maintenance scheduling consider this quantity constant over time, although in reality
it can 
uctuate, particularly for hydro-electric units.

The permissible window for scheduling the maintenance of a unit is controlled
by parameters ei, the earliest starting time, and li, the latest allowed starting time.
These parameters are often not utilized (that is, ei is set to 1 and li is set to W )
because maintenance can be performed at any time. The duration of maintenance
is speci�ed by parameter di.

Sometimes the maintenance of two particular units cannot be allowed to overlap,
since they both require a particular unique resource, perhaps a piece of equipment
or a highly trained crew member. Such incompatible pairs of units are speci�ed in
the set N = f(i1; i2); . . . ; (in�1; in)g.

The �nal input parameter, Dt, is the predicted power demand on the plant in
each week t. The parameters xit are the output of the scheduling procedure, and
de�ne the maintenance schedule. xit can take on one of three values:

� on: unit i is on for week t, can deliver ki power for the week, and will cost cit
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Input:
U number of power generating units
W number of weeks to be scheduled
M maximum number of units which can be maintained simultaneously
mit cost of maintaining unit i in period t

cit operating cost of unit i in period t
ki power output capacity of unit i
ei earliest maintenance start time for unit i
li latest maintenance start time for unit i
di duration of maintenance for unit i
N set of pairs of units which cannot be maintained simultaneously
Dt energy (output) demand in period t

Output:
xit status of unit i in period t: on, off or maint

Figure 2: Parameters which de�ne a speci�c maintenance scheduling problem.

to run;

� off: unit i is o� for week t, will deliver no power and will not result in any
cost;

� maint: unit i is being maintained for week t, will deliver no power, and will
cost mit.

2.2 Constraints

A valid maintenance schedule must meet the following constraints or domain require-
ments, which arise naturally from the de�nition and intent of the parameters.

First, the schedule must permit the overall power demand of the plant to be met
for each week. Thus the sum of the power output capacity of all units not scheduled
for maintenance must be greater than the predicted demand, for each week. Let
zit = 1 if xit = on, and 0 otherwise. Then the schedule must satisfy the following
inequalities. X

i

zitki � Dt for each time period t (1)

The second constraint is that maintenance must start and be completed within
the prescribed window, and the single maintenance period must be continuous, un-
interrupted, and of the desired length. The following conditions must hold true for
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each unit i.

(start) if t < ei then xit 6= maint (2)

(end) if t � li + di then xit 6= maint (3)

(continuous) if xit1 = maint and xit2 = maint and t1 < t2

then for all t; t1 < t < t2; xit = maint (4)

(length) if t1 = min
t
(xit = maint) and t2 = max

t
(xit = maint)

then t2 � t1 + 1 = di (5)

(existence) 9t such that xit = maint (6)

The third constraint is that no more than M units can be scheduled for mainte-
nance simultaneously. Let yit = 1 if xit = maint, and 0 otherwise.

X

i

yit �M for each time period t (7)

The �nal constraint on a maintenance schedule is that incompatible pairs of units
cannot be scheduled for simultaneous maintenance.

if (i1; i2) 2 N and xi1t = maint then xi2t 6= maint for each time period t (8)

After meeting the above constraints, we want to �nd a schedule which minimizes
the maintenance and operating costs during the planning period. Let wit = mit if
xit = maint, cit if xit = on, and 0 if xit = off.

Minimize
X

i

X

t

wit (9)

Objective functions other than (9) can also be used. For example, it may be
necessary to reschedule the projected maintenance midway through the planning
period. In this case, a new schedule which is as close as possible to the previous
schedule may be desired, even if such a schedule does not have a minimal cost.

3 FormalizingMaintenance Problems as CSPs

There are several ways to encode the maintenance scheduling problem in the con-
straint satisfaction framework. The formulation involves a tradeo� between the num-
ber of variables, the number of values per variable, and the constraints arity.

We de�ned the problem's output variables as variables in the CSP, and speci�ed
the problem's constraints in a relational manner in order to allow our general purpose
CSP algorithms to be applied with minimal modi�cation.

We encode maintenance scheduling problems as CSPs with 3�U �W variables.
The variables can be divided into a set of U �W visible variables, and two U �W
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size sets which we call hidden variables. Each variable has two or three values in
its domain. Both binary and higher arity constraints appear in the problem. The
visible variables Xit correspond directly to the output parameters xit of the problem
de�nition, having the corresponding domain values fon, off, maintg.

The �rst set of hidden variables, Yit, signi�es the maintenance status of unit i
during week t. The domain of each Y variable is ffirst, subsequent, notg. Yit =
first indicates that week t is the beginning of unit i's maintenance period. Yit =
subsequent indicates that unit i is scheduled for maintenance during week t and
for at least one prior week. Yit = not, indicates no maintenance. Binary constraints
between each Xit and Yit are required to keep the two variables synchronized (we list
the compatible value combinations):

Xit Yit
on not

off not

maint first

maint subsequent

The second set of hidden variables, Zit, are boolean variables having domains
fnone, fullg, which indicate whether unit i is producing power output during week
t. The obvious binary constraints are de�ned between each Xit and the corresponding
Zit.

Constraint (9.1) { weekly power demand

Each demand constraint involves the U visible variables that relate to a particular
week. The basic idea is to enforce a U -ary constraint between these variables which
guarantees that enough of the variables will be on to meet the power demand for
the week. This constraint can be implemented as a table of either compatible or
incompatible combinations, or as a procedure which takes as input the U variables
and returns true or false. Our implementation uses a table of incompatible combi-
nations. For example, suppose there are four generating units, with output capacities
k1=100; k2=200; k3=300; k4=400. For week 5, the demand D5=800. The following 4-
ary constraint among variables (Z1;5; Z2;5; Z3;5; Z4;5) is created (incompatible tuples
are listed).
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Z1;5 Z2;5 Z3;5 Z4;5 comment (output level)
none none none none 0
none none none full 400
none none full none 300
none none full full 700
none full none none 200
none full none full 600
none full full none 500
full none none none 100
full none none full 500
full none full none 400
full full none none 300
full full none full 700
full full full none 600

Because the domain size of the Z variables is 2, a U -ary constraint can have as many
as 2U � 1 tuples. If this constraint were imposed on the X variables directly, which
have domains of size 3, there would be 79 tuples (34� 5) instead of 13 (24� 3). This
is one reason for creating the hidden Z variables: to reduce the size of the demand
constraint.

Constraints (9.2) and (9.3) { earliest and latest maintenance start date

These constraints are easily implemented by removing the value first from the
domains of the appropriate Y variables.

Constraint (9.4) { continuous maintenance period

To encode this domain constraint in our formalism, we enforce three conditions
using binary relational constraints over the Y 's:

1. There is only one �rst week of maintenance.

2. Week 1 cannot be a subsequent week of maintenance.

3. Every subsequent week of maintenance must be preceded by a �rst week of
maintenance or a subsequent week of maintenance.

Each of these conditions can be enforced by unary or binary constraints on the Y
variables.

Constraint (9.5) { length of maintenance period
A maintenance period of the correct length cannot be too short or too long. For

each unit i, each time period t, and every t1; t < t1 < t + di, the following binary
constraint prevent a short maintenance period (disallowed tuple listed):

Yit Yit1
first not
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To ensure that too many weeks of maintenance are not scheduled, it is only necessary
to prohibit a subsequent maintenance week in the �rst week that maintenance should
have ended. This results in the following constraint for each i and t, letting t1 = t+di
(disallowed tuple listed):

Yit Yit1
first subsequent

Constraint (9.6) { existence of maintenance period

This requirement is enforced by a high arity constraint among the Y variables
for each unit. Only the weeks between the earlist start week and the latest start
week need be involved. At least one Yit; ei � t � li, must have the value start.
It is simpler to prevent them from all having the value not, and let constraints
(9.4) and (9.5) ensure that a proper maintenance period is established. Thus the
(li � ei + 1)-arity constraint for each unit i is (disallowed tuple listed):

Yili . . . Yiei
not not not

Constraint (9.7) { no more than M units maintained at once

If M units are scheduled for maintenance in a particular week, constraints must
prevent the scheduling of an additional unit for maintenance during that week. Thus
the CSP must have (M + 1)-ary constraints among the X variables which prevent
any M + 1 from having the value of maint in any given week. There will be

� U
M+1

�

of these constraints for each of the W weeks. They will have the form (disallowed
tuple listed):

Xi1t . . . XiM t

maint maint maint

We see that this requires an exponential number in M of no-goods. If M is big,
it may be bene�cial to leave this constraint in a procedural (rather than relational)
form.

Constraint (9.8) { incompatible pairs of units
The requirement that certain units not be scheduled for overlapping maintenance

is easily encoded in binary constraints. For every week t, and for every pair of units
(i1; i2) 2 N , the following binary constraint is created (incompatible pair listed):

Xi1t Yi2t

maint maint

Objective function (9.9) { minimize cost
To achieve optimization within the context of our constraint framework, we cre-

ate a constraint that speci�es that the total cost must be less than or equal to a set
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amount. In order to reduce the arity of the cost constraint, we introduce a simpli�-
cation to the problem: we optimize cost by week instead of over the entire planning
period. Therefore, the algorithm achieves an optimal solution to a more restricted
cost function which may not optimize the original one.

We implemented the cost constraint as a procedure in our CSP solving program.
This procedure is called after each X type variable is instantiated. The input to
the procedure is the week, t, of the variable, and the procedure returns true if the
total cost corresponding to week t variables assigned on or maint is less than or
equal to Ct, a new problem parameter (not referenced in Fig. 2) which speci�es the
maximum cost allowed in period t. This is the only constraint in our formulation
that is implemented procedurally.

4 Solution Procedure

One of our goals was to investigate the e�cacy of various constraint satisfaction
algorithms on maintenance scheduling CSPs. We �rst describe several algorithms
which have been reported earlier, and then describe a new technique which takes
advantage of the structure of optimization problems in the CSP framework.

4.1 Algorithms for CSPs

All of the algorithms we used incorporated a dynamic variable ordering heuristic,
dubbed DVO. The �rst step is to process the domains of variables which have not
yet been assigned values, marking as unavailable those values which are incompatible
with the current partial assignment. If the entire domain of a variable becomes
unavailable, then the algorithm backtracks, as the current partial assignment cannot
lead to a solution. Otherwise, the variable with the fewest remaining compatible
values is made next in the ordering. Ties are broken randomly. The variable ordering
can di�er on di�erent branches of the search tree. Unless speci�ed otherwise (under
the LVO heuristic), one of the remaining compatible values is chosen arbitrarily.

The simplest algorithm we used is backtracking with dynamic variable ordering,
or BT+DVO. Upon encountering a dead-end, BT+DVO tries to �nd a new value for
the variable immediately preceding the dead-end variable. The BT+DVO algorithm
proved to be ine�ective on the maintenance scheduling CSPs, and was not used in
the experiments reported below.

Another algorithm which does more work at each instantiation, by integrating
an AC-3 based arc-consistency procedure [14] is BT+DVO+IAC. With IAC, values
for future variables are removed not only if they are inconsistent with the current
partial assignment, but also if they are not compatible with at least one value in
the remaining domain of each other future variable. At the cost of more processing
per node, BT+DVO+IAC increases the likelihood of detecting early that a partial
assignment cannot lead to a solution.
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The other algorithms are based on backjumping. This algorithm is a variant
of backtracking, but after a dead-end can return to an earlier variable than the
immediatedly previous one. The version of backjumping we use is called con
ict-
directed backjumping [16], and backjumping with dynamic variable ordering is called
BJ+DVO. Look-ahead value ordering is a heuristic for ordering the compatible values
in the domain of the current variable; it can be combined with BJ+DVO to yield
BJ+DVO+LVO.

Learning in CSPs, also known as constraint recording, involves a during-search
transformation of the problem representation into one that may be search more ef-
fectively. This is done by enriching the problem description by new constraints,
also called no-goods, which do not change the set of solutions, but make the problem
more explicit. The new constraints are essentially uncovered by resolution during the
search process [15]. Learning comes into play at dead-ends; whenever a dead-end is
reached a constraint explicated by the dead-end is recorded. Learning during search
has the potential for reducing the size of the search space, since additional constraints
may cause unfruitful branches of the search to be cut o� at an earlier point. The cost
of learning is that the computational e�ort spent recording and then consulting the
additional constraints may overwhelm the savings. The kind of learning employed
here takes advantage of processing already performed by the backjumping algorithm
to identify the new constraint to be learned. It can be combined with backjumping
and dynamic variable ordering and is called BJ+DVO+LRN. A high-level sketch of
this algorithm is given in Fig. 4. When only constraints with i or fewer variables are
recorded by learning, the result is called ith-order learning. We can also add LVO to
produce BJ+DVO+LRN+LVO.

For more details about these and other constraint processing algorithms, see [11,
9, 8, 10, 7, 3, 16, 4].

4.2 Optimizing with CSPs

The constraint satisfaction framework is a decision procedure; any solution that
can be found is equally good. We can �nd an optimal schedule by treating the
maintenance scheduling problem as a series of CSPs. The procedure is described in
Fig. 3. Initially, a schedule is found with a very high cost-bound. For the maintenance
scheduling problems, this is Ct, the maximum cost per week. The cost-bound is
then gradually lowered, with a new schedule found each time. Eventually, the cost-
bound is so low that no schedule exists which meets it, and the last schedule found
is optimal, within the limit of the amount by which the cost-bound was lowered.
A more sophisticated control algorithm, based on a binary search approach, can
be envisioned. In the experiments reported below, we used the simple decrement
only technique. Another enhancement would be to permit di�erent cost-bounds for
di�erent weeks.
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Solution Procedure for Optimization

Input: A MSCSP with hard constraints, and an objective function.
Output: The lowest cost-bound for which a solution was found, and a solution with
that cost-bound.

1. Set the cost-bound to a high value.

2. Until no solution can be found,

(a) Add a constraint (or set of constraints) to the MSCP specifying that the
value of the objective function is less than the cost-bound.

(b) Solve the MSCSP using a constraint algorithm.

(c) Decrement the cost-bound.

3. Return the last solution found, and the corresponding cost-bound.

Figure 3: The solution procedure for optimization.

4.3 Optimization with Learning

To make the optimization process more e�cient, we introduce the notion of a memory
that exists between successive iterations of step 2 in Fig. 3 The idea is to use a
learning algorithm, such as BJ+DVO+LRN, to solve the maintenance scheduling
CSPs (MSCSPs), and the new constraints introduced by learning are retained for
use in later iterations. We call this approach iterative learning.

Retaining a memory of constraints is safe because as the cost-bound is lower the
constraints become tighter. Any solution to an MSCSP with a certain cost-bound
is also a valid solution to the same problem with a higher cost-bound. If the the
cost-bound were both lowered and raised, as suggested in the previous section with a
binary search approach, then some learned constraints would have to be \forgotten"
when the cost-bound was raised.

5 Problem Instance Generator

One of our goals is to be able to determine the e�cacy of various CSP algorithms
and heuristics when applied to Maintenance Scheduling CSPs. To perform an exper-
imental average-case analysis, we need a source of many MSCSPs. We have therefore
developed an MSCSP generator, which can create any number of problems that ad-
here to a set of input parameters.

The input to the generator is a �le containing most of the basic parameters, either
explicitly enumerated or a kernel for generating all the necessary parameters by in-
terpolation or by some parameterized distribution. The generator generates as many
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Backjumping with learning

1. If all variables have been assigned values, then return this solution. Otherwise,
select a variable using the dynamic variable ordering heuristic.

2. Find a compatible value for the current variable. If successful, go to 1.
Otherwise, go to 3.

3. (Dead-end.) Find a subset of the variables with values assigned that are
responsible for the dead-end. Add a new constraint which prohibits that
combination from reoccuring. Select the latest variable in that subset to be the
current variable, and go to 2.

Figure 4: Sketch of the BJ+DVO+LRN algorithm.

problem instances as necessary using the input parameters and then the problem
instance is solved by the various algorithms. The maintgen program generator reads
in a �le and creates one or more MSCSP instances which can be solved by the CSP
solver. The maintgen program uses a random number generator seed and a number
indicating how many individual problems should be generated. The parameters
given to the generator specify the fundamental size parameters: the number of weeks
W , the number of generating units U , and the number of units which can be main-
tained at one time M . Also, the demand for some number of weeks is speci�ed. The
demand for weeks that are not explicitly speci�ed is computed by a linear interpola-
tion between the surrounding speci�ed weeks. The initial maximum cost per week,
and the amount it is to be decremented after each successful search for a schedule,
are also speci�ed.

The characteristics of the units, that is, their output capacities and required
maintenance times, are not speci�ed individually. Instead, these values are randomly
selected from normal distributions whose means and standard deviations are speci-
�ed. Maintenance costs are speci�ed by the standard deviation and by a sample
of weekly demands per unit. As with demand, values for weeks that are not given
explicitly are interpolated. Operating costs are de�ned with exactly the same struc-
ture. The last piece of information is the number of incompatible pairs of units. The
requested number of pairs is created randomly from a uniform distribution of the
units.

Here is an example of an input �le to the generator followed by a speci�cation of
the problem instance that was generated.

# lines beginning with # are comments

# first line has weeks, units, maximum simultaneous units

4 6 2
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#

# next few lines have several points on the demand curve,

# given as week and demand. Other weeks are interpolated.

0 700

3 1000

# end this list with EOL

EOL

#

# next line has initial max cost per week, and decrement amount

60000 3000

#

# next line has average unit capacity and standard deviation

200 25

#

# next line has average unit maintenance time and std. dev.

2 1

#

# next line has standard deviation for maintenance costs

1000

#

# next few lines have some points on the maintenance cost curve,

# first number is week, then one column per unit

0 10000 10000 10000 10000 10000 10000

3 13000 16000 19000 10000 7000 10000

#

# next number is standard deviation for operating costs

2000

# next few lines have some points on the operating cost curve,

# first number is week, then one column per unit

0 5000 5000 5000 5000 5000 5000

# the next line specifies the number of incompatible pairs

2

# and that's it!

Below is a corresponding generated problem instance.

# comments begin with #

# first line has weeks W, units U, max-simultaneous M

4 6 2

# demand, one line per week

700

800

900
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1000

# next few lines has maximum cost per week.

# Cost must be <= max.

60000 3000

# one line per unit:

# capacity maint length earliest maint start latest maint start date

194 1 0 3

171 3 0 3

209 1 0 3

166 1 0 3

219 2 0 3

217 2 0 3

# maintenance costs, one line per week, one column per unit

11085 10034 9374 8945 10858 10045

11056 11988 13670 10465 9301 10625

12745 14625 15422 10422 8099 7629

12534 15394 21098 9841 6748 9364

# operating costs, one line per week, one column per unit

4284 6857 3847 5050 5145 4998

5987 7352 1967 4635 6152 4635

3746 6475 5151 3988 8172 4131

6152 3436 5475 5600 4366 6070

# incompatible pairs of units (numbering starts from 0)

1 3

2 3

EOL

# and that's it!

The output problem instance is in a format which is recognized by our CSP
solver.

6 Experimental Results

We present the results of experiments with two sets of 100 MSCSPs each. The smaller
problems had 15 units and 13 time periods, resulting in 585 variables. The larger
problems had 20 units and 20 time periods, resulting in 1200 variables. We conducted
two experiments with each set of 100 problems. In the �rst we used the algorithms
BJ+DVO and iterative learning based on BJ+DVO+LRN to solve the optimization
task. In the second we compared the performance of all �ve algorithms described in
section 4, using a �xed cost-bound that is close to the lowest feasible one.
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6.1 Optimization with learning

In the �rst experiment, we tried to �nd an optimal schedule for each MSCSP in the
smaller and larger sets, using BJ+DVO and iterative learning. Iterative learning
used 6th-order BJ+DVO+LRN. The results are shown in Fig. 5 and Fig. 6.

For the 100 smaller problems, the cost-bound was set initially at 110,000 per
week, and then reduced by 5,000 for each iteration. All 100 MSCSPs had schedules
at cost-bound 85,000 and above. Only 38 had schedules within the 80,000 bound;
at 75,000 only four problems were solvable. On the set of 100 larger MSCSPs, the
cost-bound started at 150,000 per week and was reduced by 5,000. Schedules were
found for all instances at cost-bound 120,000 and above. 97 instances had schedules
at cost- bound 115,000 and 110,000; 11 at cost-bound 105,000; and two at cost-bound
100,000 and 95,000.

Iterative learning performed better, on average, than BJ+DVO on these random
maintenance scheduling problems. For instance, on the set of smaller problems, after
�nding a schedule with cost-bound 95,000 the average number of learned constraints
was 214. Tightening the cost-bound to 90,000 resulted in over twice as much CPU
time needed for BJ+DVO (54.01 CPU seconds compared to 23.28), but only a 71%
increase for iterative learning (29.41 compared to 17.20). Iterative learning was less
e�ective on the larger MSCSPs. Although it required less CPU time on average, the
improvement over BJ+DVO was much less than on the smaller problems.

6.2 Comparison of Constraint Algorithms

The second experiment utilized the same sets of 100 smaller MSCSP instances and
100 larger instances, but we did not try to �nd an optimal schedule. For the smaller
problems we set the cost-bound at 85,000 and for the larger problems we set the
cost-bound at 120,000. Each bound was the lowest level at which schedules could
be found for all problems. We used the �ve algorithms described earlier to �nd a
schedule for each problem. The results are summarized in Table 1.

Among the �ve algorithms, BJ+DVO performed least well on the smaller prob-
lems and best on the larger problems, when average CPU time is the criterion.
BT+DVO+IAC was the best performer on the smaller problems and the worst on
the larger problems. This reversal in e�ectiveness may be related to the increased
size of the higher arity constraints on the larger problems. The high arity con-
straints, such as those pertaining to the cost-bound, the weekly power demand, and
the existence of a maintenance period, become looser as the number of units and
number of weeks increase. Earlier results [7] have indicated that more look-ahead is
e�ective on problems with tight constraints, and detrimental on problems with loose
constraints. Nevertheless backjumping remains an e�ective technique on the larger
problems. Further experiments are required to determine how the relative e�cacy of
di�erent algorithms is in
uenced by factors such as the size of the problem (number
of weeks and units) and characteristics such as the homogeneity of the units.
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Figure 5: Average CPU seconds on 100 small problems (15 units, 13 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with learning (�) and
without learning (?). Cumulative number of constraints learned corresponds to right-hand
scale.

7 Conclusions

The constraint satisfaction problems derived from the maintenance scheduling needs
of the electric power industry are an interesting testbed for CSP algorithms. The
problems have a mixture of tight binary constraints, such as those that bind the
X and Y variables together, and loose high arity constraints, such as those that
ensure that at least one maintenance period is scheduled for each unit. The most
promising algorithm for these problems is iterative learning. Further studies on
larger maintenance scheduling CSPs is required to determine whether one algorithm
dominates the others as problem size increases.

A challenging problem that is di�cult to formalize is to �nd the best way to
encode the requirements of a problem such as maintenance scheduling into constraints
of a CSP. In section 3 we discussed some of the trade-o�s involved in, for example,
adding \hidden" variables in return for a smaller number of tuples in high arity
constraints. This is an important area for future research that has the potential
of greatly impacting the applicability of the constraint satisfaction framework to
problems from science and industry.
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Figure 6: Average CPU seconds on 100 large problems (20 units, 20 weeks) to �nd a
schedule meeting the cost-bound on the y-axis, using BJ+DVO with learning (�) and
without learning (?). Cumulative number of constraints learned corresponds to right-hand
scale.
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