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Max-Sum Problem

e.g. the MAP problem on MRFs



Formulation of the Problem
G = (T, E)
T is a set of objects, is a labeling on t

G’ = (T × X,EX) gt = (t, x) gtt’ = {(t, x), (t’, x’}
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Commutative Semirings
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Semirings



Semirings
CSP

Denote a problem by (G,X,  ) – Graph, Domain, Constraints
Let   t(x),   tt’(x,x’) = {0,1} say if an assignment is allowed or 
forbidden 
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Arc consistency in CSP 

The kernel can be obtained by iteratively applying 
the following relations until no more 0 
assignments are made (arc consistency algorithm)



Semirings
Max-sum

Denote a problem by (G,X,g) – Graph, Assignments, Weights 



Equivalent Transformations

Also known as ERs (Wainwright)

A problem is called equivalent if (G,X,g) and (G,X,g’) produce the same problem, 
denoted as g~g’

The simplest such transformation adds a number φtt’(x) to gt(x) while removing from 
gtt’(x,x’)

This formulation corresponds to potentials or messages from message passing



Schlesinger’s Upper Bound



Triviality
(t,x) is a maximal node if gt(x) = ut

{(t,x), (t’,x’)} is a maximal edge if gtt’(x,x’) = utt’

t(x) = [[gt(x) = ut]]      tt’(x) = [[gtt’(x,x’) = utt’]]

A max-sum problem is trivial if a labeling can be formed of a subset of its 
maximal nodes and edges
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Triviality

Testing for triviality of a max-sum problem is correspondent to solving the CSP 
generated by its maximal nodes and edges

A CSP is a tight solution to all max-sum problems it can be equivalently 
transformed into



Equivalent Transformations

(CSPs)



Linear Programming Relaxation

This gives the polytope
which has a set of 
optimal vertices given by



Duality of the Relaxations



More theorems fall out

Finding the kernel does not guarantee finding a 
solution for the minimal upper bound

Obvious by approach from CSPs

For problems of boolean variables |X| = 2 
finding the kernel is necessary and sufficient 
for finding the upper bound



(Super) Submodularity
Known that the (super) submodularity property produces max-
sum problems with tractable solutions by conversion to max-
flow/min-cut problems

Has been suggested that supermodularity is the discrete 
counterpart of convexity. Lots of work shows that the LP 
relaxation for a supermodular max-sum problem is tight

Supermodular max-sum problems will always form a lattice CSP
with a tractable solution



An application (not just theory!)


