
Exact inference and learning for cumulative
distribution functions on loopy graphs

Jim C. Huang, Nebojsa Jojic and Christopher Meek

NIPS 2010

Presented by Jenny Lam

Previous work

I Cumulative distribution networks and the derivative-sum-
product algorithm. Huang and Frey, 2008. UAI.

I Cumulative distribution networks: Inference, estimation and
applications of graphical models for cumulative distribution
functions. Huang, 2009. Ph.D. Thesis.

I Maximum-likelihood learning of cumulative distribution
functions on graphs. Huang and Jojic, 2010. Journal of ML
research.

Cumulative Distribution Network: definition

A CDN G is a bipartite graph (V ,S ,E) where

I V is the set of variable nodes,

I S is the set of function nodes,
with φ : R|N(φ)| → [0, 1] is a CDF,

I E is the set of edges, connecting functions to their variables.

!"#$%&'()*+*($*&#(,&-*#+('(.&)/+&$010-#%'2*&,'3%+'40%'/(&)0($%'/(3&
/(&-//56&.+#573&
!"#$%&$'()*+,$-./012)$!01"3$)*4$%56"27085.6$9..:$

9"36020;7$<.2.)635$

$
=">.*$)$8604(37$0;$;(*37"0*2$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$,$$$$$$$$$$$$$$$$$$$$$$

30#8(7.$

$

.&+&?$

%0#/"*)706"32$$

@7)7"27"3)A$85B2"32$$

%0#8(7)7"0*)A$35.#"276B$$

$

=6)85"3)A$#04.A2$;06$3(#(A)7">.$4"276"/(7"0*$;(*37"0*2$C%DE2F$

$

$

! !!" #
!

!!"
"!!!!"

#!
"
!!!"

#

G.HI0"*7$;0*72$(2.4$"*$J9E&$$

<.)4$75.$G.HI0"*7$#)*()A$/.;06.$B0($4.A.7.$75"2$/0H&?$$$"$#""!!!!!$

%!!" # #!
"
!!!"

#

"$%!!#&" #"$#!
"
!!!#&"

#

%0#8(7"*+$860/)/"A"7B$

4.*2"7B$;(*37"0*2$CIDE2F$

I)6)#.7.6$.27"#)7"0*,$06$

A.)6*"*+$

C'()*+$)*4$E6.B,$KLLMF$

C'()*+$)*4$!01"3,$KLNLF$

9.22)+.O8)22"*+$"*$76..2$

The joint CDF of this CDN is F (x) =
∏
φ∈S φ.

CDNs: what are they for?

I PDF models must enforce a normalization constraint.

I PDFs are made more tractable by restricting to, e.g.,
Gaussians.

I Many non-Gaussian distributions are conveniently
parametrized as CDFs.

I CDNs can be used to model heavy-tailed distributions, which
are important in climatology and epidemiology.

Inference from joint CDF

Conditional CDF

F (xB |xA) =
∂xAF (xA, xB)

∂xAF (xA)

Likelihood
P(x|θ) = ∂xF (x|θ)

For MLE, need gradient of log likelihood

∇θ logP(x|θ) =
1

P(x|θ)
∇θP(x|θ)

Mixed derivative of a product

∂x [f · g] =
∑

U⊆x
∂U f · ∂Ug

which has 2|x | terms. More generally,

∂x

k∏

i=1

fi =
∑

U1,...Uk

k∏

i=1

∂Ui
fi

where we sum over all partitions U1, . . .Uk of x into k subsets.
There are k |x | terms in this sum.

Mixed derivative over a separation

Partition the functions of a CDN into M1 and M2

I with variable sets C1 and C2 and S1,2 = C1 ∩ C2

I and G1 and G2 the products of functions in M1 and M2.

Then

∂x [G1G2] =
∑

A⊆S1,2

[
∂xC1\S1,2∂xAG1

] [
∂xC2\S1,2∂xS1,2\AG2

]

Junction Tree: definition

Let G = (V , S ,E) be a CDN.
A tree T = (C, E) is a junction tree for G if

1. C is a cover for V :
each Cj ∈ C is a subset of V and

⋃
j Cj = V

2. family preservation holds:
for each φ ∈ S , there is a Cj ∈ C such that scope(φ) ⊆ Cj

3. running intersection property holds:
if Ci ∈ C is on the path between Cj and Ck , then Cj ∩Ck ⊆ Ci

Junction Tree: example

!"#$%&'()*+*($*&#(,&-*#+('(.&)/+&$010-#%'2*&,'3%+'40%'/(&)0($%'/(3&
/(&-//56&.+#573&
!"#$%&$'()*+,$-./012)$!01"3$)*4$%56"27085.6$9..:$

9"36020;7$<.2.)635$

$
=">.*$)$8604(37$0;$;(*37"0*2$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$,$$$$$$$$$$$$$$$$$$$$$$

30#8(7.$

$

.&+&?$

%0#/"*)706"32$$

@7)7"27"3)A$85B2"32$$

%0#8(7)7"0*)A$35.#"276B$$

$

=6)85"3)A$#04.A2$;06$3(#(A)7">.$4"276"/(7"0*$;(*37"0*2$C%DE2F$

$

$

! !!" #
!

!!"
"!!!!"

#!
"
!!!"

#

G.HI0"*7$;0*72$(2.4$"*$J9E&$$

<.)4$75.$G.HI0"*7$#)*()A$/.;06.$B0($4.A.7.$75"2$/0H&?$$$"$#""!!!!!$

%!!" # #!
"
!!!"

#

"$%!!#&" #"$#!
"
!!!#&"

#

%0#8(7"*+$860/)/"A"7B$

4.*2"7B$;(*37"0*2$CIDE2F$

I)6)#.7.6$.27"#)7"0*,$06$

A.)6*"*+$

C'()*+$)*4$E6.B,$KLLMF$

C'()*+$)*4$!01"3,$KLNLF$

9.22)+.O8)22"*+$"*$76..2$

sets that do not intersect, then the differentiation can be simplified by independently computing
derivatives for each factor and multiplying. For example, for the CDN in Figure 1(a), partitioning
the problem such that !1 = {2, 3, 4, 6}, !2 = {1, 2, 5, 7} yields a more efficient computation than
the brute force approach. Significant computational advantages exist even when # ∕= ∅, provided
∣#1,2∣ is small. This suggests that we can recursively decompose the total mixed derivative and
gradient computations into a series of simpler computations so that ∂x[% (x)] reduces to a sum that
contains far fewer terms than that required by brute force. In such a recursion, the total product of
factors is always broken into parts that share as few variables as possible. This is efficient for most
CDNs of interest that consist of a large number of factors that each depend on a small subset of
variables. Such a recursive decomposition is naturally represented using a junction tree [12] for the
CDN in which we will pass messages corresponding to local derivative computations.

3.1 Differentiation in junction trees
In a CDN & = (&, #, '), let {!1, ⋅ ⋅ ⋅ , !"} be a set of (subsets of variable nodes in & , where∪"

#=1 !# = & . Let (= {1, ⋅ ⋅ ⋅ , (} and) = (ℰ , () be a tree where ℰ is the set of undirected edges
so that for any pair), * ∈ (there is a unique path from) to *. Then) is a junction tree for & if any
intersection!#

∩
!$ is contained in the subset!% corresponding to a node + on the path from) to *.

For each directed edge (), *) we define the separator set as ##,$ = !#

∩
!$. An example of a CDN

and a corresponding junction tree are shown in Figures 1(a), 1(b).

(a) (b) (c) (d)
Figure 1: a) An example of a CDN with 7 variable nodes (circles) and 15 function nodes (diamonds); b) A
junction tree obtained from the CDN of a). Separating sets are shown for each edge connecting nodes in the
junction tree, each corresponding to a connected subset of variables in the CDN; c), d) CDNs used to model
the rainfall and H1N1 datasets. Nodes and edges in the non-loopy CDNs of [8] are shown in blue and function
nodes/edges that were added to the trees are shown in red.

Since) is a tree, we can root the tree at some node in (, say ,. Given ,, denote by - $
the subset

of elements of (that are in the subtree of) rooted at * and containing). Also, let ℰ# be the set
of neighbors of) in) , such that ℰ# = {*∣(), *) ∈ ℰ}. Finally, let !& =

∪
#∈& !#. Suppose

.1, ⋅ ⋅ ⋅ , ." is a partition of # such that for any) = 1, ⋅ ⋅ ⋅ , (, .# consists of all / ∈ # whose
neighbors in & are contained in !# and there is no * >) such that all neighbors of / ∈ .# are
included in !$. Define the potential function 1#(x'!) =

∏
(∈)!

2((x() for subset !#. We can then
write the joint CDF as

% (x) = 1*(x'")
∏

%∈ℰ"

3 *
% (x), (4)

where 3 *
%

(
x
)

=
∏

$∈+"
#

1$(x'$), with 1$ defined as above. Computing the probability 4 (x) then
corresponds to computing

∂x

[
1*(x'")

∏

%∈ℰ"

3 *
%

(
x
)
]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]

]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

5%→*(∅)

]
, (5)

where we have defined messages 5%→*(6) ≡ ∂x)

[
∂x%&"

#
∖'",#

[3 *
%

(
x
)
]
]
, with 5%→*(∅) =

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]. It remains to determine how we can efficiently compute messages in the above

expression. We notice that for any given) ∈ (with 6 ⊆ !# and 7# ⊆ ℰ#, we can define the

4

sets that do not intersect, then the differentiation can be simplified by independently computing
derivatives for each factor and multiplying. For example, for the CDN in Figure 1(a), partitioning
the problem such that !1 = {2, 3, 4, 6}, !2 = {1, 2, 5, 7} yields a more efficient computation than
the brute force approach. Significant computational advantages exist even when # ∕= ∅, provided
∣#1,2∣ is small. This suggests that we can recursively decompose the total mixed derivative and
gradient computations into a series of simpler computations so that ∂x[% (x)] reduces to a sum that
contains far fewer terms than that required by brute force. In such a recursion, the total product of
factors is always broken into parts that share as few variables as possible. This is efficient for most
CDNs of interest that consist of a large number of factors that each depend on a small subset of
variables. Such a recursive decomposition is naturally represented using a junction tree [12] for the
CDN in which we will pass messages corresponding to local derivative computations.

3.1 Differentiation in junction trees
In a CDN & = (&, #, '), let {!1, ⋅ ⋅ ⋅ , !"} be a set of (subsets of variable nodes in & , where∪"

#=1 !# = & . Let (= {1, ⋅ ⋅ ⋅ , (} and) = (ℰ , () be a tree where ℰ is the set of undirected edges
so that for any pair), * ∈ (there is a unique path from) to *. Then) is a junction tree for & if any
intersection!#

∩
!$ is contained in the subset!% corresponding to a node + on the path from) to *.

For each directed edge (), *) we define the separator set as ##,$ = !#

∩
!$. An example of a CDN

and a corresponding junction tree are shown in Figures 1(a), 1(b).

(a) (b) (c) (d)
Figure 1: a) An example of a CDN with 7 variable nodes (circles) and 15 function nodes (diamonds); b) A
junction tree obtained from the CDN of a). Separating sets are shown for each edge connecting nodes in the
junction tree, each corresponding to a connected subset of variables in the CDN; c), d) CDNs used to model
the rainfall and H1N1 datasets. Nodes and edges in the non-loopy CDNs of [8] are shown in blue and function
nodes/edges that were added to the trees are shown in red.

Since) is a tree, we can root the tree at some node in (, say ,. Given ,, denote by - $
the subset

of elements of (that are in the subtree of) rooted at * and containing). Also, let ℰ# be the set
of neighbors of) in) , such that ℰ# = {*∣(), *) ∈ ℰ}. Finally, let !& =

∪
#∈& !#. Suppose

.1, ⋅ ⋅ ⋅ , ." is a partition of # such that for any) = 1, ⋅ ⋅ ⋅ , (, .# consists of all / ∈ # whose
neighbors in & are contained in !# and there is no * >) such that all neighbors of / ∈ .# are
included in !$. Define the potential function 1#(x'!) =

∏
(∈)!

2((x() for subset !#. We can then
write the joint CDF as

% (x) = 1*(x'")
∏

%∈ℰ"

3 *
% (x), (4)

where 3 *
%

(
x
)

=
∏

$∈+"
#

1$(x'$), with 1$ defined as above. Computing the probability 4 (x) then
corresponds to computing

∂x

[
1*(x'")

∏

%∈ℰ"

3 *
%

(
x
)
]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]

]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

5%→*(∅)

]
, (5)

where we have defined messages 5%→*(6) ≡ ∂x)

[
∂x%&"

#
∖'",#

[3 *
%

(
x
)
]
]
, with 5%→*(∅) =

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]. It remains to determine how we can efficiently compute messages in the above

expression. We notice that for any given) ∈ (with 6 ⊆ !# and 7# ⊆ ℰ#, we can define the

4

Construction of the junction tree

In implementation

I greedily eliminate the variables with the minimal fill-in
algorithm

I construct elimination subsets for nodes in the junction tree
using the MATLAB Bayes Net Toolbox (Murphy, 2001)

Decomposition of the joint CDF

Partitioning function of S into Mj , the joint CDF is

F (x) =
∏

Cj∈C
ψj(xCj

), where ψj ≡
∏

φ∈Mj

φ

Let r be a chosen root of the joint tree. Then

F (x) = ψr (xCr)
∏

k∈Er

T r
k (x)

where
T r
k (x) =

∏

j∈τ rk

ψj(xCj
)

and τ rk is the subtree rooted at k .

Derivative of the joint CDF

∂xF (x) = ∂x


ψr (xCr)

∏

k∈Er

T r
k (x)




= ∂xCr∂xCr


ψr (xCr)

∏

k∈Er

T r
k (x)




= ∂xCr


ψr (xCr) ∂xCr

∏

k∈Er

T r
k (x)




= ∂xCr


ψr (xCr)

∏

k∈Er

∂xτ r
k
\Cr

T r
k (x)




the last equality follows from the running intersection property

Messages to the root of the junction tree

Message from children k to root r , where A ⊆ Cr

mk→r (A) ≡ ∂xA
[
∂xτ r

k
\Cr

T r
k (x)

]

In particular
mk→r (∅) = ∂xτ r

k
\Cr

T r
k (x)

At the root, if Ur ⊆ Er , and A ⊆ Cr

mr (A,Ur) ≡ ∂xA


ψr (xCr)

∏

k∈Er

mk→r (∅)




Messages in the rest of the junction tree

mi (A,Ui) ≡ ∂xA


ψi (xCi

)
∏

j∈Ui

mj→i (∅)




where A ⊆ Ci and Ui ⊆ Ei .

mj→i (A) ≡ ∂xA
[
∂x
τ i
j
\Si,j

T i
j (x)

]

where A ⊆ Si ,j .

Messages in the rest of the junction tree

In terms of messages

mi (A,Ui) = ∂xA


ψi (xCi

)mk→i (∅)
∏

j∈Ui\{k}

mj→i (∅)




=
∑

B⊆A∩Si,k

mk→i (B)mi (A \ B,Ui \ {k})

mj→i (A) = ∂xA,Cj\Si,j


ψj(xCj

)
∏

l∈Ej\{i}

T j
l (x)




= mj (A ∪ (Cj \ Si ,j), Ej \ {i})

Gradient of the likelihood

Likelihood
P(x|θ) = ∂x [F (x|θ)] = mr (Cr , Er)

Gradient likelihood
∇θmr (Cr , Er)

decomposed similarly to mr (Cr , Er) in the junction tree:

I gi ≡ ∇θmi

I gj→i ≡ ∇θmj→i

JDiff algorithm: outline

for each cluster (from leaf to root):

1. compute derivative within cluster

2. compute messages from children

3. send messages to parent

Complexity of JDiff

O-notation of number of steps/terms in each inner loop for fixed j :

1.

|Cj |∑

k=1

(|Cj |
k

)
|Mj |k = (|Mj |+ 1)|Cj |

2. (|Ej | − 1) max
k∈Ej

|Sj,k |∑

l=0

(|Sj ,k |
l

)
2|Cj\Sj,k |2l

3. 2|Sj,k |

Total. Exponential in tree-width of graph

O

(
max

j
(|Mj |+ 1)|Cj | + max

(j ,k)∈E
(|Ej | − 1)2|Cj\Sj,k |3|Sj,k |

)

Application: symbolic differentiation on graphs

Computation of ∂xF (x) on CDNs

I Grids: 3× 3 to 9× 9

I Cycles: 10 to 20 nodes

!"#$%&%'()**+,(-./.)#0&1"(2&30$&4.0&*%(%"05*$63(
!"#$%&'("&')**+#%*,%-".&/%)".012$.'&"+%+.$.3%

%
%
%
%
%
%
%
%
%

4156*&'7%+'88"-",$'.$'*,%*,%9-.:)#3%

7*/"(3""(*.$(+*30"$(89:(0*%&';0<(

=>&??(@#0;"/#0&-#(>A(
;-'+#% <%#=% %>?%5',=% @=>%#=%2% % A=>%#=%2% %
B17&"#% ?=C<%#=% %>=CD%#=% <=>%#=% %EC?%#=% @=F%#=% %<>=F%#=%

G.',8.&&%+.$.% H<I<%5*-$.&'$1%

Application: modeling heavy-tailed data

I Rainfall: 61 daily measurements of rainfall at 22 sites in China

I H1N1: 29 weekly mortality rates in 11 cities in the
Northeastern US during the 2008-2009 epidemic

sets that do not intersect, then the differentiation can be simplified by independently computing
derivatives for each factor and multiplying. For example, for the CDN in Figure 1(a), partitioning
the problem such that !1 = {2, 3, 4, 6}, !2 = {1, 2, 5, 7} yields a more efficient computation than
the brute force approach. Significant computational advantages exist even when # ∕= ∅, provided
∣#1,2∣ is small. This suggests that we can recursively decompose the total mixed derivative and
gradient computations into a series of simpler computations so that ∂x[% (x)] reduces to a sum that
contains far fewer terms than that required by brute force. In such a recursion, the total product of
factors is always broken into parts that share as few variables as possible. This is efficient for most
CDNs of interest that consist of a large number of factors that each depend on a small subset of
variables. Such a recursive decomposition is naturally represented using a junction tree [12] for the
CDN in which we will pass messages corresponding to local derivative computations.

3.1 Differentiation in junction trees
In a CDN & = (&, #, '), let {!1, ⋅ ⋅ ⋅ , !"} be a set of (subsets of variable nodes in & , where∪"

#=1 !# = & . Let (= {1, ⋅ ⋅ ⋅ , (} and) = (ℰ , () be a tree where ℰ is the set of undirected edges
so that for any pair), * ∈ (there is a unique path from) to *. Then) is a junction tree for & if any
intersection!#

∩
!$ is contained in the subset!% corresponding to a node + on the path from) to *.

For each directed edge (), *) we define the separator set as ##,$ = !#

∩
!$. An example of a CDN

and a corresponding junction tree are shown in Figures 1(a), 1(b).

(a) (b) (c) (d)
Figure 1: a) An example of a CDN with 7 variable nodes (circles) and 15 function nodes (diamonds); b) A
junction tree obtained from the CDN of a). Separating sets are shown for each edge connecting nodes in the
junction tree, each corresponding to a connected subset of variables in the CDN; c), d) CDNs used to model
the rainfall and H1N1 datasets. Nodes and edges in the non-loopy CDNs of [8] are shown in blue and function
nodes/edges that were added to the trees are shown in red.

Since) is a tree, we can root the tree at some node in (, say ,. Given ,, denote by - $
the subset

of elements of (that are in the subtree of) rooted at * and containing). Also, let ℰ# be the set
of neighbors of) in) , such that ℰ# = {*∣(), *) ∈ ℰ}. Finally, let !& =

∪
#∈& !#. Suppose

.1, ⋅ ⋅ ⋅ , ." is a partition of # such that for any) = 1, ⋅ ⋅ ⋅ , (, .# consists of all / ∈ # whose
neighbors in & are contained in !# and there is no * >) such that all neighbors of / ∈ .# are
included in !$. Define the potential function 1#(x'!) =

∏
(∈)!

2((x() for subset !#. We can then
write the joint CDF as

% (x) = 1*(x'")
∏

%∈ℰ"

3 *
% (x), (4)

where 3 *
%

(
x
)

=
∏

$∈+"
#

1$(x'$), with 1$ defined as above. Computing the probability 4 (x) then
corresponds to computing

∂x

[
1*(x'")

∏

%∈ℰ"

3 *
%

(
x
)
]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]

]

= ∂x%"

[
1*(x'")

∏

%∈ℰ"

5%→*(∅)

]
, (5)

where we have defined messages 5%→*(6) ≡ ∂x)

[
∂x%&"

#
∖'",#

[3 *
%

(
x
)
]
]
, with 5%→*(∅) =

∂x%&"
#

∖'",#
[3 *

%

(
x
)
]. It remains to determine how we can efficiently compute messages in the above

expression. We notice that for any given) ∈ (with 6 ⊆ !# and 7# ⊆ ℰ#, we can define the

4

Application: modeling heavy-tailed data

Average test log-likelihoods on leave-one-out cross-validation
!"#$%&%'()**+,(-./.)#0&1"(2&30$&4.0&*%(%"05*$63(
!"#$%&'("&')**+#%*,%-".&/%)".012$.'&"+%+.$.3%

%
%
%
%
%
%
%
%
%

4156*&'7%+'88"-",$'.$'*,%*,%9-.:)#3%

7*/"(3""(*.$(+*30"$(89:(0*%&';0<(

=>&??(@#0;"/#0&-#(>A(
;-'+#% <%#=% %>?%5',=% @=>%#=%2% % A=>%#=%2% %
B17&"#% ?=C<%#=% %>=CD%#=% <=>%#=% %EC?%#=% @=F%#=% %<>=F%#=%

G.',8.&&%+.$.% H<I<%5*-$.&'$1%

Future work

I Develop compact models (bounded treewidth) for applications
in other areas (seismology)

I Study connection between CDNs and other copula-based
algorithms

I Develop faster approximate algorithms

