ICS 6A

Solution to Homework Assignment 7

Winter 2004

Instructor: Rina Dechter

Answer the following questions (explain your answers).

1. Rosen, page 253, problem 3.

Please see "Solutions to Odd-Numbered Exercises" of Rosen. (Page S-24)

2. Rosen, page 253, problem 10.

Proof: Let P(n) be " $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ ", where $n = 1, 2, 3, \cdots$

- Basis step: for $n = 1, 1 \cdot 1! = 1 = (1+1)! 1 \Rightarrow P(1)$ is true.
- Inductive step: Assume P(n) is true, i.e. $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$, then:

$$1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! + (n+1) \cdot (n+1)!$$

$$= (n+1)! - 1 + (n+1) \cdot (n+1)!$$
 From induction hypothesis

$$= (n+1)! \cdot (1+n+1) - 1$$

$$= (n+1)! \cdot (n+2) - 1$$

$$=(n+2)!-1$$

The last equation shows that P(n+1) is true. This completes the inductive step and completes the proof.

3. Rosen, page 253, problem 13.

Please see "Solutions to Odd-Numbered Exercises" of Rosen. (Page S-24)

4. Rosen, page 253, problem 16.

Proof: Let P(n) be "1 · 2 · 3 + 2 · 3 · 4 + · · · + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4"

- Basis step: $1 \cdot 2 \cdot 3 = 6 = 1 \cdot (1+1) \cdot (1+2) \cdot (1+3)/4 \Rightarrow P(1)$ is true.
- Inductive step: Assume P(n) is true, i.e. $1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \cdots + n(n+1)(n+2) = n(n+1)(n+2)(n+3)/4$,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2) + (n+1)(n+2)(n+3)$$

$$= n(n+1)(n+2)(n+3)/4 + (n+1)(n+2)(n+3)$$
 From induction hypothesis

$$= (n+1)(n+2)(n+3) \cdot (n/4+1)$$

$$= (n+1)(n+2)(n+3)(n+4)/4$$

The last equation shows that P(n+1) is true. This completes the inductive step and completes the proof.

5. Rosen, page 253, problem 18.

Proof: Let P(n) be " $1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} < 2 - \frac{1}{n}$ ", where $n = 2, 3, \cdots$

- Basis step: for n = 2, $1 + \frac{1}{4} = \frac{5}{4} < 2 \frac{1}{2} = \frac{3}{2} = \frac{6}{4} \Rightarrow P(2)$ is true.
- Inductive step: Assume P(n) is true, i.e. $1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 \frac{1}{n}$, then: $1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}$

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2}$$

$$< 2 - \frac{1}{n} + \frac{1}{(n+1)^2}$$
 From induction hypothesis

$$=2-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n}+\frac{1}{(n+1)^2}$$

$$=2-\frac{1}{n+1}+\frac{n(n+1)-(n+1)^2+n(n+1)^2}{n(n+1)^2}$$

$$= 2 - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n} + \frac{1}{(n+1)^2}$$

$$= 2 - \frac{1}{n+1} + \frac{n(n+1) - (n+1)^2 + n}{n(n+1)^2}$$

$$= 2 - \frac{1}{n+1} + \frac{n^2 + n - (n^2 + 2n + 1) + n}{n(n+1)^2}$$

$$= 2 - \frac{1}{n+1} + \frac{n^2 + n - n^2 - 2n - 1 + n}{n(n+1)^2}$$

$$=2-\frac{1}{n+1}+\frac{n^2+n-n^2-2n-1+n}{n(n+1)^2}$$

$$=2-\frac{1}{n+1}+\frac{-1}{n(n+1)^2} <2-\frac{1}{n+1} \text{ whenever } n>1, \text{ because } \frac{-1}{n(n+1)^2}<0$$

The last inequality shows that P(n+1) is true. This completes the inductive step and completes the proof.

6. Rosen, page 254, problem 22.

Proof: Let P(n) be "6 divides $n^3 - n$ ", where $n = 0, 1, 2, \cdots$

- Basis step: for n = 0, 6 devides $0^3 0 = 0 \Rightarrow P(0)$ is true.
- Inductive step: Assume P(n) is true, i.e. 6 divides $n^3 n$, then:

$$(n+1)^3 - (n+1)$$

$$= n^3 + 3n^2 + 3n + 1 - n - 1$$

$$= (n^3 - n) + 3n^2 + 3n$$

$$= (n^3 - n) + 3n(n+1)$$

 $(n^3 - n)$ can be divided by 6 from induction hypothesis, either n or n + 1 are even number, then n(n+1) can be devided by 2, so 3n(n+1) can be devided by 6, and $(n^3 - n) + 3n(n+1)$ can be devided by 6. This means that P(n+1) is true.

This completes the inductive step and completes the proof.

7. Rosen, page 255, problem 45.

Please see the "Solutions to Odd-Numbered Exercises" of Rosen. (Page S-26

8. Rosen, page 255, problem 48.

Proof: Let P(n) be " $\neg (p_1 \lor p_2 \lor \cdots \lor p_n)$ is equivalent to $\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n$ "

- Basis step: $\neg p_1$ is equivalent to $\neg p_1 \Rightarrow P(2)$ is true.
- Inductive step: Assume P(n) is true, i.e. $\neg (p_1 \lor p_2 \lor \cdots \lor p_n)$ is equivalent to $\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n$, then:

$$\neg (p_1 \lor p_2 \lor \cdots \lor p_n \lor p_{n+1}) \Leftrightarrow \neg [(p_1 \lor p_2 \lor \cdots \lor p_n) \lor p_{n+1}]$$
 is equivalent to $\neg (p_1 \lor p_2 \lor \cdots \lor p_n) \land \neg p_{n+1}$ by "De Morgan's laws" is equivalent to $(\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n) \land \neg p_{n+1}$ From induction hypothesis is equivalent to $\neg p_1 \land \neg p_2 \land \cdots \land \neg p_n \land \neg p_{n+1}$

The last "equivalent relation" shows that P(n+1) is true. This completes the inductive step and completes the proof.

2

9. Rosen, page 236, problem 3.

a)
$$2^{n} + 1$$
: $a_{0} = 2^{0} + 1 = 2$
 $a_{1} = 2^{1} + 1 = 3$
 $a_{2} = 2^{2} + 1 = 5$
 $a_{3} = 2^{3} + 1 = 9$

b)
$$(n+1)^{n+1}$$
: $a_0 = (0+1)^{0+1} = 1$
 $a_1 = (1+1)^{1+1} = 4$
 $a_2 = (2+1)^{2+1} = 27$
 $a_3 = (3+1)^{3+1} = 256$

c)
$$\lfloor n/2 \rfloor$$
: $a_0 = \lfloor 0/2 \rfloor = 0$
 $a_1 = \lfloor 1/2 \rfloor = 0$
 $a_2 = \lfloor 2/2 \rfloor = 1$
 $a_3 = \lfloor 3/2 \rfloor = 1$

d)
$$\lfloor n/2 \rfloor + \lceil n/2 \rceil$$
: $a_0 = \lfloor 0/2 \rfloor + \lceil 0/2 \rceil = 0 + 0 = 0$
 $a_1 = \lfloor 1/2 \rfloor + \lceil 1/2 \rceil = 0 + 1 = 1$
 $a_2 = \lfloor 2/2 \rfloor + \lceil 2/2 \rceil = 1 + 1 = 2$
 $a_3 = \lfloor 3/2 \rfloor + \lceil 3/2 \rceil = 1 + 2 = 3$

10. Rosen, page 236 problem 8.

Answer: The terms could be odd numbers greater than 1;

the terms could be prime numbers greater than 2;

the terms could be odd numbers not divisible by 9;

the terms could numbers greater than 2 and not divisible by 4 and 6; ...

There are infinitely many other possibilities.

- 11. Rosen, page 236 problem 10.
 - a) $a_n = n^2 + 2 \cdot n + 3$, where $n = 0, 1, 2, \cdots$
 - b) $a_n = 4 \cdot n + 7$, where $n = 0, 1, 2, \cdots$
 - c) 10^n followed by the sum of 10^n and previous terms respectively, where $n=0,1,2,\cdots$
 - d) The Fibonacci sequence f(n+1) listed 2n-1 times.
 - e) $3^{n} 1$, where $n = 0, 1, 2, \cdots$
 - f) $\frac{(2n+1)!}{2^n \cdot n!}$, where $n = 0, 1, 2, \cdots$
 - g) One 1 followed by two 0s, three 1s, four 0s, and so on.
 - h) 2^{2^n} , where $n = 0, 1, 2, \cdots$
- 12. Rosen, page A-3, problem 2.

 - a) $\log_2 1024 = \log_2 2^{10} = 10$ b) $\log_2 \frac{1}{4} = \log_2 2^{-2} = -2$ c) $\log_4 8 = \frac{\log_2 8}{\log_2 4}$ **THEOREM 3** on page A-2 of Rosen. $= \frac{\log_2 2^3}{\log_2 2^2} = \frac{3}{2}$

$$= \frac{\log_2 2^3}{\log_2 2^2} = \frac{3}{2}$$

13. Rosen, page A-3, problem 4.

Proof: Using **THEOREM 2** rule 2: $\log_b LeftHandSide = \log_b a^{\log_b c} = \log_b c \cdot \log_b a$

 $\log_b RightHandSide = \log_b c^{\log_b a} = \log_b a \cdot \log_b c$

 $\log_b LeftHandSide = \log_b RightHandSide \Rightarrow LeftHandSide = RightHandSide$ So, $a^{\log_b c} = c^{\log_b a}$