

Introduction

- Combining two frameworks
 - AND/OR Search Spaces
 - Multi-valued Decision Diagrams (MDDs)
- Both are more compact ways to represent problems.
- Their combination yields an even more compact representation.
- Decision Diagrams are known to allow online speed queries.

Introduction

Ordered Binary Decision Diagram

$$B = \{0,1\}$$
 f: $B^3 \to B$

Α	В	С	f(ABC)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Table

Decision tree

- 1) Metrogeo Bersphirth indetessical children [Bryant86]
- 2) Remove redundant nodes

Ordering enables efficient operations

Decision Diagrams

Α	В	С	f(ABC)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Minimal AND/OR graph

Point dead-ends to terminal node "0"

Point goods to terminal node "1"

Decision Diagram

Removing Redundancy

Group OR node together with its AND children into a meta-node

OBDD

(pseudo tree is a chain)

AOBDD

Α	В	С	f(ABC)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Α	В	D	g(ABD)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

And/Or Multi-Valued Decision Diagrams

- AOMDDs are:
 - AND/OR search graphs
 - canonical representations, given a pseudo tree
 - Defined by two rules:
 - All isomorphic subgraphs are merged
 - There are no redundant (meta) nodes

Example:

 $(f \lor h) \land (a \lor !h) \land (a#b#g) \land (f \lor g) \land$ $(b \lor f) \land (a \lor e) \land (c \lor e) \land (c#d) \land (b \lor c)$

Example (continued)

AOBDD vs. OBDD

Constraint Optimization - AND/OR Tree

Α	В	С	f ₁ (ABC)
0	0	0	8
0	0	1	8
0	1	0	8
0	1	1	2
1	0	0	8
1	0	1	2
1	1	0	∞
1	1	1	2

f ₂ (ABD)	D	В	Α
1	0	0	0
8	1	0	0
0	0	1	0
2	1	1	0
6	0	0	1
5	1	0	1
6	0	1	1
5	1	1	1

В	D	Ε	f ₃ (BDE)
0	0	0	8
0	0	1	3
0	1	0	8
0	1	1	4
1	0	0	8
1	0	1	3
1	1	0	8
1	1	1	4

AND/OR Context Minimal Graph

Α	В	С	f ₁ (ABC)
0	0	0	8
0	0	1	8
0	1	0	∞
0	1	1	2
1	0	0	8
1	0	1	2
1	1	0	∞
1	1	1	2

Α	В	D	f ₂ (ABD)
0	0	0	1
0	0	1	8
0	1	0	0
0	1	1	2
1	0	0	6
1	0	1	5
1	1	0	6
1	1	1	5
	•		

В	D	Ε	f ₃ (BDE)
0	0	0	8
0	0	1	3
0	1	0	8
0	1	1	4
1	0	0	8
1	0	1	3
1	1	0	8
1	1	1	4

redundant

AOMDD - Compilation by Search

0

19

AOMDD - Compilation by Search

AOMDD - Compilation by Search

AOMDD - Compilation by Search

AOMDD for Constraint Optimization

AOMDD for all solutions

AOMDD for two best solutions

Complexity of Compilation

The size of the AOMDD is O(n kw*)

 The compilation time is also bounded by O(n kw*)

```
k = domain sizen = number of variables
```

w*= treewidth

Semantic Treewidth

- Given a network, there may exist a sparser equivalent network.
- Challenges the idea of using induced width to measure the difficulty of the problem
- AOMDD sizes are much smaller than the bound

Semantic Treewidth

- With respect to a pseudo tree, this is the smallest treewidth over all equivalent networks that can have that pseudo tree
- With respect to the network, this is the smallest semantic treewidth over all pseudo trees that can express the set of solutions
- Instead of the induced width bounding AOMDD size, we can use semantic treewidth.

Semantic Treewidth

eq(n,10)	graph	c	w*	h	time	#aomdd
n=10	chain	9	1	5	0.0240	91
	complete	45	9	9	0.0660	91
n=50	chain	49	1	25	0.1420	491
	complete	1225	49	49	1.1130	491
n=100	chain	99	1	50	0.3120	991
11—100	complete	4950	99	99	5.5900	991

Equality constraint network results

Constraint Propagation

- We can also prune the search space during compilation without removing possible solutions.
- In Bayesian networks, prune a subtree if the weight of the assignment is 0.

Experiments

- What about the pseudo-tree height parameter?
- Problems: WCSP instances
 - ISCAS 89 Circuits
 - SPOT5 Satellites
 - Mastermind
 - CELAR6 Radio Frequencies
- Time bound for compilation: 3 hours

Experiments

- Compilation was for finding the optimal solution
- Used AOBB with static mini-bucket heuristics (i-bound = 10)
- Tried different implementations of MinFill
 - Existing implementation in the compiler
 - daoopt (gets lower h because it considers it too)
 - CVO

Experiments

- BnB pruning makes the size unpredictable as a function of the parameters
- Need to modify the routine for solution counting so the entire AOMDD is actually compiled

Experiments (BN)

- Reproduce and extend BN results in JAIR 2008 paper
- UAI 2006 Bayesian network benchmarks
 - Domain sizes of 2
 - Evidence on 30 random variables (to simplify the networks slightly)
 - Many elements with "0" support
- Compile with constraint propagation

To do

- Perform experiments to compare optimization vs. full compilation
 - Need to extend code for WCSPs
- Another way to deal with unpredictability of w/h vs. size in optimization?
 - Compute many orderings with equal w/h and average the search space/AOMDD sizes.

Future Work?

- Try regressing curves that depend on w, h, or both
- Evaluation of bottom-up version of compilation (Robert's algorithm in CP 2006)