ICS 6A

Solution to Homework Assignment 1 ¹ Winter 2004

- 1. Rosen, page 16, problem 8.
 - a) $r \wedge (-q)$
 - b) $p \wedge q \wedge r$
 - c) $r \to p$
 - d) $p \wedge (-q) \wedge r$
 - e) $(p \land q) \rightarrow r$
 - f) $r \leftrightarrow (q \lor p)$
- 2. Rosen, page 17, problem 16.
 - a) If you don't send me an e-mail message, then I will not remmember to send you the address.
 - b) If you were born in the United States, then you are a citizen of this country.
 - c) If you keep your textbook, then it will be a useful reference in your future courses.
 - d) If the Red Wings's goalie plays well, then they will win the Stanley Cup.
 - e) If you get the job, then you must have the best credentials.
 - f) If there is a storm, then the beach erodes.
 - g) If you don't have a valid password, then you can not log on to the server.
- 3. Rosen, page 26, problem 8.

Α	A Demonstration That $[-p \land (p \lor q)] \rightarrow q$ is a tautology.					
	p q	-p	$p \lor q$	$-p \wedge (p \vee q)$	$[-p \land (p \lor q)] \to q$	
	ТТ	F	Т	F	T	
	ΤF	F	Τ	F	T	
	FT	Τ	Τ	T	Т	
	FF	Т	F	F	Т	

Table 1: Page 19-8 a)

 $^{^1}$ Also available at: $http://www.ics.uci.edu/{\sim}\,dechter/ics-6a/winter-2004/$

	A Demonstration That $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology.					
p q r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$[(p \to q) \land (q \to r)] \to (p \to r)$	
ТТТ	Τ	Т	Τ	Т	Τ	
T T F	T	F	F	F	T	
T F T	F	Т	F	Т	T	
T F F	F	Т	F	F	T	
FTT	Т	Т	Τ	Т	T	
F T F	T	F	F	Т	T	
FFT	T	Т	Τ	Т	T	
FFF	\parallel T	$^{\rm l}$ $^{ m T}$	Т	Т	Т	

Table 2: Page 19-8 b)

A Demonstration That $[p \land (p \rightarrow q)] \rightarrow q$ is a tautology.					
	p q	$p \rightarrow q$	$p \land (p \to q)$	$[p \land (p \to q)] \to q$	
	ТТ	Т	Τ	Τ	
	ΤF	F	F	Τ	
	FT	Τ	\mathbf{F}	Τ	
	FF	${ m T}$	F	Т	

Table 3: Page 19-8 c)

	A Demonstration That			$[(p \lor q) \land (p \to r) \land (q \to r)] \to r \text{ is a tautology.}$	
p q r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r) \land (q \to r)$	$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$
ТТТ	Т	Τ	Τ	Т	Τ
T T F	Т	F	F	F	T
TFT	Т	Τ	Τ	T	T
T F F	Т	F	Τ	F	T
FTT	Т	Τ	Τ	T	T
F T F	Т	Τ	F	F	T
FFT	F	Τ	Τ	F	T
FFF	F	Τ	Т	F	T

Table 4: Page 19-8 d)

4. Rosen, page 26, problem 10.

a)
$$[-p \land (p \lor q)] \rightarrow q \Leftrightarrow [(-p \land p) \lor (-p \land q)] \rightarrow q$$
 Distributive laws. $\Leftrightarrow [F \lor (-p \land q)] \rightarrow q$ Table 6 on page 18 of Rosen. $\Leftrightarrow [(-p \land q) \lor F] \rightarrow q$ Commutative laws. $\Leftrightarrow (-p \land q) \rightarrow q$ Identity laws. $\Leftrightarrow [-(-p \land q)] \lor q$ Table 6 on page 18 of Rosen. $\Leftrightarrow [-(-p) \lor -q] \lor q$ De Morgan's laws. $\Leftrightarrow (p \lor -q) \lor q$ Double negation law. $\Leftrightarrow p \lor (-q \lor q)$ Associative laws. $\Leftrightarrow p \lor (q \lor -q)$ Commutative laws. $\Leftrightarrow p \lor T$ Table 6 on page 18 of Rosen. $\Leftrightarrow T$

b)
$$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$$

 $\Leftrightarrow [(-p \lor q) \land (-q \lor r)] \rightarrow (-p \lor r)$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow -[(-p \lor q) \land (-q \lor r)] \lor (-p \lor r)$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow [-(-p \lor q) \lor -(-q \lor r)] \lor (-p \lor r)$ De Morgan's laws.
 $\Leftrightarrow [-p \lor -(-p \lor q)] \lor [r \lor -(-q \lor r)]$ De Morgan's laws.
 $\Leftrightarrow -[p \land (-p \lor q)] \lor -[-r \land (-q \lor r)]$ De Morgan's laws.
 $\Leftrightarrow -[(p \land -p) \lor (p \land q)] \lor -[(-r \land -q) \lor (-r \land r)]$ Distributive laws.
 $\Leftrightarrow -[F \lor (p \land q)] \lor -[(-r \land -q) \lor F]$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow -(p \land q) \lor -(-r \land -q)$ Identity laws.
 $\Leftrightarrow (-p \lor r) \lor (q \lor -q)$ Associative and Commutative laws.
 $\Leftrightarrow (-p \lor r) \lor (q \lor -q)$ Associative and Commutative laws.
 $\Leftrightarrow (-p \lor r) \lor T$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow T$ Table 6 on page 18 of Rosen.

c)
$$[p \land (p \to q)] \to q \Leftrightarrow [p \land (-p \lor q)] \to q$$
 Table 6 on page 18 of Rosen.
 $\Leftrightarrow [(p \land -p) \lor (p \land q)] \to q$ Distributive laws.
 $\Leftrightarrow [F \lor (p \land q)] \to q$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow [(p \land q) \lor F] \to q$ Commutative laws.
 $\Leftrightarrow (p \land q) \to q$ Identity laws.
 $\Leftrightarrow [-(p \land q)] \lor q$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow (-p \lor -q) \lor q$ De Morgan's laws.
 $\Leftrightarrow -p \lor (-q \lor q)$ Associative laws.
 $\Leftrightarrow -p \lor T$ Table 6 on page 18 of Rosen.
 $\Leftrightarrow T$ Domination laws.

$$\begin{array}{ll} \mathrm{d}) \ [(p \vee q) \wedge (p \to r) \wedge (q \to r)] \to r \\ \Leftrightarrow \ [(p \vee q) \wedge (-p \vee r) \wedge (-q \vee r)] \to r \\ \Leftrightarrow \ -[(p \vee q) \wedge (-p \vee r) \wedge (-q \vee r)] \vee r \\ \Leftrightarrow \ -(p \vee q) \vee -(-p \vee r) \vee -(-q \vee r) \vee r \\ \Leftrightarrow \ (-p \wedge -q) \vee (p \wedge -r) \vee (q \wedge -r) \vee r \end{array}$$

$$\Leftrightarrow (-p \land -q) \lor (p \land -r) \lor [r \lor (q \land -r)]$$

$$\Leftrightarrow (-p \land -q) \lor (p \land -r) \lor [(r \lor q) \land (r \lor -r)]$$

$$\Leftrightarrow (-p \land -q) \lor (p \land -r) \lor [(r \lor q) \land T]$$

$$\Leftrightarrow (-p \land -q) \lor (p \land -r) \lor (r \lor q)$$

$$\Leftrightarrow [q \lor (-p \land -q)] \lor [r \lor (p \land -r)]$$

$$\Leftrightarrow [(q \lor -p) \land (q \lor -q)] \lor [(r \lor p) \land (r \lor -r)]$$

$$\Leftrightarrow [(q \lor -p) \land T] \lor [(r \lor p) \land T]$$

$$\Leftrightarrow (q \lor -p) \lor (r \lor p)$$

$$\Leftrightarrow (q \lor r) \lor (p \lor -p)$$

$$\Leftrightarrow (q \lor r) \lor T$$

$$\Leftrightarrow T$$

Associative and Commutative laws. Distributive laws.

Table 6 on page 18 of Rosen.

Identity laws.

Associative and Commutative laws.

Distributive laws.

Table 6 on page 18 of Rosen.

Identity laws.

Associative and Commutative laws.

Table 6 on page 18 of Rosen.

Domination laws.

- 5. Rosen, page 41, problem 16.
- 6. Rosen, page 41, problem 22.
- 7. Rosen, page 42, problem 34.
- 8. Rosen, page 43, problem 48.
- 9. Rosen, page 51, problem 4.
 - a) $\exists x \exists y P(x, y)$: There is a student in your class who has taken a computer science course at your school.
 - b) $\exists x \forall y P(x, y)$: There is a student in your class who has taken all the computer science courses at your school.
 - c) $\forall x \exists y P(x, y)$: For every student, there is a computer science course at your school such that the student took the class.
 - d) $\exists y \forall x P(x, y)$: There is a computer science course such that every student in your class has taken it.
 - e) $\forall y \exists x P(x, y)$: For every computer science course y at your school, there is a student in your class such that took your class.
 - f) $\forall x \forall y P(x, y)$: For every student x in your class, for every computer science course y at your school, x has taken y. In other words, every student in your class has taken all of the computer science courses at your school.
- 10. Rosen, page 52, problem 8.
 - a) $\exists x \exists y Q(x, y)$
 - b) $-\exists x\exists y Q(x,y)$
 - c) $\exists x (Q(x, Jeopardy) \land Q(x, Wheel of Fortune))$
 - d) $\forall y \exists x Q(x, y)$
 - e) $\exists x_1 \exists x_2 (x_1 \neq x_2 \land Q(x_1, Jeopardy) \land Q(x_2, Jeopardy))$
- 11. Rosen, page 52, problem 12.
 - a) -I(Jerry)
 - b) -C(Rachel, Chelsea)

- c) -C(Jan, Sharon)
- d) $-\exists x C(x, Bob)$
- e) $\forall x (C(Sanjay, x) \leftrightarrow x \neq Joseph)$
- f) $\exists x I(x)$
- g) $-\forall x I(x)$
- h) $\exists x \forall y (I(y) \leftrightarrow y = x)$
- i) $\exists x \forall y (-I(y) \leftrightarrow y = x)$
- j) $\forall x (I(x) \to (\exists y (y \neq x \land C(x, y))))$
- k) $\exists x (I(x) \land (\forall y (y \neq x \rightarrow -C(x, y))))$
- 1) $\exists x \exists y (x \neq y \land -C(x,y))$
- m) $\exists x \forall y C(x,y)$
- n) $\exists x \exists y (x \neq y \land (-\exists z (C(x, z) \land C(y, z))))$
- o) $\exists x \exists y (x \neq y \land \forall z ((z \neq x \land z \neq y) \rightarrow (C(x, z) \lor C(y, z))))$