ICS 6A

Solution to Homework Assignment 2

Winter 2004

Instructor: Rina Dechter January 27rd, 2004

- 1. Rosen, Page 85: 4. A = $\{2, 4, 6\}$, B = $\{2, 6\}$, C = $\{4, 6\}$, D = $\{4, 6, 8\}$ Solution: $B \subseteq A$, $C \subseteq A$, $C \subseteq D$.
- 2. Rosen, Page 85: 6.
 - a) $\{x \in R | x \text{ is an interger greater than 1}\}$: $\{2\}$ is NOT an element of that set.
 - b) $\{x \in R | x \text{ is the square of an interger}\}$: $\{2\}$ is NOT an element of that set.
 - c) $\{2, \{2\}\}$: $\{2\}$ is an element of that set.
 - d) $\{\{2\}, \{\{2\}\}\}$: $\{2\}$ is an element of that set.
 - e) $\{\{2\}, \{2, \{2\}\}\}$: $\{2\}$ is an element of that set.
 - f) $\{\{\{2\}\}\}: \{2\}$ is NOT an element of that set.
- 3. Rosen, Page 85: 14.
 - a) $|\phi| = 0$
 - b) $|\{\phi\}| = 1$
 - c) $|\{\phi, \{\phi\}\}| = 2$
 - d) $|\{\phi, \{\phi\}, \{\phi, \{\phi\}\}\}\}| = 3$
- 4. Rosen, Page 85: 24. $A = \{a, b, c\}, B = \{x, y\}, C = \{0, 1\}$
 - a) $A \times B \times C = \{ (a, x, 0), (a, x, 1), (a, y, 0), (a, y, 1), (b, x, 0), (b, x, 1), (b, y, 0), (b, y, 1), (c, x, 0), (c, x, 1), (c, y, 0), (c, y, 1) \}$
 - b) $C \times B \times A = \{ (0, x, a), (0, x, b), (0, x, c), (0, y, a), (0, y, b), (0, y, c), (1, x, a), (1, x, b), (1, x, c), (1, y, a), (1, y, b), (1, y, c) \}$
 - c) $C \times A \times B = \{ (0, a, x), (0, a, y), (0, b, x), (0, b, y), (0, c, x), (0, c, y), (1, a, x), (1, a, y), (1, b, x), (1, b, y), (1, c, x), (1, c, y) \}$
 - d) $B \times B \times B = \{ (x, x, x), (x, x, y), (x, y, x), (x, y, y), (y, x, x), (y, x, y), (y, y, x), (y, y, y) \}$
- 5. Rosen, Page 95: 4. $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f, g, h\}$
 - a) $A \cup B = \{a, b, c, d, e, f, g, h\} = B$
 - b) $A \cap B = \{a, b, c, d, e\} = A$
 - c) $A B = \phi$
 - d) $B A = \{f, g, h\}$

6. Rosen, Page 95: 16. Show that if A and B are sets, then $(A \cap B) \cup (A \cap \overline{B}) = A$

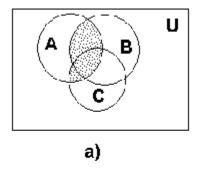
Proof:
$$(A \cap B) \cup (A \cap \overline{B}) = A \cap (B \cup \overline{B})$$
 Distributive laws (TABLE 1 on page 49 of Rosen)
= $A \cap U$
= A Identity laws (TABLE 1 on page 89 of Rosen)

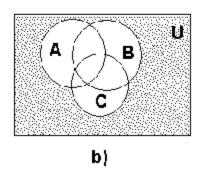
- 7. Rosen, Page 95: 20: See page 3 for the diagrams
 - a) $A \cap (B \cup C)$
 - b) $\overline{A} \cap \overline{B} \cap \overline{C}$
 - c) $(A B) \cup (A C) \cup (B C)$
- 8. Rosen, Page 310: 4.

Solution: There are

 $12(\#\ of\ color) \times 2(\#\ of\ gender) \times 3(\#\ of\ size) = 72$ types of this shirt are made.

9. Rosen, Page 310: 16.


Solution: total number of strings with four lowercase letters: 264 = 456976 number of strings with four lowercase letters without "x": 254 = 390625


There are 456976 - 390625 = 66351 strings of four lowercase letters that have the letter "x" in them.

10. Rosen, Page 312: 44.

Solution: 38 + 23 - 7 = 54 students are in the class.

Rosen, page 55: 18.

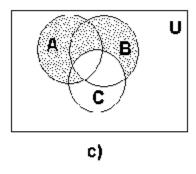


Figure 1: Rosen