CS 295, Spring 2008

A Distributed System
for Genetic Linkage Analysis

Mark Silberstein, Dan Geiger, Assaf Schuster

Distributed, High-Performance and Grid Computing in
Computational Biology.

International Workshop, GCCB 2006, Eilat, Israel

Lars Otten

Superlink-Online

* Distributed system on grid of computers.

— for computing multipoint LOD scores of large
pedigrees.

— Based on serial algorithm Superlink.
— High performance via efficient parallelization.

— Avallable online:

* Near-interactive response times for small problems while
serving massively parallel ones at the same time.

Lars Otten

Outline

* Scheduling algorithm
* Problem parallelization
* Current deployment in practice

* Performance evaluation

Lars Otten

Grid Execution Hierarchy Scheduling

* Two complementary components:

1)Impose hierarchy among several grids.
* Based on grid performance characteristics.
2)Schedule tasks on the hierarchy.

* Problem of finding proper hierarchy level.

Lars Otten

Grid Hierarchy

* Classify grids into levels.

— According to performance:

* Execution overhead, amount of resources, etc.
* Flexible number of levels.
— Based on expected distribution of task complexities.
* At each hierarchy level:

- link to set of one or more job queues, connected to
corresponding grids.

Lars Otten

Multilevel Feedback Queue (MQ)

Q, with execution time limit T <« — Input

(jobs
(02 with execution time limit T2 > T1 J
Q 5 with execution time limit T3 > T2 J

,

Reject

— Fails to provide fast response time to short tasks if
long task is present, since queues are FCFS.

Lars Otten

Avoiding Hierarchy Level Mismatch

» Impose task complexity limit C for queue Q :
- Optimistic assumption C. =T * (N *P *B)
- For each job jarriving at queue Q :

* Reserve time a*T for computing complexity estimate Bj :

o If Bj > C., migrate job jto queue Q__, where complexity is

reestimated (with more resources).

Lars Otten

Multiple Grids at the Same Level

* A hierarchy level can have more than one grid
attached to it:
— Each grid has one associated queue.

— Queues periodically sample status of all other
queues at this level.

— Apply heuristics to migrate tasks and balance
workload.

Lars Otten

Outline

* Scheduling algorithm
* Problem parallelization
* Current deployment in practice

* Performance evaluation

Lars Otten

LOD Score Computation

* In general, expression of the following form:

Y e

1 I2 Ty 1=1

* Complexity estimation:

— Stochastic greedy anytime algorithm.

— Yields elimination ordering and upper bound on
complexity.

— Improves over time.

Lars Otten

10

Parallelization

* Two requirements:

— Subtasks cannot communicate or synchronize.

— Must tolerate frequent failures of subtasks in grid.
* Master-worker paradigm:

1)Parallelize finding elimination ordering.

2)Parallelize LOD score computation by recursively
conditioning on summation variables Xy X,

* Until desired granularity is reached.

Lars Otten

11

Choice of Granularity

* Trade-off in making subtasks smaller:
— Improves load balancing and fault tolerance.

— Increasing overhead inhibits performance.

* Specify max. allowable complexity threshold C
such that:

— Subproblems can run without interruption.

— Available number of computers will be used.

— Overhead will be less than 1% of running time.

Lars Otten 12

Outline

* Scheduling algorithm
* Problem parallelization
* Current deployment in practice

* Performance evaluation

Lars Otten

13

Superlink-Online Implementation

* Uses the Condor distributed batch system.

— Opportunistic, handles job failures transparently.

— Three stages of general master-worker application:

Lars Otten

* Parallelization of a task into independent jobs.
* Parallel execution of these via Condor.

* Generation of final results upon completion.
In this case, two master-worker applications:

1)Parallel ordering estimation.

2)Parallel variable elimination.

14

Superlink-Online Deployment as of 2006

Lars Otten

I“ | m J
I ‘
T
Serverl [™ P -
-

Technion
~200 CPUs

r"‘"“
(edicated \
(_ server

— Job flow

Task queue

Task flow

~ 2500 CPUs

15

Outline

* Scheduling algorithm
* Problem parallelization
* Current deployment in practice

* Performance evaluation

Lars Otten

16

Superlink-Online vs. Superlink 1.5

Running time #CPU used
SUPERLINK [SUPERLINK-

Input| Y13 ONLINE Average |Maximum
| 5000sec 1050sec 10 10
2 5600sec 520sec 11 11
3 20hours 2hours 23 30
4 450min 47min 82 83
S ~300hours 7.1hours 38 91
6 297min 27min 82 100
7 “138days 6.2hours 349 450
8 2092sec 1100sec 7 8
9 “231hours 3hours 139 500

10 | ~160days 8hours 310 360

Lars Otten

Distribution of Task Complexity

* Statistics collected
over 2300 tasks in
2nd half of 2005.

* 460,000 CPU hours
(= 52.5 years).

- 70% for 1971
successful tasks.

- 3% wasted (failures
and cancellations).

- 27% timed out (with
partial results).

Lars Otten

e

o

% total tasks

Bl % total system CPU time

82

5.8

48-3ﬁ 45.9
o
g o
% 17.7
o
% 0.3
Level 1 Level 2
Execution hierarchy

Level 3

Distribution of Real Task Runtime

Lars Otten

60

%Total Tasks
(] e aN h
o -] -] o

[—
-

<3m 3m-30m 30m-3h 3h-10h 10h-30h >30h
Task runtime

19

Average Accumulated Time

* Time from
submission to
termination.

- 70 % of overhead
in Q, is delay due

to waiting for other,
longer tasks.

Total time 1n system(sec)

| . Accumulated runtime
Accumulated overhead
%% ¥ Condor evictions
o B B Condor queueing
’50000
100(30
yoo
2379
o L12
Ql Q2

Lars Otten

20

