
Systematic Versus Stochastic Constraint Satisfaction

Eugene C. Freuder�(Chair)
Department of Computer Science
University of New Hampshire
Durham, NH 03824 U.S.A.

ecf@cs.unh.edu

Rina Dechtery

Deptartment of Information and Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.

dechter@ics.uci.edu

Matthew L. Ginsbergz

CIRL
University of Oregon

Eugene, Oregon 97403 U.S.A.

ginsberg@cs.uoregon.edu

Bart Selman
AT&T Bell Laboratories

600 Mountain Avenue, Room 2T-414
Murray Hill, NJ 07974 U.S.A.
selman@research.att.com

Edward Tsang
Department of Computer Science

University of Essex
Essex CO4 3SQ, United Kingdom

edward@essex.ac.uk

Abstract

This panel explores issues of systematic and
stochastic control in the context of constraint
satisfaction.

1 Introduction: Eugene C. Freuder

Constraint satisfaction problems (CSPs) involve �nding
values for problem variables that satisfy restrictions on
which combinations of values are allowed [Freuder and
Mackworth, 1994; Tsang, 1993]. They have many appli-
cations, including planning and scheduling, design and
con�guration, vision and language, temporal and spatial
reasoning. The map coloring problem is a simple ex-
ample, where the problem variables correspond to coun-
tries, the values to colors, and the constraints specify
that neighboring countries cannot have the same color.

In constraint satisfaction, as in many areas of AI, there
is competition between systematic methods for prob-
lem solving, which will, if necessary, explore the en-
tire problem space, and stochastic methods, which can

�This material is based on work supported by the National
Science Foundation under Grant No. IRI-9207633.

yThis work was partially supported by NSF grant IRI-
9157636, by the Electrical Power Research Institute (EPRI),
and by grants from Toshiba of America, Xerox Northrop and
Rockwell.

zThis work has been supported by the Air Force Of-
�ce of Scienti�c Research under contract 92-0693 and by
ARPA/Rome Labs under contracts F30602-91-C-0036 and
F30602-93-C-00031.

involve an element of random choice as to which por-
tions of the problem space will be examined. System-
atic CSP aproaches include search and inference tech-
niques. Stochastic approaches include those in
uenced
by physical metaphors (hill climbing, simulated anneal-
ing) and those in
uenced by biological metaphors (neu-
ral networks, genetic algorithms). Each of our panelists
is prepared to speak for one of these four approaches (but
will not be restricted to that limited advocacy role).

Though our primary focus is on systematic versus
stochastic, there are also interesting issues of search ver-
sus inference on the systematic side, and physical versus
biological on the stochastic side. On the other hand,
there are intriguing possibilities for conjoining the sys-
tematic and the stochastic.

Stochastic methods are generally incomplete: they
cannot guarantee that they will �nd a solution, or prove
that a solution does not exist. Systematic methods can.
However, stochastic methods are sometimes very fast.
Are stochastic methods inherently faster? Or are there
some types of problems for which stochastic methods
are better suited, and some types of problems for which
systematic methods are better suited?

If and when stochastic methods are faster, why are
they faster? There are actually at least three factors that
these methods generally have in common { randomness,
locality, incompleteness. Which are really operative fac-
tors?

Is the random element important? Why? There is of-
ten a local nature to stochastic search, decision making
based only on local features of the problem space: how
can making less informed decisions be helpful? Is there



actually a positive advantage to randomness or locality;
or is it simply unproductive to spend more time to make
informed or global choices? On the surface it seems plau-
sible that one could gain something { speed { by giving
up something { completeness: but can we explain how
this tradeo� works?
Do the successes of stochastic methods really depend

on their being non-systematic, or can they be incorpo-
rated into systematic methods? For example, an early
success with constraint satisfaction using neural net-
works, led to a hill climbing technique, that led to or-
dering heuristics for systematic backtrack search. The
systematic version did at least as well as the hill climb-
ing in at least one of the tested problem domains [Minton
et al., 1992].
Stochastic methods often begin by transforming a

problem into a more "atomistic" representation, e.g. in
terms of SAT propositional variables or neural network
nodes. These representations would appear to lose, or
at least deemphasize, higher level organizational infor-
mation; are they succeeding in spite of that, or because
of it? Are these methods succeeding because they em-
phasize the lower level \microstructure" of problems, the
consistency patterns as opposed to the higher level pat-
terns of constraints or subproblems [Freuder, 1994]?
Some additional provocative questions for the stochas-

tic side:

� Time versus Space. Are stochastic methods buying
speed with unreasonable space demands? To what
extent do these methods only appear to solve large
problems because they have a large representation
of a small problem?

� Learning versus Cheating. Are stochastic methods
being fairly tuned for a given problem domain, or
unfairly biased?

� Consistency Computation versus Control Computa-
tion. How would stochastic methods fare on prob-
lems where there is a high cost associated with de-
termining consistency of individual values, enhanc-
ing the e�ectiveness of inference that avoids consis-
tency checking?

Some additional provocative questions for the system-
atic side:

� Completeness versus Responsiveness. To what ex-
ent is completeness a red herring: if we cannot
wait for the complete answer, is not the systematic
method de facto incomplete?

� Intelligence versus Brute Force. Does systematic
reasoning pay o� or is intelligence just overhead?

� Optimal versus Satis�cing. Will repeated applica-
tion of stochastic methods �nd a \good enough"
solution faster than a systematic search for the best
solution?

Ultimately the most provocative question for both
sides may be:

� Rather than competing, can we cooperate?

Can the two communities learn from each other?
Which di�erences are important and which super�cial,
or even misleading? Can methods usefully combine ideas
from both communities? There has been exciting recent
progress in that direction ([Ginsberg and McAllester,
1994; Verfaillie and Schiex, 1994; Yokoo, 1994]).

2 Systematic vs Stochastic Greedy
Algorithms: Rina Dechter

Systematic algorithms have two properties [Pearl, 1984]:
(1) Do not leave any stone unturned (completeness), and
(2) do not turn any stone more then once (e�ciency).
Most classical research in heuristic search focused on
such algorithms, some examples of which are A� and
backtracking. Recently, greater attention is shifting to-
wards a class of greedy nonsystematic algorithms that we
will call Stochastic greedy (SG). These algorithms may
leave \many stones unturned" and may also \turn the
same stone multiple times" (as do many complete algo-
rithms).
Here are some facts: �rst, it can be demonstrated that

many large problem instances that are practically un-
solvable by systematic algorithms are solved e�ciently
using stochastic-greedy methods [Minton et al., 1992;
Selman et al., 1992]. Secondly, it was also observed that
for many problem instances SG methods are less e�ective
than systematic search, even when the problem is satis-
�able [Konolige, 1994; Kask & Dechter, 1995]. Third,
SG methods are highly ine�ective for inconsistent prob-
lems. Finally, constraint satisfaction problems are NP-
complete and therefore �nding one \best performing"
algorithm on every problem instance is unlikely.
The important problem is not �nding which paradigm

is the winner, but rather how to exploit identi�ed class-
superior algorithms within one meta framework. For ar-
gument's sake, let us call an algorithm \class-superior" if
there exists a reasonable-size class of problem instances
over which the algorithm is proven superior, be it ex-
perimentally or theoretically. Let us also assume that
we have identi�ed a collection of classes and their cor-
responding class-superior algorithms and that no algo-
rithm dominates other on all classes. I make two claims:
(1) that this hypothetical picture is where we stand to-
day, and (2) that it makes no sense given such a picture
to talk about a winner. Instead it makes more sense
to talk about \integration" of algorithms among those
identi�ed as class-superior.
SG algorithms should surely be added to the arse-

nal of class-superior algorithms, as should incomplete
and polynomial consistency enforcing (if we consider the
immense class of unsatis�able problems) [Mackworth &
Freuder, 1984].



A brute-force approach of combining class-superior al-
gorithms would be by parallel integration. Namely, to
run all algorithms in parallel and stop with the �rst
one to �nish [Hogg & Williams, 1994](sequential inte-
gration is another brute-force option where algorithms
are run in sequence, each being stopped after a speci�ed
amount of time). A second approach would be to un-
derstand what problem features make a given algorithm
run more e�ectively (e.g., identify tractable classes) and
to exploit those features in the combining rule yielding
a case-based integration. Lastly, algorithms that address
di�erent and orthogonal aspects of the search (e.g., look-
back vs look-ahead enhancements to backtracking) can
be integrated into one umbrella algorithm (unconditional
integration) which may improve on each individual par-
ticipating algorithm over the union of their preferred in-
stances. Such an integrated algorithm can replace its
individual components in the arsenal of class-superior al-
gorithms for further case-based or parallel-based integra-
tion (e.g, backjumping integrated with Dynamic variable
ordering (DVO), outperforms both) [Frost and Dechter,
1994]. Another proposed integration is dynamic back-
tracking that integrates backjumping with some look-
ahead ideas [Ginsberg, 1995].

Research in constraint networks in the last decade
has lead to substantial understanding resulting in a
list of class-superior algorithms, including backtracking-
style algorithms like backjumping, backmarking, con-
straint learning, forward-checking, dynamic variable or-
dering; structure exploiting algorithms like adaptive-
consistency, tree-clustering, and cycle-cutset decompo-
sition; as well as consistency enforcing algorithms like
arc and path consistency algorithms [Dechter 1990].

To be able to exploit SG algorithms within an inte-
grated algorithm, similar understanding should be ac-
quired. Here are some sample questions: Are there poly-
nomially recognizable conditions under which SG meth-
ods are guaranteed to provide a solution and in poly-
nomial time? Can some form of preprocessing help SG
methods? Can some form of learning during search help?
Is there a set of enhancement schemes which are unani-
mously desirable?

In our e�orts to answer some of these questions we fo-
cused on trying to improve SG performance on problems
with sparse structure using two approaches: by using
consistency enforcing algorithms prior to SG [Kask &
Dechter, 1995] and by adapting the SG algorithm to be
sensitive to the problem's structure [Pinkas and Dechter,
1995].

A note on \local vs global" search. SG methods are
often called local while systematic methods are associ-
ated with \global" search. The notion of \locality" is
dependent on the selected search space de�nition with
its associated neighborhood relation. What is local in
one space is global in the other. Backtracking is a lo-
cal search procedure that can be viewed as selecting the

next state with the maximum gradient increase of some
look-ahead function.

3 Systematic and Nonsystematic
Search: Matthew L. Ginsberg

There seems to be a great deal of confusion here re-
garding the question of whether or not systematic search
methods can be applied to problems of interesting size.
Tsang, for example, says:

Complete algorithms alone have little
chance of solving realistic CSPs [constraint sat-
isfaction problems]. For example, the problem
of assigning 30 jobs to 10 machines (satisfying
certain constraints) has a search space of 1030

nodes.

So what? Neither a systematic nor a nonsystematic
approach needs to search the entire space in order to
solve a satis�able problem. Perhaps what Tsang is trying
to say is simply that there is no point in trying to search
enormous search spaces in their entirety. Assuming that
P 6= NP , it's hard to argue with that.

The upshot of this observation seems to be that if a
large problem is unsatis�able, �nding a proof of unsatis-
�ability is likely to be impossible for any approach. One
can conclude from this that the principal claimed ad-
vantage of systematic methods, that they can eventually
report a problem as unsolvable, is illusory.
Of course, that's simply not true. There are many

large problems that are clearly unsatis�able. Can United
Airlines schedule all of its daily 
ights using only 17 air-
craft? Surely not { and we don't need to examine the
entire space of possible schedules in order to prove it. So
we can probably say the following:

Observation 1 Some { but not all { large unsatis�-
able problems are unlikely to be solvable using system-
atic search methods. All unsatis�able problems of any
size are unsolvable using nonsystematic methods.

Contrary to the nonsystematic community's propa-
ganda, unsatis�able problems are important, and can
sometimes { not always { be solved using systematic
methods.
The claimed advantage of the nonsystematic meth-

ods comes from their superior performance on satis�-
able problems. There has been a great deal written
and said about this [Langley, 1992; Minton et al., 1992;
Selman et al., 1992], and I won't repeat it here. A
reasonable summary appears to be that the symbolic
approaches (min-con
icts, gsat and so on) uniformly
outperform nonsymbolic methods (simulated annealing,
neural nets, etc.) and that:

Observation 2 When solving a satis�able problem, it
is important to be able to follow local gradients.



All of the claimed performance advantage of the
stochastic or other nonsystematic methods appears to be
based in their ability to move locally through the search
space; systematic methods typically lack this property.1

But nowhere is it suggested that nonsystematicity in and
of itself is an attractive property; how could it be?
In spite of their inability to follow local gradients, sys-

tematic approaches are competitive with nonsystematic
ones on a wide variety of problems; job-shop schedul-
ing is a typical example [Harvey and Ginsberg, 1995;
Smith and Cheng, 1993; Smith, 1992]. One explanation
for the performance of the systematic approach is that
some measure of systematicity is needed to escape the
local minima that arise in realistic problems.
When solving a mix of problems including both sat-

is�able and unsatis�able instances, it is clear that sys-
tematicity and the ability to follow local gradients are
both important. Given the job-shop scheduling results,
it appears that both can be important even if we restrict
our attention to satis�able problems alone.
One member of the panel (Dechter), reaching the same

conclusion, suggests that the algorithms run in parallel
or that we strive to \understand what problem features
make a given algorithm run more e�ectively . . . yielding
a case-based integration." She suggests that algorithm
development should perhaps be regarded as less impor-
tant than this integration, saying that, \The important
problem is . . . how to exploit identi�ed class-superior
algorithms within one meta-framework."
This seems to me to miss the mark completely. Far

more sensible would be for the constraint-satisfaction
community to focus at least some of its e�ort on the de-
velopment of new systematic techniques that follow local
gradients. Both dynamic backtracking [Ginsberg, 1993]

(misdescribed by Dechter as an integration of backjump-
ing and lookahead) and partial-order dynamic backtrack-
ing [Ginsberg and McAllester, 1994] are preliminary at-
tempts in this direction. The work is much more di�-
cult than simple and continued experimentation on ever-
larger randomly generated problems, but seems far more
likely to lead to results of practical importance.

4 Stochastic Search For Model Finding:
Bart Selman

Recent work on stochastic search for solving constraint
satisfaction problems has shown that that such meth-
ods can be surprisingly good at �nding globally optimal
solutions. For example, in our work on Boolean satis�-
ability testing we have found that, when given a set of
propositional clauses, a greedy local search method can

1Dechter's suggestion in this panel that \Backtracking
is a local search procedure that can be viewed as selecting
the . . . maximum gradient increase of some function" misses
the point. We want to follow local gradients of a function that
measures solution quality, not one that happens to mimic our
particular search procedure.

often �nd a truth assignment that satis�es all clauses
in the input set [Selman et al. 1992]. This came as a
surprise to us, since we assumed that local search meth-
ods would tend to get stuck in local optima, and thus
might �nd good near-optimal solutions, but not com-
pletely satisfying assignments. In dealing with combina-
torial optimization problems, �nding good near-optimal
solutions is quite useful, but in many AI applications,
near-satisfying assignments are of little value. For ex-
ample, in satis�ability encodings of planning problems,
a near-satisfying assignment corresponds to a plan with
a \magic" step, i.e., a physically infeasible operation.
So, the fact that stochastic search methods often �nd
completely satisfying solutions signi�cantly widens the
range of potential applications of such search methods.
(See also [Minton et al. 1990].)

One obvious drawback is that stochastic search can-
not be used to prove the inconsistency of a set of con-
straints. This is a problem in applications based on the-
orem proving. One way to show that a formula� follows
from a theory �, is to show that � with the negation of
� is inconsistent. Unfortunately, since stochastic search
methods are incomplete, they cannot be used to prove
inconsistency, simply because these methods do not sys-
tematically explore all possible models. Therefore, in
order to take full advantage of stochastic search meth-
ods, it is necessary to formulate tasks not in terms of
theorem proving, but rather in terms of model �nding.

It has recently been shown that systematic methods
can be improved by taking advantage of principles be-
hind stochastic (or local) search. This has led some peo-
ple to suggest that perhaps in the end we will be able
to develop systematic methods that will be as good as
stochastic search methods at showing the consistency of
a set of constraints, but, in addition, can also discover in-
consistencies. As a consequence, there may not be much
practical di�erence between model-�nding and theorem
proving. I will argue that this is unlikely. More speci�-
cally, I will discuss the fundamental asymmetry between
the task of showing a set of constraints to be consistent
versus showing them to be inconsistent. Of course, this
issue is closely related to the traditional distinction be-
tween NP and co-NP. I will argue that this is not just
an interesting theoretical distinction but that there are
good reasons to believe that this distinction has con-
crete practical consequences. The di�erence has been
ignored in the past because of the traditional emphasis
on systematic search methods, for which the distinction
between NP and co-NP has no practical consequences.
The recent work on stochastic search, however, suggests
that there may in fact be a real di�erence in practical
terms. Consider, for example, randomly generated sat-
is�ability problems. Stochastic search methods can be
used to �nd satisfying assignments of hard random 3SAT
formulas with up to 2500 variables. However, the cur-
rent best systematic methods can show the inconsistency



of formulas with only up to about 400 variables [Craw-
ford and Auton, 1993]. Moreover, a theoretical analysis
of resolution proofs has shown that the shortest reso-
lution proofs of most hard inconsistent instances are of
exponential size [Chvatal and Szemeredi, 1988]. Since
backtrack-style search can often be viewed as a variant
of resolution, the exponential lower-bound on resolution
places a hard limit on what one can expect from most
backtrack-style procedures. What is needed to tackle
larger formulas are more powerful proof systems, such
as extended resolution, where one allows new variables
to be introduced in the proof. Such systems might give
us shorter proofs of the inconsistency of certain large
instances; unfortunately, we do not yet know whether
shorter proofs actually exist for, e.g., the hard random
problems, nor do we know how to to search automati-
cally for such shorter proofs.
In summary, the recent work on stochastic search

methods has revealed an interesting asymmetry: it is
generally easier to �nd a satisfying assignment of a con-
sistent set of constraints, than to show a set of con-
straints to be inconsistent. This asymmetry suggests
that it is preferable to formulate problems in terms of
model-�nding instead of as theorem proving tasks. A
tantalizing possibility is that in order to handle certain
larger inconsistent sets of constraints, we may have to
develop stochastic methods that search for short proofs
expressed in more powerful proof systems.

5 Case for Stochastic Search: Edward
Tsang

This debate is important because research direction is of-
ten more important than the development of techniques.
In the past the majority of research in constraint satis-
faction has focussed on complete search algorithms and
heuristics to be employed by them [Tsang, 1993]. Given
the NP-complete nature of constraint satisfaction prob-
lems (CSPs), should complete algorithms be given so
much attention and incomplete search algorithms so lit-
tle? What should their roles in constraint satisfaction
applications be?
The advantage of tackling problems with complete al-

gorithms is obvious. However, it is also important to re-
alize their limitations. The fact is, complete algorithms
alone have little chance of solving realistic CSPs. For ex-
ample, the problem of assigning 30 jobs to 10 machines
(satisfying certain constraints) has a search space of 1030

nodes. Even if we generously assume that a very, very
e�cient complete search algorithm only needs to look at
one in every 1010 nodes in the search space, it still needs
to examine 1020 nodes. If a machine can examine 1010

nodes per second (which would be incredible, and require
the compatibility checks to be very inexpensive compu-
tationally), then given that roughly 3� 107 seconds are
available in a year, this innocent looking 30-variables-
10-values-each problem would require about 300 years

to solve! Developing interactive systems to solve such
problems by complete methods is out of the question.

Complete algorithms have other limitations. In some
applications, one prefers to �nd optimal or near opti-
mal solutions. Complete algorithms (such as bound and
bound) need to explore the whole search space to estab-
lish that the solution found is optimal, and this is lim-
ited by the combinatorial explosion problem (explained
above). Moreover, when a problem has no solution, most
complete algorithms developed so far can only report
that no solution exists. What one may need is a near-
solution to guide one through constraints relaxation.

All this does not mean that complete algorithms are
completely useless, but that they are very limited in their
applications. They could be used for small problems.
When a problem is decomposable, they could be used to
solve some of the subproblems. In any case, one should
always evaluate the possibility of complete algorithms
being able to solve the given problem within the time
available before looking at other methods.

Stochastic methods that have been looked at for con-
straint satisfaction include hill climbing (HC) [Minton
et al., 1992], connectionist methods [Davenport et al.,
1994], genetic algorithms (GAs) [Warwick and Tsang,
1994] and simulated annealing (SA) [Ghedira, 1994;
Davis, 1987].

No one should believe that the networks that peo-
ple develop in connectionist methods realistically resem-
ble the brain. Neither does any GA model evolution
closely. But nature often gives us invaluable inspiration,
and these methods have already demonstrated their ef-
fectiveness in various domains, including constraint sat-
isfaction.

There are many reasons why the above mentioned
stochastic methods, which sacri�ce completeness for ef-
�ciency, are practical answers to real life CSPs. One im-
portant advantage of these methods is that they can be
designed to terminate within a speci�ed time period. Be-
sides, domain knowledge can be incorporated into these
methods|for example, knowledge can be used in the
formulation of a connectionist network and in the repre-
sentation to be used by a GA.

Another important issue is that the above mentioned
stochastic methods have great potential to be extended
to tackle constraint optimization problems and partial
constraint satisfaction problems. For example, penalties
for violating individual constraints and costs for assign-
ing certain values to individual variables can be incorpo-
rated into the weights of the connections and the �tness
functions of a GA. In contrast, the role of problem re-
duction techniques in constraint optimization problems
is far from clear, and the usefulness of most of the search
strategies, including lookahead and learning, are doubt-
ful in optimization problems.

One important criteria for evaluating how promising a
technique is lies in the current development of hardware.



(Arguably, advances in hardware has been much more
signi�cant than advances in software in the past decade
or two.) Parallel architectures have become more and
more readily available. Previous research and the above
example have shown that a polynomial number of pro-
cessors is not going to be su�cient to contain the com-
binatorial explosion problem in complete search meth-
ods. On the other hand, connectionism by nature can
easily take advantage of the availability of parallel ar-
chitectures. GAs have also been shown to be able to
exploit parallelism e�ectively. (e.g. see [Muhlenbein et
al., 1991]).

Reliability is often the greatest concerned when using
stochastic methods. Indeed, some stochastic methods
can easily be trapped in local optima, but connectionism
and GAs can be very reliable. For example, [Davenport
et al., 1994] showed that GENET has a remarkably high
success rate in solving CSPs (in fact, it has never missed
a solution in binary CSPs). [Pinkas and Dechter, 1995
to appear] has shows that connectionist methods can be
complete for certain types of problems. Quite a lot of
success has been found by GAs in �nding near-optimal
solutions.

Real life constraint satisfaction applications often in-
volve large numbers of variables and large domains. One
is often given limited time to solve such problems; e.g.
a schedule may need to be produced every night. Some
applications demand interactive systems to be produced.
Limited by the combinatorial explosion problem, com-
plete algorithms are unlikely to be able to meet the re-
quirements of these applications.

Some applications require the optimal solution or
near-optimal solutions to be found. In other applica-
tions, when the problem is insoluble, near-solutions may
be preferred to a report suggesting that the problem is
insoluble. Complete algorithms have little to o�er to
these requirements.

Stochastic methods, especially connectionism and
GAs, have had a lot of success in real life applications,
so they should receive much more attention by con-
straint satisfaction researchers than they have so far.
The questions that should interest us are: which stochas-
tic method to use when? How reliable is a particular
stochastic method? How many times does a particular
stochastic method miss solutions when they exist? How
successful is a particular stochastic method in �nding
near-optimal solutions (how close are they to the opti-
mal)? These (rather than complete search algorithms)
should be the focus of future constraint satisfaction re-
search.

To summarize, complete search algorithms su�er from
the combinatorial explosion problem in general and
therefore cannot be expected to solve most real life prob-
lems. In order to bring constraint satisfaction research
out of the laboratory and put it into applications, atten-
tion should be shifted to stochastic search in constraint

satisfaction in the future.

References

[Chvatal and Meiri, 1988] V. Chvatal and E. Szemeredi.
Many hard examples for resolution. JACM, vol. 35, no.
4, 1988, 759{208.

[Crawford and Auton, 1993] J.M. Crawford and L.D.
Auton. Experimental results on the cross-over point
in satis�ability problems. AAAI93, 1993.

[Davenport et al., 1994] A. J. Davenport, E. P. K.
Tsang, C. J. Wang, and K. Zhu. GENET: A connec-
tionist architecture for solving constraint satisfaction
problems by iterative improvement. In Proc, 12th Na-
tional Conference on Arti�cial Intelligence (AAAI),
volume 1, pages 325{330, 1994.

[Davis, 1987] L. Davis. Genetic algorithms and simu-
lated annealing. Research notes in AI. Pitman/Morgan
Kaufmann, 1987.

[Dechter 1990] R. Dechter. \Constraint networks." En-
cyclopedia of Arti�cial Intelligence (2nd Ed.), John
Wiley, New York, pp. 276-285, 1991.

[Freuder and Mackworth, 1994] E. Freuder and A.
Mackworth, editors. Constraint-Based Reasoning.
MIT Press, Cambridge, MA, USA, 1994.

[Freuder, 1994] E. Freuder. Exploiting structure in con-
straint satisfaction problems. In Constraint Program-
ming, Mayoh, Tyugu, Penjam, editors, Springer-
Verlag, Berlin, pp. 51-74, 1994.

[Frost and Dechter, 1994] D. Frost and R. Dechter. \In
search of the best backtracking search" In AAAI-94,
pp. 301{306, 1994.

[Ghedira, 1994] K. Ghedira. Dynamic partial constraint
satisfaction by multi-agent and simulated annealing.
In Workshop on Constraint Satisfaction Issues Raised
by Practical Applications, 11th European Conference
on Arti�cial Intelligence, 1994.

[Ginsberg and McAllester, 1994] Matthew L. Ginsberg
and David A. McAllester. GSAT and dynamic back-
tracking. In Proceedings of the Fourth International
Conference on Principles of Knowledge Representa-
tion and Reasoning, Bonn, Germany, 1994.

[Ginsberg, 1993] Matthew L. Ginsberg. Dynamic back-
tracking. Journal of Arti�cial Intelligence Research,
1:25{46, 1993.

[Hogg & Williams, 1994] T. Hogg and C. P. Williams.
\Expected gains from parallelizing constraint solving
for hard problems," in AAAI-94, pp. 331-336, 1994.



[Harvey and Ginsberg, 1995] William D. Harvey and
Matthew L. Ginsberg. Limited discrepancy search.
In Proceedings of the Fourteenth International Joint
Conference on Arti�cial Intelligence, 1995.

[Kask & Dechter, 1995] K. Kask and R. Dechter.
\GSAT and local consistency," in IJCAI-95, 1995.

[Konolige, 1994] K. Konolige. \Easy to hard: Di�cult
problems for greedy algorithms"Knowledge Represen-
tation, pages 374-378, 1994.

[Langley, 1992] Pat Langley. Systematic and nonsys-
tematic search strategies. In Arti�cial Intelligence
Planning Systems: Proceedings of the First Interna-
tional Conference, pages 145{152. Morgan Kaufmann,
1992.

[Mackworth & Freuder, 1984] A. Mackworth and E.
Freuder. \The complexity of some polynomial search
algorithms for constraint satisfaction problems," Ar-
ti�cial Intelligence, Vol. 25, No. 1, 1984.

[Minton et al., 1992] S. Minton, M. Johnston, A.B.
Philips, and P. Laird. Minimizing con
icts: a heuristic
repair method for constraint satisfaction and schedul-
ing problems. Arti�cial Intelligence, 58:161{205, 1992.

[Muhlenbein et al., 1991]

H. Muhlenbein, M. Schomisch, and J. Born. The par-
allel genetic algorithm as function optimizer. Parallel
Computing, 17:619{632, 1991.

[Pearl, 1984] J. Pearl. \Heuristics, Intelligent search
strategies for computer problem solving," Addison
Wesley, 1984.

[Pinkas and Dechter, 1995 to appear] G. Pinkas and
R. Dechter. On improving connectionist energy min-
imization. Journal of Arti�cial Intelligence Research,
1995, to appear.

[Selman et al., 1992] Bart Selman, Hector Levesque,
and David Mitchell. A new method for solving hard
satis�ability problems. In Proceedings of the Tenth
National Conference on Arti�cial Intelligence, pages
440{446, 1992.

[Smith and Cheng, 1993] Stephen F. Smith and Cheng-
Chung Cheng. Slack-based heuristics for constraint
satisfaction scheduling. AAAI-93, pp. 139{144, 1993.

[Smith, 1992] Douglas R. Smith. Transformational ap-
proach to scheduling. Technical Report KES.U.92.2,
Kestrel Institute, 1992.

[Tsang, 1993] E.P.K. Tsang. Foundations of Constraint
Satisfaction. Academic Press, 1993.

[Warwick and Tsang, 1994] T. Warwick and E. P. K.
Tsang. Using a genetic algorithm algorithm to tackle
the processors con�guration problem. In Proc. ACM
Symposium on Applied Computing (SAC), pages 217{
221, 1994.

[Verfaillie and Schiex, 1994] G. Verfaillie and T. Schiex.
Solution reuse in dynamic constraint satisfaction
problems. AAAI-94, pp. 307{312, 1994.

[Yokoo, 1994] M. Yokoo. Weak-commitment search for
solving constraint satisfaction problems. AAAI-94,
pp. 313{318, 1994.


