ICS 6A

Solution to Homework Assignment 4

Winter 2004

Instructor: Rina Dechter

Answer the following questions (explain your answers).

- 1. Rosen, page 361, problem 10. **Answer:** $\frac{C(52-2,5-2)}{C(52,5)} = 0.0075$
- 2. Rosen, page 391, problem 22.

Answer: The number of positive integers not exceeding 100 is 100, and they are 1, 2, ...100. The number of positive integers not exceeding 100 and are divisible by 3 is 33, and they are $3 \times 1, 3 \times 2, ...3 \times 33$. So the probability is $\frac{33}{100} = 0.33$.

3. Rosen, page 362, problem 36.

Answer:

- the probability of rolling a total of 8 when two dice are rolled: $\frac{5}{6\times 6} = 0.139$. (Because $8 = 6 + 2 = 5 + 3 = 4 + 4 = 3 + 5 = 2 + 6 \rightarrow 5$ possibilities)
- the probability of rolling a total of 8 when three dice are rolled: $\frac{21}{6 \times 6 \times 6} = 0.097$. (Because $8 = 1 + 1 + 6 = 1 + 2 + 5 = \dots \rightarrow 21$ possibilities)

0.139 > 0.097, so rolling a total of 8 when two dice are rolled is more likely.

4. Rosen, page 376, problem 2.

Answer: Assume the probability of each outcome except "3" is p, then the probability of the outcome "3" is 2p. So $5 \times p + 2p = 1 \implies p = \frac{1}{7}$. The probability of the outcome "3" is $2p = \frac{2}{7}$, the probability of each other outcome except "3" is $\frac{1}{7}$.

- 5. Rosen, page 376, problem 5 There are 6 pairs that some to 7. All but one (4,3) have probability 1/49. (4,3) has probability 4/49. The total probbaility is therefore 9/49.
- 6. Rosen, page 377, problem 12.

Proof: From THEOREM 2 on page 264, we have:

 $p(E \cup F) = p(E) + p(F) - p(E \cap F) \implies p(E \cap F) = p(E) + p(F) - p(E \cup F) = 0.8 + 0.6 - p(E \cup F).$ For any probability, it cannot exceed 1, so $p(E \cup F) \le 1$, such that:

$$p(E \cap F) \ge p(E) + p(F) - 1 = 0.8 + 0.6 - 1 = 0.4.$$

Finally, we have $p(E \cap F) > 0.4$

From the definition $P(E \cap F) \geq P(E)$. Since P(E) = 0.8 we get that $P(E \cap F) \geq 0.8$.

7. Rosen, page 377, problem 24.

The probability is 1/16.

8. Rosen, page 377, problem 26.

p(E) = 1/2. p(F) = 1/2 and $p(E \cap F) = 1/4$. Since $P(E \cap F) = p(E) \cdot p(F)$ E and F are independent.

1

- 9. Rosen, page 377, problem 28.
 - a) exactly three boys: $C(5,3) \times 0.51^3 \times (1-0.51)^{(5-3)} = 0.318$
 - b) at least one boy: $1 (1 0.51)^5 = 0.972$
 - c) at least one girl: $1 0.51^5 = 0.965$
 - d) all children of the same sex: $0.51^5 + (1 0.51)^5 = 0.063$

- 10. Rosen, page 378, problem 34.
 - a) the probability of no successes: $(1-p)^n$

 - b) the probability of at least one successes: 1 result of $a = 1 (1 p)^n$ c) the probability of at most one successes: $(1-p)^n + C(n,1) \cdot p^1 \cdot (1-p)^{(n-1)} = (1-p)^n + n \cdot p \cdot (1-p)^{(n-1)}$ d) the probability of at least two successes: 1 result of $c = 1 (1-p)^n n \cdot p \cdot (1-p)^{(n-1)}$