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ABSTRACT
We present a technique for designing memory-bound algo-
rithms with high data reuse on Graphics Processing Units (GPUs)
equipped with close-to-ALU software-managed memory. The
approach is based on the efficient use of this memory by im-
plementing an application-specific cache in software. We also
present an analytical model for performance analysis of such
algorithms.

We apply this technique to the design and implementation
of the GPU-based solver of the sum-product ormarginalize a
product of functions (MPF)problem, which arises in a wide
variety of real-life applications in artificial intelligence, statis-
tics, image processing, and digital communications. Our moti-
vation to accelerate MPF originated in the context of the anal-
ysis of genetic diseases, which in some cases requires years
to complete on modern CPUs. Computing MPF is similar to
computing the chain matrix product of multi-dimensional ma-
trices, but is more difficult due to a complex data-dependent
access pattern, high data reuse, and a low compute-to-memory
access ratio.

Our GPU-based MPF solver achieves orders-of-magnitude
speedups (up to 2700-fold on random data and 270-fold on
real-life genetic analysis datasets) on GeForce 8800GTX GPU
from NVIDIA over the optimized CPU version on an Intel
2.4 GHz Core 2 with a 4 MB L2 cache.

1. INTRODUCTION
Graphics Processing Units (GPUs) have emerged as a pow-
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erful platform for high-performance computation. They have
been successfully used to accelerate many scientific workloads [13].
Typically, the computationally intensive parts of the applica-
tion are off-loaded to the GPU, which serves as the CPU’s
parallel coprocessor.

Originally, GPUs were designed as a massively parallel ma-
chines for concurrent execution of thousands of independent
threads, each executing the same code on different data. Such
an architecture is optimized for high-throughput stream pro-
cessing. It allows for high speedups on graphics-like work-
loads, which can be parallelized into thousands of indepen-
dent identical subtasks and is characterized by low data reuse
(or high reuse of a small working set) and a high compute-
to-memory access ratio (arithmetic intensity). However, early
GPUs achieved low or no performance gains on memory-bound
workloads such as a matrix product, which is characterized
by high data reuse and low arithmetic intensity [6]. For such
workloads, the GPU cacheless memory system prevented ef-
ficient utilization of GPU computing hardware, whereas CPU
utilization was amplified through the optimal use of the data
cache. In fact, GPUs allow for cached memory accesses via
the GPU’s texture cache. However, this cache is optimized
for read-only workloads with 2D spatial locality and a small
working set. Thus, even sophisticated use of this cache yielded
only modest speedups compared to the multithreaded cache-
optimized CPU implementation [8].

The breakthrough in allowing workloads with high data reuse
has been the recent introduction of a fast close-to-ALU mem-
ory. However, the memory architecture differs between the
vendors. While AMD hardware includes regular L1 and L2
caches [15], NVIDIA CUDA [12] provides a special user-
managed space calledshared memory. Shared memory lacks
hardware support for cache functionality and is fully managed
by the application. It is divided into chunks (16KB each), each
shared only among the threads of athread block(up to 512
threads).

Shared memory is intended as a scratchpad for frequently
used data [12]. Explicit management makes it especially use-
ful for memory-intensive applications with complex accesspat-
terns on the one hand, but greatly complicates the application
development on the ther.

We propose a general technique for designing algorithms on
GPUs with explicit memory management. The idea is to de-
couple the data management from the computational structure.
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The first stage is to design a serial computation algorithm with
spatial and temporal locality of accesses. Based on the data
access pattern of the algorithm, the user-managed cache is de-
vised, ensuring the data availability in the shared memory for a
single thread. Finally, the serial algorithm is parallelized, and
the cache management is refined to maximize the reuse of data
by all the threads of a single thread block.

This approach enables us to construct an analytical model
to quantitatively evaluate the effects of the cache parameters
and cache implementation.

We apply this approach to the implementation of the sum-
product (or marginalize a product of functions (MPF)) solver.
MPF serves as a basis for many algorithms in artificial intel-
ligence, bioinformatics, communications, signal processing,
and others [14]. Our primary motivation for this research has
been to accelerate the implementation of an instance of the
MPF algorithm, used for inference in very large Bayesian net-
works. This problem arises in the context of genetic analysis
of hereditary diseases [7], and may require years to complete
on a modern CPU.

MPF can be considered a generalization of a matrix chain
product for multidimensional matrices. However, it has more
complex memory access pattern with the input-dependent mem-
ory reuse and large working set. Thus, to achieve high perfor-
mance, the cache replacement policy should be determined at
run-time, as opposed to a matrix product with staticcompile-
timecache optimizations (e.g. cache blocking).

The GPU implementation with the user-managed cache achieves
the average speedup of ˜500-fold for random data and ˜200-
fold for real life Bayesian networks on NVIDIA GeForce 8800GTX
GPU over the optimized CPU version on a single core of a
2.4 GHz Intel Core 2 processor with 4 MB L2 cache. In fact,
for sufficiently large inputs the speedups reach a factor of2700.
The main contributor to the speedup is the efficient use of the
shared memory (around 24-fold for Bayesian networks and
52-fold for random data). Using the increased memory band-
width provides further acceleration through the effectiveuti-
lization of the GPU special function units.

We analyze the influence of the cache parameters on the
overall performance, showing that it behaves as predicted by
the model. We also compare the user-managed cache version
with the one that uses a texture hardware cache, demonstrating
superior performance of the former.

The paper is structured as follows. First, we introduce the
GPU programming using CUDA and define the MPF problem.
Then we describe the serial version of the MPF solver. We
then develop a theoretical performance model for GPUs with
the focus on the cache performance, and apply it to the MPF
kernel. We proceed with the user-managed cache design and
GPU kernel implementation. We conclude with the results and
future research directions.

Related work.
The recent introduction of the IBM Cell [9] processor with

software-managed per-core memory (local store) led to the de-
velopment of techniques for utilizing that memory. However,
Cell programming techniques are not applicable to a software-
managed cache on NVIDIA’s CUDA platform [12] because
of the major architectural differences between the two. Still,
some ideas inspired us to pursue the user-managed cache di-
rection.

The most relevant work on Cell, by Benthin et al. [2], presents
a software cache optimized for a Cell-based ray tracer. They
address challenges similar to ours, such as trading an optimal
cache policy for better cache logic performance and the non-
uniform segmentation of the cache space for different tasks.

Another study is by Kamil et al. [10], where stencil kernels
are optimized through the efficient use of the Cell local store.
This work highlights the benefits of application-specific mem-
ory hierarchy management, though does not explicitly imple-
ment a cache.

The Cell implementation of the matrix product for the renowned
LAPACK library is described by Kurzak et al. [11]. While the
main focus is different from ours, the authors informally used
the arithmetic intensity to analyze the performance.

Compiler-level generic cache implementations for Cell [1,
4] target general workloads and differ in scope from our work.
The same holds true for the higher-level approaches such as
the Sequoia [5] programming language for memory-hierarchy-
aware parallel programs.

NVIDIA’s CUDA programming guide [12] calls for opti-
mizing the locality of the application to use the shared mem-
ory. Current work, however, the data access pattern is wholly
known at compile time, rather than the more dynamic patterns
that are the focus of this work. Also, no current work presents
a general approach for designing cache organizations and eval-
uating their performance.

2. BACKGROUND

2.1 GPU programming and CUDA
The modern GPU is a highly data-parallel processor. The

GPU features many lightweight closely-coupledthread pro-
cessorsthat run in parallel. While the performance of each
thread processor is modest, by effectively using many thread
processors in parallel, GPUs can deliver performance that sub-
stantially outpaces a CPU.

The programming model of the GPU is “single-program,
multiple data” (SPMD): many threads concurrently run the
same program on different data. The GPU is most effective
when thousands of threads are available to the hardware at any
time; the GPU is capable of quickly switching between these
threads to hide latency and keep the hardware busy.

The recent introduction of programming environments for
the development of non-graphics applications on GPUs facil-
itated the use of GPUs for high performance computations.
One such environment which we use in our work is NVIDIA’s
CUDA.

High-level programming environment.
CUDA programs are based on the C programming language,

with extensions to exploit the parallelism of the GPU. CUDA
programs are explicitly divided into code that runs on the CPU
and code that runs on the GPU. GPU code is encapsulated into
a kernel, which exemplifies the SPMD model: it looks like
scalar C program, but is invoked concurrently in thousands of
threads by the hardware. Typical CUDA programs will first
set up input data on the CPU, transfer it to the GPU, run the
kernel on the GPU data, and finally transfer the result back to
the CPU.

Kernel code allows arbitrary read-write access toglobal GPU
memory, which has no hardware cache. Instead, CUDA ex-
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xyz f(x, y, z)
000 f000

...... ..
112 f112

wx g(w, x)

0 0 g00

.. .. ..
1 1 g11

wy h(w, y)

0 0 h00

.. .. ..
1 1 h11

(a)

xyzw
α(x, y, z, w) =

f(x, y, z)× g(w, x)× h(w, y)
0000 α0000 = f000 × g00 × h00

0001 α0001 = f000 × g10 × h10

0010 α0010 = f001 × g00 × h00

........ ..
1121 α1121 = f112 × g11 × h11

xz k(x, z) =
P

w,y α(x, y, z, w)

00 α0000 + α0100 + α0001 + α0101

01 α0010 + α0110 + α0011 + α0111

02 α0020 + α0120 + α0021 + α0121

.... ..
12 α1020 + α1120 + α1021 + α1121

(b)
Figure 1: Computing MPF: (a) Input functions.|X| = |Y | =

|W | = 2, |Z| = 3 (b) Naive computation

poses low latency (˜1 cycle) memory shared among a subset
of threads, calledthread block(up to 512 threads per block).
The threads of each block have an exclusive access to a small
chunk (16 KB), and no access to the chunks of other thread
blocks. No communication among the threads of different
thread blocks is permitted.

Direct Compute Access.
NVIDIA GPUs feature multiplemultiprocessors(16 mul-

tiprocessors in the GeForce 8800 GTX), each with 8 thread
processors. The GPU is responsible for mapping the thread
blocks to these multiprocessors, keeping thousands of threads
“in-flight”. If enough resources are available, each multipro-
cessor typically has multiple blocks resident, and can quickly
switch between computation on different blocks when appro-
priate. For instance, if one block starts a long-latency memory
operation, the multiprocessor will kick off the memory request
then immediately switch to another block while those memory
requests are satisfied.

2.2 Sum-product
Consider three functions,f(x, y, z), g(w,x) andh(w, y)

wherew, x, y, z are variables over finite domainsW , X, Y ,
Z of size|W |, |X|, |Y |, |Z| respectively. An assignment to all
the variables in the scope is called aconfiguration. A function
is defined as a table with a single value per configuration of the
function variables (Figure 1(a)). The set of variables in each
function is called a functionscope. In the rest of the paper
we denote byfa,b,c the value of the functionf(x, y, z) for a
particular configurationx = a, y = b, z = c.

The following operations are defined on the functions:

1. Tensor productf ⊗ g is a functionαw,x,y,z , fx,y,z ×
gw,x.

2. Marginalization (summation)over a variablex is a func-
tion
βy,z ,

P

x∈X
fx,y,z.

Assume that we want to compute the following expression:
X

w,y

f(x, y, z) ⊗ g(w,x) ⊗ h(w, y) (1)

The naive way is to first computeα(w, x, y, z) (Figure 1(b),
top) and then marginalize outw andy (Figure 1(b), bottom).
For the variables’ domains of sizen, this requiresO(n4) op-
erations.
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Figure 2: MPF access pattern for computingk00, k01, k02 and
k10 in Figure 1 (a) before reordering (b) after reordering of two
unordered functions. Reordered variables are highlighted. Sym-
bols denote accesses for computing respective output values.

Alternatively, we can apply the distributive law:
 

X

y

f(x, y, z) ⊗

 

X

w

g(w,x) ⊗ h(w, y)

!!

. (2)

The computation is split into twobuckets. The expression in
the innermost parentheses (first bucket) is computed first, and
the result serves as the input for computing the expression in
outer parentheses (second bucket). This leads toO(n3) total
operations, i.e.O(n) times less than before.

Unfortunately, the efficiency often comes at the price of ad-
ditional space (O(1) is required in the first case,O(n2) in the
second).

The general MPF problem is:
X

M

N

i
f i(Xi), M ⊆

[

i

X
i
, f

i ∈ F, (3)

whereM is the set of variables to be marginalized, andF

is the set of all functions in MPF. MPF algorithms aim to
efficiently compute the expression in Eq. 3 for any number of
functions. Determining the interleaving of summations and
multiplications which minimizes the number of computations
under given memory constraints is NP-hard [7]. Pakzad and
Anantharam [14] provide a comprehensive overview of MPF.

3. SERIAL MPF KERNEL
In this work we do not deal with the problem of finding the

optimal order of operations (see Fishelson and Geiger [7] for a
possible solution). Rather, we focus on the computational part
that is common for many different MPF algorithms: computa-
tion of a single bucket, defined as follows:

Ψ(O) =
X

M

f
1 ⊗ · · · ⊗ f

n
, (4)

wheref i ∈ F are the functions in the bucket andM is the set
of zero or more marginalization variables,O = V\M, V is
the union of the variables of all the functions inF. In order
to solve a given MPF problem, the kernel is invoked for each
bucket, processing one bucket after another in sequence.

We assume that the buckets are formed by an MPF algo-
rithm under given memory constraints. Thus, the creation of
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1: Function SumProductKernel
2: Input: Set of functionsF, union of functions’ scopesV, set of marginal-

ization variablesM ⊆ V

3: Output: FunctionΨ with scopeO = V\M
4: for all configurationsp of O do
5: sum← 0
6: for all configurationsm of M do
7: product← 1
8: for all functionsf ∈ F do
9: product← product× f(p, m)
10: end for
11: sum← sum + product

12: end for
13: Ψ(p)← sum

14: end for
15: return Ψ

Figure 3: MPF kernel pseudocode

intermediate functions for computing a single bucket is disal-
lowed, due to potential violation of the memory constraints.

The pseudocode for the single bucket computation is pre-
sented in Figure 3. For each output location, defined by the
configuration of output function variablesO (line 4), all con-
figurations of marginalization variables are traversed (line 6).
We denote byf(p,m) the value off corresponding to the
configurationp ∪ m.

Input data access.
The data of a single function is organized in memory sim-

ilarly to the multidimensional arrays in the C language. For
example, functionf(x, y, z), x ∈ X, y ∈ Y , z ∈ Z is repre-
sented as an array of size|X| × |Y | × |Z|. The valuefx,y,z is
located in the memory at the offsetz+ |Z|×y+ |Y |×|Z|×x.
The least significantvariable, i.e. the one whose sequential
values correspond to adjacent memory locations in the func-
tion data array, is the last variable in the function specification
(for f(x, y, z), z is the least significant andx is the most sig-
nificant).

The access to the function value for an arbitrary config-
uration of variables is costly due to the offset computation.
To avoid such a computation for each access, a data traver-
sal should be optimized to sequentially access both input and
output arrays.

However, in general, such a traversal may not exist (as in
the example in Figure 2(a)). However it becomes possible if
we impose a global order on all the variables of the bucket. In
our example, if the data is restructured according to the global
orderx > z > w > y the traversal with sequential access
is from the least to the most significant variable in the bucket
(see Figure 2(b)).

For the complete MPF computation, where the output of
one bucket is used as an input to another one, restructuring a
single bucket layout is not enough. If the order of variablesin
a bucket contradicts that of the next one, the output must be
restructured to comply with the new order, which is too costly
if done for every bucket.

The solution is to impose a global order on all the vari-
ables in MPF as follows. The MPF algorithm prescribes the
buckets to be processed in a certain order. Each bucket has a
unique set of marginalization variables.We order these sets
in the reverse order of the buckets, assigning arbitrary or-
der within each set of marginalization variables.All non-
marginalization variables are placed to be the highest in the
order, and arbitrarily ordered among themselves. For our ex-
ample in Figure 1, if we choose the efficient computation with

two buckets (I)β(x, y) =
P

w
g(x,w) ⊗ h(y,w) and (II)

P

y
f(x, z, y) ⊗ β(x, y), the global order of the variables is

x > z > w > y (or z > x > w > y).
Once the input functions in all the buckets are restructured

to follow the global order, no restructuring is required forthe
intermediate functions. The preprocessing cost is negligible.

4. CACHE PERFORMANCE MODEL
We aim to analytically evaluate the algorithm performance

on the GPU in general, and the effect of caching in particular.
Our performance criterion is the number of floating point

operations per second (FLOP/s) that can be achieved on a given
processor for our application. To obtain an upper bound, we
assume ideal overhead-free parallelization, which allowsfor
the optimal utilization of GPU computational and memory re-
sources. Hardware performance upper bounds are based on
two parameters: 1.the aggregated maximum rate of compu-
tations of the GPU, denoted asP , measured in FLOP/s; 2.
memory bandwidthof transfers between GPU global memory
and ALUs, denoted asM , measured in floats/s.

The maximum performance is limited byP if the work-
load is CPU-bound. For memory-bound workloads, however,
the memory subsystem becomes a bottleneck. The perfor-
mance is limited by the memory bandwidthM multiplied by
the compute-to-memory access ratio, also referred as arith-
metic intensity [12], and denoted byA.

Since the memory accesses and the arithmetic operations in
the GPU are overlapped, we obtain the following expression:

Speed = min [P, M × A] . (5)

Arithmetic intensity is application-dependent. To derivethe
general expression for the arithmetic intensity of the kernel
we start with a simple MPF instance of computing the expres-
sion k(x) = f(x) ⊗ g(x). To produce one outputkx, any
implementation must read two values,fx and gx, from the
memory and write the resultkx back — total 3 memory ac-
cesses — versus one floating point operation per one output.
Thus,A = 1

3
, for any kernel implementation. Using Eq. 5,

for NVIDIA GeForce 8800GTX GPU withP=345 GFLOP/s
andM=22 GFloat/s,Speed=7.3 GFLOP/s, which is only 2%
of GPU’s potential.

Note that the caching would not improve the performance
because all the data is read only once. In order to incorpo-
rate caching into the performance analysis, consider the matrix
product example, which is also an instance of MPF. Consider
two matricesM × N andN × K. For every output, the are
2N+1 memory accesses (2N reads and 1 write). However, as-
suming infinite cache (only compulsory misses) with zero-cost
access, thecostof memory operations per output drops toN

K

and N
M

for the first and second matrices respectively. Thus, the
arithmetic intensity for matrix product is2N−1

2N+1
without cache

and 2N−1

N( 1

M
+ 1

K
)+1

=
2− 1

N
1

M
+ 1

N
+ 1

K

with the infinite cache. To

conclude, the lack of caching leads to constant performance
upper bound1 × 22 GFLOP/s, whereas with caching it be-
comes CPU bound (ifM = K, andN is large, thenA = K).

We define a new parameter,cached arithmetic intensity, de-
notedAcache, to account for the cost of memory accesses. We
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derive the expression forAcache (Eq. 6) for the MPF kernel.

Acache =
#m − 1

N
Pm

i
ci + 1

N

, (6)

whereci is the cache miss rate for accessing functioni, m is
the number of input functions, andN is the number of con-
figurations of the marginalization variables. Note that forthe
parameters of the first example, Eq. 6 yields the intuitive re-
sults: m = 2, ci = 1 (100% compulsory misses),N = 1,
Acache= A = 1

3
.

Clearly, caching is vital for achieving high performance of
MPF kernel. Even the low cache hit rate of 50% for all func-
tions leads to a two-fold performance increase versus non-
cached version, growing to ten-fold for the hit rate of 90%.

In general, the addition of caching can potentially trans-
form the problem from memory-bound to compute-bound, de-
livering a substantial increase in performance.

5. USER-MANAGED CACHE
We see that the key to high performance for MPF computa-

tions is an efficient use of the memory hierarchy.
An algorithm for the GPUs with a software-managed mem-

ory hierarchy can be logically divided into the memory man-
agement part that implements the caching functionality anda
computational part that is structured to use the cached data.
However, this approach brings us to a chicken-or-egg prob-
lem: computations should be structured according to the data
availability in the shared memory, while the data should be
staged according to the structure of the computation.

This mutual dependency can be resolved as follows. Cache
space limitations require the computational structure to main-
tain temporal locality of accesses in order to reduce capacity
misses, regardless of the cache algorithm. This suggests to
first determine the computational structure with temporal lo-
cality, ignoring spatial locality, and then to derive the cache
management algorithm, which stages the data accessed close
in time but coming from arbitrary locations.

Unfortunately, the spatial locality requirement is critical when
designing a cache for NVIDIA GPUs, since the effective mem-
ory bandwidth drops by up to a factor of 16 if the kernel does
not concurrently access sequential memory locations (called
“coalesced accesses”).

We conclude that, similarly to a CPU implementation, the
GPU computational kernel should maintain both spatial and
temporal locality.The caching part of the kernel should sim-
ulate the behavior of a hardware-managed CPU cache by de-
termining which data to stage. However, the main difference
between the hardware and user-managed caches is that there-
placement policyis implemented by the software.

In the following we first analyze the locality properties of
the computational kernel, determine the optimal traversalover
the input data, and then derive the cache algorithm.

Spatial and temporal locality.
The spatial locality is naturally improved thanks to the re-

structuring of the data layout as discussed in Section 3, and
traversing it from the least to the most significant variablein
the global order. This is because this order results in the in-
put and output functions to be accessed in blocks (as in the
example in Figure 2(b)).

However, the traversal with the best spatial locality may

conflict with the one with the best temporal locality. For exam-
ple, for the bucketf(x, y, z) ⊗ g(y, z), the traversal over the
values ofx has the optimal temporal locality (a single value of
g(y, z) is reused for each value ofx), but poor spatial locality
(x is the most significant inf(x, y, z)).

While every bucket has a traversal order that achieves the
best temporal locality,we chose to prefer spatial locality over
temporal localitybecause otherwise: 1. index computation is
required for every access, decreasing the common case per-
formance; 2. data staging results in non-coalesced accesses,
reducing the effective memory bandwidth significantly.

5.1 Cache design

What data to cache.
To identify the input data locations that are accessed close

in time, we introduce the notion of anindex vector. Index vec-
tor is a vector of integers with each location correspondingto
a variable, and the value at each location corresponding to the
value of the respective variable. It is convenient to think of
an index vector as of a number represented in a mixed radix,
where the numerical base for each location corresponds to the
domain size of the respective variable. We call two index vec-
torssubsequentif their numerical values differ by 1.

Consider the index vector over all the variables in a bucket.
The variables are ordered according to the global order, dis-
cussed in Section 3. We call this vectora bucket address. A
given bucket address identifies one value in every input and
output array, hence its name. In the example in Figure 2(b), for
the orderx > z > w > y, the bucket address1210 implies
x = 1, z = 2, w = 1, andy = 0, referring to the respective
valuesf120, g11, h10 andk12. According to the traversal order
determined in the previous subsection, the algorithm processes
the bucket by iterating over subsequent bucket addresses, start-
ing from zero. Thus, the data, which corresponds to a set of
subsequent bucket addresses, and sharing the same values of
the most significant digits reside in a contiguous chunk of the
input and output arrays. Clearly, these data are accessed close
in time and should reside together in the cache.

Cache structure.
The cache is split into multiple cache segments, one per in-

put function (output is not cached).
The location of the data in the function’s cache segment is

determined by thecache tag. The cache tag is a subset of the
least significant digits of the bucket address. We denote byC

the variables that correspond to the cache tag, and byCf the
intersection ofC with the function’s variables. The size of
function’s cache segment is the product of the domain sizes of
the variables inCf . The total size of the cache is the sum of the
segment sizes of the functions to be cached. The algorithm for
determining the number of digits in the cache tag is described
later.

For the bucket in Figure 2(b) and cache tag of size three,
C = {z, w, y}; Cf = {z, y}, Cg = {w}, Ch = {w, y}.
The cache stores 6 values forf , 2 for g and 4 forh—a total of
12 values.

Consider the data identified by a set of subsequent bucket
addresses which differ only in their cache tags. We call these
data acache page. The subset of the most significant digits of
the bucket address, which are shared among all the data in a
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cache page is called acache page tag. Note that the algorithm
traverses the cache pages according to the order of the cache
page tags, starting from first page with the cache page tag zero.

5.1.1 Conflict misses
The data from the different cache pages but with the same

cache tag are mapped onto the same physical cache location.
Accessing these data leads to the tag conflict misses.

The granularity of the cache invalidation upon a miss is crit-
ical. While handling each miss individually is too costly, re-
placing the cache page entirely upon switching to another one
reduces the hit rate.

The key isto consider the replacement policy for each func-
tion segment separately. We note that the data of some func-
tions are shared among multiple subsequent cache pages and
should not be invalidated. In the example in Figure 1, with the
cache tag{z, w, y}, and the cache page tag{x}, moving from
the cache pagex = 0 to x = 1 requires refreshing only the
content of thef andg segments, since the functionh does not
depend onx. The subset of functions to be refreshed per cache
page is precomputed on the CPU prior to the GPU invocation,
and is checked when the next cache page is reached.

5.1.2 Capacity misses
The amount of data to be cached, as prescribed by the cache

tag, might be too large to fit the available shared memory, lead-
ing to capacity misses.

Similarly to the conflict miss resolution, the capacity misses
are resolved separately for each function. Weentirely disal-
low caching of some functions when the size of all segments
together exceeds the available shared memory. The functions
that are not cached are accessed directly from the global mem-
ory, bypassing the cache.

However, this partial caching leads to the problem of choos-
ing an optimal subset of functions to be cached.

We formally define this problem as follows. We define the
cache utilizationU =

P

f∈functions
lifetimef

sizef
× cachedf , where

cachedf is 1 if function is cached and0 otherwise, andsizef
is the size of the cache segment off , lifetimef is the number
of sequentially accessed cache pages that share the same seg-
ment of the function data. We aim at maximizingU under the
constraint

P

f∈functionssizef×cachedf ≤ Shared memory size.
This problem is the classical (NP-hard) binary knapsack

problem where the cost of adding a function segment to the
cache is

lifetimef
sizef

. The well-known two-approximation algo-
rithm is to add the items in decreasing order of cost. The
greedy algorithm is exectued on the CPU prior to the GPU in-
vocation, and the results are checked on the GPU every mem-
ory access, fetching the data either from the cache or from the
global memory.

In both cases of the conflict and capacity misses,the replace-
ment policy is determined dynamically on the CPU prior to the
GPU invocation, leaving only the policy enforcement mecha-
nism to be executed by the GPU.

6. CACHE-AWARE PARALLEL KERNEL
We parallelized the MPF kernel over the output domain by

assigning a subset of the output values to each thread. The
threads are independent, allowing as many of them to be run
in parallel as the hardware permits.

However, efficient utilization of the user-managed cache re-
quires the threads to be coscheduled, and the outputs to be
assigned to allow localized data accesses to thesamecache
page.

Coscheduling, i.e., concurrent execution of a certain group
of threads, is a built-in feature of CUDA, realized by athread
block (TB). The threads within a TB are executed either con-
currently or in a known order. They communicate through the
shared memory, accessible only to the threads of that TB.

Our cache design naturally maps onto the shared memory.
Thus, the threads of a TB are coscheduled to concurrently ac-
cess a certain cache page. Each TB is assigned a set of subse-
quent cache pages, processed sequentially by that TB.

The current implementation stores one cache page at a time
in the shared memory of each TB, simplifying the memory
offset computations per access at the expense of reduced hit
rate.

The amount of input data per cache page is determined as
follows. A certain cache page is concurrently processed by all
the threads in a TB, and the respective input data must residein
the cache. To exploit all the available hardware parallelism, we
assign each thread to process a single output per cache page.
Thus, the size of the input data per cache page is dictated by
the number of concurrently processed output locations, which
in turn is limited by the number of threads in a TB.

The number of cache pages per TB deserves special atten-
tion. While assigning more pages to a TB improves the data
reuse, it also reduces the parallelism, and potentially thehard-
ware utilization, because of a sequential processing of differ-
ent pages by a given TB.We assign the pages to a single TB as
long as the resulting number of threads is above the maximum
number of threads which can be executed concurrently by the
hardware.

6.1 Implementation
The GPU implementation consists of two modules: the main

GPU kernel that implements the parallel MPF computation,
and the preparatory CPU module that creates the data struc-
tures and cache metadata, and transfers the data from the CPU
to the GPU memory. Due to the space limitations we skip the
details of the CPU module.

6.1.1 GPU kernel
The presented kernel is executed in each thread (Figure 4).

We use the names starting with the capital letters to denote the
data precomputed on CPU. The data is stored in the read-only
GPU memory, which is augmented with the hardware cache
(texture and constant memory). The two parameterstBlockID
andthreadIDare supplied by the hardware, and used by each
thread to determine which data to process.

The kernel can be logically split into four parts: computa-
tion of the global memory offsets (lines 3–7), cache prefetch-
ing (7–15), computation loop (15–29), and writing back the
result (29).

First, the kernel determines the set of cache pages to be pro-
cessed by a given TB, together with the data offsets in the
global GPU memory.

Next, the input data for a given cache is staged into the
shared memory (line 11). If the function segment has to be
refreshed upon switching to the next page (line 9), the thread
must wait until all the threads in its TB stop using that cache
page, before rereading its content from the global memory
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1: Function SumProductGPUKernel
2: Input: thread block ID tBlockID, thread ID threadID, functions F,

marginalization variablesM, #cache pages per TBTBPages
3: outputOffset← call computeOutputOffset(tBlockID)
4: for all input functionsf ∈ F do
5: inputOffsets[f ]← call computeOffset(tBlockID, f )
6: end for
7: for page= 0 to TBPagesdo
8: for all input functionsf ∈ F do
9: if CacheValidArray[page][f ] is false then

10: call barrier()
11: call populateCache(f, CacheSegmentSizes[f ], inputOffsets[f ]+

PageOffsets[f ][page])
12: end if
13: end for
14: sum← 0
15: for sumPtr= 0 to #configurations of variables inM do
16: product← 1
17: for all input functionsf ∈ F do
18: offset ← call computeBase(ThreadOffsets[f][ threadID],

sumPtr)
19: if CachedFunctionsArray[f ] is false then
20: value← call cacheFetch(offset)
21: else
22: offset← offset+ inputOffsets[f ] + PageOffsets[f ][page]
23: value← call memoryFetch(offset)
24: end if
25: product← product× value
26: end for
27: sum← sum+ product
28: end for
29: output[outputOffset+ page× ThreadBlockSize+ threadID]← sum
30: end for

Figure 4: GPU kernel pseudocode

(line 10).
The main computation starts by reading the input data ei-

ther from the cache or from the main memory, depending on
whether the function is cached or not (line 19). The rest is
similar to the serial algorithm in Figure 3.

Finally (line 29) the value is stored in the main memory, and
the kernel starts processing the next cache page.

7. RESULTS

7.1 Experimental setup
We evaluate the MPF kernel on NVIDIA’s GeForce GTX8800

graphics card, with 128 thread processors and 750 MB of global
memory. The CPU version is invoked on a single core of an
Intel Core 2 2.4 GHz CPU with 32KB L1 and 4 MB L2 cache.
The CPU version is optimized for optimal caching and per-
forms within 5% of the performance of the matrix multipli-
cation routine of the ATLAS [16] library when applied to a
regular matrix product.

The performance criterion for a single kernel invocation is
the number of operations per second, measured in FLOP/s.
The number of operations—the input complexity—includes
only the multiplications and summations required by the al-
gorithm.For example, the multiplication of two 2×2 square
matrices requires 12 FLOP.

We invoke the kernel on the same input until the accumu-
lated running time exceeds five seconds, and then derive the
time for a single invocation. Kernel invocation overhead (˜10µs)
is ignored.

Unless otherwise stated, we report only the pure GPU exe-
cution time, excluding the time for data transfers between the
CPU and the GPU, and for computing the cache metadata on
CPU. The results of GPU and CPU runs are compared to en-
sure correctness.
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Figure 5: Linear-domain performance on random data sets
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Figure 6: Log-domain speedups on random data sets

7.2 GPU versus CPU performance

7.2.1 Summary of the results
The following table summarizes the speedups obtained in

the experiments described in this section.

Benchmark GPU speedup over CPU
peak average min

Random benchmark (log-domain) 2708 536 0.2
Random benchmark (linear-domain)52 15 0.02
Bayesian networks (log-domain) 274 200 153
Bayesian networks (linear-domain) 24 15 12

7.2.2 Random datasets
The tests aim to evaluate the kernel performance on the in-

puts having different amount of available parallelism and dif-
ferent reuse patterns. For the small inputs with low paral-
lelism, and for the inputs with limited data reuse, the GPU
performance is expected to be low.

We generated 700 buckets of different computational com-
plexity with the parameters randomly chosen from the follow-
ing ranges: 2–4 functions per bucket, 1–10 values per vari-
able, 2–32 summation values, 1–18 variables shared between
the functions, and 5–25 variables per function. These are the
typical ranges for the Bayesian networks in the genetic analy-
sis domain. The function data is strictly positive.

Figure 5 shows the kernel performance on random data as
a function of the input complexity. Each dot represents the
kernel invocation for computing one bucket.

On average, the GPU performs an order of magnitude better
than the CPU for most inputs above 100 KFLOP (about the
complexity of a product of two 40×40 matrices). Below this
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threshold, the input size does not allow full utilization ofthe
hardware.

The peak performance of 53.5 GFLOP/s corresponds to the
effective memory bandwidth of about 212 GB/s, which would
be impossible without the use of shared memory.

7.2.3 Bayesian networks
The complete instance of the MPF problem often contains

thousands of buckets of various complexity. To evaluate the
performance on real MPF instances, we used Superlink [7] to
generate Bayesian networks from the real-life genetic analysis
data and created the buckets for MPF computation. We then
invoked GPU and CPU versions of the kernel, and summed
the single bucket running time for all buckets in the MPF.We
obtained an average speedup of 15(ranging between 12 and
24) over 20 networks of different complexity.

The analysis of the bucket complexity distribution revealed
that over 85% of all buckets in each Bayesian network are be-
low a 100 KFLOP threshold. In fact, using GPU for these in-
puts slows down the execution. However, the overall perfor-
mance is accelerated due to a few large buckets that contribute
over 98% to the running time.

7.2.4 Log-domain performance
In practice, inference in Bayesian networks requires all op-

erations to be performed in log domain in order to prevent
accumulation of numerical errors. The input functions are
converted to the log domain before the computation; multipli-
cations are replaced by summations; summations convert the
partial results to the linear domain and write back the results
in log domain.

Figure 6 shows the speedups obtained when invoking CPU
and GPU log-domain versions on the same set of random buck-
ets as in Figure 5. Observe that the Figure 5 is scaled by a
factor of about 100, resulting in speedups ofthree orders of
magnitude. This is due to the use of the GPU special func-
tion units, which supports fast computing for logarithms and
exponents in hardware. However,disabling the user-managed
cache reduces the speedup by a factor of 25 on average.

For Bayesian networks we achieve a speedup of up to274.
While we note that the real applications will certainly use

log domain computations, we evaluate the linear domain im-
plementation to emphasize the contribution of the user-managed
cache to the kernel performance.

7.3 Cache performance
We analyzed the impact of cache size and the number of

cache pages per TB on kernel performance. We used several
buckets of different complexity with 3 functions per bucket,
and fixed them throughout the experiment, while varying the
parameter of interest. All the functions in the bucket together
fit the cache in the default kernel configuration.

The results are presented in Figure 7. Both graphs also show
the theoretical performance for one of the inputs as predicted
by the model in Section 4. While the absolute predicted values
are much higher than those observed, the form of the experi-
mental graphs closely follows the one predicted by the model.

Increasing the cache space (Figure 7(a)) allows for caching
more functions, as can be seen from the staircase form of
the graph. Three “knees” in the graph match the number of
functions in the bucket. According to the model, the hit rate
changes from 0 (no cache), to 33.3%, 65.5% and 98.9% (all
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Figure 7: Cache performance

functions cached). Consequently, theAcached increases from
0.99 to 1.4, 2.14 and 52 respectively, explaining the sharp im-
provement in the performance.

The impact of the number of cache pages processed by one
TB is depicted in Figure 7(b). As expected, the performance
improves due to the increased data reuse. Thus, as the graph
shows, this parameter has no effect when the caching is dis-
abled. The improvement becomes less significant with the
higher values of the parameter due to the increased number of
tag conflict misses and decrease in the data reuse between dif-
ferent cache pages. For the analyzed input, the hit rate changes
only for the first 64 cache pages, from 96.8% to 98.8%. With-
out the cache collisions (only compulsory misses), the hit rate
would reach 99.9%, doubling the performance.

The asymptotic behavior of the graph in Figure 7(b) can
be explained by the model as follows. Theoretically, if the
data allowed for a 100% cache hit rate, the arithmetic inten-
sity would tend to infinity, as no global memory read accesses
would be required. However, this is not the case due to the
summand 1

N
in the denominator in the expression in Eq. 6.

This summand results from the cost of writing the results back
to the global memory. Although in the GPU write accesses are
asynchronous and assumed to have zero latency, they do con-
sume bandwidth, which is apparent in the theoretical and the
experimental performance graphs.

7.3.1 Loop unrolling
The impact of loop unrolling is shown in Figure 8. The

chosen inputs fit the cache. We measured the performance as
a function of the input complexity. There are two types of
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Figure 8: Loop unrolling

unrolling presented—dynamic unrolling of the loop over the
summation variables (line 15 in Figure 4, and static unrolling
over input functions (line 17).

Dynamic unrolling is required for the loops for which the
upper bound is unknown at compile time. It is performed by
creating the unrolled loop versions with 1, 2 and 4 unrolled it-
erations, and by dynamically choosing the appropriate version
depending on the number of remaining iterations.

Dynamic unrolling of both loops was not possible due to
the increased register use per thread, which led the compiler
to spill out some of the register to the global memory, signifi-
cantly decreasing the performance. Thus, we created different
versions of the kernel with static unrolling of the loop overthe
input function.

Dynamic unrolling (curves for 2- and 4-unrolling) boosts
the performance significantly (up to a factor of 3), because
of the reduced number of accesses to the indexing tables and
cache metadata, performed once per iteration, instead of once
per access. The static unrolling yields an additional speedup
of about 25% over the 4-unrolled version.

The saw-like form of the graph in Figure 8(a) is due to the
difficulty in utilizing the shared memory hardware efficiently.
Shared memory consists of 16 memory banks, and the best
performance is achieved if the threads concurrently accessdif-
ferent banks, or the same data of the same bank. Otherwise,
bank conflictsresult in the serialization of accesses. For some
inputs the data layout in the cache led to bank conflicts (in par-
ticular when the number of summation values is divisible by
16).

7.3.2 GPU texture cache comparison
We compare the user-managed cache with the hardware tex-

ture cache, by removing all the cache logic and replacing the
global memory reads by the texture reads. Such a compari-
son is not completely fair, as the algorithm is not optimized
for the texture cache. On the other hand, the texture cache
has many other advantages, such as the ability to cache data
across thread blocks and the implementation of the cache logic
in hardware.

The results are depicted in Figure 9. As long as the data fits
the cache, both implementations perform equally well. How-
ever, for the inputs with a working set of about 1 KB per thread
block, texture cache performance deteriorates, despite the work-
ing set of the texture cache being 8 KB [12]. For the inputs of
complexity above 18 GFLOP, the user-managed cache is no
longer able to cache all the functions, exhibiting performance
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similar to that of the texture cache.

7.3.3 Analysis of the overheads
In all the results above we analyzed only the GPU execution

time. In this section (Figure 10) we analyze all the overheads:
setup time for computing the cache metadata and determining
kernel parameters, and data transfers between the CPU and
GPU.

We see that the kernel execution does not dominate the over-
all execution time in the cases when the data fits the cache.
However, these high overheads can be hidden in the repetitive
kernel invocations on many buckets. First, the metadata can
be computed on the CPU in parallel with the GPU processing
of the previous bucket. Furthermore, CUDA soon will allow
asynchronous memory transfers both to and from the GPU. Fi-
nally, we will be able to completely avoid memory transfers of
the intermediate results by using the MPF algorithm that make
the whole MPF computation fit the available memory [7].

8. CONCLUSIONS AND FUTURE WORK
In this work we have demonstrated the design and imple-

mentation of a direct-mapped read-only user-managed cache
on a data-parallel graphics processor. The speedups of up to
three orders of magnitude allow greatly improved performance
of a wide range of applications of sum-product kernel, includ-
ing the one for Bayesian inference for genetic disease analysis.

Our short-term future work includes the integration of the
kernel into a real Bayesian networks solver through further
exploitation of GPU-CPU parallelism, and continued improve-
ment of cache utilization.
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An open question is whether the explicit cache management
on GPUs is applicable to algorithms with a more irregular ac-
cess pattern, in which the cache decisions must be made dy-
namically as a part of the computation kernel, as opposed to
the compile-time static decisions in the previous works, ex-
tended in this research to the data-dependent decisions made
during the preprocessing step on the CPU. It seems that the
current hardware makes such management rather difficult, first,
because there is insufficient fast memory for cache metadata,
and second, because there is a lack of specialized hardware to
implement the basic cache primitives. Furthermore, the lack
of fine-grained synchronization between the threads withina
thread block would make the dynamic update of individual
memory locations very inefficient, limiting the effective par-
allelism. The addition of specialized hardware mechanismsis
likely to widen the range of high performance applications that
could benefit from the GPU’s computing power.
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