
A scheme for approximating probabilistic inference

Rina Dechter�and Irina Rish
Department of Information and Computer Science

University of California, Irvine
dechter@ics.uci.edu

Abstract

This paper describes a class of probabilistic
approximation algorithms based on bucket
elimination which o�er adjustable levels of
accuracy and e�ciency. We analyze the ap-
proximation for several tasks: �nding the
most probable explanation, belief updat-
ing and �nding the maximum a posteriori
hypothesis. We identify regions of com-
pleteness and provide preliminary empiri-
cal evaluation on randomly generated net-
works.

1 Overview

Bucket elimination, is a unifying algorithmic frame-
work that generalizes dynamic programming to en-
able many complex problem-solving and reasoning
activities. Among the algorithms that can be ac-
commodated within this framework are directional
resolution for propositional satis�ability, adaptive
consistency for constraint satisfaction, Fourier and
Gaussian elimination for linear equalities and in-
equalities, and dynamic programming for combina-
torial optimization [7]. Many algorithms for proba-
bilistic inference, such as belief updating, �nding the
most probable explanation, �nding the maximum a
posteriori hypothesis, and calculating the maximum
expected utility, also can be expressed as bucket-
elimination algorithms [3].

The main virtues of this framework are simplic-
ity and generality. By simplicity, we mean that
complete speci�cation of these algorithms is feasible

�This work was partially supported by NSF grant
IRI-9157636 and by Air Force O�ce of Scienti�c Re-
search grant, AFOSR 900136, Rockwell International
and Amada of America.

without employing extensive terminology, thus mak-
ing the algorithms accessible to researchers working
in diverse areas. More important, their uniformity
facilitates the transfer of ideas, applications, and
solutions between disciplines. Indeed, all bucket-
elimination algorithms are similar enough to make
any improvement to a single algorithm applicable to
all others in its class.

Normally, the input to a bucket-elimination algo-
rithm consists of a knowledge-base theory speci�ed
by a collection of functions or relations, (e.g., clauses
for propositional satis�ability, constraints, or condi-
tional probability matrices for belief networks). In
its �rst step, the algorithm partitions the functions
into buckets, each associated with a single variable.
Given a variable ordering, the bucket of a partic-
ular variable contains the functions de�ned on that
variable, provided the function is not de�ned on vari-
ables higher in the ordering. Next, buckets are pro-
cessed from top to bottom. When the bucket of vari-
able X is processed, an elimination procedure or an
inference procedure is performed over the functions
in its bucket. The result is a new function de�ned
over all the variables mentioned in the bucket, ex-
cluding X. This function summarizes the \e�ect"
of X on the remainder of the problem. The new
function is placed in a lower bucket. For illustration
we include algorithm elim-mpe, a bucket-elimination
algorithm for computing the maximumprobable ex-
planation in a belief network (Figure 1) [3].

An important property of variable elimination algo-
rithms is that their performance can be predicted
using a graph parameter called induced width [5],
(also called tree-width[1]), which is the largest clus-
ter in an optimal tree-embedding of the graph. In
general, a given theory and its query can be asso-
ciated with an interaction graph describing various
dependencies between variables. The complexity of
bucket-elimination algorithms is time and space ex-

ponential in the induced width of the problem's in-
teraction graph. Depending on the variable order-
ing, the size of the induced width will vary and this
leads to di�erent performance guarantees.

When a problem has a large induced width bucket-
elimination is unsuitable because of its extensive
memory demand. Approximation algorithms should
be attempted instead. We present here a collection
of parameterized approximation algorithms for prob-
abilistic inference that approximate bucket elimina-
tion with varying degrees of accuracy and e�ciency.
In a companion paper [4], we presented a similar ap-
proach for dynamic programming algorithms, solv-
ing combinatorial optimization problems, and belief
updating. Here we focus on two tasks: �nding the
most probable explanation and �nding the maxi-
mum a posteriori hypothesis. We also show under
what conditions the approximations are complete
and provide preliminary empirical evaluation of the
algorithms on randomly generated networks.

After some preliminaries (section 2), we develop the
approximation scheme for the most probable expla-
nation task (section 3), for belief updating (section
4), and for the maximum a posteriori hypothesis
(section 5). We summarize the results of our em-
pirical evaluation in section 6. Related work and
conclusions are presented in section 7.

2 Preliminaries

De�nition 2.1 (graph concepts)
A directed graph is a pair, G = fV;Eg, where
V = fX1; :::; Xng is a set of elements and E =
f(Xi; Xj)jXi; Xj 2 V g is the set of edges. If
(Xi; Xj) 2 E, we say that Xi points to Xj . For each
variable Xi, pa(Xi) or pai, is the set of variables
pointing to Xi in G, while the set of child nodes of
Xi, denoted ch(Xi), comprises the variables that Xi

points to. The family of Xi, Fi, includes Xi and its
child variables. A directed graph is acyclic if it has
no directed cycles. An ordered graph is a pair (G; d)
where G is an undirected graph and d = X1; :::; Xn is
an ordering of the nodes. The width of a node in an
ordered graph is the number of the node's neighbors
that precede it in the ordering. The width of an or-
dering d, denoted w(d), is the maximum width over
all nodes. The induced width of an ordered graph,
w � (d), is the width of the induced ordered graph ob-
tained by processing the nodes from last to �rst; when
node X is processed, all its neighbors that precede it
in the ordering are connected. The induced width of
a graph, w�, is the minimal induced width over all
its orderings; it is also known as the tree-width [1].

A poly-tree is an acyclic directed graph whose under-
lying undirected graph (ignoring the arrows) has no
loops. The moral graph of a directed graph G is the
undirected graph obtained by connecting the parents
of all the nodes in G and then removing the arrows.

De�nition 2.2 (belief networks)
Let X = fX1; :::; Xng be a set of random variables
over multivalued domains D1; :::; Dn. A belief net-
work (BN) is a pair (G;P) where G is a directed
acyclic graph and P = fPig. Pi = fP (Xijpa(Xi))g
are the conditional probability matrices associated
with Xi. An assignment (X1 = x1; :::; Xn = xn)
can be abbreviated to x = (x1; :::; xn). The BN
represents a probability distribution P (x1; ::::; xn) =
�n
i=1P (xijxpa(Xi)), where, xS is the projection of x

over a subset S. if u is a tuple over a subset X,
then uS denotes that assignment, which is restricted
to the variables in S \ X. An evidence set e is an
instantiated subset of variables. We use (uS; xp) to
denote the tuple uS appended by a value xp of Xp,
where Xp is not in S. We de�ne �xi = (x1; :::; xi)

and �xji = (xi; xi+1; :::; xj).

De�nition 2.3 (elimination functions) Given a
function h de�ned over subset of variables S,
where X 2 S, the functions (minXh), (maxXh),
(meanXh), and (

P
X h) are de�ned over U =

S � fXg as follows. For every U = u,
(minXh)(u) = minx h(u; x), (maxXh)(u) =
maxx h(u; x), (

P
X h)(u) =

P
x h(u; x), and

(meanXh)(u) =
P

x

h(u;x)
jXj , where jXj is the car-

dinality of X's domain. Given a set of functions
h1; :::; hj de�ned over the subsets S1; :::; Sj, the prod-
uct function (�jhj) and

P
J hj are de�ned over U =

[jSj . For every U = u, (�jhj)(u) = �jhj(uSj) and
(
P

j
hj)(u) =

P
j
hj(uSj).

De�nition 2.4 (probabilistic tasks)
The most probable explanation (mpe) task is to �nd
an assignment xo = (xo1; :::; x

o
n) such that p(xo) =

max�xn �
n
i=1P (xi; ejxpai). The belief assessment task

of X = x is to �nd bel(x) = P (X = xje). Given
a set of hypothesized variables A = fA1; :::; Akg,
A � X, the maximuma posteriori hypothesis (map)
task is to �nd an assignment ao = (ao1; :::; aok) such
that p(ao) = max�ak

P
xX�A

�n
i=1P (xijxpai ; e).

3 Approximating the mpe

Figure 1 shows bucket-elimination algorithm elim-
mpe [3] for computing mpe. Given a variable or-
dering and a partitioning of the conditional proba-
bilities into their respective buckets, the algorithm

Algorithm elim-mpe
Input: A belief network BN = fP1; :::;Png; an or-
dering of the variables, d; observations e.
Output: The most probable assignment.
1. Initialize: Partition BN into bucket1, : : :, bucketn,
where bucketi contains all matrices whose highest vari-
able is Xi. Put each observed variable into its appro-
priate bucket. Let S1; :::;Sj be the subset of variables
in the processed bucket on which matrices (new or old)
are de�ned.
2. Backward: For p n downto 1, do
for h1; h2; :::; hj in bucketp, do
� (bucket with observed variable) If bucketp contains
Xp = xp, assign Xp = xp to each hi and put each
resulting function into its appropriate bucket.
� Else, generate the functions hp: hp = maxXp�

j
i=1hi

and xop = argmaxXph
p. Add hp to the bucket of the

largest-index variable in Up
Sj

i=1
Si � fXpg.

3. Forward: Assign values in the ordering d using
the recorded functions xo in each bucket.

Figure 1: Algorithm elim-mpe

starts processing buckets successively from top to
bottom. When processing the bucket of Xp, a new
function is generated by taking the maximum rel-
ative to Xp, over the product of functions in that
bucket. The resulting function is placed in the ap-
propriate lower bucket. The complexity of the al-
gorithm which is determined by the complexity of
processing each bucket (step 2), is time and space
exponential in the number of variables in the bucket
(namely the bucket's variable induced-width) and
is, therefore, time and space exponential in the
induced-width w� of the network's moral graph [3].

Since the complexity of processing a bucket is tied
to the arity of the functions being recorded, we pro-
pose to approximate these functions by a collection
of smaller arity functions. Let h1; :::; hj be the func-
tions in the bucket of Xp, and let S1; :::; Sj be the
variable subsets on which those functions are de-
�ned. When elim-mpe processes the bucket of Xp, it

computes the function hp: hp = maxXp
�j
i=1hi. One

brute-force approximation method involves generat-
ing, instead, by migrating the maximization oper-
ator inside the multiplication, a new function gp:
gp = �j

i=1maxXp
hi: Since each function hi in the

product of hp is replaced by maxXp
hi in the prod-

uct de�ning gp, hp � gp. We see that gp has a
product form in which the maximizing elimination
operator maxXp

hi is applied separately to each of
gp's component functions. The resulting functions
will never have dimensionality higher than hi, and
each of these functions is moved, separately, to a
lower bucket. When the algorithm reaches the �rst
variable, it has computed an upper bound on the

mpe.

This idea can be generalized to yield a collection
of parameterized approximation algorithms having
varying degrees of accuracy and e�ciency. Instead
of applying the elimination operator (i.e., multiplica-
tion and maximization) to each singleton function in
a bucket as suggested in our brute-force approxima-
tion above, it can be applied to a more coerced par-
titioning of the buckets into mini-buckets. Let Q0 =
fQ1; :::; Qrg be a partitioning into mini-buckets of
the functions h1; :::; hj in Xp's bucket. The mini-
bucket Ql contains the functions hl1 ; :::; hlr. Algo-
rithm elim-mpe computes hp: (l index the mini-
buckets) hp = maxXp

�j
i=1hi = maxXp

�r
l=1�lihli .

By migrating the maximization operator into each
mini-bucket, we get: gpQ0 = �r

l=1maxXp
�lihli . As

the partitionings are more coerced, both the com-
plexity and the accuracy of the algorithm increase.

De�nition 3.1 Partitioning Q
0

is a re�nement of
Q

00

i� for every set A 2 Q
0

there exists a set B 2 Q
00

such that A � B.

Proposition 3.2 If in the bucket of Xp, Q
0

is a

re�nement of Q
00

, then hp � gp
Q
00 � gp

Q
0 . 2

Algorithm approx-mpe(i,m) is described in Figure 2.
It is parameterized by two indexes that control the
partitionings.

De�nition 3.3 Let H be a collection of functions
h1; :::; hj de�ned on subsets of variables, S1; :::; Sj.
A partitioning of His canonical if any function
whose arguments are subsumed by another function
belongs to a bucket with one of those subsuming
functions. A partitioning Q into mini-buckets is
an (i;m)-partitioning i� 1. it is canonical, 2. at
most m nonsubsumed functions participate in each
mini-bucket, 3. the total number of variables in a
mini-bucket does not exceed i, and 4. the partition-
ing is re�nement-maximal, namely, there is no other
(i;m)-partitioning that it re�nes.

Proposition 3.4 If index i is at least as large as a
family size, then there exist an (i;m)-partitioning of
each bucket. 2

Theorem 3.5 Algorithm approx-mpe(i;m) com-
putes an upper bound to the mpe in time O(m �
exp(2i)) and space O(m � exp(i)), where i � n and
m � 2i.

Clearly, in general, as m and i increase we get more
accurate approximations.

Algorithm approx-mpe(i,m)
Input: A belief network BN = fP1; :::;Png; and an
ordering of the variables, d;
Output: An upper bound on the most probable as-
signment, given evidence e.
1. Initialize: Partition into bucket1, : : :, bucketn,
where bucketi contains all matrices whose highest vari-
able is Xi. Let S1; :::;Sj be the subset of variables in
bucketp on which matrices (old or new) are de�ned.
2. (Backward) For p n downto 1, do
� If bucketp contains Xp = xp, assign Xp = xp to each
hi and put each in appropriate bucket.
� else, for h1; h2; :::; hj in bucketp, do:

Generate an (i;m)-mini-bucket-partitioning, Q
0

=

fQ1; :::;Qrg. For each Ql 2 Q
0

containing hl1 ; :::hlt
do,
Generate function hl, hl = maxXp�

t
i=1hli : Add hl

to the bucket of the largest-index variable in Ul Sj

i=1
Sli � fXpg.

3. (Forward) For i = 1 to n do, given x1; :::; xp�1
choose a value xp of Xp that maximizes the product
of all the functions in Xp's bucket.

Figure 2: algorithm approx-mpe(i,m)

B C

D

EF

H G

I

Figure 3: A belief network P (i; h; g; e; d; c; b)=
P (ijh; g)P (hje; f)P (gje; d)P (ejc; b)P (djc)P (b)P (c)

Example 3.6 Consider the network in Figure 3.
Assume we use the ordering (B;C;D;E; F;G;H; I)
to which we apply both algorithm elim-mpe and its
simplest approximation where m = 1 and i = n. Ini-
tially the bucket of each variable will have at most
one conditional probability: bucket(I) = P (IjH;G),
bucket(H) = P (HjE;F), bucket(G) = P (GjE;D),
bucket(F) = P (F jB), bucket(E) = P (EjC;B),
bucket(D) = P (DjC), bucket(C) = P (C), bucket(B)
= P (B). Processing the buckets from top to bottom
by elim-mpe generates functions that we denote by h
functions: bucket(I) = P (IjH;G)
bucket(H) = P (HjE;F); hI(H;G)
bucket(G) = P (GjE;D); hH(E;F;G)
bucket(F) = P (F jB); hG(E;F;D)
bucket(E) = P (EjC;B); hF (E;B;D)
bucket(D) = P (DjC); hE(C;B;D)
bucket(C) = P (C); hD(C;B)
bucket(B) = P (B); hC(B)
Where hI(H;G) = maxIP (IjH;G), hH (E;F;G) =

maxHP (HjE;F) � hI(H;G), and so on. In
bucket(B) obtain the mpe value maxBP (B) �h

C(B),
and then can generate the mpe tuple while going for-
ward. If we process by approx-mpe(n,1) instead,
we get (we denote by
 the functions computed by
approx-elim(n; 1) that di�er from those generated by
elim-mpe):
bucket(I) = P (IjH;G)
bucket(H) = P (HjE;F); hI(H;G)
bucket(G) = P (GjE;D);
H(G)
bucket(F) = P (F jB);
H(E;F);
bucket(E) = P (EjC;B);
F (E);
G(E;D)
bucket(D) = P (DjC);
E(D)
bucket(C) = P (C);
E(C;B);
D(C)
bucket(B) = P (B);
C(B);
F (B).

Algorithms elim-mpe and approx-mpe(n,1) �rst dif-
fer in their processing of bucket(G). There, in-
stead of recording a function on three variables,
hH(E;F;G), just like elim-mpe, approx-mpe(n,1)
records two functions, one on G alone and one on
E and F . Once approx-mpe(n,1) has processed all
buckets, we can generate a tuple in a greedy fash-
ion as in elim-mpe: we choose the value of B that
maximizes the product of functions in B's bucket,
then a value of C maximizing the product-functions
in bucket(C), and so on.

There is no guarantee on the quality of the tuple
we generate. Nevertheless, we can bound the error
of approx-mpe by evaluating the probability of the
generated tuple against the derived upper bound,
since the tuple generated provides a lower bound on
the mpe.

Alternatively, we can use the recorded bound in each
bucket as heuristics in subsequent search. Since
the functions computed by approx-mpe(i,m) are al-
ways upper bounds of the exact quantities, they
can be viewed as over-estimating heuristic func-
tions in a maximization problem. We can associate
with each partial assignment �xp�1 = (x1; :::; xp�1)
an evaluation function f(�xp�1) = (g � h)(�xp�1)

where g(�xp�1) = �p�2
i=1P (xijxpai) and h(�xp�1) =

�j2bucketp�1hj . It is easy to see that the evaluation
function f provides an upper bound on the mpe re-
stricted to the assignment �xp�1. Consequently, we
can conduct a best �rst search using this heuristic
evaluation function. From the theory of best �rst
search we know that (1) when the algorithm ter-
minates with a complete assignment, it has found
an optimal solution; (2) the sequence of evaluation
functions of expanded nodes are non-increasing; (3)
as the heuristic function becomes more accurate,
fewer nodes will be expanded; and (4) if we use the

full bucket-elimination algorithm, best �rst search
will become a greedy and complete algorithm for the
mpe task [10].

3.1 Cases of completeness

Clearly, approx-mpe(n; n) is identical to elim-mpe
because a full bucket is always a re�nement-maximal
(n; n)-partitioning. There are additional cases for i
and m where the two algorithms coincide, and in
such cases approx-mpe(i;m) is complete. One case
is when the ordering d used by the algorithm has
induced width less than i. Formally,

Theorem 3.7 Algorithm approx-mpe(i; n) is com-
plete for ordered networks having w�(d) � i.

Another interesting case is when m = 1. Algo-
rithm approx-mpe(n; 1) under some minor modi�ca-
tions and if applied to a poly-tree along some legal
orderings coincides with Pearl's poly-tree algorithm
[11]. A legal ordering of a poly-tree is one in which
observed variables appear last in the ordering and
otherwise, each child node appears before its par-
ents, and all the parents of the same family are con-
secutive. Algorithm approx-mpe(n; 1) will solve
the mpe task on poly-trees with a legal variable-
ordering in time and space O(exp(jF j)), where jF j
is the cardinality of the maximum family size. In
other words, it is complete for poly-trees and, like
Pearl's algorithm, it is tractable. Note, however,
that Pearl's algorithm records only unary functions
on a single variable, while ours records intermediate
results whose arity is at most the size of the fam-
ily. To restrict space needs, we modify elim-mpe
and approx-mpe(i;m) as follows. Whenever the al-
gorithm reaches a set of consecutive buckets from the
same family, all such buckets are combined into one
super-bucket indexed by all the constituent buckets'
variables. In summary,

Proposition 3.8 Algorithm approx-mpe(n,1) with
the super-bucket modi�cation, applied along a legal
ordering, is complete for poly-trees and is identical
to Pearl's poly-tree algorithm for mpe. The modi-
�ed algorithm's complexity is time exponential in the
family size, but it requires only linear space. 2

4 Approximating belief updating

The algorithm for belief assessment, elim-bel, is iden-
tical to elim-mpe with one change: it uses sum-
mation rather than maximization. Given some
evidence e, the problem is to assess the belief

in variable X1, namely, to compute P (x1; e) =P
x=�xn

2

�n
i=1P (xi; ejxpai). When processing each

bucket, we multiply all the bucket's matrices,
�1; :::; �j, de�ned over subsets S1; :::; Sj, and then
eliminate the bucket's variable by summation [3].

In [4] we presented the mini-bucket approximation
scheme for belief updating. For completeness, we
summarize this scheme next. Let Q0 = fQ1; :::; Qrg
be a partitioning into mini-buckets of the func-
tions �1; :::; �j in Xp's bucket. Algorithm elim-
bel computes �p: (l index the mini-buckets) �p =P

Xp
�j
i=1�i =

P
Xp

�r
l=1�li�li . Separating the

processing of one mini-bucket (call it �rst) from
the rest, we get �p =

P
Xp

(�l1�l1) � (�
r
l=2�li�li),

and migrating the summation into each mini-bucket
yields, fpQ0 = �r

l=1

P
Xp

�li�li . This, however,
amounts to computing an unnecessarily bad upper
bound on P because the product �li�li for i > 1
is bounded by

P
Xp

�li�li . Instead of bounding a
function of X by its sum over X, we can bound
by its maximizing function, which yields gpQ0 =P

Xp
((�l1�l1) � �

r
l=2maxXp

�li�li). Clearly, for ev-

ery partitioning Q, �p � gpQ. In summary, an upper
bound gp of �p can be obtained by processing one of
Xp's mini-buckets by summation, and then process-
ing the rest of XP 's mini-buckets by maximization.
In addition to approximating by an upper bound, we
can approximate by a lower bound by applying the
min operator to each mini-bucket or by computing
a mean-value approximation using the mean-value
operator in each mini-bucket. Algorithm, approx-
bel-max(i;m), that uses the maximizing elimination
operator is described in [4]. In analogy to the mpe
task, we can conclude that, approx-bel-max(i,m) has
time complexity O(m � exp(2i)), is complete when,
(1) w�(d) � i, and, (2) when m = 1 and i = n, if
given a poly-tree.

5 Approximating the map

The bucket-elimination algorithm for computing the
map, elim-map, presented in [3] is a combination
of elim-mpe and elim-bel; some of the variables are
eliminated by summation, others by maximization.
Consequently, its mini-bucket approximation is com-
posed of approx-mpe(i,m) and approx-bel-max(i,m).

Given a belief network BN = fP1; ::::; Png, a sub-
set of hypothesis variables A = fA1; :::; Akg, and
some evidence e, the problem is to �nd an assign-
ment to the hypothesized variable that maximizes

their probability. Formally, we wish to compute

max
�ak

P (�akje) = (max
�ak

X

�xn
k+1

�n
i=1P (xi; ejxpai))=P (e)

when x = (a1; :::; ak; xk+1; :::; xn). Algorithm elim-
map, the bucket-elimination algorithm for map, as-
sumes only orderings in which the hypothesized vari-
ables appear �rst. The algorithm has a backward
and a forward phase, but its forward phase is only
relative to the hypothesized variables. The ap-
plication of the mini-bucket scheme to elim-map is
a straightforward extension of approx-mpe(i,m) and
approx-bel-max(i,m). We partition each bucket into
mini-buckets as before. If the bucket's variable is
a summation variable, we apply the rule we have
in approx-bel-max(i,m), that is, one mini-bucket is
approximated by summation and the rest by maxi-
mization. When the algorithm reaches the buckets
with hypothesized variables, their processing is iden-
tical to that of approx-mpe(i,m). Algorithm approx-
map(i,m) is described in Figure 4.

Theorem 5.1 Algorithm approx-map(i;m) com-
putes an upper bound of the map, in time O(exp(m �
exp(2i))) and space O(exp(m � exp(i))). Algorithm
approx-map(i; n) is complete when w � (d) � i,
and algorithm approx-map(n; 1) is complete for poly-
trees. 2

Consider a belief network appropriate for decoding
a multiple turbo-code, that has M code fragments
(see Figure 5, which is taken from Figure 9 in [2]).
In this example, the U 0

i s are the information bits, the
Xi's are the code fragments, and the Yi's and Ysi 's
are the output of the channel. The task is to assess
the most likely values for the U 0s given the observed
Y 0s. Here, the X's are summation variables, while
the U 's are maximization variables. After the ob-
servation's buckets are processed, (lower case char-
acters denoted observed variables) we process the
�rst three buckets by summation and the rest by
maximization using approx-map(n; 1), we get that
all mini-buckets are full buckets due to subsump-
tion. The resulting buckets are:
bucket(X1) = P (y1jX1); P (X1jU1; U2; U3; U4)
bucket(X2) = P (y2jX2); P (X2jU1; U2; U3; U4)
�X1 (U1; U2; U3; U4)
bucket(X3) = P (y3jX2); P (X2jU1; U2; U3),
�X2 (U1; U2; U3; U4)
bucket(U1) = P (U1); P (ys1jU1), �

X3 (U1; U2; U3; U4)
bucket(U2) = P (U2); P (ys2jU2), �

U1 (U2; U3; U4)
bucket(U3) = P (U3); P (ys3jU3), �

U2 (U3; U4)
bucket(U4) = P (U4); P (ys4jU4), �

U3 (U4),
Therefore, approx-map(n; 1) coincides with elim-
map for this network.

Algorithm approx-map(i,m)
Input: A belief network BN = fP1; :::;Png; a sub-
set of variables A = fA1; :::;Akg; an ordering of the
variables, d, in which the A's are �rst in the ordering;
evidence e.
Output: An upper bound maximum a posteriori hy-
pothesis, A = a.
1. Initialize: Partition BN into bucket1, : : :, bucketn,
where bucketi contains all matrices whose highest vari-
able is Xi.
2. Backward: For p n downto 1, do
for all the matrices �1; �2; :::; �j in bucketp, do
� (bucket with observed variable) if bucketp contains
the observation Xp = xp, then assign Xp = xp to each
�i and put each resulting function into its appropriate
bucket.
� else, if XP is not in A, for �1; ; :::; �j in bucketp, do

generate an (i;m)-partitioning Q
0

of the matrices �i
into mini-buckets Q1; :::;Qr .

(processing �rst bucket) For Q1 �rst in Q
0

containing
�11 ; :::; �1j , do

� generate function �1 =
P

Xp
�j
i=1�1i . Add �1

to the bucket of the largest-index variable in U1 Sj

i=1
S1i � fXpg.

� For each Ql; l > 1 in Q
0

containing �l1 ; :::; �lj , do

Ul
Sj

i=1
Sli � fXpg. Generate the functions �l =

maxXp �
j
i=1�li . Add �l to the bucket of the largest-

index variable in Ul.
� else, if Xp 2 A, for �1; �2; :::; �j in bucketp, do

generate an (i;m)-mini-bucket-partitioning Q
0

=

fQ1; :::;Qrg. For each Ql 2 Q
0

containing �l1 ; :::; �lt ,
do
generate function �l, �l = maxXp�

t
i=1�li : Add �l

to the bucket of the largest-index variable in Ul Sj

i=1
Sli � fXpg.

3. Forward: Assign values, in the ordering d =
A1; :::;Ak using the information recorded in each
bucket.

Figure 4: Algorithm approx-map-max(i,m)

Y Ys2

U1 U2 U3 U4

X
1

X
2 X 3

Y
1

Y
2

Y3

s1 Ys3 Ys4

Figure 5: Belief network for decoding multiple turbo
codes

6 Experimental evaluation

Our preliminary empirical evaluation is focused on
the trade-o� between accuracy and e�ciency of the
approximationalgorithms for the mpe task. We wish
to understand 1. the sensitivity of the approxima-
tions to the parameters i and m, 2. The e�ective-
ness of the approximations on sparse networks vs
dense networks, and on uniform probability tables
vs. structured ones (e.g., noisy-ORs), and 3, the
extent to which a practitioner can tailor the approx-
imation level to his own application.

We focused on two extreme schemes of approx-
mpe(i,m): the �rst one, called approx-mpe(m), as-
sumes unbounded i and varying m, while the sec-
ond one, called approx-mpe(i), assumes unbounded
m and varying i.

Given the values of i and m, many (i;m)-
partitionings are feasible, and preferring a particu-
lar one may have a signi�cant impact on the quality
of the result. Instead of trying to optimize parti-
tioning, we settled on a simple strategy. We �rst
created a canonical partitioning in which subsumed
functions are combined into mini-buckets. Then,
approx-mpe(m) combines each m successive mini-
buckets into one mini-bucket, while approx-mpe(i)
generates an i-partitioning by processing the canoni-
cal mini-bucket list sequentially, merging the current
mini-bucket with a previous one provided that the
resulting number of variables in the resulting mini-
bucket does not exceed i.

The algorithms were evaluated on belief networks
generated randomly. The random acyclic-graph gen-
erator, takes as an input the number of nodes, n,
and the number of edges, e, and randomly gener-
ates e directed edges, ensuring no cycles, no parallel
edges, and no self-loops. Once the graph is available,
for each node xi, a conditional probability function
P (xijxpai) is generated. For uniform random net-
works the tables were created by selecting a random
number between 0 and 1 for each combination of val-
ues of xi and xpai , and then normalizing. For ran-
dom noisy-OR networks the conditional probability
functions were generated as noisy-OR gates by se-
lecting a random probability qk for each \inhibitor".

Algorithm approx-mpe(i,m) computes an upper
bound and a lower bound on the mpe. The latter is
provided by the probability of the generated tuple.
For each problem instance, we computed the mpe by
elim-mpe, the upper bound and the lower bound by
the approximation (either approx-mpe(m) or approx-
mpe(i)), and the running time of the algorithms. For

diagnosis purposes, we also recorded the maximum
family size in the input network, Fi, and the max-
imum arity of the recorded functions, Fo. We also
report the maximum number of mini-buckets that
occurred in any bucket during processing (mb).

6.1 Results

We report on four sets of uniform random networks
(we had experimented with more sets and observed
similar behavior): a set of 200 hundred instances
having 30 nodes and 80 edges (set 1), a set of 200
instances having 60 nodes and 90 edges (set 2), a
set of 100 instances having 100 nodes and 130 edges
(set 3) and a set of 100 instances having 100 nodes
and 200 edges (set 4). The �rst and the forth sets
represent dense networks while the second and the
third represent sparse networks. For noisy-OR net-
works we experimented with three sets having 30
nodes and 100 edges; set 5 has 90 instances and uses
one evidence, set 6 has 140 instances and uses three
evidence nodes and set 7 has 130 instances and uses
ten evidence nodes.

6.1.1 Uniform random networks

On the relatively small networks (sets 1 and 2)
we applied elim-mpe and compared its performance
with the approximations. The results on these two
sets appear in Tables 1-3. Table 1 reports averages,
where the �rst column depicts m or i. Rather than
displaying the mpe, the lower bound, and the upper
bound (often, these values are very small, of order
10�6 and less), we report ratios which capture the
accuracy of the approximation. Thus, the second
column displays M/L, the ratio between the value of
an mpe tuple (Max) and the lower bound (Lower);
the third column shows the U/M ratio between the
upper bound (Upper) and Max; and the fourth col-
umn contains the time ratio, TR between the CPU
running times for elim-mpe and approx-mpe(m) or
approx-mpe(i). The next column gives the CPU
time, Ta, of approx-mpe(m) or approx-mpe(i). Fi-
nally, Fi, Fo and mb, are reported.

Table 2 gives an alternative summary for the same
two sets, focusing on approx-mpe(m) only. Three
statistics M=L, U=M ratios, vs. the Time Ratio, are
reported. For each bound and for each m, we display
the percent of instances (out of total 200) on which
the corresponding ratio (M/L for the lower bound,
U/M for the upper bound) belongs to the interval
[�� 1; �] where the threshold value, �, changes from
1 to 4. We also display the corresponding mean TR.
For example, from Table 2's �rst few lines we see

that 8.5 % instances out of the 200 were solved by
approx-mpe(m=1) with accuracy factor of 2 or less,
48% achieved this accuracy with m = 2. The speed-
up over m = 1 instances was 176 while the speed-up
for m = 2 was 20.8.

Table 1: elim-mpe vs. approx-mpe(i,m) on 200 in-
stances of random networks with 30 nodes, 80 edges,
and with 60 nodes, 90 edges

Mean values on 200 instances

elim-mpe vs. approx-mpe(m) for m = 1; 2; 3
m M/L U/M TR Ta max max max

mb Fi Fo
30 nodes, 80 edges

1 43.2 46.2 296.1 0.1 4 9 12
2 4.0 3.3 25.0 2.2 2 9 12
3 1.3 1.1 1.4 26.4 1 9 12

60 nodes, 90 edges
1 9.9 21.7 131.5 0.1 3 5 12
2 1.8 2.8 27.9 0.6 2 5 12
3 1.0 1.1 1.3 11.9 1 5 12

elim-mpe vs. approx-mpe(i) for i = 3; 6; 9; 12
i M/L U/M TR Ta max max max

mb Fi Fo
30 nodes, 80 edges, 2 values per node

3 55.5 48.4 309.2 0.1 4 9 12
6 29.2 20.7 254.6 0.1 3 9 12
9 17.3 7.5 151.0 0.2 3 9 12
12 5.0 3.0 45.3 0.6 2 9 12

60 nodes, 90 edges, 2 values per node
3 6.6 18.5 136.2 0.1 3 5 12
6 2.8 6.1 112.8 0.1 2 5 12
9 1.9 2.8 71.7 0.2 2 5 12
12 1.4 1.6 24.2 0.5 2 5 12

From these runs we observe a considerable e�ciency
gain (2-3 orders of magnitude) relative to elim-mpe
for 50% of the probelm instances for which the ac-
curacy factor obtained was bounded by 4. We also
observe that, as expected, sparser networks require
lower levels of approximations than those required
by dense networks, in order to get similar levels of
accuracy. In particular, the performance of approx-
mpe(i=12) gave a 1-2 orders of magnitude perfor-
mance speedup while accompanied with an accuracy
factor bounde by 4, to 80 percent of the instances on
dense networks, and to 97 percent of the sparse net-
works. From table 1 we also observe that controlling
the approximation by i provides a better handle on
accuracy vs e�ciency tradeo�. Finally, we observe
that approx-mpe(m=1) can be quite bad for arbi-
trary networks.

We experimented next with larger networks (sets
3 and 4), on which running the complete elimina-
tion algorithm was sometimes computationally pro-
hibitive. The results are reported in Tables 4 and
5. Since we did not run the complete algorithm on
those networks, we report the ratio U/L.We see that
the approximation is still e�ective (a factor of accu-
racy bounded by 10 achieved very e�ectively) for
sparse networks (set 3). However, on set 4, approx-

Table 2: Summary of the results: M/L, U/M and
TR statistics for the algorithm approx � mpe(m)
with m = 1; 2; 3 on random networks

Random networks with 30 nodes, 80 edges
[�� 1; �] m Lower bound Upper bound

M/L Mean TR U/M Mean TR
[1; 2] 1 8.5% 176.4 0% 0.0
[2; 3] 1 9.0% 339.5 0% 0.0
[3; 4] 1 8.5% 221.3 0% 0.0
[4;1] 1 74% 313.1 100% 296.1
[1; 2] 2 48% 20.8 29.5% 10.9
[2; 3] 2 16% 25.7 27.5% 22.2
[3; 4] 2 7.5% 53.1 17% 22.1
[4;1] 2 29.5% 25.3 26% 46.0
[1; 2] 3 92% 1.4 97% 1.4
[2; 3] 3 5% 2.0 3% 4.9
[3; 4] 3 1% 1.2 1% 1.3
[4;1] 3 3% 1.6 0% 0.0

Random networks with 60 nodes, 90 edges
[�� 1; �] m Lower bound Upper bound

M/L Mean TR U/M Mean TR
[1; 2] 1 26.5% 172.8 0% 0.0
[2; 3] 1 16% 64.3 0% 0.0
[3; 4] 1 9% 43.5 1% 17.4
[4;1] 1 48.5% 147.5 99% 132.7
[1; 2] 2 79.5% 26.1 41% 21.2
[2; 3] 2 10% 28.0 31% 32.6
[3; 4] 2 5.5% 42.4 14% 24.4
[4;1] 2 5% 40.5 14% 40.3
[1; 2] 3 100% 1.3 100% 1.3
[2; 3] 3 0% 1.0 1% 1.0
[3; 4] 3 0% 0.0 0% 0.0
[4;1] 3 0% 0.0 0% 0.0

mpe(m) was too expensive to run for m = 3; 4, and
too inaccurate for m = 1; 2. For this di�cult class,
an acceptable accuracy was not obtained.

6.1.2 Noisy-OR networks

We experimented with several sets of random noisy-
OR networks and we report on three sets with 30
variables and 100 edges. The results are summa-
rized in Figure 6 and Table 6. In the �rst, we display
all instances of set 5 ploting the accuracy (M/L and
U/M) vs TR, for all 90 instances. In the second
we display the results on sets 6 and 7 in a manner
similar to Table 2. Tel gives the time of elim-mpe.

The results for the noisy-OR networks are much
more impressive than for the uniform random net-
works. The approximation algorithms often get a
correct mpe while still accompanied by 1-2 orders of
magnitue of speed-up (see cases when i = 12 and
i = 15.) Although the mean values of U/M and
M/L can be large on average due to rare instances
(see Figure 6), in many of the cases both ratios are
close or equal to 1.

In summary, for random uniform and noisy-OR net-
works, 1. we observe that very e�cient approxi-
mation algorithms can obtain good accuracy for a
considerable number of instances, 2. approx-mpe(i)
allows a more gradual control of the accuracy vs. ef-

Table 3: Summary of the results: M/L, U/M and
TR statistics for the algorithm approx�mpe(i) with
i = 3; 6; 9; 12 on random networks

Random networks with 30 nodes, 80 edges
[�� 1; �] i Lower bound Upper bound

M/L Mean TR U/M Mean TR

[1; 2] 6 15.5% 270.7 0.5% 11.3
[2; 3] 6 9% 265.6 0% 0.0
[3; 4] 6 6.5% 248.7 0.5% 74.4
[4;1] 3 69% 250.1 99% 256.8
[1; 2] 9 31% 150.1 2.5% 33.0
[2; 3] 9 10% 100.5 7% 101.1
[3; 4] 9 10.5% 114.7 12.5% 132.9
[4;1] 9 48.5% 169.8 78% 162.1
[1; 2] 12 51% 41.3 29% 27.0
[2; 3] 12 15% 41.3 32% 50.5
[3; 4] 12 11% 69.2 17% 45.4
[4;1] 6 23% 44.5 22% 60.6

Random networks with 60 nodes, 90 edges
[�� 1; �] i Lower bound Upper bound

M/L Mean TR U/M Mean TR

[1; 2] 6 57.5% 91.4 3% 28.5
[2; 3] 6 15% 158.3 15.5% 71.0
[3; 4] 6 9% 82.3 17.5% 57.2
[4;1] 6 18.5% 157.2 64% 142.0
[1; 2] 9 80% 64.9 38.5% 36.9
[2; 3] 9 11.5% 88.9 25% 72.0
[3; 4] 9 3% 27.4 21% 96.3
[4;1] 9 5.5% 158.4 15.5% 124.5
[1; 2] 12 85.5% 24.4 81% 23.5
[2; 3] 12 11.5% 29.7 13.5% 29.1
[3; 4] 12 0.5% 11.4 5% 37.3
[4;1] 12 2.5% 21.1 0.5% 14.0

�ciency tradeo� than approx-mpe(m); 3. on random
noisy-OR networks approx-mpe(i) obtains a good ap-
proximation (M/L < 1.5) while still improving ef-
�ciency relative to the complete elimination by one
or two orders of magnitude.

7 Conclusions and related work

The paper describes a collection of parameterized
algorithms that approximate bucket elimination al-
gorithms. Due to the generality of the bucket-

Table 4: elim-mpe vs. approx-mpe(i,m) on 100 in-
stances of random networks with 100 nodes and 130
edges

Mean values on 100 instances

elim-mpe vs. approx-mpe(m)
m U/L Ta max max

mb Fi
1 781.1 0.1 3 6
2 10.4 3.4 2 6
3 1.2 132.5 1 6
4 1.0 209.6 1 6

elim-mpe vs. approx-mpe(i)
i U/L Ta max max

mb Fi
3 475.8 0.1 3 5
6 36.3 0.2 2 5
9 14.6 0.3 2 5
12 7.1 0.8 2 5
15 3.0 3.7 2 5
18 1.7 24.8 1 5

Table 5: elim-mpe vs. approx-mpe(i) for i = 3� 21
on 100 instances of random networks with 100 nodes
and 200 edges

Mean values on 100 instances

i U/L Ta max max
mb Fi

3 1350427.6 0.2 4 7
6 234561.7 0.3 3 7
9 9054.4 0.5 3 7
12 2598.9 1.8 3 7
15 724.1 10.5 3 7
18 401.8 75.3 3 7
21 99.5 550.2 2 7

150010005000
1

10

100

1000

10000

M/L
U/M

 Accuracy vs efficiency:
M/L and U/M vs TR, i =12

TR

M
/L

 a
nd

 U
/M

Figure 6: Time Ratio versus M/L and U/M bounds
for approx-mpe(m) with i = 12 on noisy-OR ne-
towrks with 30 nodes, 100 edges, and one evidence
node x1 = 1

elimination framework, both the parameterized al-
gorithms and their approximations will apply uni-
formly across many areas. We presented and ana-
lyzed the approximation algorithms in the context
of several probabilistic tasks. We identi�ed regions
of completeness and provided preliminary empirical
evaluations on randomly generated networks.

Our empirical evaluations have interesting negative
and positive results. On the negative side, we see
that when the approximation algorithm coincides
with Pearl's poly-tree propagation algorithm (i.e.,
when we use approx-mpe(m=1)), it can produce ar-
bitrarily bad results, which contrasts recent suc-
cesses with Pearl's poly-tree algorithm when ap-
plied to examples coming from coding problems [2;
9]. On the positive side, we see that on many prob-
lem instances the approximations can be quite good.
As theory dictates, we observe substantial improve-
ments in approximation quality as we increase the
parameters (m or i). This allows the user to an-
alyze in advance, based on memory considerations
and given the problem's graph, what would be the
best m and i he can e�ort to use. In addition, the ac-

Table 6: Summary of the results: M/L, U/M and
TR statistics for the approx-mpe(i) on noisy-OR net-
works with 30 nodes, 100 edges

3 evidence nodes, 140 problem instances
range i Lower bound Upper bound

M/L TR Tel U/M TR Tel
1 6 20.7% 507.9 22.7 1.4% 521.2 24.3

[1; 2] 6 10.0% 654.2 28.0 16.4% 616.1 28.2
[2; 3] 6 5.0% 494.1 25.5 17.1% 681.6 34.1
[3; 4] 6 4.3% 730.5 34.8 10.0% 421.5 18.8
[4;1] 6 60.0% 929.1 43.2 55.0% 939.0 42.7
1 9 46.4% 461.0 33.7 1.4% 510.8 40.9

[1; 2] 9 15.0% 523.2 39.0 40.7% 389.4 28.4
[2; 3] 9 10.0% 438.4 34.3 22.1% 582.3 42.2
[3; 4] 9 1.4% 418.8 27.2 15.0% 730.5 55.5
[4;1] 9 27.1% 535.3 40.0 20.7% 402.1 30.7
1 12 70.7% 129.0 32.0 18.6% 115.5 25.8

[1; 2] 12 10.7% 202.6 50.8 56.4% 151.8 38.8
[2; 3] 12 4.3% 82.4 21.2 11.4% 115.3 31.6
[3; 4] 12 2.9% 69.1 17.2 7.1% 198.7 48.6
[4;1] 12 11.4% 224.2 58.7 6.4% 149.1 37.5
1 15 86.4% 27.4 34.8 40.7% 18.7 22.2

[1; 2] 15 10.0% 36.0 45.0 52.9% 36.8 47.1
[2; 3] 15 1.4% 13.2 17.9 5.0% 26.0 34.7
[3; 4] 15 0.7% 9.0 13.1 0.7% 11.9 17.1
[4;1] 15 2.1% 64.7 62.5 1.4% 35.6 31.5

10 evidence nodes, 130 problem instances
range i Lower bound Upper bound

M/L TR Tel U/M TR Tel
1 6 26.3% 423.0 17.1 0.0% 0.0 0.0

[1; 2] 6 17.3% 382.1 15.8 0.0% 0.0 0.0
[2; 3] 6 6.0% 435.9 17.4 2.3% 204.8 9.2
[3; 4] 6 6.8% 436.0 16.3 0.8% 477.2 19.0
[4;1] 6 43.6% 454.1 19.6 97.0% 436.1 18.1
1 9 39.1% 311.1 19.4 0.0% 0.0 0.0

[1; 2] 9 19.5% 282.6 19.2 3.8% 90.5 5.3
[2; 3] 9 9.8% 245.2 14.5 6.0% 206.6 13.5
[3; 4] 9 6.0% 222.7 14.2 10.5% 170.3 11.3
[4;1] 9 25.6% 260.5 16.8 79.7% 310.0 19.7
1 12 54.9% 87.2 18.6 0.8% 5.1 0.7

[1; 2] 12 19.5% 82.1 17.2 21.8% 60.3 12.5
[2; 3] 12 3.8% 74.8 15.4 14.3% 92.4 18.4
[3; 4] 12 4.5% 68.1 13.6 11.3% 57.6 12.1
[4;1] 12 17.3% 82.9 18.1 51.9% 98.8 21.6
1 15 73.7% 16.6 16.9 21.8% 10.3 9.6

[1; 2] 15 12.8% 18.3 17.4 34.6% 14.3 13.0
[2; 3] 15 3.0% 16.1 22.2 16.5% 24.7 24.4
[3; 4] 15 3.8% 21.4 15.7 8.3% 19.5 18.4
[4;1] 15 7.5% 31.9 26.6 19.5% 27.6 29.6

curacy of the result can be evaluated by comparing
the lower and upper bounds generated. The poten-
tial of this approach for heuristic guidance in search,
still needs to be tested.

The mini-bucket approximations parallel consis-
tency enforcing algorithms for constraint pro-
cessing, in particular those enforcing directional
consistency [5]. Speci�cally, algorithms such
as adaptive-consistency or adaptive-relational con-
sistency are full bucket-elimination algorithms
[7]. Their approximation algorithm, directional-
relational-consistency(i,m) [7], enforces bounded
levels of directional consistency. In propo-
sitional satis�ability, bounded-directional-resolution
with bound b corresponds to the mini-bucket algo-
rithmwith i = b [6]. Recently, a collection of approx-
imation algorithms for sigmoid belief networks was
presented in the context of a recursive algorithmsim-
ilar to bucket elimination [8]. It is shown [8] that an

upper and lower bounds approximations can be de-
rived for sigmoid belief networks. Speci�cally, each
Sigmoid function in a bucket, is approximated by a
Gaussian function.

References

[1] S. A. Arnborg. E�cient algorithms for combinato-
rial problems on graphs with bounded decompos-
ability - a survey. BIT, 25:2{23, 1985.

[2] R. McEliece D. C. MacKay and J. Cheng. Turbo
decoding as an instance of pearl's \belief propaga-
tion" algorithm. 1996.

[3] R. Dechter. Bucket elimination: A unifying frame-
work for probabilistic inference algorithms. In Un-
certainty in AI (UAI-96), pages 211{219, 1996.

[4] R. Dechter. Mini-buckets: A general scheme of gen-
erating approximations in automated reasoning. In
International Joint Conference on Arti�cial Intelli-
gence (IJCAI-97), 1997.

[5] R. Dechter and J. Pearl. Network-based heuristics
for constraint satisfaction problems. Arti�cial In-
telligence, 34:1{38, 1987.

[6] R. Dechter and I. Rish. Directional resolution: The
davis-putnam procedure, revisited. In Proceedings
of Knowledge Representation (KR-94), pages 134{
145, Bonn, Germany, 1994.

[7] R. Dechter and P. van Beek. Local and global re-
lational consistency. Theoretical Computer Science,
pages 283{308, 1997.

[8] T. S. Jaakkola and M. I. Jordan. Recursive algo-
rithms for approximating probabilities in graphical
models. Advances in Neural Information Processing
Systems, 9, 1996.

[9] F. R. Kschischang and B.H. Frey. Iterative decoding
of compound codes by probability propagation in
graphical models. submitted, 1996.

[10] J. Pearl. Heuristics: Intelligent search strategies. In
Addison-Wesley, 1984.

[11] J. Pearl. Probabilistic reasoning in intelligent sys-
tems. In Morgan Kaufmann, 1988.

