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Max-Sum Problem
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e.g. the MAP problem on MRFs



Formulation of the Problem
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Commutative Semirings
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Semirings

CSP

Denote a problem by (G,X,3) — Graph, Domain, Constraints
Let 9,(x), 9,+(x,x’) = {0,1} say if an assignment is allowed or
forbidden
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Arc consistency in CSP

Gu(w, 7)) = gi(x), (Lt} E€B, zeX

The kernel can be obtained by iteratively applying
the following relations until no more 0
assignments are made (arc consistency algorithm)
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Semirings
Max-sum

Denote a problem by (G,X,g) — Graph, Assignments, Weights

F(x|g) ng ) Z Ger (T4, T4 )

?'LET {f?”r}EE
L_G?){(g) — argimax F(X ‘ g)

xe X7



Equivalent Transformations

Also known as ERs (Wainwright)

A problem is called equivalent if (G,X,g) and (G,X,g’) produce the same problem,
denoted as g~g’

The simplest such transformation adds a number ¢,,.(x) to g,(x) while removing from
gtt'(xlxi)

This formulation corresponds to potentials or messages from message passing



Schlesinger’s Upper Bound
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Triviality

(t,x) is a maximal node if g,(x) = u,
{(t,x), (t’,x’)} is a maximal edge if g,.(x,x") = Uy

9,(x) = [[g(x) = ud] 9 (x) = [[8(X,X) = U]

A max-sum problem is trivial if a labeling can be formed of a subset of its
maximal nodes and edges

Theorem 4. Let C' be a class of equivalent max-sum problems. Let
C' contain a trivial problem. Then, any problem in C' is trivial
if and only if its height is minimal in C.



Triviality

Theorem 4. Let C' be a class of equivalent max-sum problems. Let
C' contain a trivial problem. Then, any problem in C' is trivial
if and only if its height is minimal in C.

[. minimize the problem height by equivalent trans-
formations and
2. test the resulting problem for triviality.

Testing for triviality of a max-sum problem is correspondent to solving the CSP
generated by its maximal nodes and edges

A CSP is a tight solution to all max-sum problems it can be equivalently
transformed into



Equivalent Transformations
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Linear Programming Relaxation
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Duality of the Relaxations
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Theorem 5. The height of (G, X,g) is minimal of all its
equivalents if and only if (G, X, g) is relaxed-satisfiable. If it is
so, then .'"'!.(;__‘IL"{g} = .'i!.(;__‘lf[g}.



More theorems fall out

Theorem 6. Let (G, X,g*) be the kernel of a CSP (G, X, g).
Then, Ag x(g) = Aax(g")-

Theorem 7. A nonempty kernel of (G, X, g) is necessary for its
relaxed satisfiability and, hence, for minimal height of
(G, X, g).

Finding the kernel does not guarantee finding a
solution for the minimal upper bound
Obvious by approach from CSPs

For problems of boolean variables |X| =2
finding the kernel is necessary and sufficient
for finding the upper bound

g satisfiable g relaxed-satisfiable ‘
o ' ' o kernel of g nonempty
g trivial height of g minimal



(Super) Submodularity

Known that the (super) submodularity property produces max-
sum problems with tractable solutions by conversion to max-
flow/min-cut problems

Has been suggested that supermodularity is the discrete
counterpart of convexity. Lots of work shows that the LP
relaxation for a supermodular max-sum problem is tight

Supermodular max-sum problems will always form a lattice CSP
with a tractable solution




An application (not just theory!)




