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1 Probability Spaces

When one performs an experiment, there is a set of possible outcomes. We will call this set
the sample space and will denote it by §. A given experiment can have a variety of different
sample spaces associated with it, so it is important to define the sample space one has in mind. For
example, consider the experiment of rolling a red die and a blue die. One can choose the sample
space to be the set of outcomes which denote the number on each dice:

{(4,7) |1 < <6,1 <j <6, where ¢, j are integers }.
Here the ¢ represents the number on the red die and the j represents the number on the blue die.

The fact that we are using parentheses instead of curly braces {} to denote the pairs indicates
that the order of the number matters. This means that (1,2) is different from (2,1). This results
from the fact that the dice have different colors and we can determine which die shows which value.

An alternative sample space for this experiment is the set of possible values for the sum of the
values of the dice:
{1|2<0 <12}

An event is a subset of the sample space. Fach individual point in the sample space is called an
elementary event. Consider the sample space {(i,7) | 1 < ¢ < 6,1 < j <6, where ¢, are integers
An example for an event in this sample space is

A=1{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6) }.

*The last section on variance was written by Pierre Baldi and the section on Bayes Inversion rule was written by
Rina Dechter.




Sometimes an event is defined by an occurrence. For example, we might say that A is the event
that the red die is a three. What is really meant by this is that A denotes the set of all outcomes
where the red die is a three.

The probability (or likelihood) that is assigned to each elementary event is called the distri-
bution over the sample space. The probability of each elementary event is a real number in the
interval from 0 to 1 (inclusive). Also, the sum of the probabilities of all of the elementary events is
1. For the first few examples, we will consider sample spaces where each outcome is equally likely
to occur. In this case, we say that there is a uniform distribution over the sample space. In cases
where some elementary events are more likely than others, there is a non-uniform distribution
over the sample space.

Note that if the dice are not weighted, there is a uniform distribution over the first sample space
but not for the second. For the second sample space, it is more likely that the sum of the values on
the dice is 7 than 2 since there are several combinations of dice throws that sum to 7 and only one
that sums to 2.

1.1 Sample Spaces with Uniform Distributions

For a given event, we will be interested in the probability that the event occurs.

Fact 1 Let S be a sample space and let A be an event in the sample space (i.e. A CS). If S has
the property that each elementary event is equally likely, then

_ Al

ProblA] = 5k

Thus, in the example above where

A= {(37 1)7 (37 2)7 (37 3)7 (37 4)7 (37 5)7 (37 6)}7

we have that A 6 |
ProblAl = — = — = —.
roblAl =151 = 3% = 6

Let’s look at some more examples in the same sample space
Example 2
Experiment: rolling a red and a blue die

Sample Space: & = {(7,7) | 1 <1 <6,1 <j <6, where i, 7 are integer s }, where the ¢ represents
the number on the red die and the j represents the number on the blue die.



Event: B is the event that the sum of the values on the two dice is three. B = {(1,2),(2,1)}, and

B 2 1

Example 3

Same experiment and sample space from Example 2. (' is the event that either the red die or the

blue die has a 3.

In order to determine |C|, we will define C' as the union of the following two sets:

D = the red die has a 3
FE = the blue die has a 3

Note that ¢ = D U E. As we have argued earlier, |D| = |E| = 6. Now we observe that
|IC| = |DUE|=|D|+ |FE|—|DnN E|. The reason for this equality can be observed in the Venn

diagram picture below.

If we sum the sizes of D and E, we have almost got the size of D U E, except that we have
counted the elements in the intersection twice. In order to get |DU F|, we must subtract off |[DN E].

D N E = the red die and the blue die have a 3 = {(3,3)}.

Thus, we know that |DNFE| = 1 which gives that |C| = |DUE| = |D|+|E|—|DNE|=64+6—1 = 11.

We are now ready to determine the probability of event C"

C 11
Prob[C] = % =35

Example 4



Experiment: dealing a hand of five cards from a perfectly shuffled deck of 52 playing cards

Sample Space: the set of all possible five card hands from a deck of playing cards. Since the deck
is perfectly shuffled, we can assume that each hand of five cards is equally likely.

(7 is the event that the hand is a full house.

Recall that a full house is three of a kind and a pair. We know that

si= (7).
- (3f)

The latter equality comes from the fact that there are thirteen ways to pick the face/number for
the three of a kind and there are twelve remaining choices for the face/number of the pair. Once
the faces/names have been chosen, there are (g) ways to pick the three of a kind and (;1) ways to
pick the pair. Thus, we have that

and that

G _ 1312 () () _ st
S|~ (52) ~ 2598960

5

~ .00144

Prob[G] =

Example 5

Experiment: tossing a fair coin three times.

Sample Space: the set of all possible sequences of outcomes from the three tosses.
S={HHH HHT HTH HTT, THH, THT,TTH,TTT}.
Since the coin is a fair coin, we can assume that each sequence is equally likely.

(7 is the event that the number of heads is two.

The number of elements in G is the number of ways to choose the two tosses which result in heads.

Thus, |G| = (3) and

2/

al () 3
Prob[G]:%:(Si)—g.

Let’s try another event in the same sample space. H is the event that the number of heads is
at least one. In this case, it is easier to determine H and use the fact that |H| 4 |H| = |S|. (You
should verify for yourselves that this follows from the formula that we derived above for the size of
union of two sets and the facts that |[H N H|=0and HU H = S.)
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The event H denotes all those sequences of three coin tosses where the number of heads is less
than 1 (i.e. the number of heads is 0). Thus, H ={TTT}, and |H| = 1.
Using our fact above, we have that |H| =|S|— |H| =8 -1 =7, so

H| 7
ProblH] = % =3

1.2 Sample Spaces with Non-uniform Distributions

We now turn to an example of a sample space with a non-uniform distribution. When the distribu-
tion is non-uniform, it is important to specify exactly what is the probability of each point in the
sample space. This is called the distribution over the sample space. That is for each elementary
event, x € S, we must specify Prob[x]. These probabilities are always real numbers in the interval
from 0 to 1 (inclusive) and must always sum to 1:

> Problz] = 1.

zeS

Example 6

Experiment: rolling two dice
Sample Space: the set of all possible sums of the values of each die.
S=Hi|2<1< 12,0 0s an integer}.

If the dice are fair dice, then the probabilities are as follows:

Prob[5] =1  Probl9] = :
Prob2] = o= Prob[6] = == Prob[10] = &
Prob[3] = & Prob[7] =+ Prob[l1] = -
Prob[4] = 5 Prob[8] = = Prob[12] = &

Now consider the event [ which denotes the set of outcomes in which the sum is even.
I = {2,4,6,8,10,12}. In order to determine the probability of the event I, we sum up
the probabilities of all the elementary events in [:

11 5 5 1 1 1
Prob[I] =S Probla] = — 4 — + >4+ 2 4 L1 2
robll) ;m[x] T2ttt 3T 2

In general we have the following fact:

Fact 7 Let S be a sample space and let A be an event in the sample space (i.e. AC S), then
Prob[A] = Y Prob|z].

z€A



Note that this more general fact is completely consistent with Fact 1 which covers the case
where the distribution over the sample space is uniform. In the uniform case, every single
element in the sample space has a probability of ﬁ If we plug these probabilities into our
new definition we get that

Prob[A] = Y Problz] = > |é—| = |A]|- |é—| = %

€A z€A

In the next example, we will use the following fact:

Fact 8 Let S be a sample space and let A and B be events in the sample space (i.e. A C S
and B C S), then

Prob[A U B] = Prob[A] + Prob|B] — Prob[AN B].

This fact is the same as saying:

>~ Problz] = > Problz] + > Problz] — > Probz]

rz€AUB z€A zeEB rz€EANB

In summing the probabilities of the elements in A and the probabilities of the elements in B,
we are counting the probability of each element in AN B twice and must subtract it off to get
the sum of the probabilities in A U B. Note that this is very similar to the argument we used
in determining the size of AU B.

Example 9

Consider the experiment and sample space from Example 6. Let J be the event that the sum
of the numbers is prime or less than six.

We will define J as the union of two sets:

K = outcomes which are prime = {2,3,5,7,11}
L = outcomes which are less than 6 = {2,3,4,5}
KnL=1{235)

We have that L1 1 15
Prob[K] Proble] = — + — 4 — =
robl) ; " 36+18+9+6+18 36

1115
" ;m 36+18+12+9 18

117
ProblL N K] Problz 4=l
roblL N K} x%B " 36+18+9 36



Since J = KU L,

ProblJ] = Prob[K UL]= Prob[K]|+ Prob[L] — Prob[L N K]
15 5 7 1

36 1836 2
You can verify this by determining the set J directly and summing the probabilities.

For the next example, we will use the following fact:

Fact 10 Let S be a sample space and let A be an event in the sample space (i.e. A C S), then

Prob[A] + Prob[A] = 1.

You can verify this fact using the following three facts which have already been established:

Prob[AU A] = Prob[A] + Prob[A] — Prob[A N A]
AUA = S
AnA =0

Example 11

Consider the experiment and sample space from Example 6. The event K is the event that the sum
of the dice is greater than two. This means that A is the event that the sum of the dice is at most
two which implies that A = {2}. Prob[K] = Prob[2] = &. Using Fact 10, we have that

- 1
Prob|K] =1— Prob|K]=1—— = %
36 36

2 Conditional Probability

Sometimes when we are determining the probability that an event occurs, knowing that another
event has occurred gives us some information about whether the first event is more or less likely to
occur.

Suppose, for example, that I am determining the probability that attendance is greater than
90% for a randomly chosen lecture in this class. Suppose I tell you that the randomly chosen lecture
falls on a Friday, would that change the probability that attendance is greater than 90%? What if
I tell you that the lecture falls on a Monday?



Alternatively, suppose that I am dealing you a five card hand from a deck of cards. Suppose we
are trying to determine the probability that the fourth card you are dealt is an ace. If T tell you
that there were two aces in the first three cards dealt, then it is less likely that the fourth card will
be an ace since there are fewer aces in the deck.

In order to quantify this idea, we need the notion of conditional probability. Suppose we
have a sample space S and two events A and B. The probability of A given B (also called
the probability of event A conditional on event B), denoted Prob[A | B], is the probability that A

occurs if B occurs. The formula for the probability is:

Prob[AN B]

ProblA | B] = ProbB]

This is probably best viewed using the Venn Diagram shown below. If I tell you that event B will
definitely occur, then we are limiting our view to the portion of the sample space defined by B.
That is, we are now defining B to be our new sample space. We need to divide by Prob[B] in order
to re-normalize so that the sum of the probabilities for the events in our new sample space sum to

1.

Once we have done this, we are interested in the probability of A, limited to the portion of the

sample space defined by B. This is just Prob[A N BJ.

Let’s look at an example. There are thirty lectures in this course. There are ten that fall on a
Friday. Of those nine have attendance 90% or greater and one has attendance less than 90%. There
are ten that fall on a Wednesday. Of those five have attendance greater than 90%. There are ten
that fall on a Monday. Of those, two have attendance greater than 90%. The sample space looks
as follows:

Prob{(M, attendance > 90%)] =
Prob{(M, attendance <= 90%)] = -
Prob{(WV, attendance > 90%)] = -
Prob{(WV, attendance <= 90%)] = -



Prob[(F, attendance > 90%)] = —

Prob[(F, attendance <=90%)] = —

Let A be the event that a randomly chosen lecture has attendance > 90%. Let B be the event
that a randomly chosen lecture falls on a Friday. Let ' be the probability that a randomly chosen
lecture falls on a Monday.

A = {(M, attendance > 90%), (W, attendance > 90%), (F, attendance > 90%)}.

The probability of A is Prob[A] = 2/30 + 5/30 4+ 9/30 = 16/30. What is the probability of A

given B? To determine this, we will need to know:
Prob[AN B] = Prob[(F, attendance > 90%)] = 9/30.
We will also need to know:

Prob[B] = Prob|[(F, attendance > 90%), (F, attendance <= 90%)]
9 1 1

=30 30 3
The probability that a randomly chosen lecture has attendance greater than 90% given that the
lecture falls on a Friday is:

ProblANB]  9/30 9
Prob|A | B] = _ _ 9
roblA | B] Prob[B] 1/3 ~ 10

What about if the lecture falls on a Monday? We will need to know
Prob[A N C| = Prob[(M, attendance > 90%)] = 2/30.

We will also need to know:

2 8 1

30 7303
The probability that a randomly chosen lecture has attendance greater than 90% given that the

Prob[C] = Prob[(M, attendance > 90%), (M, attendance <=90%)] =

lecture falls on a Monday is:

_ Prob[AnC]  2/30 1
ProblA[C = —p ieT = /3 5

Let’s look at another example: Suppose you are dealt a hand of five cards. The sample space
will be the set of all possible five card hands. Let A be the event that the hand has only clubs and
spades. If we look at the probability of A, it is just:

Prob[A] = E;g ~ .0253.
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Now consider the event B that there are no hearts in the hand. If I tell you that event B has
occurred, how will we revise our determination of the probability of A7 In other words, what is the
probability of A conditional on the event B?

Prob[A| B = & ’;iﬁ[gf l_ Ej% ~ 114,

Now let the event A be the event that there are exactly two aces in the hand. Let the event B
be the event that there are exactly two kings. What is the probability of A?

ProblA] = (2) (3)

(3)

~ .040.

What is the probability of A given B?

Tro ;1 ;1 44
ProbjA| B =L Piﬁ[;f] - ((2)((28) ~ .015.

2 3

3 Independent Events

An important special case of conditional probabilities is when the information about whether event
B has occurred gives you no information about whether A has occurred. This happens when the
probability of A given B is the same as the probability of A. In this case, we say that the two
events are independent.

Prob[AN B]

ProblA | B] = Prob D]

= Prob[A].

This means that Prob[A N B] = Prob[A] - Prob[B] which also implies that

Prob[B N A

Prob|B | A] = ProbA]

= Prob|B].

For example, suppose I toss a fair coin twice. If the first coin turns up heads, then it is still
the case, that the probability that the next coin turns up heads is 1/2. This is why we can use
the reasoning that the probability that both tosses come up heads is (1/2) - (1/2) = 1/4. We can
multiply the probability that the first toss comes up heads by the probability that the next toss
comes up heads to get the probability that they both come up heads.

Note that this does not work if the two events are not independent. If we look at the example

above for class attendance, suppose we want to determine the probability that a randomly chosen
class falls on a Friday and has more than 90% attendance. The probability that a randomly chosen

10



class falls on a Friday is 1/3. The probability that a randomly chosen class has more than 90%
attendances is:

9+5+2 8
Prob[(M,> 90)] + Prob[(W, > 90)] + Prob[(F,> 90)] = % =

We have that: | q q
Prob[M) - Probl>90) = (5) (1) = 1.

rob[M] - Prob[> 90] YASE T
This is not equal to the true probability that a randomly chosen class falls on a Friday and has

more than 90% attendance which is Prob[(M,> 90)] = 9/30.

If we have a whole series of events which are all mutually independent, we can multiply the
probability that each event occurs to get the probability that they all occur. For example, suppose
we roll a dice ten times. What is the probability that the number shown on the dice is odd every
time? We will call this event A. Let A; be the event that the number shown on the dice is odd on
the 7 roll for 1 < j < 10. We know that Prob[A;] = 1/2. Since all ten events are independent,
Prob[A] is the product of all the Prob[A,]’s. This tells us that Prob[A] = (1/2)".

Note: In the above example, we are assuming that all of the coin tosses are mutually indepen-
dent. This is a standard assumption for experiments like multiple tosses of a coin or rolls of a die.
However, in order to mathematically prove that two events A and B are independent, one has to
determine the probabilities of A, B and AN B and then show that

Prob[A] - Prob|B] = Prob[A N B].

Try this with the following example: suppose you are using an ATM to take out some money from
your account. Let K be the event that the machine eats your card. Let O be the event that the
machine does not have enough money for your request. We have the following distribution on the
combination of these events:

1
Prob dFE = —
roblO and F] 500
ProblO and E] = 9
200
Prob[O and B] = -
rob[O an = 200
~ - 171
Prob dFE = —
roblO and F] 500

Are the events O and F independent?

4 Random Variables

A random variable is a function which is defined on a sample space. For example, consider again
the experiment of flipping three coins and define the sample space to be

S={HHH HHT,HTH, HTT,THH, THT,TTH,TTT}.

11



Then one could define the random variable X to be the number of heads in the sequence. Note
that in defining a random variable, we are defining a function which assigns a unique real number
to ever elementary event in the sample space. For example, the number assigned to HH H is three.
The number assigned to HT'T is one.

Once the random variable X is defined, we can talk about events like [X = 3] which denotes
the subset of points in the sample space for which the value of the random variable is 3. Thus, the

event [X = 3] is just {HHH}. The event [X < 1]is {TTT,TTH,THT,HTT}.

We can evaluate the probability of one of these events exactly as we did before. Suppose that
each sequence of coin tosses is equally likely. Then

{TTT, TTH, THT, HTT}| 4 1

<1 = — .
Prob[ X <1] 5 5= 5

4.1 Expectations of Random Variables

One of most fundamental properties one wants to determine about a random variable is its expec-
tation. To give you some intuition about the expectation, if the distribution over the sample space
is uniform, then the expectation is the average value of the random variable over the sample space.

Definition 12 The expectation of random variable X is denoted by E[X] and is defined to be
E[X] =) (x- ProbX = z]),

xr

where the sum ranges over all the possible values that X could be.

Let’s consider the random variable X which is the number of heads in three consecutive coin
tosses of a fair coin. We know that X can only be one of the following numbers {0, 1,2, 3}.

We have the following set of probabilities for the four possible out comes:

{TTT} 1

Prob[X =0 = 2l 2

rob| ] 5 3
proyx —1 — WITH.THTHTTY 3
S| 8
Prob[X:Q] _ |{THH,HTH,HHT}|:§
S| 8

HHHH} 1

ProblX =3] = ————— = —

rob| ] 5 3

The set of probabilities associated with each of the values which X can be is called the distri-
bution over X.
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Now to determine the expectation of X:

3
E[X] = Zi-Prob[X:i]
=0
SIS\ TR TG P PIRA E
B 8 8 8 8/ 8
Example 13

Suppose I offer you the following gamble. You must pay me $10 up-front to play this game. 1 will
deal you a hand of five cards from a perfectly shuffled deck of cards so that each hand of five cards
is equally likely. You reveal your hand and I will give you $20 for every ace in your hand. What
are your expected winnings?

The sample space is the set of all five card hands which are all equally likely. The random
variable which we define is your earnings for that hand. That is, if a hand has two aces, your total
earnings would be 2 - $20 — $10 = $30. (The —$10 is for the price you paid to play the game).
Since the number of aces in the hand can be either 0,1,2,3, or 4. This means that the amount you

earn will be one of the following five values {—$10,$10, $30,$50,$70}. We can assign the following

probabilities to these amounts:

() (%)
Prob[Earnings = —$10] = Prob[0 Aces] = 0(52)5 ~ .659
5
4\ (48
Prob[Earnings = $10] = Prob[l Aces] = (125%4) ~ .299
5
4\ (48
Prob[Farnings = $30] = Prob[2 Aces] = (225%3) ~ .040
5
4\ (48
Prob[Farnings = $50] = Prob[3 Aces] = (325%2) ~ .0017
5
6 )
Prob[Earnings = $70] = Prob[4 Aces] = ~2212 ~= 00002

Now to determine the expectation of your winnings:

E[X] = 2(20@' — 10) ()(5(5))
~ (=10-.659) + (10 -.299) + (30 - .04) + (50 - .0017) + (70 - .00002)
—$2.30
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Your expected winnings are —$2.30. The error comes from the fact that we rounded the prob-
abilities. We will see later that the expected winnings are in fact exactly —$2.30.

Example 14

Now suppose I offer you another gamble. Again, I will deal you a five card hand from a perfectly
shuffled deck, and again you must pay me $10 to play. But this time, if you get no aces, I will
pay you $1, if you get one ace, I will pay you $10, two aces, I pay you $100, three aces and I pay
you $1000 and four aces and I will give you $10000. What would your expected earnings be in this
game? That is, if you have i aces, I will give you 10° dollars.

Again, we will define a random variable which defines the amount of earnings you get for each
hand. If a hand has ¢ aces, then the value of the random variable is 10' — 10. We can use the same
probabilities from the previous example:

BIX] = > (10" - 10)(2'25(232')
(—9-.659) + (0 - .299) + (90 - .04) 4 (990 - .0017) + (9990 - .00002)
—$2.702

4.2 Linearity of Expectations

A very useful property of expectation is that in order to get the expectation of the sum of two
random variables, you simply have to sum their expectations:

Fact 15 Let X and Y be any two random variables, then

E[X +Y] = E[X]+ E]Y].
This actually applies to any number of random variables which you may wish to sum:

Fact 16 Let X1, X5, ..., X, be any n random variables. Then

E [Z; XZ»] = ZZ:E[XZ»].

This fact can be very helpful in reducing the amount of calculations necessary in determining
expectations of random variables.
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For example, in the beginning of Section 4.1, we were determining the expected number of heads
in a sequence of three coin tosses. We could have done this by defining three random variables:

X7 = the expected number of heads in the first coin toss
Xy = the expected number of heads in the second coin toss
X3 = the expected number of heads in the third coin toss

Notice that if X is the total number of heads in the sequence, then X = X; + X, + X3. This means
that K[X] = E[X;]+ F[X;3] + E[X;5]. X, will be easier to determine than X.

The value of X is either 1 or 0. The probability that X; = 1 is the probability the first coin
toss turns up heads which is % The probability that X; = 0 is the probability that the first coin
toss ends up tails. Thus, we have that

1 1 1
[X4] 5 0+ 5 5
Since X3 and X3 are distributed exactly the same as X, we have that E[X,] = E[X;] = E[X5] = 5
which gives that E[X] = %—I— % + % = %

(If you are not convinced that this method is easier, try determining the expected number of
heads in a sequence of 20 coin tosses).

Here is another useful fact which would have saved us some work in the previous section:

Fact 17 Let X be a random variable and let ¢; and cy be two real numbers. Then

E[Cl - X + CQ] =1 E[X] + Co.

Let’s revisit the example where you pay me $10 to play the game where I deal you five cards
and give you $20 for each ace in your hand. Let Y denote the random variable which is the number
of aces in your hand. Let Z be the random variable which denotes your earnings for a given hand.
Then Z = 20Y — 10. We now know that E[Z] = 20- E[Y] — 10, so all we have to do is to determine
E[Y].

To determine E[Y] we will use the additive properties of expectations. Define Y; to be the
number of aces in the ;' card which you are dealt for 1 < j < 5. Y; is 1 if the 57 card is an ace

and Y; is 0 if it is not an ace. Note that Y =Y; + Y, + Y54+ Y, 4 V5.

What is the distribution over Y;7 A given random card is an ace with probability % = 11—3 This
means that Y; = 1 with probability 11—3 and Y; = 0 with probability % For 1 <y <5,

= 1)+ (0 2) - &

15



So we have that

B[Y] = BIYi] + £[V)] + E[Yi] + B[¥i] + B[¥;] = 2.

Putting it all together our expected earnings

5
E[Z]=20-E[Y] =10 =20 (E) — 10 = —2.30.

5 Conditional Expectations

The idea of conditional probabilities can be extended to random variables as well. Suppose a
football team tends to perform better at their home games than their away games. Let’s consider
the random variable P which denotes the number of points the team scores in a given game. We
will base our probabilities on last year’s record, so the expectation of P is the average number of
points the team scored over all of last season’s games. Now consider the event H that a game is at
home. If we look at the random variable P given that the game is at home, we limit our attention
to those games where the team was at home. The expectation of random variable P is simply:

Z] - Prob[P = j.

The expectation of P conditional on the event H is

> j- ProblP =j| H.
J

The Prob[P = j | H] is the same kind of conditional probability we saw in the previous section. It
is the probability that the event P = j occurs, conditional on the event H.

Let’s make this example more concrete with numbers. Suppose there were ten games last season.
We will denote each game by a pair in {A, H} x N. The first item in the pair says whether the
game was home or away. The second item is a number which denotes the score of the team in that
game. For last season, we have:

(H,24), (A, 13), (H,27), (A, 21), (H,14), (A, 31), (H,35), (A, 0), (I, 24), (A, 21).

Let P denote the random variable which is the number of points the team scores in a randomly
chosen game from last season. P € {0,13,14,21,24,27,31,35}. We have the following distribution
over P:

Prob[P = 0] = %
Prob[P = 13] = %
ProblP =14] = %
ProblP =21] = %
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Probfp =21 =
Problp =271 = %
ProbfP =31] =
Prob[P =35] = %

The expectation of P is:
1 1 1 1 1 1 1 1
0-(— 13- — 14— 21 (= 24 - = 27 - (—) 31 - (—) 35 - (—) = 21.
(10) + (10) + (10) + (5) + (5) + 10 + 10 + 10

Now suppose we consider the distribution of P conditioned on the event that the game is a
home game. First note that the probability that a randomly chosen game from last season is a
home game is 5/10 = 1/2. Now consider the distribution of P conditional on event H:

Prob[P =0 and H|

ProblP =0 | H] = Brod(d] =0

Prob[P =13 | H] = Pmb[izbﬁ[‘f"d iy

Prob[P — 14| H] Prob[]; Z)blﬁq c]md H] 11//120 _ %
Prob[P =21 | H] = Pmb[izbﬁ;‘f"d m_

Prob[P — 24 | H] — Prob[]; sz[z;] c]md H] 21//120 B %
Prob[p — 27| H] Prob[]; sz[; c]md H] 11//120 _ %
Prob[P =31 | H] = Pmb[i;j&ﬁ"d H

Prob[P — 35| H] - Prob[]; Z§[5H c]md ] 11//120 _ %

Note that the sum of the probabilities is 1. The expectation of P conditional on H is:
14 (1) 124 (2) o7 (1) +35 (1) — 258
5 5 5 5/ 77

The general rule is that when there is a random variable X defined over a sample space and an
event F defined over the same sample space:
Prob[X = j and F]
Prob|F]

EIX | E]=)"j-Prob[X =j| E] ="

J
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6 Independent Random Variables

Suppose that we have two random variables X and Y. We say that X and Y are independent if
for every z,y € R, The events X = x and Y = y are independent. That is, Prob|X =z | Y =y] =
Prob[X = z] and ProblY =y | X = z] = Prob]Y = y|. In this case, no matter what the value of
Y, this gives no information about the value of X and no matter what the value of X, this gives no
information about the value of Y. When two random variables are independent, we can calculate
the expectation of their product as follows:

EX-Y] = Y > ayProb[X =z and Y = y]
= Z Z:z;yProb[X = 2| ProblY = y]

- Zx: Zy: (z - Prob[X = z])(y - Prob[Y = y])
- (Z - Prob[X ) (Z y - ProblY’ ])

— E[X]- E[Y]

Warning: this identity
E[X Y] = FE[X]- E]Y]

is not necessarily true if X and Y are not independent.

Suppose we consider two independent rolls of a fair die. Let X be the random variable which
denotes the value of the dice on the first roll. Let ¥ denote the value of the die on the second roll. X
and Y are independent in this case, because if you are told the value of X, the distribution over Y

remains exactly the same. So we can use the fact that E[X Y] = F[X]- F[Y] = (3.5)-(3.5) = 12.75.

Note that in the above example, we are assuming that the outcomes of the two rolls are inde-
pendent. This is generally a standard assumption with experiments like multiple tosses of a coin
or rolls of a die. However, if you are asked to prove that two random variables X and Y, then you
have to show that for every pair of values x and y,

Prob[X = z]- ProblY = y] = Prob|X =z and Y = y|.

If you are proving that X and Y are not independent, then you only have to find two specific values
for x and y such that

Prob[X = z]- ProblY = y] # Prob|X =z and Y = y|.

Try this with the following two random variables: let Z be the random variable which denotes the
sum of the values of the two tosses. Are X and Z independent? Why or why not?

18



7 Bayes Inversion Rule and other Useful Rules

We saw (Fact 10) that the probability of two complimentary events sum to 1. In particular, it is
possible to show that B
P(A)=P(ANB)+ P(ANB) (1)

Because A = (AN B)U (AN B) and Fact 8. More generally, if B;, 1 = 1,2, ...,n is a set of exhaustive
and mutually exclusive events, then P(A) can be computed from P(AN B;), ¢ = 1,2,...,n using

the sum .

PLA) =3 P(ANB) 2)
=1
For example, the probability of A= "the outcome of two dice are equal” can be computed by
summing over the joint events (A and B;), i = 1,2,3,4,5,6, where B; stands for the proposition
"the outcome of the first die is 1”7, yielding,

P(A) = ij(Am B;))=6-1/36 = 1/6.

=1

As we saw, if A and B are independent P(A|B) = P(A). Since, by definition

P(A|B) = 7]3(];4(;;9)
We get that:
P(AN B)= P(A|B)P(B) (3)

In fact, philosophers frequently stress that natural phenomena provide empirical observations in
the form of conditional probabilities, from which the probability of the joint event can be assessed.
From EQ. 2 and EQ. 3 we get:

P(A) =3 P(A|B))P(B:) (4)

Namely, the probability of an event A can be computed by conditioning it on a set of exhaustive
and mutually exclusive events B;, + = 1,2,...,n. For example, the probability of Equality can be
assessed by

P(Equality) =Y _ P(Equality|B;,)P(B;) =6-1/6-1/6 = 1/6.

The above decomposition provides the basis for assumption-based reasoning. For example, if
we wish to calculate the probability that the outcome X of the first die will be greater than the
outcome Y of the second, we can condition the event A : X > Y on all the possible values of X

and obtain: ;

P(A) =3 P(Y < X|X = i)P(X = i)

=Y P <) = PY =)

=1 =1 j5=1
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Another useful generalization of the product rule (3) is the chain formula. 1t states that if we have
a set of n events, Iy, ..., F,, then the probability of the joint event:

P(ExOEyN .. OVE,) = P(E{|En_y, ..., By, By)...P(Ey| Ey ) P(Ey)

This product can be derived by repeated application of EQ. 3 in any convenient order.

Finally, a very useful formula, Bayes Inversion Rule, allows assessing the probability of hypothesis
given evidence. Let H be an hypothesis and F be some observed evidence, then,

P(H|E) = —P(Eﬁg(m

P(H|FE) is sometimes called the posterior probability, and P(H) the prior probability. Notice that
the denominator can be derived by an operation called normalization:

P(E) = P(E|H)P(H) + P(E|H)P(H)

Example 18 Consider the case when you have two urns containing red and blue balls. Urni has
3 red balls and 2 blue balls, urn2 had has 3 red balls and 5 blue balls. You picked an urn randomly
and selected one ball. Lets assume that the outcome is red. What is the probability that you selected
urn 1.

Solution: Let X be the random variable standing for the urn that is selected. Let Y, be the
color of the ball selected. We want to compute: P(X = urnl|Y = red). Using Bayes inversion rule
we get:

P(Y =red| X = NP(X = 1
P(X =urnl|Y =red) = ( red| urnl)P( urnl)

P(Y =red|X =urnl)P(X = urnl) + P(Y = red| X = urn2)P(X = urn2)
3/5-1/2
3/5-1/243/8-1/2

P(X =urnl|Y =red) = = 48/78

8 The Variance of a Random Variable

In order to summarize the information contained in a random variable, we can use its expectation.
We have seen that the expectation corresponds to the mean value. The expectation alone, however,
does not provide us with any information about how concentrated or dispersed a random variable
is. The variance gives us such a measure of dispersion.

Definition 19 The variance of a random variable X is denoted by Var|X] and is defined to be
Var[X] = I ([X — B(X)?) =3 ([v — E(X)]* - Prob[X = 1]},

where the sum ranges over all the possible values that X could be.

20



Thus the variance is the average or expected squared deviation from the expectation. Alterna-
tively, we can also use the standard deviation.

Definition 20 The standard deviation of a random variable X is the square root of its variance.

Consider a fair die with the random variable X associated with the outcome of the toss. Then
the expectation is

and the variance
e, . 1 35
Var(X) => (i —3.5)* 6= g 292

=1

The standard deviation of X is /35/12 ~ 1.71.

In contrast, consider now a die that is not fair, with a random variable Y associated with only
two possible outcomes Y = 3 and Y = 4. Assume that each outcome has probability 0.5. Then
clearly E(Y) = E(X) = 3.5. The two random X and Y are indistinguishable from their expectation
alone. But Y is more concentrated. Indeed, this is reflected in its much smaller variance:

L 11
Var(Y) =3 (1 =35)° - 5 = £ = 0.25

=3

The standard deviation of Y is /1/4 = 0.5.

Fact 21 The variance satisfies

Var(X) = B(X?) — [E(X)]?

To prove this fact, we expand the square in the definition of the variance

Var(X) =3 (2% + [E(X)]? — 20 B(X)) - ProblX = z].

xr

We then use the distributivity and calculate each term separately. By definition of the expectation,
the first term satisfies 3, 2% - Prob|X = x] = F(X?). By using the linearity of the expectation,
the second term satisfies 3" [F(X)]* - Prob|X = z] = [E(X)]?. Using again the linearity of the
expectation, the third term satisfies >, —2zE(X)) - Prob|X = 2] = —2E(X)E(X) = —2[E(X)]~
Collecting terms, we finally get VarX = E(X?) + [E(X)]? — 2[E(X)]* = E(X?) — [E(X)]~

Exercise: Calculate the variance of the dice above using both the definition and this formula.
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