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Cumulative Distribution Network: definition

A CDN G is a bipartite graph (V, S, E) where
» V is the set of variable nodes,

» S is the set of function nodes,
with ¢ : RIN@)I —[0,1] is a CDF,
» E is the set of edges, connecting functions to their variables.
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The joint CDF of this CDN is F(x) = [[cs ¢-



CDNs: what are they for?

» PDF models must enforce a normalization constraint.

» PDFs are made more tractable by restricting to, e.g.,
Gaussians.

» Many non-Gaussian distributions are conveniently
parametrized as CDFs.

» CDNs can be used to model heavy-tailed distributions, which
are important in climatology and epidemiology.



Inference from joint CDF

Conditional CDF

8XAF(XA,XB)

Flxslxa) = =5 F(xa)

Likelihood
P(x]0) = OxF(x|0)
For MLE, need gradient of log likelihood

1
Vo log P(x|6) = 2

WVGP(XW)



Mixed derivative of a product

Olf-gl =) ouf -0ge

UCx

which has 2| terms. More generally,

k k
wlfi= > TIouf
i=1 U,...Ug i=1
where we sum over all partitions Uj, ... Uy of x into k subsets.

There are kX! terms in this sum.



Mixed derivative over a separation

Partition the functions of a CDN into M; and M,

> with variable sets C; and Gy and $51, =G N G

» and G; and G; the products of functions in M; and M.
Then

K [G1Gy] = Z [axcl\sm O Gl} [8XC2\51,2 a"51,2\/‘ Gz]
ACS: 2



Junction Tree: definition

Let G =(V,S,E) be a CDN.
A tree T = (C, &) is a junction tree for G if
1. Cis a cover for V:
each C; € Cis a subset of V and |J; (; = V
2. family preservation holds:
for each ¢ € S, there is a C; € C such that scope(¢) C C;
3. running intersection property holds:
if C; € C is on the path between C; and Cy, then ;N G, C G



Junction Tree: example




Construction of the junction tree

In implementation

» greedily eliminate the variables with the minimal fill-in
algorithm

» construct elimination subsets for nodes in the junction tree
using the MATLAB Bayes Net Toolbox (Murphy, 2001)



Decomposition of the joint CDF

Partitioning function of S into M;, the joint CDF is
F(x) = H Yi(xc), where ¢ = H )
CJ'EC ¢€Mj
Let r be a chosen root of the joint tree. Then
F(x) = vr(xc,) [T T(x)
ngr

where

Ti(x) = ] witxc)

JET

and 7/ is the subtree rooted at k.



Derivative of the joint CDF

OxF(x) = O« [%(Xo) I1 Tkr(X)]

ke&,

kegr

= Oxe, Oxe. {lbr(xc,) H T,f(x)]
= 8xcr wr(xCr) aXcT H T;(X)]

ke&y

= 8XC, wr(xC,) H 0xT£\Cr T/:(X)]

keé&,

the last equality follows from the running intersection property



Messages to the root of the junction tree

Message from children k to root r, where A C C,
my_(A) = Ok, [aXT;\c, T,:(x)}

In particular
My, (&) = O

XT;C\Cr

At the root, if U, C &, and AC C,

Ti(x)

m(A, Ur) = 0, |}Z}r(xCr) H mk_,,(Q)]

ke&,



Messages in the rest of the junction tree

Jjeu;

mi(A, U;) = Ok, ["L/ff(Xc,-) H mji(@

where A C C; and U; C¢&;.

m;i(A) = O, [ s '(X)]

where AC §; ;.

>]



Messages in the rest of the junction tree

In terms of messages

mi(A, Uj) = {T,D:(Xc misi(@) [ misi(e ]

Jj€UN{k}

= Y mea(BYmi(A\ B,U\ {Kk})

BCAﬂS, k

mji(A) = 8XA,CJ-\S,-,J- ¥i(xg) H TJ
1eg\{i}

= m;j (AU (Cj \ Si,j)v gj \ {’})



Gradient of the likelihood

Likelihood
P(x|0) = Ox [F(x|0)] = m, (C;, &)

Gradient likelihood
Vom, (C, &)
decomposed similarly to m, (C;, &) in the junction tree:
> g = Vom

> gj—i = Vomj



JDiff algorithm: outline

for each cluster (from leaf to root):
1. compute derivative within cluster
2. compute messages from children

3. send messages to parent



foreach Node j € C do
Uj 0 v [Loenr, &5
foreach Subser A C C; do
?’T?J(Aﬂ) — BXA[I"'I"J];
g, (A, 0) « Voo, [t]:
end
foreach Neighbor k € £; (73, do
Sik = Ci N0k
foreach Subset A C C'; do
mi(AUjUk) < 2pcans,, Me—i (B)m; (AN B, Uj);
gi(AU;Uk) « Xpcans, , mr—i (B)8gi (AN B, Uj) + gr—j (B)m; (A\ B.Uj):
end
Ui U;Uks
end
if 7 # r then
k< {1|&; ﬂTJI #0}: S+ C;NCr:
foreach Subset A C S, ;; do
mjix(A) < m, (A UG\ Sik &5\ k);

gik(A) < g (A UG5\ S, €51\ k) ;
end

else
return (m,.((_?.,., £, g0 (Cy, E,‘.,.))
end

end



Complexity of JDiff
O-notation of number of steps/terms in each inner loop for fixed j:

]

C )
1 Z(' ‘)|Mj|k=<|M,-|+1)|Cf|
A 154
2. (1€ —-1) maXZ< Jk>2’C\SJk‘2I

3 2lSix

Total. Exponential in tree-width of graph
o <max(]Mj] + 1)|Cf| + max (& - 1)2|CJ\Sj,k|3|Sj,k|>
J (J,k)e€



Application: symbolic differentiation on graphs

Computation of dxF(x) on CDNs
» Grids: 3x3to9x9
> Cycles: 10 to 20 nodes

| oiff | Mathematica_JD* |

Grids 1s.—20 min. 6.2s.-© 9.2s.-®
Cycles 0.81s.—2.83s. 1.2s5.—580s. 6.7s.—12.7 s.



Application: modeling heavy-tailed data

» Rainfall: 61 daily measurements of rainfall at 22 sites in China

> HIN1: 29 weekly mortality rates in 11 cities in the
Northeastern US during the 2008-2009 epidemic



Application: modeling heavy-tailed data

Average test log-likelihoods on

leave-one-out cross-validation

Log-likellhood

Rainfall data

Log-likelihood
2 8 & & 8 3

4
3

o

HIN1 mortality



Future work

» Develop compact models (bounded treewidth) for applications
in other areas (seismology)

» Study connection between CDNs and other copula-based
algorithms

» Develop faster approximate algorithms



