ICS 6A

Solution to Homework Assignment 3

Winter 2004

Instructor: Rina Dechter

1. Rosen, page 319, problem 2.

Proof: Because there are only 26 possible letters and there are 30 students, according to "THE PI-GEONHOLE PRINCIPLE", at least 2 students have last names that begin with the same letter.

2. Rosen, page 320, problem 40.

Proof: From 1000 to 1099 (inclusive) there are 100 numbers. We devide the 100 numbers into 50 boxes and each box contains two consecutive integers (1000 + 2k) and (1000 + 2k + 1), where k =0, 1, ..., 49. For example box 0 contains 1000 and 1001, box 1 contains 1002 and 1003, ..., box 49 contains 1098 and 1099. Since there are 50 boxes and 51 houses, according to "THE PIGEONHOLE PRINCIPLE", at least 2 houses fall into the same box, which means at least two houses have addresses that are consecutive integers.

a)
$$C(5,1) = \frac{5!}{1!(5-1)!} = 5$$

b)
$$C(5,3) = \frac{5!}{3! \cdot (5-3)!} = 10$$

c)
$$C(8,4) = \frac{8!}{4! \cdot (8-4)!} = 70$$

d)
$$C(8,8) = \frac{8!}{8! \cdot (8-8)!} = 1$$

e)
$$C(8,0) = \frac{8!}{0! \cdot (8-0)!} = 1$$

3. Rosen, page 324, problem 6.
a)
$$C(5,1) = \frac{5!}{1! \cdot (5-1)!} = 5$$
b) $C(5,3) = \frac{5!}{3! \cdot (5-3)!} = 10$
c) $C(8,4) = \frac{8!}{4! \cdot (8-4)!} = 70$
d) $C(8,8) = \frac{8!}{8! \cdot (8-8)!} = 1$
e) $C(8,0) = \frac{8!}{0! \cdot (8-0)!} = 1$
f) $C(12,6) = \frac{12!}{6! \cdot (12-6)!} = 924$

4. Rosen, page 325, problem 8.

Five runners can finish a race in 5! = 120 different orders if no ties are allowed.

5. Rosen, page 325, problem 20.

Number of bit strings of length 10 have

- a) exactly three 0s: all other seven bits are 1s, so C(10,3) = 120
- b) more 0s than 1s: six 0s and four 1s or seven 0s and three 1s, or 8 0s and two 1s or nine 0s and one 1s or all 0s is: C(10,6) + C(10,7) + C(10,8) + C(10,9) + C(10,10)
- c) at least seven 1s: at most three 0s
 - number of bit strings of length 10 have exact three 0s: C(10,3) = 120 (from result of a)

1

- number of bit strings of length 10 have exact two 0s: C(10,2) = 45
- number of bit strings of length 10 have exact one 0s: C(10,1) = 10
- number of bit strings of length 10 have no 0: all ten 1s, 1

So number of bit strings of length 10 have at least seven 1s: 120 + 45 + 10 + 1 = 176

d) at least three 1s:

- Total number of bit strings of length 10: $2^{10} = 1024$
- number of bit strings of length 10 have exact two 1s: C(10,2) = 45
- number of bit strings of length 10 have exact one 1s: C(10,1) = 10
- number of bit strings of length 10 have no 1: all ten 0s, 1

- 6. Rosen, page 326, problem 27.
 - a) Choose four members from 25 members: C(25, 4) = 12650
 - b) Choose a president, vice president, secretary, and treasurer: P(25,4) = 303600
- 7. Rosen, page 326, problem 31.

21 consonants and 5 vowels in English. Number of strings of six lowercase letters of the English alphabet contain

a) exactly 1 vowel: 1 vowel and 5 consonants

number of possible position for the vowel: C(6,1) = 6

- so $C(6,1) * 5^1 * 21^5 = 122523030$
- b) exactly 2 vowels: 2 vowels and 4 consonants

number of possible position for the vowel: C(6,2) = 15

- so $C(6,2) * 5^2 * 21^4 = 72930375$
- c) at least 1 vowel:

Total number of strings of six lowercase letters: $26^6 = 308915776$

number of strings of six lowercase letters contain NO vowel: $21^6 = 85766121$

so number of strings of six lowercase letters contain at least 1 vowel: $26^6 - 21^6 = 223149655$

d) at least 2 vowel:

Total number of strings of six lowercase letters: $26^6 = 308915776$

number of strings of six lowercase letters contain NO vowel: $21^6 = 85766121$

number of strings of six lowercase letters contain exactly 1 yowel: 122523030 (result of b)

so number of strings of six lowercase letters contain at least 2 vowel: $26^6 - 21^6 - 122523030 = 100626625$

8. Rosen, page 342, problem 5.

There are $5^3 = 125$ ways to assign three jobs to five employees if each employee can be given more than one job.

9. Rosen, page 342, problem 9 a,c,d.

There are totally 8 kinds of bagels. Number of ways to choose

- a) six bagels: C(8+6-1,6) = 1716
- c) two dozen bagels: C(8+24-1,24)=2629575
- d) a dozen bagels with at least one of each kind:

take out 1 bagel from each kind. Only 12 - 8 = 4 bagels need to be chosen.

so there are C(8+4-1,4)=330 ways to choose a dozen bagels with at least one of each kind.

10. Rosen, page 343, problem 32. Using all letters in "AARDVARK"

Answer: There are 5 letters except 3 "A"s. Because 3 "A"s must be consecutive, we can take 3 "A"s as 1 letter. So there are totally 6 letters. The permutation of 6 letters are 6!. But there 2 identical letters "R", so the total number of strings can be made is 6!/2 = 360.

11. Rosen, page 343, problem 36. six 1s and eight 0s

Answer: It is equivalent with "Choose six positions for six 1s in the string.", so the number of bit strings can be formed is C(6+8,6)=3003