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This chapter provides a tutorial introduction to the use of MCMC in
the analysis of data observed for multiple genetic loci on members of
extended pedigrees in which there are many missing data. We introduce
the specification of pedigrees and inheritance, and the structure of ge-
netic models defining the dependence structure of data. We review exact
computational algorithms which can provide a partial solution, and can
be used to improve MCMC sampling of inheritance patterns. Realization
of inheritance patterns can be used in several ways. Here, we focus on
the estimation of multilocus linkage lod scores for the location of a locus
affecting a disease trait relative to a known map of genetic marker loci.
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1. Introduction

This chapter provides a tutorial introduction to the use of MCMC in the
analysis of data observed for multiple genetic loci on members of extended
pedigrees in which there are many missing data. In section 2, we introduce
the specification of pedigrees and inheritance, and then in section 3 discuss
structure of genetic models defining the dependence structure of data. In
section 4, we review exact computational algorithms which can provide a
partial solution, and can be used to improve MCMC sampling of inheri-
tance patterns (Section 5). In sections 6 and 7 we show how realizations of
inheritance patterns can be used in the Monte Carlo estimation of multilo-
cus linkage lod scores and thence used to find the location of a genetic locus
affecting a disease trait. Finally, in section 8 we provide a small illustrative
example using simulated data.

This chapter is based on previously published material. For earlier work,
readers may consult Thompson [21,22,23], in which many references to
the previous literature may be found: only a few key references will be
repeated here. More recent references will be given: one of these of particular
relevance to the efficient MCMC estimation of lod scores is that of George
& Thompson [6].

2. Pedigrees, inheritance, and genetic models

A pedigree is a specification of the genealogical relationships among a set
of individuals. Each individual is given a unique identifier, and the two par-
ents of each individual are specified. Individuals with unspecified parents
are founders: the others are non-founders. Graphically, males are tradi-
tionally represented by squares, females by circles, while any individual of
unknown sex may be represented by a diamond. In the graphical repre-
sentation of a pedigree known as a marriage node graph individuals having
common offspring are connected to a marriage node, and the marriage node
is connected to each offspring. See the example in Figure 1. (Although this
pedigree structure may appear contrived, it derives from a real study [9].)
Each marriage node is connected upward to two parent individuals, and
downward to at least one (and possibly many) offspring individuals. Each
non-founder is connected upward to precisely one marriage node. A parent
individual may be connected to multiple marriage nodes. The shading of
individuals may represent affectation status for a particular trait, or other
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specified information.

4

Fig. 1. An example pedigree structure deriving from a real study

Human individuals are diploid: every cell nucleus contains two haploid
copies of the DNA of the human genome. One of these copies derives from
the DNA in the individual’s mother (the maternal genome), and the other
from the DNA in the individual’s father (the paternal genome). Note that all
DNA is double-stranded. The double-stranded nature of DNA has nothing
to do with the haploid (single genome copy) or diploid (two copy) genome
content of a cell or organism. The biological process through which DNA
in parent cells is copied and transmitted to offspring is known as meiosis,
and Mendel’s First Law (1866) specifies this transmission marginally, at
any location in the genome. A genome location is known as a locus: the
plural is loci. In modern terminology, Mendel’s First Law states that the
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copy transmitted from parent to offspring is a randomly chosen one of the
two parental copies, and that all meioses, whether to different offspring of
a single parent or in different parental individuals, are independent.

These e ibd: Not this e

Fig. 2. Identity by descent results in observable similarity among individuals.

Segments of DNA in different genomes that are copies of the same ge-
nomic material in a recent common ancestor are said to be identical by
descent (ibd) . Note that ibd is always defined relative to a founder popu-
lation. In the analysis of data on a fixed set of pedigree structures, ibd is
defined relative to the founders of the pedigrees. By definition, the genomes
of founders are nowhere ibd. Identity by descent underlies all similarity
among relatives that results from the effects of their DNA. The different
possible allelic types of the DNA at a locus are known as the alleles at that
locus. The unordered pair of allelic types that an individual carries at a
locus is his genotype at that locus. The observable trait characteristics that
may be controlled or affected by an individual’s genotype at a locus is the
individual’s phenotype.

A small example of the transmission of genome at a single genetic lo-
cus is given in Figure 2. One pair of cousins share the “o” ibd from their
grandparent. The sibling cousin also carries a e symbol at this locus, per-
haps representing the same allele (the type of the DNA). However, it can
be seen that this e is not ibd to the ones in his sibling and cousin, relative
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to the specified pedigree. Of course, further investigation might reveal that
the two founders carrying e symbols are related, and that these e’s are ibd
relative to a larger pedigree: ibd is always defined relative to the specified
pedigree. Given that I have a particular genetic characteristic or phenotype,
for example blood type O, the probability my cousins have blood type O is
increased, because with some probability they share DNA ibd with me at

this locus.

5/6

Fig. 3.
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The inheritance of genome at a specific locus

We can now specify more formally the inheritance of genome at any
specific genome location or locus. We provide unique identifiers to each
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of the two haploid genomes of every founder. We call these the founder
genome labels or FGL . In the literature, these are often known as “founder
alleles” or “founder genes”, but these terms can become ambiguous. The
inheritance of the FGL at a particular locus j is specified by binary meiosis
indicators
Si,j = 0 or 1l

as in meiosis ¢ at locus j the maternal or paternal DNA (respectively) of
the parent is transmitted to the offspring.

In Figure 3, an example realization of the paternal and maternal meiosis
indicators of each non-founder individual are shown under each individual,
with the paternal indicator on the left and maternal indicator on the right.
The numbers 1 through 10 in the symbols representing founders are the
FGL identifiers. It is easily seen that application of the binary indicators to
the FGL enables the descent of FGL down the pedigree to be established.
The resulting FGL present in non-founder individuals are also shown in
Figure 3. These are the two numbers within the symbols representing each
individual, again with the paternally derived FGL on the left and the ma-
ternally derived FGL on the right. It is seen that ibd at a locus is equivalent
to presence of the same FGL at that locus.

We can now specify the inheritance of genome at any set of discrete loci
indexed by j, 7=1,...,[:

S;; =0 if DNA at meiosis i locus j is parent’s maternal DNA,
=1 if DNA at meiosis i locus j is parent’s paternal DNA.
For convenience we define the two sets of vectors each of which makes up
the array S = {S; ; }
S.ﬁj = {Siyj;i = 1,...,m}, j: 17...,l,
Si,. = {Sid;j = 1,...,[}, 1= 1,...,m.
where m is the number of meioses in the pedigree (twice the number of non-

founders), and ! the number of loci under consideration. In the literature,
the vector S, ; is known as the inheritance vector at locus j [14].

3. The structure of a genetic model

In order to derive an appropriate probability model for the array of latent
meiosis indicators S, we first outline the events in the biological process of
meiosis. The DNA in each cell nucleus of an individual is packaged into 46
chromosomes, 23 of which derive from the DNA of the father, and 23 from
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the mother. Only one pair differ between individuals of different sex (the
sex chromosomes). The two members of each of the other 22 pairs carry
essentially the same DNA, although of course at many locations along the
chromosome there may be allelic differences. Prior to meiosis, each chromo-
somes duplicates, but the two parts remain connected at the centromere.
The two chromosomes of a pair (the maternal and paternal ones in the
parental cell nucleus) then become tightly aligned, and may exchange DNA.
Through two successive meiotic divisions, the chromosomes separate, lead-
ing to four potential offspring gametes (Figure 4). Each gamete (sperm or
egg) cell contains a full haploid genome, and may pass to an offspring whose
observable genetic characteristics result from the combined diploid DNA of
their maternal and paternal gametes.

Fig. 4. Meiosis and four resulting potential offspring chromosomes

Each chromosome of the gamete cell consists of alternating segments
of the two parental chromosomes. These segments are large, comprising on
average about 10® base pairs (bp) of DNA. A location at which the DNA
switches from the parent’s maternal to paternal DNA, or from paternal to
maternal, is known as a crossover. Between any two loci, the genetic dis-
tance d (in Morgans) is defined as the expected number of crossover events
between them in an offspring gamete. Since, regardless of dependence, ex-
pectations are additive, this definition provides an additive measure of dis-
tance along the chromosome. Note that genetic distance is defined through
the meiosis process, not in terms of a physical distance such as number of
bp. The relationship between physical and genetic distance varies over the
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genome, and depends on many factors. A key such factor is the sex of the
parent in whom the meiosis occurs. Genetic distances are normally reported
in centiMorgans (1 cM = 0.01 Morgans). As a rough average, 1 ¢cM is about
1 megabase (10° bp).

In an offspring gamete resulting from a meiosis i, between any two loci
j and j’, a recombination is said to have occurred if the DNA at those
locations derived from two different parental chromosomes: S;; # S; ;.
The probability of this event is the recombination fraction p between the
two loci. The value p(d) of the recombination fraction at genetic distance
d is the map function. Under almost all models of meiosis, and apparently
in reality, p(0) =0, p’'(0) =1, p(d) /" d, and p(c0) = 3.

The above considerations are almost sufficient to define the probability
model for S. From Mendel’s First Law we have that the vectors S;, are
independent, and that Pr(S;; = 0) = Pr(S;; = 1) = 1/2. Now we
have also Pr(S; j_1 # Si ;) = pj—1, j=2,..,0, forall i, i =1,...,m. For
notational convenience we assume the recombination fraction is the same for
all meioses ¢, but in modeling real data it is important to allow at least for
different values in male and in female meioses. Our model now determines
the pairwise probability distribution for any two inheritance vectors:

Ry_1 R
Pr(S.; | Sejo1) = p; 27t (1= pja)" fmt, (1)

where Rj_1 = (#i : Si; # Si,j—1). To define the joint distribution of all
the components of S an additional assumption is required. The simplest is
to assume the absence of genetic interference. This assumption implies that
crossovers arise as a Poisson process (rate 1 per Morgan), and hence that
the occurrences of recombination in disjoint intervals of the chromosome
are independent. In this case the inheritance vectors S, ; are first-order
Markov in j:

1

Pr(S) = P(S.1) [[Pr(S.; | S 1)
2
or Pr(8;8_¢j) = Pr(Si;[5 -1, %i+1),

where S_; ;) denotes the set of all components of S except S; ;.

We have specified a model for S, but S is not observed. The data consist
of the trait characteristics of individuals, which are determined by the allelic
types of their DNA at the relevant genetic loci. The simplest possible model
relating ibd to observable data at a single locus is that DNA segments that
are ibd are of the same allelic type, while non-ibd DNA segments are of
independent types. While this model ignores the possibility of mutation
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within the pedigree, and of possible dependence at the population level
among founders of a pedigree, it is an adequate model for most purposes.
Use of more general models is possible, if desired. At locus j, we denote by
A; an allocation of allelic types to the distinct FGL. Our model assumes
that the FGL g are independent in their types with, say, type probabilities
¢;(g), and, more specifically, that each FGL ¢ has type k independently
with some probability ¢; 5. Then

Pr(4) = [Jait9) = [,
g g

where n;(k) is number of FGL g with type k at locus j. We shall also
assume independence of the allelic types of a FGL over loci j. Except in
very small genetic isolates, this is an accurate assumption for loci for which
p > 0.005. This is fortunate since this assumption is hard to generalize.

Thus we have now all the components of a genetic model, and the classes
of parameters involved. The population model, with parameters such as
q = {¢jk}, provides the probabilities for the latent A, the allelic types
of FGL at each j. The inheritance model, with parameters p, provides
probabilities for the latent S, the inheritance of FGL at j, jointly over
j. The genotype of an individual at a particular locus is the unordered
pair of allelic types of the DNA he carries at that locus. The (phased)
multilocus genotype of an individual is the unordered pair of collections of
allelic types in his maternal and paternal genomes. The ordered genotype
of an individual is the ordered pair of allelic types, conventionally ordered
(paternal, maternal). The ordered multilocus genotype is the set of ordered
single-locus genotypes, and is the most detailed specification. We will refer
to the set of ordered multilocus genotypes for all members of a pedigree
structure as G. G defines both phased multilocus genotypes and the set of
genotypes at each locus. Jointly over loci, note that G is in turn determined
by (S, .A). At each locus j, the ordered genotypes G, ; of pedigree members
are determined by S, ; and A;.

The final component of a genetic model is the part that connects the
latent genotypes to observable data Y. The penetrance model, with param-
eters [ specifies the probability of trait data Y given the latent genotypes
G. For simplicity, we shall assume that our data Y can be partitioned into
{Y.;:j =1,..,1}, with Y, ; depending only on G, ;. Each locus j may be
a DNA marker locus, for which this will naturally be true, or may corre-
spond to a trait. For a marker locus, parameters § may include a typing
error model or other factors causing the recorded marker data on an in-
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dividual potentially to differ from the true latent genotype. For a more
general trait determined by locus j, the assumption is that the only locus
in this genome region affecting the trait is the locus j. In this case, the
penetrance probabilities Pg(Y, ; | G. ;) may in general depend on observ-
able covariate information on individuals (age, gender, diet, ...) and also on
other heritable effects contributed by genes elsewhere in the genome, but
not linked to these [ loci.

loci

Fig. 5. The dependence structure of pedigree data

The complete set of parameters will be denoted ¢ = (q, p, 3), and the
likelihood for the model may be written formally as

L&) = P(Y) = Y Ps(Y | G)Pq(G)
G
= > Ps(Y | G(S, A)P,(S)Py(A). (2)
(S.A)

The dependence structure of the data Y in terms of the latent S is shown
in Figure 5. For S, the meioses i are independent, while loci j have first-
order Markov dependence. At each locus j, the data Y, ; are determined
probabilistically by the latent inheritance pattern S, ;. In the represen-
tation of Figure 5, the pedigree structure is implicit in the labeling of the
meioses. Additionally, the allelic types of the FGL A; which also contribute
to G, ;(S..;,A;) and hence to Y, ; are omitted. In most contexts, the latent
allelic types are nuisance variables which are integrated over (Section 4).
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4. Exact computations on pedigrees: peeling algorithms

Before proceeding to MCMC, it is important to consider what parts of the
computation may be achieved exactly. Where a partial exact computation
is feasible, this may often be incorporated into a Monte Carlo sampling
procedure to improve Monte Carlo performance. Additionally, partial ex-
act computation may permit the use of Rao-Blackwellized estimators [5],
improving efficiency in the use of sampled realizations. Summations such
as those in equation (2), may, depending on the underlying dependence
structure, be accomplished via a variety of peeling algorithms [2] in which
the summation is performed sequentially over subsets of the variables. In
the context of signal processing, time series, and hidden Markov models
(HMMs) these methods date back to the 1960s and the work of Baum and
colleagues [1]. A few years later, similar methods were developed for simple
genetic models on pedigrees having a simple tree structure by Elston and
colleagues [4]. The methods were generalized to arbitrarily complex pedi-
gree structures and more complex models by Cannings and colleagues later
in the 1970s [2, 3,20], and 10 years later to general graphical structures by
Lauritzen and Spiegelhalter [16].

Sol So,j—l So,j Sol

s

yi@-1

Fig. 6. Dependence structure of data along a chromosome

In the current context we have three relevant structures. The first is
the linear structure along a chromosome shown in Figure 6. The second is
the undirected structure relating to the assignment of allelic types to FGL,
and the third is the directed graphical structure of a pedigree. We consider
first the computation of likelihoods on small pedigrees, using the Baum
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algorithm. Note that Pr(Y) may be written

Pr(Y) =Y Pr(Y | S) Px(S)
S

l l
=> {T]Pr(vey | S.) (PY(S-J)HPT(S-J | S.,j1)> :
s \j=1

2

We defer to below the computation of Pr(Y,; | S.;), and define
YU = (Y,1,...,Y.;), the data up to and including locus j, and
Ri(s) = P(YU=Y.5, ;). Then Rj(s) = Pr(S.1 = s) and

a(s) = Pr(YY S, 41 =5) (3)
=3 [Pr(S.js1=5]8.;=5) Pr(Y.; | S.; =s") R;(s")],

for j=1,2,...,1 — 1, with

L = Pr(Y)=)_ Pr(Y.,| S, =s") Ri(s").

Since S, ; can take 2™ values, where m is number of meioses, computation
using equation (4) is limited to small pedigrees.

To facilitate discussion of computation on directed graphs, it is conve-
nient to note an alternate form of equation (4) in which the computation
is done in the reverse direction along the chromosome, but the transition
probabilities are still used in the direction Pr(S, j11 =s| S, ; = s*). Now
we define R;(s) = Pr(Y, j4+1,...,Ye1 | S.; =s). Then

ijl(s) = PI‘(Y;)J*, ...}/.J | S,J,l = S) (4)
=> [Pr(S.;=s|S. ;1 =5 Pr(Y.; | S.; =) Rj(s)].

Of course, only one of equations (4) and (5) is needed in order to compute
the likelihood, and in any case the transition probabilities on a chromosome
may be considered in either direction. However, even for this undirected
linear case, both forms are useful, since then

Pr(S.; = s | Y) o Rj(s) Ry(s) Pr(Ya,|S.; = s). (5)

Thus if computation of likelihoods Pr(Y) is feasible, so too is computation
of the conditional probability of latent variables S, ; given all the data Y.
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()
Fig. 7. Peeling the FGL graph to compute Pr(Y, ;[S., ;)

We consider now the deferred computation of Pr(Y, ;|S. ;):

Pr(Y, j1S.5) = ) Pr(Y.;|G(S., A))Pr(A;)
A.

=3 (H Pr(Yn,jGn,j(So,ja-Aj))> (H qj(9)> , (6
A; n 9

where here Y,, ; denotes the phenotype of an observed individual n at locus
j, Gp,j is the genotype of individual n at locus j, and g is an FGL. Again
peeling is simply a reorganization of the joint summation over all A4; in order
to perform the summation sequentially. We illustrate this with an example
(Figure 7) taken from Thompson [24]. In the FGL graph, the nodes are
FGL and each edge corresponds to at least one observed individual. The
scenario corresponds to a pedigree in which there are presumably at least
8 founders, since the highest FGL label is 15 and each founder has two. At
the locus j in question, there are observed individuals A, B, C, ..., U, V, W.
It is supposed that under the specified inheritance pattern S, ;, individual
A receives FGL 2 and 9, both B and J receive FGL 2 and 13, and so on. An
edge joins the two FGL received by each observed individuals. The parents
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of individual C must be related, since C received two copies of FGL 6.

First, for an FGL such as 3 or 11, not present in any observed individual
under the S, ; under consideration, any allelic type may be assigned, and
the contribution of the FGL to sum in equation (6) is a factor ), ¢; » = 1.
These FGL can thus be ignored. Second, where the FGL falls into two or
more disconnected components, as in Figure 7 the sum in equation (6)
factorizes into the contributions from summation over allelic allocations
to the FGL in each component. Thus each component may be considered
separately, and the results multiplied. Thus we will consider the summation
only on the larger component of Figure 7. Finally, FGL enter together into
a term in the sum, only through the probability of a phenotype Y, ; of an
individual given the allelic types assigned to the two FGL that he carries.
Thus, in our example, equation (6) becomes

Pr(Y.;|S.;) = (H Pr(Ynlgn717gn7z)> q(92)9(96)q(94)a(99)q(913)a(915)

g

=Y alg6)Pr(Yolgs) (Z q(915) Pr(Yulgs, g6)

9ge gis

( > " a(ga)Pr(Yrlgis, 9a) (Z q(913)Pr(YE|g6, 913)Pr(YD |94, 913)

94 913

( > a(g2)Pr(Ysg2, 913)Pr(Yolg2. 913)Pr(Yg2, 94)

g2

[ (gomresna))))

Beginning with the final term, data Y, is incorporated into the summation
over the allelic types assigned to FGL 9, for each value of the allelic type
of FGL 2. Then including data on B, J, and G, the summation over the
allelic types assigned to FGL 2 is done for each assignment to FGL 4 and
13, and so on through the graph. Of course, summations may be done in
any order: this example shows one sensible ordering.

Where there are many observed individuals in a pedigree, the FGL graph
may become complex, and even the best sequential summation may involve
consideration jointly of too many FGL for the method to be feasible. How-
ever, where data are relatively sparse, the FGL graph is often quite small
even on a large and complex extended pedigree. There is one case where the
summation of equation (6) is trivial, however much data or however large
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and complex the pedigree. This is the case of a genotypic marker observed
without the possibility of error. In this case, on each disjoint component of
the FGL graph, there are 0, 1, or 2 allelic assignments consistent with the
data. Consider, for example, the smaller component of Figure 7. Suppose we
observe that each of K, U and W is of genotype ab at locus j, and suppose
that at this locus the population allele frequency of allele a is g, and of b
is qp. Considering first individual K, we see that there are two possibilities:
g(7) =a, g(1) =bor g(7) =b, g(1) = a. Including the information on U
and W, these two possibilities remain and

a, g(1) = g(8) = g(10) = b; probability contribution g,q;
or g(7) =0, 9(1) =

giving a total probability contribution qaqg + ¢2qp. Now suppose V is also
observed. If V has genotype aa, g(8) = ¢(10) = a and only the second
alternative remains: the probability is then ¢3g,. If V has genotype bb,
g(8) = ¢g(10) = b and only the first alternative remains: the probability is
then qaqg’. If V is observed to have any other genotype, there is no feasible
allelic assignment on this component of the FGL-graph, and the probability
of these data on the pedigree, under this particular inheritance pattern S, ;,
has probability 0.

21 22 12 13

10 11 _-24

Fig. 8. A pedigree without loops
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Finally in this section, we consider peeling on the directed graph repre-
senting a pedigree structure. Figure 8 shows a marriage node graph repre-
sentation of a pedigree with no loops, but not a simple tree structure. The
shaded individuals are assumed to have data, and the joint probability of
all the observed data under a specified genetic model is to be computed.
Conditional on genotypes of parents, data on each grandparent couple and
on each offspring are all mutually independent. Thus the idea of pedigree
peeling is to accumulate the probability sequentially over the pedigree, us-
ing these individual genotypes as the latent variables. In a pedigree without
loops, the part of the pedigree on which the probability has been accumu-
lated will either be connected to an individual B through his parents, and
will be denoted A(B) or through his descendants of spouses, in which case
it will be denoted D(B).

Analogously to the HMM case we define two R-functions for any indi-
vidual B,

Rp(9) =Pr(Ye, C € D(B) | Gg =g)
R%(g9) = Pr(Ye, C € A(B), Gg = g). (7)
For the example of Figure 8 we see:
Ri(g) =Pr(Y2, Y3 | G1 = g)
= Y Pr(Gi=g")
o

ZPT(Y2|G2 =g )Pr(Gy = 9/|G1 =9,Gys=g")
g/

> Pr(Ys|Gs = ¢")Pr(Gs = ¢"|G1 = 9,Ga = g") | ,
g//
and then
Ri,(9) = Pr(Y2,Y3,G14 = g)

= ZPY(GQ = g')
gl

D Pr(Gis=¢")Pr(Guu=g | Gia=¢,Gis =g")

g//

(Z Pr(Gi=g¢* | Gi2=¢,G13 = g”)Rl(Q*)>> :

g
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Thus, using the R and R* functions we may accumulate the probability of
observed data over the entire pedigree. We refer the reader to [21] for de-
tails. Because the pedigree is a directed graph, in which the genetic model
specifies probabilities of offspring genotypes given those of their parents,
both R and R* functions will generally be used in working through a pedi-
gree. In the two initial peeling steps shown here, a function R;(g) is used
in accumulating up to individual 1 from D(1) = {2,3,4} and a function
R}, in accumulating down to individual 14 from A(14) = {12,13,1, 2, 3,4}.
However, it is only the interpretation of the function as a conditional or
joint probability that is affected. The form of the sequential summation
equation is the same whether one is peeling up or down: one simply in-
serts the appropriate founder genotype probabilities (for 4 and then for
(12,13)), penetrances (for (2,3)), previously computed R-functions (R;(-)),
and transmissions from parents to offspring (from (1,4) to (2.3) and then
from (12,13) to (1,14)).

For the directed HMM, functions R*(-) were used in peeling forward,
and R(-) in peeling backward, and equation (5) shows how these may be
combined to provide the probabilities Pr(S, ; | Y). An analogous result
applies here. In peeling a pedigree in one order, from right to left in the
example of Figure 8 one obtains R for some individuals, such as 1, and R*
for other individuals, such as 14. Reversing the peeling order, and working
from left to right, one would obtain the function R for 14, and R* for 1.
Thus by working in both directions, and storing the functions computed,
one has, for each individual B, the terms needed to compute

Pr(Gp =g |Y) x Pr(Yo,C € AB),Gg = g) Pr(Yp | Gp = g)
Pr(Ye,C € D(B) | Gp = g)
= Rj(g9) Pr(Ys | Gg = g) Rp(g).

The same procedures, both with regard to peeling and the computation
of marginal genotype probabilities for each individual given the full data Y
apply also to pedigrees with loops. The only difference is that the genotypes
of several individuals may need to be considered jointly in peeling, as in
peeling the FGL-graph, and that the resulting R-functions may be partially
of type R* and partially of type R. That is, they are probabilities of data on
a peeled section of the pedigree, jointly with the genotypes of individuals
whose parents have been peeled, conditional on the genotypes of individuals
whose descendants have been peeled. Again this does not affect the form of
the equations for the R-functions, only the interpretation of the resulting
function. We refer to [21] and earlier literature cited therein for details.
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Finally, we consider the form of genotypes that will be used. For peel-
ing multiple loci over a pedigree, phased genotypes are necessary. If locus j
has k; alleles, there are K = H;Zl k; possible haplotypes, and %K(K +1)
possible phased genotypes for an individual. Since for each possible combi-
nation of genotypes of parents we consider the possible genotypes of each
child, peeling complexity (even on a pedigree without loops) is of order K©,
and hence exponential in the number of loci. For convenience in combining
with the meiosis patterns S, we often prefer to use ordered rather than un-
ordered genotypes. Thus there are K? rather than %K (K +1) genotypes to
consider for each individual. Extra store is then required (although still of
order K°), but of course the symmetries can be used to avoid extra compu-
tation. For complex pedigrees, more individuals must be considered jointly
both in storage and in computation. Thus the pedigree peeling algorithm
is linear in pedigree size, but exponential both in pedigree complexity and
number of loci, and can be computationally challenging even for a single
locus if the number of alleles is large.

5. MCMUC on pedigree structures

We have seen how probabilities can be computed on small pedigrees for
multiple loci using the Baum algorithm, and on extended pedigrees for a
very few loci using pedigree peeling. However, when both the size of the
pedigree (as measured by the number of meioses m) and number of loci
(1) are large, exact computation is infeasible, and some form of Monte
Carlo or approximation must be used. We note that the computation of
Pr(Y. ;| S..;) by peeling the FGL-graph is limited neither by pedigree size
nor number of linked loci, but may become computationally challenging if
there are large numbers of FGL and large numbers of combinations of FGL
possible in observed individuals. However, normally the FGL graph parti-
tions into manageable components, and we will focus on MCMC methods
for sampling S given data Y assuming Pr(Y, ; | S. ;) readily computable.
We note that even where exact computation is possible, peeling provides
only probabilities Pr(S, ; = s | Y) for each j (equation (5)), or, at best,
probabilities Pr(S, ; = s, 5. ;41 | Y) for pairs of adjacent loci [21]. Monte
Carlo will provide realizations from Pr(S | Y), the full joint distribution of
S given all the data Y.

For the sampling of S, the dependence structure of Figure 5 immediately
suggests several possible block Gibbs samplers, each updating a subset S,
of 8 = {5, ;} conditional on Y and on the rest of S (Sf). The first of these
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is the locus-sampler or L-sampler [12,10], in which each updating set S, is
S, ; for some j. Now

Pr(S, j|[{S.jr, 5" # i} Y) = Pr(S. IS, j-1, 5 j+1, Ya ),
and resampling from this distribution requires computation of
Pr(Yo; | Suj1,811) = > Pr(Ye; | Se)Pr(Se; | Suj1, S0 j11)-
S.wj

This is simply a single-locus pedigree-peeling computation in which the
Mendelian transmission probabilities are replaced by the meiosis-specific
values Pr(S; ;|S; j—1,5i j+1). Thus the L-sampler can be implemented on
any pedigree on which single-locus peeling is feasible. Provided each inter-
locus recombination fraction is strictly positive, the sampler is clearly irre-

ducible. However, if the loci are tightly linked, mixing performance will be
poor.

An alternative block-Gibbs sampler is the M-sampler [26], in which each
updating set S, is a subset of the meiosis indicators .S; , for a set of meioses
i € M* over all loci. Computation and resampling from the probabilities

Pr({S;.;ie M*} | Y, {Sy..;i & M*})

requires peeling along the chromosome using the Baum algorithm, with
a state space of size 2/M7I. In the basic M-sampler [26], each meiosis is
resampled separately (|M*| = 1). Proposals for joint updating of several
meiosis indicator vectors have been made [21,19]: these can substantially
improve performance. Unfortunately, unless |M*| = m which is infeasible,
it is hard to show that the M-sampler is irreducible. Moreover, although it
is not affected by tight linkage, since the meiosis indicators over all loci are
updated jointly, it can perform poorly on extended pedigrees where there
are many missing data.

Each of our currently implemented L- and M-samplers does a random
scan of loci or meioses, respectively. That is, at each scan a random per-
mutation of loci [meioses] is formed, and then the vectors S, ; [ S;. | are
updated from their full conditional distributions in the order specified by
the permutation. The L-sampler and M-sampler have somewhat orthogo-
nal performance characteristics, the L-sampler performing well on extended
pedigrees under loose linkage and the M-sampler on small pedigrees under
tight linkage. Of course, any valid MCMC samplers can be combined, and
our LM-sampler, which combines L- and M-sampler [26] usually has much
better mixing performance than either. In this case, before each scan, a
decision is made to do an L-sample or M-sample scan with probabilities p
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and 1 — p respectively, independently of past history or current state of the
system. Although the optimal p should depend on the linkage map, pedi-
gree structure, and extent of missing data, we have found little difference
in performance provided 0.2 < p < 0.8, so typically we choose p = 0.2,0.5
or 0.8, depending on which sampler, if either, is substantially more compu-
tationally intensive in the data set at hand.

Gibbs samplers, even block-Gibbs samplers, have a tendency to explore a
space locally, and not make large changes in the latent variables. Metropolis-
Hastings rejected restarts can be a way to make larger changes [27]. In the
current context, sequential imputation [13] provides a possible proposal
distribution for restarts as well as a way to obtain good initial starting con-
figurations [6]. Realizations S7 ; of the inheritance vectors S, ; are obtained
sequentially, each one conditionally on the previously realized S, ; and
on Y, ;. This leads to the sequential imputation sampling distribution for
data on extended pedigrees given by [11]:

l

- - P, (S*,Y)
P*(S*) = P: (S, ;| S*U 1),Y(J) 507” 8
(S%) 31;[1 So( J I ) Wi(SY) (8)
where W (S*) = H;Zl w; and
wj = Pio(Ynj | Y(jil)vS*(jil)) = Pﬁo(yn,j | S:k,j—l)'

Weights w; and hence W;(S) can be computed: each predictive weight w;
is the conditional probability of data observations Y, ; and is obtainable

by single-locus peeling, with meiosis-specific transition probabilities deter-

*
0, j—1"

If P*(-) is used as a proposal distribution ¢(+;S), then the Metropolis-
Hasting acceptance probability, for a proposal ST when the current config-
uration is S, becomes max(1, k) where the Hastings ratio h is given by

q(S;ST)Pe(ST,Y)

q(ST;8)P(8,Y)

_ RS Y)N(SHP(SY) _ Wish) o)

 WI(S)Pe(ST,Y)P:(S,Y)  Wi(S)~

Thus the Hastings ratio is just the ratio of weights, which are easily com-
puted, and for ST must be computed already in making the proposal. Al-
though these Metropolis-Hastings proposals are easily incorporated, accep-
tance probabilities may be low. In preliminary examples, the procedure
works well for up to about 5 loci, but for larger numbers of loci substantial
changes in S proposed by sequential imputation are rarely accepted [6].

mined by the previously realized S

h(St:8) =
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Another area in which Metropolis-Hastings proposals may be used is
to allow for a general model of interference, I, while still using the HMM
dependence structure which depends on the assumption of no interference
of the Haldane model, H [21]. Suppose the interference model provides
probabilities P()(S;,) for meiosis 4, in place of Haldane model PU7)(S; )
we have used so far. Of course, under either model, the vectors S;, are
independent over i, i = 1,...,m. Suppose the current configuration is S
and any block-Gibbs update of S, keeping fixed Sy = S\ Sy, under the
Haldane model is used as a Metropolis-Hastings proposal St. The Hastings
ratio is

PUO(SHY) PHEI(S, | S;,Y)
PI(S,Y) pH)(SL| S, Y)
~ PU(STY)PH)(SY)
~ PI(S,Y)PH)(ST)Y)
_ P(Y[ST)PD(ST)P(Y|S)PH(S)
P(Y[S)PD(S)P(Y|ST)PUH)(ST)
7 p(H)(S) p(I)(ST)
~ PU)(S) PUH)(SH)
(

h(ST;8) =

In the case of the M-sampler, this is particularly straightforward, since only
one or a few meioses i € M* are updated, and the product reduces to

I1

keM~*

pD(s, ) PO(S])
PU(Sy..) PUD(S] )’

For moderate numbers of loci | < 14 the ratios of the probabilities, under
interference (I) and Haldane (H) models, of the 2!~! vectors of recombi-
nation and non-recombination indicators (equation (1)) may be computed
once and pre-stored. For larger numbers of loci, an interference model per-
mitting rapid computation of probabilities P )() is necessary. While this
Metropolis-Hastings algorithm is easily implemented, and performs well, it
is, of course, also possible to sample entirely under the Haldane model and
reweight realizations S with weights P (S)/PU)(S). Which procedure is
more computationally effective will depend on how close are probabilities
of configurations S under the two models.
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6. Genetic mapping and the location lod score

In this section we introduce the framework and notation for likelihood-
based inference for the presence, linked to a set of genetic marker loci, of
a genetic locus affecting a trait, and for estimation of the location of this
trait locus relative to the set of marker loci. Specifically, what is used is
the log-likelihood curve or lod score for the location of a locus underlying
a trait of interest.

The human genome consists of 3 x 10° base pairs (bp) of DNA. There
are now many known DNA variants that can be typed in individuals and
whose genomic locations are known. These DNA variants of known genomic
locations are known as genetic markers, and the objective is to determine
the locations of DNA variation underlying a trait relative to the known
marker positions. Current DNA markers are broadly of two types. There
are microsatellite marker loci. At each of these loci there are many potential
alleles that chromosomes may carry. However, in a typical study only several
hundred marker loci spread across the genome will be typed. Thus the
spacing of these markers is of order 10”bp. The alternative are SNP markers:
each of these typically has only two alleles, but many more exist. There may
be as many as 3 x 106 SNP variants in the human genome: potentially, one
could type a marker every 1000bp. For the purposes of linkage detection
and initial localization of trait loci, microsatellite markers are more readily
obtainable and more easily analyzed.

While the probability model for S; , is defined in terms of recombination
fractions, in mapping it is convenient to represent the locations of mark-
ers and trait loci on an additive scale. Genetic distance d (in Morgans)
between two loci defines this additive metric, and is the expected number
of crossovers between the two loci in an offspring chromosome (Section 3).
Recall that the assumption of no genetic interference is equivalent to the
assumption that crossovers arise as a Poisson process of rate 1 (per Mor-
gan). In this case, the number of crossovers W (d) has a Poisson distribution
with mean d. Further, there is a recombination between two loci if W (d) is
odd. This gives rise to the Haldane map function

p(d) = (1/2)(1 — exp(—2d)).

Other meiosis models give rise to other map functions. The key thing is the
model: the map function just puts loci onto a linear location map.

While traits of biological or medical importance may be affected by DNA
at many loci and by environmental factors, and with complex interactions,
simple Mendelian genetics applies well to DNA markers. Thus we assume
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a known genetic marker model, including the marker map. That is, we
have [ genetic markers at known locations )\; in the genome, and known
allele frequencies q;, @ = 1,...,I. The marker model is parametrized by
Anr = {);,qi}. For the purposes of lod score estimation, it is also necessary
to assume a trait model, parametrized by [, specifying how the trait is
determined by underlying genes. The linkage analysis objective is then,
given data on the trait phenotypes and marker genotypes for some of the
members of some number of pedigree structures, to estimate the location ~y
of a locus (if any) affecting the trait, in this marker region of the genome.
The trait model may incorporate the effects of observable environmental
covariates, and even other genetic effects of genes unlinked to these markers,
but the question at issue concerns only the existence of linkage and the
location .

M1 M2 M3 M4 M5

Yr

Fig. 9. Defining the location lod score

The data consist of both trait data and marker data, Y = (Y, Yr), and
the full model is now indexed by parameter £ = (0,7, Aas). The model is
shown schematically in Figure 9. The trait locus location « is the parameter
of interest: v = oo implies absence of linkage of the trait to these markers.
The statistical approach taken is then to compute a likelihood and hence a
location lod score:

lod(7y) = logy, <

Pr(Y;AM7577) ) ) (10)

Pr(Y;An, 3,7 = 00)

Note that the lod score is simply a log-likelihood difference, although tradi-
tionally in this area logs to base 10 are used rather than natural logarithms.
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More importantly, note that the models in numerator and denominator dif-
fer only in . The likelihood of a particular location 7 is compared to the
likelihood of no linkage (7 = o0), under the same trait model (§) and
marker model (Apy).

We have seen that if a pedigree has too large a number of meioses m,
or joint analysis of a data at a large number [ + 1 of loci is desired, then
exact computation of likelihoods in infeasible. Thus we must now consider
how MCMC realizations S(") 7 = 1, ..., N sampled conditionally on marker
and/or trait data can be used to provide a Monte Carlo estimate of the
relevant likelihoods, and hence of the location lod score curve (10).

7. Monte Carlo likelihood on pedigrees

Monte Carlo estimates expectations, and we have the general formula

LE) =P(Y) = Y P(S)Y) = Ep(Fe(S,Y)/P*(S)), (11)
S

where P* is any sampling distribution for S whose support includes that of
P:(S|Y). That is, P*(S) > 0 if P¢(S, Y) > 0. If N realizations S(™), 7 =
1,..,N are made from P*(-) then N~ SN P:(S(7),Y)/P*(S(")) is an
unbiased Monte Carlo estimator of the expectation (11). Of course, the
properties of this estimator, other than unbiasedness, will depend on the
joint distribution of the S(7). Using MCMC, the S(7) will normally be (pos-
sibly subsampled) successive realizations from an ergodic Markov chain.

The simplest possible sampling distribution is P*(S) = P¢(S) leading
to the expression

L&) = E¢(Pe(Y | S)).

However this form is generally not useful. Few realizations from P¢(S) will
even give positive probabilities P:(Y | S). From equation (11), in accor-
dance with importance sampling principles, what is needed for effective
Mounte Carlo estimation of L(£) is a sampling distribution P*(S) close to
proportional to the numerator P¢(S,Y). That is, P*(-) should be close to
P(Y).

Sequential imputation [13] is one attempt to find such a distribution

giving rise to the sampling distribution of equation (8). Now
Pe(S, Y .
L&) = Peo(¥) =B (000} = B (1i(S7)

Given N realizations S(™) the estimate of L(&) is N=1>._ W;(S(). For
moderate numbers of not too informative markers, sequential imputation
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can perform well [11,18], just as when used as a Metropolis-Hastings pro-
posal distribution for MCMC (equation (9)). However, for large numbers of
loci with multiple alleles, the sequential imputation sampling distribution
can differ widely from the target distribution P¢(S|Y) and a very large
Monte Carlo sample size N would be required to achieve reasonable esti-
mates.

Another attempt to obtain a good sampling distribution was proposed
by [25]. Since we want P*(S) close to P¢(S,Y) we choose P*(S) = P, (S|
Y), where & &~ £ and sample from this distribution using MCMC. Then

B P:(Y,S)
_zsjpg(Y,s ZPgo S TY) P, (S | Y)
_ PE(Ya S)

= e (Peo<s ) | Y>

— Py (Y) Ee, (m | Y).

Thus we have

L&)  P(Y) P:(Y,S)
L&) ~ P (Y) (P50<Y,s> | Y)‘ (12)

IfS(), 7 =1,..., N, are realized from P, (-|Y) then the likelihood ratio can
be estimated by

Z Pe(Y,87)
N Pe, (Y,S(M)

The form for linkage lod score that follows directly from equation (12)
is

L(B, v1, An) _ (P§1(YTaYM7STas]\/I>
L(B, v0, Anr) Pey (Y7, Y0, S7,SMm)

for two hypothesized trait locus positions v; and 7. Now P(Y,S) =
Ps(Yr|ST) P (Yar, Sar) Py (St |San), so the likelihood ratio reduces to

Lo ) _ g, (PulSs | S
L(ﬁv Yo, AM) o P’)’o(ST | SM)

This provides a very simple estimator. Consider for example two hy-
pothesized trait locations vg and 7; within the same marker interval from
marker 7 to j’. Then, for each meiosis ¢, we score whether or not there is
recombination between the trait and marker j, and independently between

‘ YT;YM> 3

| YT,YM) L a3)
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the trait and marker j’, using the recombination fractions appropriate to
the two hypothesized locations vy and ;:

PulSe S0 ()7 (L)
P’YO (ST ‘ S]\/I) Po; 1— o

i=1
Sir—S; 1—|Sim—S,
(M)l T ,]<1_p1j,> [Si,r—S; ;1
Poj’ L= poj ’

where pg; is the recombination fraction between trait and marker j under
hypothesized trait location -, and the other recombination fractions have
the analogous interpretations.

This likelihood ratio estimator only works well when v =~ ry,
but of course local likelihood-ratio estimates may be multiplied to
accumulate a likelihood ratio between more distant hypotheses. Al-
though this will require MCMC to be performed at numerous
points, the procedure works very well when likelihood surfaces are
smooth. This is the procedure implemented in our MORGAN package
(www.stat.washington.edu/thompson/Genepi/MORGAN /Morgan.shtml)
in our first MCMC lod score estimation program lm_ lods [21]. However,
it does not work well for estimating multipoint location lod scores with
highly informative markers, because the likelihoods are not smooth across
markers, and because the distributions P, (St | Sas) change abruptly as
crosses a marker location.

An alternative approach was provided by Lange and Sobel [15]. They
write the likelihood in the form

L(ﬁa Y AM) = Pﬁ,%AM (YMvYT) X P@%AM (YT | YM)
= Ps(Yr | Sa)Pay (Sar | Yar)

S

= Eny (Ps(Y7 | Sm) | Yiu). (14)

This provides an MCMC estimator based on sampling realizations of Sy,
SE\ZI), 7 =1,...,N, given Y. For each realization SS\Z), P577(YT|SS&)) is
computed for each v (and for each ) of interest. The MCMC here is quite
efficient in that it need be done once only for the fixed marker data and
marker model. Also, note that St are never even realized, and that the
estimator integrates over St

Py (Y7 | SY))) = Ps(Yr | S7)Py(Sr | Sur)
St
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in a form of Rao-Blackwellization [5]. The computation is again accom-
plished by single-locus peeling, with meiosis-specific transition probabili-
ties determined by the realized inheritance vectors at neighboring mark-
ers. Since Yp is not used in the Monte Carlo, this estimator can perform
quite poorly when the trait data provide information on inheritance pat-
terns and P(Sn|Yar) differs substantially from P(Sp|Yar, Yr) [21]. Also,
although the sampling procedure is much simpler than for the likelihood
ratio estimator (13), multiple peeling operations given each realized SE\Z))
are required to implement the estimate. This is computationally intensive
on complex pedigrees. However, for simple pedigrees, and where there are
substantial marker data on the pedigree, relative to trait data, the method
works well. We have implemented the estimator (14) in our MORGAN
package under the name lm_markers, so named because we use our LM-
sampler for the MCMC, and because sampling is based on the marker data
and model only.

Other authors ([10] for example) have developed fully Bayesian MCMC
approaches to the problem of linkage detection and estimation. These ap-
proaches permit the use of more complex trait models, which are sampled
over, with priors being placed on parameters (. In the current notation
samples are obtained from the posterior distribution ma,, (8,7,S | Y). Of
course, this does not produce a lod score, and from a likelihood perspective
there are at least three main problems. First, the typically multidimensional
parameter 3 is confounded with locations « in the posterior distribution:
for a likelihood we wish to compare alternative v under a fixed 3. Second, ~
is typically treated as a continuous variable, with values binned in order to
present posterior probabilities, whereas likelihood is a pointwise function of
~. Third, in sampling posterior probabilities, low-probability areas are not
of interest, but in estimating a likelihood ratio relative to the trait locus
being unlinked, we require good sampling both of the unlinked and linked
locations. This can be hard if either there is a strong positive linkage signal,
or a strong negative linkage signal.

In [6] we have developed an approach that retains some of the advan-
tages of the Bayesian method in sampling over trait locations, but which
avoids the above three problems. First we fix 8 = (A, 3), so that our full
model is now £ = (0, 7). Next note that, for any prior distribution 7 (), for
the single parameter ~

mo(v[Y) o< Po(Y;7) m(y) so L(y) o< mo(v]Y)/7(7).

Thus a likelihood may be regained from the posterior. To estimate L(7y) at
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a set of discrete locations, it is only necessary that the prior distribution
() has support consisting of precisely that set of points. Further, since
m(7y) is arbitrary, it is chosen to improve the Monte Carlo estimate of the
likelihood. In this sense it is a pseudo-prior [8]. We would like to choose this
pseudo-prior so that the posterior distribution is approximately a discrete
uniform over the set of positions ~.

Thus our sampling procedure implemented in our lm_bayes program is
as follows:

(1) To update (Sas, St), use the block-Gibbs LM-sampler as before.

(2) To update ~, use a Metropolis-Hastings proposal v*, with integrated
acceptance probability depending only on Sjs (not on St).

(3) Update St given (7, Sas), using the new ~* if it was accepted.

(Steps (2) and (3) are equivalent to a joint update of (v, Sr).)
Additionally, sequential imputation is used both to provide a starting con-
figuration and also for Metropolis-Hastings rejected restarts, as described
in section 5. To choose the prior, we use either estimates from another anal-
ysis, perhaps using each marker separately, or a uniform prior, to obtain a
preliminary estimate of the posterior, and an order-of-magnitude estimate
of the likelihood. Then the prior is readjusted, to be the inverse of this
preliminary likelihood estimate, in order that in the main run sampling is
approximately uniform across values of ~.

Suppose now we have MCMC realizations (v(7), (")) from the posterior
given Y = (Y, Yr), 7 = 1,..., N. A crude estimator of the likelihood is
then

LM, = N3 1000 = 9) /().

T=1

but a better estimator is obtainable by Rao-Blackwellization:

N
L(7)y = N1 g(s5) 7).

T=1
where

I(y)
()

Note than the crude estimator is function of only of the realized (™), while
the improved estimator is a function only of the realized Sg\?.

g(SMa’Y):ETm( ‘SM,Y>
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Now we may compute this Rao-Blackwellized estimator:

1(v) S Y) _ Po(v,[Sm, Y, Y1)
M, =
m(7) 7(7)
B Py(Yr | Sar, Yar,v)Po(Sas, Yar)w(7y)
7(V) 2 Po(Yr | Sar, Yor, v ) Po(Sar, Yaur)mw(v*)
_ Py(Yr | Sm,7) (15)
> Po(Yr | Sary)n ()
We can see some close similarities between the estimator based on (15) and
that of equation (14). In both cases, for each realized SE\?, PE(YT|S§\?) is
computed for the given values of Ay and § and for each « of interest, using
the same integration over St given the realized Sg\})). The major difference
is in the sampling, where instead of sampling only Sj; given only Y/, sam-
pling is of (Sas, ) given (Y, Yr) at given 3. The sampling of v provides
for better mixing, as in the Bayesian approaches, while conditioning on the
trait data Y7 in sampling provides for a sampling distribution closer to the
ideal target.

9(Sn,7) = Ex, <

8. An illustrative example

We present here a small example using simulated data. For a more extensive
study of performance on simulated data see [6]. For a study of real data,
using tightly linked marker loci, and a variety of extended pedigree struc-
tures, including complex pedigrees, see [7]. As in the example here, even
where exact computations are feasible, accurate Monte Carlo estimates of
the lod score can be obtained with far less CPU time [6, 7].

Data were simulated on a simple tree-structure pedigree of 52 individu-
als over 5 generations (Figure 10). Inheritance patterns at 10 marker loci,
equally spaced at 10 cM distances, and at a trait locus at the mid-point
between markers 5 and 6, were simulated. Each marker locus was assumed
to have only four alleles, with population frequencies 0.4, 0.3, 0.2, and 0.1.
The trait locus had two alleles, each with frequency 0.5. The 32 individuals
shaded dark in Figure 10 were assumed fully observed for marker and trait
information. The simple pedigree structure and limited number of alleles
at each marker were chosen to facilitate comparisons with exact compu-
tations. The program VITESSE [17] can compute exact lod scores on this
pedigree using no more than four markers. For the purposes of illustration
here, we use only markers 1, 4, 6 and 10 (M1, M4, M6, M10). The choice
of which individuals were observed was made to give an overall proportion
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(60%) typical of real data on extended pedigrees, with unobserved indi-
viduals predominantly in the earlier generations. However, the choice was
made to have missing data on many recent parent individuals, making this
slightly more challenging for the MCMC methods.

Fig. 10. Pedigree with 52 members. The 32 shaded individuals are assumed observed
for simulated trait and marker data.

The trait locus was used to define three different traits. First, and most
simply, is was assumed that the genotype at the trait locus was known for
the 32 observed individuals: the genotypic trait. Next a quantitative trait
was created by assuming the three trait genotypes gave rise to observations
with mean 90.0, 100.0 and 110.0 respectively, with each observation having
an independent additive residual with variance 25.0. Finally, the quantita-
tive trait was dichotomized, with individuals with quantitative trait values
over 98.0 being denoted “affected”, and the remainder of the 32 observed
individuals “unaffected”. We refer to this affected /unaffected classification
as the (dichotomized) phenotypic trait. In the analysis model we used the
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simulation values for all the trait and marker model parameters. For the
phenotypic trait, we used the approximate empirical values 0.05, 0.6, 0.95
for the probability that an individual of each of the three trait genotypes
would be observed as “affected”.

We have seen three methods for MCMC estimation of location
lod scores, each of which is implemented in the package MORGAN
(www.stat.washington.edu/thompson/Genepi/MORGAN /Morgan.shtml).
The likelihood-ratio method (equation (12)) is implemented in our older
MORGAN program Im lods, the Lange-Sobel estimator (equation (14))
is implemented in lm_markers, and our new pseudo-Bayes estimator in
Im_bayes. The prefix “lm” on each program indicates that the MCMC in
each case uses the LM-sampler. For the genotypic and phenotypic traits,
location lod scores were estimated using all three programs. As yet, a quan-
titative trait is implemented only for the program lm_markers. Lod scores
were estimated at approximately equally spaced locations in the map; 8
locations between M1 and M4, 5 between M4 and M6, and 11 between M6
and M10. Additionally, lod scores were estimated at 5 locations at each
end of the map, two quite close to each end marker (M1 and M10) and
the others ranging out to about 110 cM from the markers. Together with
the unlinked location, this provides 35 locations at which likelihoods or
likelihood ratios are to be estimated.

For each program, an L-sampler probability of 0.2 was used, and there
were 150 scans of burn-in. All runs were quite short: for lm_markers, 3000
MCMC scans were used, for Im_bayes the preliminary run was 1500 scans,
and the main run 3000 scans, and for lm_lods only 300 scans were used at
each of the 35 evaluation points. For these short runs, results were obtained
in about 1 minute of CPU for each of the three programs, for the genotypic
trait, and in 3, 5 and 8.5 minutes respectively for Im_markers, Im_bayes,
and Im_lods, for the dichotomized phenotypic trait. For the quantitative
trait, Im_markers took 2 minutes. In a study of real data, substantially
longer runs would be used. Location lod scores were also computed at 16
positions within the marker map including the four marker positions using
VITESSE [17]. For each of the three traits, these runs took of the order of
several hours CPU on a comparable computer (Joe Rothstein: pers. comm.).
The computed VITESSE lods scores and the MCMC estimates for each of
the three traits are shown in Figure 11.

For the genotypic trait, we see the lod score is very well estimated by
Im_markers and even better by Im_bayes, except right at the markers. In
fact we do not attempt to estimate at marker locations: our closest positions
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Fig. 11. Location lod scores for example pedigree, providing comparisons of MCMC-
based estimates using lm_markers (MK), lm_lods (LD), and lm_bayes (BS) with exact
results using VITESSE (VT). The top graph compares results for the genotypic trait
(Ge), the center for the quantitative trait (Qu), and the bottom for the dichotomized
phenotypic trait (Ph).
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are 3cM from each marker. Moreover, at M1 and at M10 the true lod score
is —oo, which clearly cannot be estimated by MCMC. The lm_lods program
provides a less accurate but still adequate estimate. Note in particular that
the shape within each marker interval is well estimated, but that this ap-
proach has difficulties in estimating across marker boundaries (Section 7).
For both genotypic and quantitative trait, the lod score is apparently max-
imized at M6, which is not surprising given the true trait location 5cM to
the left of M6. The quantitative trait provides less information for linkage,
but not much less: the main difference is that lod scores at marker locations
are no longer —oo, and indeed the lod score remains high at M10. Again,
Im_markers provides an accurate estimate of the location lod score, given
the fact that it is based on only 3,000 MCMC scans. For the phenotypic
trait, there is little information for linkage, and in fact the maximum lod
score of under 1.0 is at M10. Again, the program Im_markers does an ex-
cellent job, and Im_bayes an even better one. The Im_lods curve shown is a
poor estimate, and the lm_lods MCMC has clearly remained stuck in a part
of the space corresponding to the (now) unobserved trait genotypes. Other
Im_lods runs (not shown) provided better results, but the results varied
widely over runs. Reliable estimation using the lm_lods estimator requires
far more MCMC.

9. Conclusion

On large pedigrees with data at multiple linked loci, and with substantial
amounts of missing data, exact computation of probabilities and likelihoods
is infeasible. Although feasible in principle, sampling of latent inheritance
patterns given genetic data remains a challenging MCMC problem for these
problems. Likelihood and lod score estimators can be based on latent in-
heritance patterns realized using MCMC, but it is important to have good
estimators as well as good samplers. Lod scores based on multiple mark-
ers provide additional information on gene localization: this improved esti-
mation is important for localizing the genes of complex traits. With good
MCMC samplers and good estimators, real-time MCMC estimation of mul-
tipoint lod scores for a trait locus position is both feasible and practical.
Even when exact computation is feasible, MCMC can provide an accurate
result with far less computational effort.
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