A Linear Programming Approach to Max-sum Problem: A Review

Tomáš Werner

Dept. of Cybernetics, Czech Technical University

Max-Sum Problem

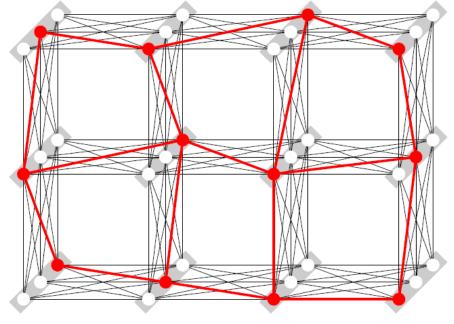
$$\max_{\mathbf{x} \in X^T} \left[\sum_{t \in T} g_t(x_t) + \sum_{\{t, t'\} \in E} g_{tt'}(x_t, x_{t'}) \right]$$

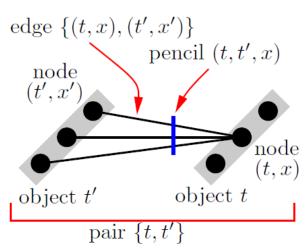
e.g. the MAP problem on MRFs

Formulation of the Problem

$$G = (T, E)$$
 T is a set of objects, $x_t \in X$ is a labeling on t
$$E \subseteq \binom{T}{2}$$

$$G' = (T \times X, E_X)$$
 $g_t = (t, x) g_{tt'} = \{(t, x), (t', x')\}$



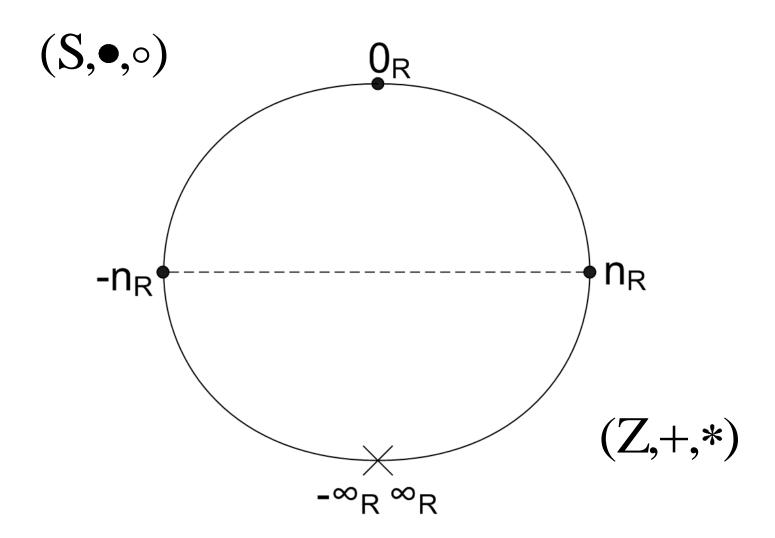


Commutative Semirings

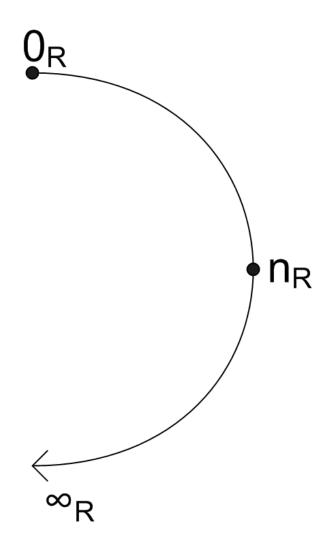
$$\bigoplus_{\mathbf{x}\in X^{|T|}} \left[\bigotimes_{t} g_t(x_t) \otimes \bigotimes_{\{t,t'\}} g_{tt'}(x_t, x_t') \right]$$

(S,\oplus,\otimes)	task
$(\{0,1\},\vee,\wedge)$	or-and problem, CSP
$([-\infty,\infty),\min,\max)$	min-max problem
$([-\infty,\infty),\max,+)$	max-sum problem
$([0,\infty),+,*)$	sum-product problem

Rings



Semirings



Semirings CSP

Denote a problem by (G,X,\overline{g}) – Graph, Domain, Constraints Let $\overline{g}_t(x)$, $\overline{g}_{tt'}(x,x') = \{0,1\}$ say if an assignment is allowed or forbidden

$$\bar{L}_{G,X}(\bar{\mathbf{g}}) = \left\{ \mathbf{x} \in X^T \middle| \bigwedge_t \bar{g}_t(x_t) \land \bigwedge_{\{t,t'\}} \bar{g}_{tt'}(x_t, x_{t'}) = 1 \right\}$$

Arc consistency in CSP

$$\bar{g}_{tt'}(x, x') \in \{0, 1\}$$

$$\bigvee_{x'} \bar{g}_{tt'}(x, x') = \bar{g}_t(x), \quad \{t, t'\} \in E, \ x \in X$$

The **kernel** can be obtained by iteratively applying the following relations until no more 0 assignments are made (arc consistency algorithm)

$$\bar{g}_t(x) := \bar{g}_t(x) \wedge \bigvee_{x'} \bar{g}_{tt'}(x, x'),$$

$$\bar{g}_{tt'}(x,x') := \bar{g}_{tt'}(x,x') \wedge \bar{g}_t(x) \wedge \bar{g}_{t'}(x')$$

Semirings Max-sum

Denote a problem by (G,X,g) – Graph, Assignments, Weights

$$F(\mathbf{x} \mid \mathbf{g}) = \sum_{t \in T} g_t(x_t) + \sum_{\{t, t'\} \in E} g_{tt'}(x_t, x_{t'})$$
$$L_{G,X}(\mathbf{g}) = \operatorname*{argmax}_{\mathbf{x} \in X^T} F(\mathbf{x} \mid \mathbf{g})$$

Equivalent Transformations

Also known as ERs (Wainwright)

A problem is called equivalent if (G,X,g) and (G,X,g') produce the same problem, denoted as $g^{\sim}g'$

The simplest such transformation adds a number $\phi_{tt'}(x)$ to $g_t(x)$ while removing from $g_{tt'}(x,x')$

This formulation corresponds to potentials or messages from message passing

$$g_t^{\varphi}(x) = g_t(x) + \sum_{t' \in N_t} \varphi_{tt'}(x),$$

$$g_{tt'}^{\varphi}(x, x') = g_{tt'}(x, x') - \varphi_{tt'}(x) - \varphi_{t't}(x')$$

Schlesinger's Upper Bound

$$u_t = \max_{x} g_t(x), \quad u_{tt'} = \max_{x,x'} g_{tt'}(x,x')$$

$$U(\mathbf{g}) = \sum_{t} u_t + \sum_{\{t,t'\}} u_{tt'}$$

$$U^*(\mathbf{g}) = \min_{\varphi \in \mathbb{R}^P} \left[\sum_{t} \max_{x} g_t^{\varphi}(x) + \sum_{\{t,t'\}} \max_{x,x'} g_{tt'}^{\varphi}(x,x') \right]$$

Triviality

(t,x) is a maximal node if $g_t(x) = u_t$ {(t,x), (t',x')} is a maximal edge if $g_{tt'}(x,x') = u_{tt'}$

$$\bar{g}_{t}(x) = [[g_{t}(x) = u_{t}]] \quad \bar{g}_{tt'}(x) = [[g_{tt'}(x,x') = u_{tt'}]]$$

A max-sum problem is **trivial** if a labeling can be formed of a subset of its maximal nodes and edges

Theorem 4. Let C be a class of equivalent max-sum problems. Let C contain a trivial problem. Then, any problem in C is trivial if and only if its height is minimal in C.

Triviality

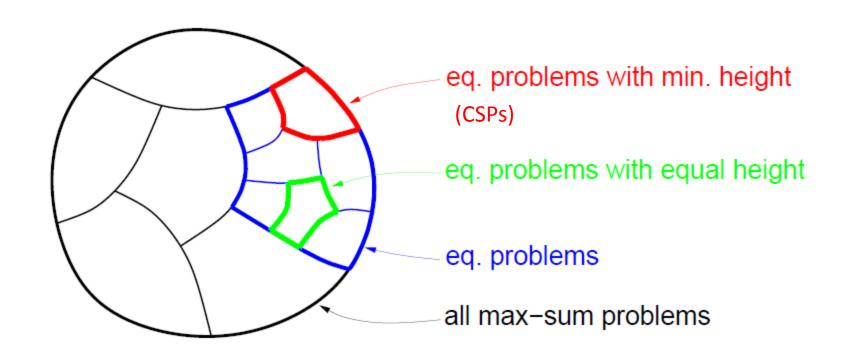
Theorem 4. Let C be a class of equivalent max-sum problems. Let C contain a trivial problem. Then, any problem in C is trivial if and only if its height is minimal in C.

- minimize the problem height by equivalent transformations and
- 2. test the resulting problem for triviality.

Testing for triviality of a max-sum problem is correspondent to solving the CSP generated by its maximal nodes and edges

A CSP is a tight solution to all max-sum problems it can be equivalently transformed into

Equivalent Transformations



Linear Programming Relaxation

$$\sum_{x'} \alpha_{tt'}(x, x') = \alpha_t(x), \ \{t, t'\} \in E, \ x \in X,$$

$$\sum_{x} \alpha_t(x) = 1, \qquad t \in T,$$

$$\alpha \geq 0$$
,

This gives the polytope $\Lambda_{G,X}$ which has a set of optimal vertices given by $\Lambda_{G,X}(\mathbf{g}) = rgmax\langle \mathbf{g}, m{lpha}
angle$ $\alpha \in \Lambda_{G,X}$

$$\langle \mathbf{g}, \boldsymbol{\alpha} \rangle = \sum_{t} \sum_{x} \alpha_{t}(x) g_{t}(x) + \sum_{\{t,t'\}} \sum_{x,x'} \alpha_{tt'}(x,x') g_{tt'}(x,x')$$

Duality of the Relaxations

$$\langle \mathbf{g}, \boldsymbol{\alpha} \rangle \to \max_{\boldsymbol{\alpha}} \qquad \sum_{t \in T} u_t + \sum_{\{t, t'\} \in E} u_{tt'} \to \min_{\boldsymbol{\varphi}, \mathbf{u}}$$
 (11a)

$$\sum_{t \in T} \alpha_t(x) = 1 \qquad u_t \in \mathbb{R}, \qquad t \in T$$
 (11c)

$$\sum_{x,x'\in X}\alpha_{tt'}(x,x')=1 \qquad \qquad u_{tt'}\in\mathbb{R}, \qquad \{t,t'\}\in E \qquad \qquad (11d)$$

$$\alpha_t(x) \ge 0$$
 $u_t - \sum_{t' \in N_t} \varphi_{tt'}(x) \ge g_t(x), \qquad t \in T, \ x \in X$ (11e)

$$\alpha_{tt'}(x, x') \ge 0$$
 $u_{tt'} + \varphi_{tt'}(x) + \varphi_{t't}(x') \ge g_{tt'}(x, x'), \quad \{t, t'\} \in E, \ x, x' \in X$ (11f)

Theorem 5. The height of (G, X, \mathbf{g}) is minimal of all its equivalents if and only if $(G, X, \bar{\mathbf{g}})$ is relaxed-satisfiable. If it is so, then $\Lambda_{G,X}(\mathbf{g}) = \bar{\Lambda}_{G,X}(\bar{\mathbf{g}})$.

More theorems fall out

```
Theorem 6. Let (G, X, \bar{\mathbf{g}}^*) be the kernel of a CSP (G, X, \bar{\mathbf{g}}).
Then, \bar{\Lambda}_{G,X}(\bar{\mathbf{g}}) = \bar{\Lambda}_{G,X}(\bar{\mathbf{g}}^*).
```

Theorem 7. A nonempty kernel of $(G, X, \bar{\mathbf{g}})$ is necessary for its relaxed satisfiability and, hence, for minimal height of (G, X, \mathbf{g}) .

Finding the kernel does not guarantee finding a solution for the minimal upper bound

Obvious by approach from CSPs

For problems of boolean variables |X| = 2 finding the kernel is necessary and sufficient for finding the upper bound

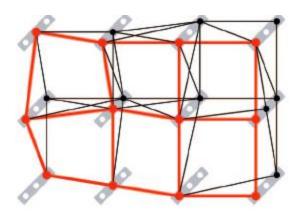
$$\bar{\mathbf{g}}$$
 satisfiable
 $\bar{\mathbf{g}}$ trivial
 $\bar{\mathbf{g}}$ relaxed—satisfiable
height of $\bar{\mathbf{g}}$ minimal
 $\bar{\mathbf{g}}$ kernel of $\bar{\mathbf{g}}$ nonempty

(Super) Submodularity

Known that the (super) submodularity property produces maxsum problems with tractable solutions by conversion to maxflow/min-cut problems

Has been suggested that supermodularity is the discrete counterpart of convexity. Lots of work shows that the LP relaxation for a supermodular max-sum problem is tight

Supermodular max-sum problems will always form a **lattice CSP** with a tractable solution



An application (not just theory!)

