
Artificial Intelligence 125 (2001) 93–118

Topological parameters for time-space tradeoff

Rina Dechtera,∗, Yousri El Fattahb
a Information & Computer Science, University of California, Irvine, CA 92717, USA
b Rockwell Science Center, 1049 Camino Dos Rios, Thousand Oaks, CA 91360, USA

Received 8 June 1999; received in revised form 13 June 2000

Abstract

In this paper we propose a family of algorithms combining tree-clustering with conditioning that
trade space for time. Such algorithms are useful for reasoning in probabilistic and deterministic
networks as well as for accomplishing optimization tasks. By analyzing the problem structure,
the user can select from a spectrum of algorithms, the one that best meets a given time-space
specification. To determine the potential of this approach we analyze the structural properties of
problems coming from the circuit diagnosis domain. The analysis demonstrates how the tradeoffs
associated with various hybrids can be used for each problem instance. 2001 Elsevier Science B.V.
All rights reserved.

Keywords:Time-space; Topological parameters; Bayesian networks; Constraint networks; Automated inference;
Optimization tasks; Hybrid algorithms; Empirical evaluation

1. Introduction

Problem solving methods can be viewed as hybrids of two main principles: inference
and search. Tree-clustering is an example of an inference algorithm, while the cycle-cutset
conditioning is an example of a search method. Tree-clustering algorithms are time and
space exponential in the size of their cliques while search algorithms are time exponential
but require only linear memory. In this paper we develop a hybrid scheme that uses
inference (tree-clustering) and search (cycle-cutset conditioning) as its two extremes and,
using a single, structure-based design parameter, permits the user to control the storage-
time tradeoff in accordance with its problem domain and the available resources.

* Corresponding author.
E-mail addresses:dechter@ics.uci.edu (R. Dechter), yousri@rsc.rockwell.com (Y. El Fattah).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00050-3

94 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Indeed, structure-based algorithms for constraint satisfaction and probabilistic reasoning
fall into two distinct classes. One class is centered on tree-clustering, the other on cycle-
cutset decomposition. Tree-clustering involves transforming the original problem into a
tree-like problem [14,22,26] that can then be solved by a specialized efficient tree-solving
algorithm [27,28]. The transforming algorithm identifies subproblems that together form a
tree, and the solutions to the subproblems serve as the new values of variables in a tree met-
alevel problem. The metalevel problem is called ajoin-tree. The tree-clustering algorithm
is time and space exponential in the tree-width of the problem’s graph. A related parameter
is theinduced widthwhich equals the tree-width. We will use both terms interchangeably.

The cycle-cutsetmethod, also calledloop-cutset conditioning, utilizes the problem’s
structure in a different way. It exploits the fact that variable instantiation changes the effec-
tive connectivity of the underlying graph. A cycle-cutset of an undirected graph is a subset
of its nodes which, once removed, cuts all of the graph’s cycles. A typical cycle-cutset
method enumerates the possible assignments to a set of cutset variables and, for each cut-
set assignment, solves (or reasons about) a tree-like problem in polynomial time. Thus, the
overall time complexity is exponential in the size of the cycle-cutset [8,15,29]. Fortunately,
enumerating all the cutset’s assignments can be accomplished in linear space, yielding an
overall linear space algorithm.

The first question is which method, tree-clustering or the cycle-cutset scheme, provides
a better worst-case time guarantee. This question was answered by Bertele and Briochi
[5] in 1972 and later reaffirmed in [31]. They showed that the minimal cycle-cutset of any
graph can be much larger, and is never smaller, than its minimal tree-width. In fact, for an
arbitrary graph,r 6 c+ 1, wherec is the size of the minimal cycle-cutset andr is the tree-
width [5]. Consequently, for any problem instance the time guarantees accompanying the
cycle-cutset scheme are never tighter than those of tree-clustering, and can even be much
worse. On the other hand, while tree-clustering requires exponential space (in the induced
width) the cycle-cutset requires only linear space.

Since the space complexity of tree-clustering can severely limit its usefulness, we
investigate in this paper the extent to which space complexity can be reduced, while
reasonable time complexity guarantees are maintained. Is it possible to have the time
guarantees of tree-clustering while using linear space? On some problem instances, it is
possible, specifically, on those problems whose associated graph has an induced width and
a cycle-cutset of comparable sizes (e.g., on a ring, the cutset size is 1 and the tree-width is
2, leading to identical time bounds). We conjecture, however, that any algorithm that has a
time bound guarantee exponential in the induced width will, on some problem instances,
require exponential space in the induced width.

The space complexity of tree-clustering can be bounded more tightly using theseparator
size, which is defined as the size of the maximum subset of variables shared by adjacent
subproblems in the join-tree. Indeed, some of the variants of tree-clustering algorithms
send messages over the separators only and therefore can comply with space complexity
that is exponential in the separator size only [22,38]. Our investigation employs the
separator size to control the time-space tradeoff. The idea is to combine adjacent
subproblems joined by a large separator into one bigger cluster or a subproblem so that
the remaining separators are of smaller size. Once a join-tree with smaller separators is

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 95

generated, its potentially larger clusters can be solved using the cycle-cutset method or any
other linear-space scheme.

In this paper we will develop a time-space tradeoff scheme that is applicable to belief
network processing, constraint processing, and optimization tasks, yielding a sequence
of parameterized algorithms that can trade space for time. With this scheme it will be
possible to select from a spectrum of algorithms the one that best meets some time-space
requirement. Algorithm tree-clustering and cycle-cutset conditioning are two extremes in
this spectrum.

We investigate the potential of our scheme in the domain of combinatorial circuits. This
domain is frequently used as an application area in both probabilistic and deterministic
reasoning [16,18,40]. We analyze 11 benchmark combinatorial circuits widely used in the
fault diagnosis and testing community [6] (see Table 1 ahead). For each circuit, the analysis
is summarized in a chart displaying the time-space complexity tradeoffs for diagnosing
that circuit. The analysis allows tailoring the hybrid of tree-clustering and cycle-cutset
decomposition to the available memory.

Different variants of the tree-clustering transformation algorithms were developed in
recent years, both for constraint processing [11] and for probabilistic inference [22–24,
26,29,37,38]. Some of these algorithms compile functions over the clusters and some
restrict this information to the separators. Some are directional, query-based while others
are symmetrical, compiling answers for a variety of queries. We choose to demonstrate our
approach using a directional variant of tree-clustering that is query-based, which we hope
simplifies the exposition. The approach is applicable to any variant of tree-clustering and
can be carried out off-line, in a compilation mode, as well as online.

Section 2 gives definitions and preliminaries and introduces the time-space tradeoff ideas
for belief networks. Sections 3 and 4 briefly extend these ideas to constraint networks
and to optimization problems. Section 5 describes the empirical analysis and the results.
Section 6 discusses related work and Section 7 gives our conclusions.

The paper assumes familiarity with the basic concepts of tree-clustering and cycle-cutset
conditioning and provides only brief necessary background. For more details the reader
should consult the references.

2. Probabilistic networks

2.1. Overview

2.1.1. Definitions and notations
Belief networksprovide a formalism for reasoning about partial beliefs under conditions

of uncertainty. It is defined by a directed acyclic graph over nodes representing random
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature
of an object, the occurrence of an event). The arcs signify the existence of direct causal
influences between the linked variables. The strength of these influences are quantified
by conditional probabilities that are attached to each cluster of parents-child nodes in the
network. A belief network is a concise description of a complete probability distribution.
It uses the concept of a directed graph.

96 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Definition 1 (Directed graph). A directed graphG= {V,E}, whereV = {X1, . . . ,Xn} is
a set of elements andE = {(Xi,Xj) |Xi,Xj ∈ V } is a set of edges. If an arc(Xi,Xj) ∈E,
we say thatXi points toXj . For each variableXi , pa(Xi) is the set of variables pointing
toXi inG, while ch(Xi) is the set of variables thatXi points to. The family ofXi includes
Xi and its parent variables. A directed graph is acyclic if it has no directed cycles. In an
undirected graph the direction of the arcs is ignored:(Xi,Xj) and(Xj ,Xi) are identical.
An undirected graph is chordal if every cycle of length at least 4 has a chord. A clique is
a subgraph that is completely connected, and a maximal clique of graph is a clique that is
not contained in any other clique of the graph.

Definition 2 (Belief networks). LetX = {X1, . . . ,Xn} be a set of random variables over
multi-valued domains,D1, . . . ,Dn. A belief networkis a pair(G,P) whereG = (X,E)
is a directed acyclic graph over the nodesX andP = {Pi} are the conditional probability
matrices over the families ofG, Pi = P(Xi | pa(Xi)). An assignment (X1= x1, . . . ,Xn =
xn) can be abbreviated asx = (x1, . . . , xn). The belief network represents a probability
distribution overX having the product form

P(x1, . . . , xn)=
n∏
i=1

P(xi |xpa(Xi)),

where xpa(Xi) denotes the projection of a tuplex over pa(Xi). An evidence sete is
an instantiated subset of variables. Amoral graphof a belief network is an undirected
graph generated by connecting the tail variables of any two head-to-head pointing arcs
in G and ignoring the arrows. A belief network is a polytree if its underlying undirected
(unmoralized) graph has no cycles (namely, it is a tree).

Definition 3 (Induced width, induced graph). An ordered graphis a pair(G,d) whereG
is an undirected graph andd =X1, . . . ,Xn is an ordering of the nodes. Thewidth of a node
in an ordered graph is the number of its earlier neighbors. Thewidthw(d) of an ordering
d , is the maximum width over all nodes. Theinduced width of an ordered graph, w∗(d),
is the width of the induced ordered graph obtained by processing the nodes recursively,
from last to first; when nodeX is processed, all its earlier neighbors are connected. This
process is also called “triangulation”. The induced (triangulated) graph is clearly chordal.
The induced width of a graph,w∗, is the minimal induced width over all its orderings (for
more information see [9,13]).

Example 1. Fig. 1 shows a belief network’s acyclic graph and its associated moral graph.
The width of the graph in Fig. 1(b) along the orderingd = A,B,C,D,G,E,F,H is 3.
Since the moral graph in Fig. 1(b) is chordal no arc is added when generating the induced
ordered graph. Therefore, the induced widthw∗ of the graph is also 3, because no smaller
induced width can be attained.

The most common task over belief networks is to determine posterior beliefs of some
variables. Other important tasks arempe: finding the most probable explanation given a set
of observations, andmap: finding the maximum a posteriori hypotheses given evidence.
Both tasks are relevant to abduction and diagnosis [29]. It is well known that such tasks

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 97

Fig. 1. (a) A belief network and (b) its moral graph.

can be answered effectively for singly-connected polytrees by a belief propagation algo-
rithm [29] that can be extended to multiply-connected networks by either tree-clustering
or loop-cutset conditioning.

2.1.2. Tree-clustering
The most widely used method for processing belief networks is join-tree clustering. The

algorithm transforms the original network into a tree of subproblems called ajoin-tree.
Tree-clustering methods have two parts. In the first part the structure of the newly generated
tree problem is decided, and in the second part the conditional probabilities between the
subproblems (viewed as high-dimensional variables) is determined. The structure of the
join-tree is determined primarily by graph information, embedding the graph in a tree of
cliques as follows. First the moral graph is embedded in a chordal graph by adding some
edges. This is accomplished by picking a variable orderingd =X1, . . . ,Xn, then, moving
from Xn to X1, recursively connecting all the earlier neighbors ofXi in the moral graph
yielding the induced ordered graph. Itsinduced widthw∗(d), as defined earlier, is the
maximal number of earlier neighbors each node has.

Clearly, each node and its earlier neighbors in the induced graph are a clique. The
maximal cliques, indexed by their latest variable in the ordering, can be connected into a
clique-treeand can serve as the subproblems (or clusters) in the final join-tree. The clique-
tree is created by connecting every cliqueCi to an earlier cliqueCj , called its parent, with
whom it shares a maximal number of variables. Clearly, the induced widthw∗(d) equals
the size of the maximal clique minus 1.

Once the join-tree structure is determined, each conditional probability table (CPT)
is placed in a clique containing all its arguments. The marginal probability distrib-
utions for each clique can then be computed by multiplying all the CPTs and nor-
malizing, and subsequently the conditional probabilities between every clique and its
parent clique can be derived. Tree-clustering, therefore, is time and space exponen-
tial in the size of the maximal clique, namely, exponential in the moral graph’s in-
duced width (plus 1). In Fig. 1(b), the maximal cliques of the chordal graph are
{(A,B), (B,C,D), (B,D,G), (G,D,E,F), (H,G,F,E)}, resulting in the join-tree
structure given in Fig. 3(a).

Clearly, the established connection between induced width and complexity motivates
finding an ordering with a smallest induced width, a task known to be hard [1,2]. However,
useful greedy heuristics as well as approximation algorithms were developed in the last

98 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Algorithm directional join-tree clustering (DTC)

Input: A belief network(G,P), whereG is a DAG andP = {P1, . . . ,Pn}, evidencee.
Output: the belief ofX1 given evidencee.
1. Generate a join-tree clustering ofG, identified by its cliquesC1, . . . ,Ct . Place eachPi and each

observation in one clique that contains its arguments. (One’s favorite method for structuring into
tree-clustering can be used.)

2. Impose directionality on the join-tree, namely create a rooted directed tree whose root is a clique
containing the queried variable. Letd = C1, . . . ,Ct be a breadth-first ordering of the rooted
clique-tree, letSp(i) andCp(i) be the parent separator and the parent clique ofCi , respectively.

3. Fromi← t downto 1 do
4. (Processing cliqueCi):

Let λ1, λ2, . . . , λj be the functions in cliqueCi , and whereCi denotes also its set of variables.
• For any observationXj = xj in cliqueCi substitutexj in each function overxj in the clique.
• LetUi = Ci − Sp(i) and letui be an assignment toUi . Compute function

λ=∑ui

∏j
i=1λi .

Putλ in parent cliqueCp(i).
5. Return (processing root clique,C1) Let λ1, . . . , λj be functions inC1

Bel(x1)= α
∑
u1

∏
i λi

α is a normalizing constant andu1 is an assignment toU1=C1− {X1}.

Fig. 2. Algorithm directional join-tree clustering.

decade, taking into account not only graph information, but also the variance in the
variables’ domain sizes [4,5,14,24,26,29,39].

A tighter bound on the space complexity of tree-clustering may be obtained using the
separator size. The separator size of a join-tree is the maximal size of the intersections
between any two cliques, and theseparator size of a graphis the minimal separator size
over all the graph’s join-trees [7].

Algorithm directional join-tree clustering(DTC), presented in Fig. 2, is a query-based
variant of join-tree clustering. It records functions on separators only. The algorithm
can be viewed as rephrasing one phase (the collect phase) in both the Shafer–Shenoy
architecture [36,38], as well as the one-phase propagation in the Hugin architecture. The
Hugin architecture has its roots in the method proposed by Lauritzen and Spiegelhalter
[26] for computing marginals of probability distributions. It was proposed by Jensen et al.
[22] and is incorporated in the software product Hugin.

Step 1 of algorithm DTC computes the join-tree by first determining the cliques and
connecting them in a tree-structure where each clique has a parent clique and a parent
separator. Once the structuring part of the join-tree is determined, each CPT is placed
in one clique that contains its arguments. For example, given the join-tree structure in
Fig. 3(a), the cliques contain the CPTs as follows. CliqueAB containsP(B|A); BCD
containsP(C|B) andP(D|C); BDG containsP(G|B,D); GDEF containsP(E|D,F)
andP(F |G); and finally, cliqueGEFH containsP(H |G,F,E). Subsequently, algorithm
DTC processes the cliques recursively from leaves to the root. Processing a clique involves
computing the product of all the probabilistic functions that reside in that clique and then
summing over all the variables that do not appear in its parent separator. The computed

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 99

function (over the parent separator) is added to the parent clique. Computation terminates
at the root clique.1

As shown ahead, the algorithm tightens the bound on space complexity using its
separator size. This modification to its space management can be applied to any variant
of tree-clustering which is not necessarily query-based. In summary,

Theorem 1 (Time-space complexity of join-tree clustering).Given a belief network
havingn variables, whose moral graph can be embedded in a clique-tree having induced
width r and separator sizes, the time complexity for determining beliefs and the mpe by a
join-tree clustering algorithm(e.g., by DTC) is O(n · exp(r)), while its space complexity is
O(n · exp(s)).

Proof. It is well known that the time and space complexity of join-tree clustering is
bounded by the induced width (clique sizes) of the graph,r. The only thing that needs
to be shown, therefore, is that the tighter bound on space complexity is valid. Consider the
processing of a clique (step 4 in Algorithm DTC). LetC be the variables in the clique,
let S be the variables in the separator with its parent clique and letU = C − S. In step 4
we computeλ =∑U

∏j

i=1λi . Namely,λ is a function defined overS, because all the
variables inU are eliminated by summation. Namely, for each assignments to S, λ(s)
can be computed in linear space as follows: we initializeλ(s)← 0, and then for every
assignmentu toU we compute the running sum:λ(s)← λ(s)+∏i λi (s, u). 2

Clearly s 6 r. Note that since in the example of Fig. 3(a) the separator size is 3 and
the induced width is also 3, we do not gain much space-wise by the modified algorithm.
There are, however, many cases where the separator size is much smaller than the induced
width.

Algorithm directional join-tree clustering (DTC) can be adapted for the task of
finding the most probable explanation (mpe) by replacing the summation operation by
maximization. Although it is presented as an online algorithm, when evidence variables
are known in advance, the algorithm can exploit this information and simplify the structure
of the compiled join-tree off-line. This can be done by treating the evidence variables as
assigned variables.

2.1.3. Cycle-cutset conditioning
Belief networks may be processed also by cycle-cutset conditioning [29]. A subset of

nodes of an undirected graph is called acycle-cutsetif removing all the edges incident to
nodes in the cutset makes the graph cycle-free. A subset of nodes of an acyclic directed
graph is called aloop-cutsetif removing all the outgoing edges of nodes in the cutset results
in a polytree [29,30]. A minimal cycle-cutset (respectively, minimal loop-cutset) is such
that if one node is removed from the set, the set is no longer a cycle-cutset (respectively, a
loop-cutset).

Algorithm cycle-cutset-conditioning (also called cycle-cutset decomposition or loop-
cutset conditioning) is based on the observation that assigning a value to a variable

1 We disregard algorithmic details that do not affect asymptotic worst-case analysis here.

100 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

changes the effective connectivity of the network. Graphically, this amounts to removing
all outgoing arcs from the assigned variables. Consequently, an assignment to a subset
of variables that constitute a loop-cutset means that belief updating, conditioned on this
assignment, can be carried out in the resulting polytree [29]. Multiply-connected belief
networks can therefore be processed by enumerating all possible instantiations of a loop-
cutset and solving each conditioned network using the polytree algorithm. Subsequently,
the conditioned beliefs are combined using a weighted sum where the weights are the
probabilities of the joint assignments to the loop-cutset variables conditioned on the
evidence. Pearl [29] showed that weight computation is not more costly than enumerating
all the conditioned beliefs.

This scheme was later simplified by Peot and Shachter [30]. They showed that if
the polytree algorithm is modified to compute the probability of each variable-value
propositionconjoinedwith the evidence, rather thanconditionedon the evidence, the
weighted sum can be replaced by a simple sum. In other words:

P(x|e)= αP(x, e)= α
∑
c

P (x, e, c).

If {X} ∪ C ∪ E is a loop-cutset (note thatC andE denote subsets of variables) then
P(x, e, c) can be computed efficiently using a propagation-like algorithm on polytrees.
Consequently the complexity of the cycle-cutset scheme is exponential in the size ofC

whereC ∪ {X} ∪E is a loop-cutset. Some additional improvements are presented in [15].
In summary,

Theorem 2 [29,30].Given a belief network(G,P) havingn variables, and family sizes
bounded by|F |, and a loop-cutset bounded byc, belief updating and mpe can be computed
in timeO(exp(|F |) · exp(c)) and in linear space.2

2.2. Trading space for time

Assume now that we have a problem whose join-tree has induced widthr and separator
size s but space restrictions do not allow the necessary O(exp(s)) memory required by
tree-clustering. One way to overcome this problem is to collapse cliques joined by large
separators into one big cluster. The resulting join-tree has larger subproblems but smaller
separators. This yields a sequence of tree-decomposition algorithms parameterized by the
sizes of their separators.

Definition 4 (Primary and secondary join-trees). Let T be a clique-tree embedding of
the moral graph ofG. Let s0, s1, . . . , sn be the sizes of the separators inT listed in
strictly descending order. With each separator sizesi , we associate a tree decompositionTi
generated by combining adjacent clusters whose separator sizes are strictly greater thansi .
T = T0 is called the primary join-tree, whileTi , wheni > 0, is a secondary join-tree. We
denote byri the largest cluster size inTi .

2 Another bound often used is O(n · exp(c+ 2)) where the “2” in the exponent comes from the fact that belief
updating on binary trees is linear in the size of the CPTs between pairs of variables which are at least O(k2)

wherek bounds the domains of the variables.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 101

Fig. 3. A tree-decomposition with separators equal to (a) 3, (b) 2, and (c) 1.

Note that assi decreases,ri increases. Clearly, from Theorem 1 it follows that

Theorem 3. Given a join-treeT over n variables, having separator sizess0, s1, . . . , st
and corresponding secondary join-trees having maximal clusters,r0, r1, . . . , rt , belief
updating and mpe can be computed using any one of the following time and space bounds
O(n ·exp(ri)) time, andO(n ·exp(si)) space(i ranges over all of the secondary join-trees),
respectively.

Proof. For eachi, a secondary treeTi is a structure underlying a possible execution of
directional join-tree clustering. From Theorem 1 it follows that the time complexity is
bounded exponentially by the corresponding clique size (e.g.,ri) and space complexity is
bounded exponentially by the corresponding separator size,si . 2
Example 2. If in our example we allow only separators of size 2, we get the join-tree
T1 in Fig. 3(b). This structure suggests that we can update beliefs and compute mpe in
time which is exponential in the largest cluster, 5, while using space exponential in 2. If
space considerations allow only singleton separators, we can use the secondary treeT2 in
Fig. 3(c). We conclude that the problem can be solved, either in O(k4) time (k being the
maximum domain size) and O(k3) space using the primary treeT0, or in O(k5) time and
O(k2) space usingT1, or in O(k7) time and O(k) space usingT2.

We know that finding the smallest induced width of a graph (or finding a join-tree having
smallest cliques) is NP-complete [2,35]. Nevertheless, many greedy ordering algorithms
provide useful upper bounds. We denote byw∗s the smallest induced width among all the
tree embeddings ofG whose separators are of sizes or less. Findingw∗s may be hard
as well, however. We can conclude that: Given a belief networkBN, for any s 6 n, if
O(exp(s)) space can be used, then belief updating and mpe can potentially be computed in
time O(exp(w∗s + 1)).

2.2.1. Using the cycle-cutset scheme within cliques
Finally, instead of executing a brute-force algorithm to compute the marginal distrib-

utions over the separators in each clique (see step 4 in Algorithm DTC), we can use the

102 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

loop-cutset scheme. Given a cliqueCp with a separator parent setSp , step 4 computes a
function defined over the separator, by

λp =
∑
up

j∏
i=1

λi,

whereUp = Cp−Sp . This seems to suggest that we have to enumerate explicitly all tuples
overCp . However, we observe that when computingλp for a particular value assignment
of the separatorxs , those assignments can be viewed as cycle-breaking values in the
graph. So, when the separator constitutes a loop-cutset, then for each tuplexp the sum
can be computed in linear time, either by propagation over the resulting polytree or by an
equivalent variable elimination procedure [10].

If the instantiated separator set does not cut all loops in the cluster we can add additional
nodes from the clique until we get a full loop-cutset. If the resulting loop-cutset (containing
the separator variables) has sizecs , the clique’s processing is time exponential incs only
and not in the full size of the clique.

In summary, given a join-tree decomposition, in every clique we can choose a loop-
cutset of cliqueCi that is a minimal subset of variables, which together with its parent
separator set constitute a loop-cutset of the subnetwork defined overCi . Note that the cutset
is defined relative to the original subgraph that is determined by the clique. We conclude:

Theorem 4. Letn be the number of variables in a belief network. Given a constants 6 n,
let Ts be a clique-tree whose separator size has sizes or less, and letc∗s be the maximum
size of a minimal cycle-cutset in any subgraph defined by the cliques inTs . Then belief
assessment and mpe can be computed in spaceO(n · exp(s)) and in timeO(n · exp(c∗s)),
wherec∗s > s, whilec∗s is smaller than the clique size.

Proof. Since computation in each clique is done by the cycle-cutset conditioning, time
is exponentially bounded byc∗s , the maximal cycle-cutset over all the cliques ofTs . The
space complexity remains exponential in the maximum separator sizes. Since for every
clique, the loop-cutset we select contains its parent separator, we clearly havec∗s > s. 2

Algorithm STC is presented in Fig. 4. We conclude with an example that demonstrates
the time-space tradeoff when using cycle-cutset in each clique.

Example 3. Considering the join-trees in Fig. 3, if we apply the cycle-cutset scheme
inside each subnetwork defined by each clique, we get no improvement in the bound
for T0 because the largest loop-cutset size in each cluster is 3 since it always exceeds
the largest separator. (Remember also that once a loop-cutset is instantiated, processing
the simplified network by propagation or by any efficient method is O(k2).) However,
when using the secondary treeT1, we can reduce the time bound from O(k5) to O(k4)

(while still using only O(exp(2)) space) because the cutset size of the largest subgraph
restricted to{G,D,E,F,H } is 2; in this case the separator{G,D} is already a loop-cutset
and, therefore, when applying algorithm cutset-conditioning to this subnetwork the overall
time complexity is now O(k4). When applying conditioning to the clusters inT2, we get

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 103

Algorithm space-based join-tree clustering (STC(s))

Input: A belief network(G,P), whereG is a DAG andP = {P1, . . . ,Pn}, a space parameters,
evidencee.
Output: The belief ofX1 given evidencee.
1. Generate a join-tree clustering ofG, and call itT0.
2. Generate the secondary join-tree by combining any two adjacent cliques whose separator is

strictly larger thans. Let C1, . . . ,Ct be the cliques in the resulting secondary join-tree. Place
eachPi and each observation in one clique that contains its arguments.

3. Impose directionality on the secondary join-tree. Letd = C1, . . . ,Ct be a breadth-first ordering
of the rooted clique-tree, letSp(i) andCp(i) be the parent separator and the parent clique ofCi ,
respectively.

4. Fori← t downto 1 do (Processing cliqueCi with cycle-cutset):
Find a subset of variablesIi ⊆ Ci s.t.Ii ∪ Sp(i) is a loop-cutset of the subgraph ofG restricted
to nodesCi .
Let λ1, λ2, . . . , λj be the functions in cliqueCi ,
• For any observationXj = xj in Ci assignxj to each function.
• For every assignment̄x of Sp(i) do,
λi(x̄)← 0.
For every assignment̄y of Ii do (Ui =Ci − Ii − Sp(i))
– Using the cycle-cutset scheme compute:

λ(x̄, ȳ)←∑
{ui |Sp(i)=x̄,Ii=ȳ}

∏j
m=1λm.

– λi(x̄)← λi(x̄)+ λ(x̄, ȳ).
Putλi in parent cliqueCp(i).

5. Return (processing root clique,C1),
Bel(x1)= α

∑
u1

∏
m λm,

α is a normalizing constant.

Fig. 4. Algorithm space-based join-tree clustering.

a time bound of O(k5) with just O(k) space because the loop-cutset of the subnetwork
over{B,C,D,G,E,F,H } has three nodes only,{B,G,E}. In summary, the dominating
tradeoffs (when considering only the exponents) are between an algorithm based onT1 that
requires O(k4) time and quadratic space and an algorithm based onT2 that requires O(k5)

time and O(k) space.

3. Constraint networks

Constraint networks have proven successful in modeling mundane cognitive tasks
such as vision, language comprehension, default reasoning, and abduction, as well as in
applications such as scheduling, design, diagnosis, and temporal and spatial reasoning. In
general, constraint satisfaction tasks are computationally intractable.

Definition 5 (Constraint network). A constraint networkconsists of a finite set of variables
X = {X1, . . . ,Xn}, each associated with a domain of discrete values,D1, . . . ,Dn, and a
set of constraints,{R1, . . . ,Rt }. A constraintCi has two parts: (1) the subset of variables

104 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Fig. 5. Primal (a) and dual (b) constraint graphs.

Si = {Xi1, . . . ,Xij(i) }, on which the constraint is defined, called itsscope, and (2) arelation,
reli , defined overSi : reli ⊆Di1 × · · · ×Dij(i) , whose tuples are all the compatible value
assignments. Theschemeof a constraint network is the set of scopes on which constraints
are defined. An assignment of a unique domain value to each member of some subset of
variables is called aninstantiation. A consistent instantiation ofall the variables that does
not violate any constraint is called asolution. Typical queries associated with constraint
networks are to determine whether a solution exists and to find one or all solutions.
A primal constraint graphrepresents variables by nodes and associates an arc with any two
nodes residing in the same constraint. Adual constraint graphrepresents each constraint
scope by a node and associates a labeled arc with any two nodes whose scopes share
variables. The arcs are labeled by the shared variables.

Fig. 5(a) and (b) present the primal and the dual graphs of a constraint problem
having the scheme{AB,BC,CD,BD,BG,DG.GDF,GH,DEF,EH,FH}. Tree-clustering
for constraint networks is similar to join-tree clustering for probabilistic networks. In fact,
the structuring part is identical. Once the join-tree structure is determined, each constraint
is placed in a clique (or a cluster) that contains its scope and then each clustered subproblem
can be solved independently.3 Thetime and space complexityof tree-clustering is governed
by the time and space required to generate the constraints (relations) of each clique in the
join-tree. This process is exponential in the clique’s size, and therefore in the problem’s
induced widthw∗ [9,14]. Since the graph in Fig. 5(a) is identical to the graph in Fig. 1(b),
it possesses the same clique-tree embeddings.

Refining the clustering method for constraint networks can be done just as we did for
probabilistic networks, thus tree-clustering in constraint networks obeys similar time and
space complexities. The directional version of join-tree clustering for finding a solution to
a set of constraints is given in Fig. 6. We can show:

Theorem 5 (Time-space complexity of tree-clustering, [14]).Given a constraint problem
overn variables whose constraint graph can be embedded in a clique-tree having induced
widthr and separator sizes, the time complexity of tree-clustering for deciding consistency
and for finding one solution isO(n · exp(r)) and its space complexity isO(n · exp(s)). The
time complexity for generating all solutions isO(n · exp(r)+ |solutions|), also requiring
O(n · exp(s)) memory.

3 By “solving” we mean listing the relation of all solutions.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 105

Algorithm directional tree-clustering for CSPs

Input: A set of constraintsR1, . . . ,Rl overX = {X1, . . . ,Xn}, having scopesS1, . . . , Sl , respec-
tively, and its primal constraint graphG.

Output: A solution to the constraint problem.
1. Generate a join-tree clustering ofG, identified by its cliquesC1, . . . ,Ct . Place eachRi in one

clique that contains its scope.
2. Impose directionality on the join-tree, namely create a rooted directed tree whose root is any

clique. Letd = C1, . . . ,Cl be a breadth-first ordering of the rooted clique-tree, letSp(i) and
Cp(i) be the parent separator and the parent clique ofCi , respectively.

3. Fromi← l downto 1 do
4. (Processing cliqueCi):

LetR1,R2, . . . ,Rj be the constraints in cliqueCi . LetUi be the set of variables in cliqueCi .
• Solve the subproblem inCi and call the set of solutionsρi . Project this set of solutions on the

parent separator. LetρSp(i) be the projected relation. Formally, (using the database projection

operator
∏

and join operator1) computeρSp(i)←
∏
Sp(i)

1j
k=1 Rk

PutρSp(i) in parent cliqueCp(i).
5. Return a solution generated in a backtrack-free manner going from the root clique towards the

leaves.

Fig. 6. Algorithm directional tree-clustering for constraints.

When the space required by clustering is beyond the available resources, tree-clustering
can be coerced to yield smaller separators and larger subproblems, as we have seen earlier
for processing belief networks. This leads to a conclusion similar to Theorem 3.

Theorem 6. Given a constraint network overn variables whose constraint graph
can be embedded in a primary clique-tree having separator sizess0, s1, . . . , sk , whose
corresponding maximal clique sizes in the secondary join-trees arer0, r1, . . . , rk , then
deciding consistency and finding a solution can be accomplished using any of the time
and space complexity boundsO(n · exp(ri)) andO(n · exp(si)), respectively.

Proof. Analogous to Theorem 3.2
Finally, similar to belief networks, any linear-space method can replace backtracking for

solving each of the subproblems defined by the cliques. One possibility is to use the cycle-
cutset scheme. The cycle-cutset method for constraint networks (like in belief networks)
enumerates the possible solutions to a set of cycle-cutset variables and, for each consistent
cutset assignment, solves the restricted tree-like problem in polynomial time. Thus, the
overall time complexity is bounded by O(n · kc+2), wherec is the cutset size,k is the
domain size, andn is the number of variables [8]. Therefore,

Theorem 7. LetG be a constraint graph overn variables and letT be a corresponding
join-tree with separator sizes or less. Letcs be the largest minimal cycle-cutset4 in any

4 As before, the cycle-cutset contains the separator set.

106 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

subproblem inT . Then the problem can be solved in spaceO(n · exp(s)) and in time
O(n · exp(cs + 2)), wherecs > s.

Example 4. Applying the cycle-cutset method to each subproblem inT0, T1, T2 (see
Fig. 3) yields the same time-space tradeoffs as for the belief network case.

A special case of Theorem 7, observed before in [13,17], occurs when the graph is
decomposed into non-separable components (i.e., when the separator size equals 1).

Corollary 1. If G has a decomposition to non-separable components such that the size of
the maximal cutsets in each component is bounded byc, then the problem can be solved in
O(n · exp(c)) time, using linear space.

4. Optimization tasks

Clustering and conditioning are applicable also to optimization tasks defined over
probabilistic and deterministic networks. An optimization task is defined relative to a
real-valued criterion or cost function associated with every instantiation. In the context
of constraint networks, the task is to find a consistent instantiation having optimal cost.
Applications include diagnosis and scheduling problems. In the context of probabilistic
networks, the criterion function denotes a utility or a value function, and the task is to
find an assignment to a subset of decision variables that maximize the expected criterion
function. Applications include planning and decision making under uncertainty. If the
criterion function is decomposable, its structure can be incorporated into the corresponding
graph to subsequently be exploited by either tree-clustering or cycle-cutset conditioning.

Definition 6 (Decomposable criterion function[3,25]). A criterion function over a setX
of n variables{X1, . . . ,Xn} having value domainsD1, . . . ,Dn is additively decomposable
relative to a schemeQ1, . . . ,Qt whereQi ⊆X iff

f (x)=
∑
i∈T

fi(xQi),

whereT = {1, . . . , t} is a set of indices denoting the subsets of variables{Qi} andx is
an instantiation of all the variables. The functionsfi are the components of the criterion
function and are specified, in general, by stored tables.

Definition 7 (Constraint optimization, augmented graph). Given a constraint network
over a set ofn variablesX = X1, . . . ,Xn and a set of constraintsC1, . . . ,Ct having
scopesS1, . . . , St , and given a criterion functionf decomposable into{f1, . . . , fl} over
Q1, . . . ,Ql , the constraint optimization problem is to find a consistent assignmentx =
(x1, . . . , xn) such that the criterion functionf =∑i fi , is maximized. Theaugmented
constraint graphcontains a node for each variable and an arc connecting any two variables
that appear either in the same scope of a constraint or in the same functional component of
the criterion function.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 107

Fig. 7. An augmented moral graph for the utility functionf (a, b, c, d, e,f,g,h) = a · g+ c2 + 5d · e · f .

Since constraint optimization can be performed in linear time when the augmented
constraint graph is a tree, both join-tree clustering and cutset conditioning can be extended
to non-tree structures [32] in the usual manner. We can conclude:

Theorem 8 (Time-space of constraint optimization [32]).Given a constraint optimization
problem overn variables whose augmented constraint graph has a cycle-cutset of sizec,
and whose augmented graph can be embedded in a clique-tree having tree-widthr and
separator sizes, the time complexity of finding an optimal consistent solution using tree-
clustering isO(n ·exp(r)) and the space complexityO(n ·exp(s)). The time complexity for
finding a consistent optimal solution using the cycle-cutset conditioning isO(n · exp(c))
while its space complexity is linear.

In a similar manner, the structure of the criterion function can augment the moral graph
when computing the maximum expected utility (MEU) of some decisions in a general
influence diagram [20]. For more details see [12].

Once we have established the graph that guides tree-clustering and conditioning, the
same principle of trading space for time becomes applicable and will yield a collection of
parameterized algorithms governed by the primary and secondary clique-trees and cycle-
cutsets of the augmented graphs as we have seen before. For completeness sake we restate
the full theorem:

Theorem 9. Given a constraint network overn variables and given an additively
decomposable criterion functionf , if the augmented constraint graph relative to the
criterion function can be embedded in a clique-tree having separator sizess0, s1, . . . , sk ,
and corresponding maximal clique sizesr0, r1, . . . , rk and corresponding maximal cycle-
cutset sizesc0, c1, . . . , ck , then finding an optimal solution can be accomplished using any
one of the following bounds on the time and space: If a brute-force approach is used for
processing each subproblem the bounds areO(n · exp(ri)) time andO(n · exp(si)) space.
If cycle-cutset conditioning is used for each cluster, the bounds areO(n ·exp(ci)) time and
O(n · exp(si)) space, whereci > si .

Example 5. Consider the following criterion function defined over the constraint network
in Fig. 5(a)

u(a, b, c, d, e, f, g,h)= a · g+ c2+ 5d · e · f.

108 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Table 1
ISCAS’85 benchmark circuit characteristics

Circuit Circuit Total Input Output
name function gates lines lines

C17 6 5 2

C432 Priority decoder 160 (18 EXOR) 36 7

C499 ECAT 202 (104 EXOR) 41 32

C880 ALU and control 383 60 26

C1355 ECAT 546 41 32

C1908 ECAT 880 33 25

C2670 ALU and control 1193 233 140

C3540 ALU and control 1669 50 22

C5315 ALU and selector 2307 178 123

C6288 16-bit multiplier 2406 32 32

C7552 ALU and control 3512 207 108

Here the augmented graph will have one additional arc connecting nodesA andG (see
Fig. 7(a)), resulting in a primary clique-tree embedding in Fig. 7(b) that differs from the
tree in Fig. 3(a). As a result one has to consider the cliqueABG instead of the original
cliqueAB. Thus, applying join-tree clustering to the primary tree yields time complexity
O(exp(4)) and space complexity O(k3). If only binary functions can be recorded, we will
need to combine clique(GDEF) with (GEFH) yielding a clique of size 5. Using cycle-
cutset conditioning, this results in time complexity of O(k4) as well, while using only
O(k2) space. If this space requirement is too heavy, we need to solve the whole problem
as one cluster using cycle-cutset conditioning which, in this case, requires O(k5) time and
linear space.

5. Empirical framework and results

The motivation for the experiments is twofold. One, to analyze the structural parameters
of tree-clustering and the cycle-cutset on real-life instances. Two, to gain further
understanding of how time-space tradeoff can be exploited to alleviate space bottlenecks.
We analyzed empirically benchmark combinatorial circuits, widely used in the fault
diagnosis and testing community [6] (see Table 1). The experiments allow us to assess in
advance the complexity of diagnosis and abduction tasks on those circuits, and to determine
the appropriate combination of tree-clustering and cycle-cutset methods to perform those
tasks for each instance. None of the circuits are trees and they all have considerable node
fanout as shown in the schematic diagram of circuit C432 in Fig. 8.

A directed acyclic graph (DAG) is computed for each circuit. The graph includes a node
for each variable in the circuit. For every gate in the circuit, the graph has an edge directed
from each gate’s input to the gate’s output. The nodes with no parents (children) in the

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 109

Fig. 8. Schematic of circuit C432: 36 inputs, 7 outputs, and 160 components.

Table 2
Number of nodes and edges for the primal graphs of the circuits

Circuit C17 C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

#nodes 11 196 243 443 587 913 1426 1719 2485 2448 3719

#edges 18 660 692 1140 1660 2507 3226 4787 7320 7184 9572

DAG are the primary inputs (outputs) of the circuit. The primal graph for each circuit is
then computed as the moral graph for the corresponding DAG. Table 2 gives the number
of nodes and edges of the primal graph for each circuit.

Tree-clustering is performed on the primal graphs as usual: by selecting an ordering for
the nodes, then triangulating the graph and identifying its maximum cliques. There are
many possible heuristics for ordering the nodes with the aim of obtaining a join-tree with
small cliques.

110 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Fig. 9. Primary join-tree (157 cliques) for circuit C432 (196 variables); the maximum separator size is 23.

Four ordering heuristics were considered:
(1) maximum-cardinality ordering,
(2) minimum-width ordering,
(3) minimum-degree ordering, and
(4) causal ordering.

The max-cardinality ordering is generated from first to last by picking the first node
arbitrarily and then repeatedly selecting the unordered node that is adjacent to the
maximum number of already ordered nodes. The min-width ordering is computed from last
to first by repeatedly selecting the node having the least number of neighbors in the graph,
removing the node and its incident edges from the graph, and continuing until the graph
is empty. The min-degree ordering [5] is exactly like min-width except that we connect
neighbors of selected nodes, and the causal ordering is just a topological sort of the directed
graph for the circuit.

The structural portion of tree-clustering was implemented using each of the four
orderings on each of the benchmark circuits of Table 1 and we observed that the min-
degree ordering was by far the best, yielding the smallest cliques sizes and separators.
Our evaluation of the performance of the orderings is consistent with the results in [23].
Therefore, we report here the results only relative to themin-degree ordering. For results
on the other orderings see [12].

5.1. Results: Primary join-trees

For each primary join-tree generated, three parameters are computed:
(1) the size of cliques,
(2) the size of cycle-cutsets in each of the subgraphs defined by the cliques, and
(3) the size of the separator sets.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 111

Fig. 10. Part of the primary join-tree (1419 cliques) for circuit C3540 (1719 variables) showing the descendants
of the root node down to the leaves; the maximum separator size is 89.

The nodes of the join-tree are labeled by the cliques (or clusters) sizes. In this section
we present the results on two circuits C432 and C3540, having 196 and 1719 variables,
respectively. Results on other circuits are summarized in [12].

Figs. 9 and 10 present information on the primary join-trees. Fig. 9 shows that the clique
sizes range from 2 to 28. The root node has 28 nodes and the descendant nodes have
strictly smaller sizes. The depth of the tree is 11 and all nodes whose distance from the
root is greater than 6 have sizes strictly less than 10. The leaves have sizes ranging from 2
to 6. The corresponding numbers for the primary join-tree of the larger circuit C3540 are
shown in Fig. 10.

Figs. 11 and 12 provide additional details, showing the frequencies of cliques sizes,
separator sizes, and cutset sizes for both circuits. These figures (and all the corresponding
figures in [12]) show that the structural parameters are skewed with the vast majority of the
parameters having values below the midpoint (the point dividing the range of values from
smallest to largest).

112 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Fig. 11. Histograms of the clique sizes, the separator sizes, and the cutset sizes of the primary join-tree for circuit
C432 (196 variables).

Fig. 12. Histograms of the clique sizes (0.9th quantile range), the separator sizes (0.9th quantile range), and the
cutset sizes of the primary join-tree for circuit C3540 (1719 variables).

We see in Fig. 11 that the number of cliques is 157 and that the clique sizes range from
2 to 28. The mode is 5, the median is 6 and the mean is 7.433. Forty cliques out of the total
157 have size 5, and only 23 out of 157 have size greater than 9. The separator sizes are
in the range from 1 to 23. The mode is 4, the median is 5, and the mean is 6.224. Out of
the total 156 separator sizes, 40 have size 4 and only 13 have sizes greater than 10. The
cutset sizes are in the range from 0 to 17. The mode is 1, the median is 1, and the mean
is 1.923. Out of 157 cliques, 23 have cutset size 0. This means that the projection of the
primal graph on each of those 23 cliques is already acyclic.

The corresponding figures for C3540 can be read from Fig. 12, showing the 0.9th
quantile distribution of the separator sizes. Like the cliques, 90% of the separator sizes
are small (between 1 and 13) and the remaining 10% span a broad range of values (from
14 to 89). For the cutset sizes, we note that 318 cutsets out of the total 1419 have size 0,
namely the projection on each of those 318 cliques is already acyclic. We also note that 753
out of 1419 cliques have singleton cutsets. Only 47 out of 1419 cutsets have sizes greater
than 5.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 113

Fig. 13. Time-space tradeoff for C432 (196 variables), C499 (243 variables), C880 (443 variables), C1355
(587 variables), C1908 (913 variables), and C2670 (1426 variables). Time is measured by the maximum of the
separator size and the cutset size, and space by the maximum separator size.

5.2. Results: Hybrid clustering+ conditioning

As we see, some cliques and separators require memory space exponential in 23 for
circuit C432 and exponential in 89 for circuit C3540. This is clearly not feasible. We will
next evaluate the potential of the tradeoff scheme proposed in this paper.

Let s0, c0 be the maximum cutset and separator sizes of the primary join-treeT0
obtained by tree-clustering. Lets0, s1, . . . , sn be the sizes of the separators inT0 listed
from largest to smallest. As explained earlier, with each separator size,si , we associate a
tree decompositionTi generated by combining adjacent clusters whose separators’ sizes
are strictly larger thansi . We denote byci the largest cutset size in any cluster ofTi .

We estimate the time-space bounds for each circuit based on the graph parameters
observed using our tree decomposition scheme. Fig. 13 gives a chart presenting bounds
for time versus space for each circuit. Each point in the chart corresponds to a specific
secondary join-tree decompositionTi and has the space complexity measured by the
separator size,si , and the time complexity by the cutset size.

Each chart in Fig. 13 can be used to select the algorithm from the spectrum of
conditioning+ clustering algorithms that best meets a given time-space specification.
They show the gradual effect of lowering space on the time required by a corresponding

114 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Fig. 14. Secondary trees for C432 with separator sizes 16 and 11.

clustering+conditioning algorithm. For example, circuit C432 (Fig. 13) shows the
separator size (space) which is initially 23 (for the primary join-tree) gradually reduced
down to 1 in a series of secondary trees. The figure demonstrates that reducing the separator
size (to meet the space restrictions) increases the worst-case time complexity of the hybrid
algorithm. The time increases because of the large clusters contained in the secondary
join-tree and the corresponding increase in the size of cutsets.

Note that the charts in Fig. 13 all display a “knee” phenomenon in the time-space
tradeoff where time increases only slightly for a wide range of space reduction beyond
which further reduction in space causes significant rise in the time bound.

Figs. 14 and 15 display the structure of secondary join-trees for C432. The primary join-
tree for the circuit is shown in Fig. 9. The secondary trees are indexed by the separator

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 115

Fig. 15. Secondary trees for C432 with separator sizes 7 and 3.

sizes of the primary tree which range from 1 to 23 (Fig. 11). As the separator decreases
the maximum clique size increases, and both the size and the depth of the tree decrease.
Like the primary join-tree, each secondary join-tree also has a skewed distribution of the
clique sizes. Note that the clique size for the root node is significantly larger than for all
other nodes, and is increasing as the separator decreases.

6. Related work

The cycle-cutset scheme for probabilistic inference was introduced by Pearl [29] and for
constraint networks by Dechter [8]. It was further improved and extended for probabilistic
reasoning by Peot and Shachter [30], Darwiche [7], and Diez [15].

In subsequent years the cycle-cutset scheme was recognized as a special case of
conditioning, namely, value assignments to a subset of variables creates subproblems that
can be solved by any means. While the cycle-cutset scheme requires that the conditioning
set will be large enough so that the resulting subproblem is singly-connected, any size
of conditioning set can be used, yielding simplified problems that can be solved by tree-
clustering or by any other method. This idea of extending the combination of conditioning
and tree-clustering beyond the cycle-cutset scheme appears in [21] for constraint networks
and in [19,31] for probabilistic networks. In [21] various heuristic are presented, aiming
at creating a hybrid algorithm having improved time performance. In [31], the issue of
reducing the space of tree-clustering by combination with conditioning is also briefly
addressed. The latter paper includes an alternative proof to the (worst-case) time superiority
of tree-clustering over the cycle-cutset method. In [19] the idea is applied to the Pathfinder
system, when the conditioning set is restricted to the set of diseases.

116 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

Finally, in [33,34] a scheme for combining conditioning and variable elimination for
propositional theories is outlined and analyzed. It is shown that although the worst-
case time guarantee of a hybrid cannot be superior to tree-clustering (nor to a variable
elimination scheme), for some problem classes a hybrid algorithm can have a better time
performance than both pure clustering and pure search. The work in this paper provides an
alternative hybrid scheme between conditioning and variable elimination.

7. Summary and conclusions

Problem solving methods can be viewed as hybrids of two main principles: inference and
search. Tree-clustering is an example of an inference algorithm, while the cycle-cutset is
an example of a search method. Tree-clustering algorithms are time and space exponential
in the size of their cliques, while search algorithms are time exponential in the number
of variables but require only linear memory. In this paper we developed a structure-based
hybrid scheme that uses tree-clustering and cycle-cutset conditioning as its two extremes
and, using a single design parameter, permits the user to control and tailor the storage-time
tradeoff in accordance with the problem domain and the available resources

Specifically, we have shown that constraint processing and belief network processing
obey a structure-based time-space tradeoff that allows tailoring a hybrid of tree-clustering
and cycle-cutset conditioning to certain time and space requirements. The same tradeoff
is obeyed by optimization problems when augmenting the graph by arcs reflecting the
structure of the criterion function. Our analysis presents a spectrum of algorithms that
allows a rich time-space performance balance applicable across a variety of tasks.

The structural parameters of interest are:
(1) the size of cliques in a join-tree, namely, the induced width or tree-width,
(2) the size of cycle-cutsets in each of the subgraphs defined by the cliques, and
(3) the size of the separator sets.
To demonstrate the applicability of our scheme to real-life domains, we studied the

structural parameters of 11 benchmark circuits widely used in the fault diagnosis and
testing community [6]. We observed that the join-trees of the circuits all shared the
unexpected property that few cliques are distinctly large and the majority of clique sizes
are relatively small. Also, the distributions of all the structural parameters are skewed. This
observation has an important practical implication. Although the primary join-tree obtained
by tree-clustering may require too much space, a major portion of the tree can be solved
without any space problem.

Our analysis should be qualified, however. All the results present worst-case guarantees
of the corresponding algorithm. It is still not clear that the bounds are tight nor that they
correlate with average-case performance. This analysis should be extended in the future to
include implementation and testing of the involved algorithms.

References

[1] S. Arnborg, A. Proskourowski, Linear time algorithms for NP-hard problems restricted to partialk-trees,
Discrete Appl. Math. 23 (1989) 11–24.

R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118 117

[2] S.A. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability—
A survey, BIT 25 (1985) 2–23.

[3] F. Bacchus, P. van Run, Dynamic variable ordering in CSPS, in: Principles and Practice of Constraints
Programming (CP’95), Cassis, France, Lecture Notes in Comput. Sci., Vol. 976, Springer, Berlin, 1995,
pp. 258–277.

[4] A. Becker, D. Geiger, A sufficiently fast algorithm for finding close to optimal junction trees, in: Proc.
Uncertainty in AI (UAI-96), Portland, OR, 1996, pp. 81–89.

[5] U. Bertele, F. Brioschi, Nonserial Dynamic Programming, Academic Press, New York, 1972.
[6] F. Brglez, H. Fujiwara, A neutral netlist of 10 combinatorial benchmark circuits and a target translator in

Fortran, in: Proc. IEEE International Symposium on Circuits and Systems, 1996.
[7] A. Darwiche, Conditioning algorithms for exact and approximate inference in causal networks, in: Proc.

Uncertainty in Artificial Intelligence (UAI-95), Montreal, Quebec, 1995, pp. 99–107.
[8] R. Dechter, Enhancement schemes for constraint processing: Backjumping, learning and cutset decomposi-

tion, Artificial Intelligence 41 (1990) 273–312.
[9] R. Dechter, Constraints networks, in: Encyclopedia of Artificial Intelligence, 2nd edn., 1992, pp. 276–285.

[10] R. Dechter, Bucket elimination: A unifying framework for probabilistic inference algorithms, in: Proc.
Uncertainty in Artificial Intelligence (UAI-96), Portland, OR, 1996, pp. 211–219.

[11] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence 113 (1999)
41–85.

[12] R. Dechter, Y. El Fattah, Topological parameters for time-space tradeoff, Technical Report, Information and
Computer Science, University of California, Irvine, CA, 1999.

[13] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelligence 34
(1987) 1–38.

[14] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989) 353–366.
[15] F.J. Diez, Local conditioning in Bayesian networks, Artificial Intelligence 87 (1996) 1–20.
[16] Y. El Fattah, R. Dechter, Diagnosing tree-decomposable circuits, in: Proc. IJCAI-95, Montreal, Quebec,

1995, pp. 1742–1748.
[17] E.C. Freuder, A sufficient condition for backtrack-free search, J. ACM 29 (1) (1982) 24–32.
[18] H. Geffner, J. Pearl, An improved constraint propagation algorithm for diagnosis, in: Proc. IJCAI-87, Milan,

Italy, 1987, pp. 1105–1111.
[19] G.F. Cooper, H.J. Suermondt, D.E. Heckerman, A combination of cutset conditioning with clique-tree

propagation in the path-finder system, in: Proc. Uncertainty in Artificial Intelligence (UAI-91), Los Angeles,
CA, 1991, pp. 245–253.

[20] R.A. Howard, J.E. Matheson, Influence diagrams, in: R.A. Howard, J.E. Matheson (Eds.), The Principles
and Applications of Decision Analysis, Vol. 2, Strategic Decision Group, Menlo Park, CA, 1984.

[21] P. Jegou, Cyclic clustering: A compromise between tree-clustering and the cycle-cutset method for
improving search efficiency, in: Proc. European Conference on AI (ECAI-90), Stockholm, Sweden, 1990,
pp. 369–371.

[22] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic networks by local
computation, Computational Statistics Quarterly 4 (1990) 269–282.

[23] U. Kjærulff, Triangulation of graphs—Algorithms giving small total state space, Technical Report 90-09,
Department of Mathematics and Computer Science, Aalborg University, Denmark, 1990.

[24] U. Kjærulff, Nested junction trees, in: Proc. Uncertainty in Artificial Intelligence (UAI-97), Providence, RI,
1997, pp. 294–301.

[25] D.H. Krantz, R.D. Luce, P. Suppes, A. Tversky, Foundations of Measurements, Academic Press, New York,
1976.

[26] S.L. Lauritzen, D.J. Spiegelhalter, Local computation with probabilities on graphical structures and their
application to expert systems, J. Roy. Statist. Soc. B 50 (2) (1988) 157–224.

[27] A.K. Mackworth, E.C. Freuder, The complexity of some polynomial network consistency algorithms for
constraint satisfaction problems, Artificial Intelligence 25 (1985) 65–74.

[28] J. Pearl, Fusion propagation and structuring in belief networks, Artificial Intelligence 19 (3) (1986) 241–248.
[29] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA, 1988.
[30] M.A. Peot, R.D. Shachter, Fusion and propagation with multiple observations in belief networks, Artificial

Intelligence 48 (1991) 299–318.

118 R. Dechter, Y. El Fattah / Artificial Intelligence 125 (2001) 93–118

[31] S.K. Anderson, R.D. Shachter, P. Solovitz, Global conditioning for probabilistic inference in belief
networks, in: Proc. Uncertainty in Artificial Intelligence (UAI-94), Seattle, WA, 1994, pp. 514–522.

[32] A. Dechter, R. Dechter, J. Pearl, Optimization in constraint networks, in: Influence Diagrams, Belief Nets
and Decision Analysis, Wiley, New York, 1990, pp. 411–425.

[33] I. Rish, R. Dechter, To guess or to think? Hybrid algorithms for SAT, in: Proc. Principles of Constraint
Programming (CP-96), 1996, pp. 555–556.

[34] I. Rish, R. Dechter, Resolution vs. SAT: Two approaches to SAT, J. Approx. Reason. (Special Issue on
SAT) 24 (2000) 225–275.

[35] D.G. Corneil, S.A. Arnborg, A. Proskourowski, Complexity of finding embeddings in ak-tree, SIAM J.
Discrete Math. 8 (1987) 277–284.

[36] T. Schmidt, P.P. Shenoy, Some improvements to the Shenoy-Shafer and Hugin architectures for computing
marginals, Artificial Intelligence 102 (1998) 323–333.

[37] G. Shafer, Probabilistic Expert Systems, SIAM, Philadelphia, PA, 1996.
[38] G.R. Shafer, P.P. Shenoy, Probability propagation, Ann. Math. Artificial Intelligence 2 (1990) 327–352.
[39] K. Shoiket, D. Geiger, A practical algorithm for finding optimal triangulations, in: Proc. AAAI-97,

Providence, RI, 1997, pp. 185–190.
[40] S. Srinivas, A probabilistic approach to hierarchical model-based diagnosis, in: Working Notes of the Fifth

International Workshop on Principles of Diagnosis, New Paltz, NY, 1994, pp. 305–311.

