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MCMC-Based Linkage Analysis for Complex Traits on General
Pedigrees: Multipoint Analysis With a Two-Locus Model

and a Polygenic Component
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We describe a new program lm_twoqtl, part of the MORGAN package, for parametric linkage analysis with a quantitative
trait locus (QTL) model having one or two QTLs and a polygenic component, which models additional familial correlation
from other unlinked QTLs. The program has no restriction on number of markers or complexity of pedigrees, facilitating
use of more complex models with general pedigrees. This is the first available program that can handle a model with both
two QTLs and a polygenic component. Competing programs use only simpler models: one QTL, one QTL plus a polygenic
component, or variance components (VC). Use of simple models when they are incorrect, as for complex traits that are
influenced by multiple genes, can bias estimates of QTL location or reduce power to detect linkage. We compute the
likelihood with Markov Chain Monte Carlo (MCMC) realization of segregation indicators at the hypothesized QTL
locations conditional on marker data, summation over phased multilocus genotypes of founders, and peeling of the
polygenic component. Simulated examples, with various sized pedigrees, show that two-QTL analysis correctly identifies
the location of both QTLs, even when they are closely linked, whereas other analyses, including the VC approach, fail to
identify the location of QTLs with modest contribution. Our examples illustrate the advantage of parametric linkage
analysis with two QTLs, which provides higher power for linkage detection and better localization than use of simpler
models. Genet. Epidemiol. 31:103–114, 2007. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

Complex traits are influenced by multiple,
possibly interacting, loci. Most linkage programs,
originally developed for finding simple Mende-
lian traits, assume that only a single locus
influences the trait. These programs are routinely
used for complex traits as well, but with only
modest success [Altmuller et al., 2001; Glazier
et al., 2002]. This has led to increased interest in
developing linkage methods that accommodate
more than one trait locus. Modeling two trait loci
as one can lead to incorrect inference: for discrete
traits, it has been shown that both parametric and
nonparametric analyses with two trait loci can

give higher power for linkage detection and can
provide more accurate localization than analyses
with one trait locus [Schork et al., 1993; Knapp
et al., 1994; Strauch et al., 2003]. For discrete traits,
several methods have been developed for linkage
analyses for two trait loci. The program TMLINK
[Lathrop and Ott, 1990] can perform parametric
lod score analysis with two unlinked trait loci for
large pedigrees with a limited number of markers.
The program GENEHUNTER-TWOLOCUS
[Strauch et al., 2000] can perform both parametric
and nonparametric analyses with two unlinked
trait loci for many markers with limited pedigree
sizes. For analysis with two linked trait loci,
Biernacka et al. [2005] use identity-by-descent
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(IBD) sharing in affected sib pairs and Biswas
et al. [2003] use a Bayesian approach. All of these
two-locus analysis approaches have practical
limitations on the number of markers and pedi-
gree sizes.

For continuous traits, few methods have been
developed for linkage analyses that accommodate
more than one trait locus. The variance compo-
nents (VC) method is very popular and has
been extended to several trait loci in SOLAR
[Almasy and Blangero, 1998]. However, the VC
method typically has lower power for linkage
detection and provides less accurate localization
than full model-based approaches, as do other
IBD sharing methods [Greenberg et al., 1998;
Abreu et al., 1999; Sham et al., 2000; Badzioch
et al., 2005]. Trait localization with VC methods
does not improve with dense markers [Atwood
and Heard-Costa, 2003]. The VC method is also
sensitive to pedigree ascertainment issues, yield-
ing both false-positive and false-negative results
[Allison et al., 1999; Forrest and Feingold, 2000].
PAP [Hasstedt, 1982], and can perform linkage
analysis with one trait locus and a polygenic
component, but uses an analytic approximation
on larger pedigrees and can handle only a limited
number of markers. Loki [Heath, 1997] can
perform joint linkage and segregation analysis
with multiple Quantitative Trait Loci (QTLs) on
general pedigrees. However, the Bayesian ap-
proach of Loki prevents easy comparison of
significance of results with those obtained by
more traditional lod score methods.

Markov chain Monte Carlo (MCMC) methods
are useful when the exact likelihood is intractable
due to the number of markers and pedigree sizes.
Programs for exact likelihood computation for
one trait locus implement either the Elston-
Stewart algorithm [Elston and Stewart, 1971] that
handles large pedigrees but only a limited number
of markers (LIPED [Ott, 1974], LINKAGE
[Lathrop and Lalouel, 1984], FASTLINK [Cotting-
ham et al., 1993; Schäffer et al., 1994], and
VITESSE [O’Connell and Weeks, 1995; O’Connell,
2001]) or the Lander-Green algorithm [Lander
and Green, 1987] that handles multiple markers
but only limited pedigree sizes (GENEHUNTER
[Kruglyak et al., 1996; Markianos et al., 2001],
ALLEGRO [Gudbjartsson et al., 2000], and MER-
LIN [Abecasis et al., 2002]). SimWalk [Lange and
Sobel, 1991; Sobel and Lange, 1996] and MOR-
GAN [Thompson et al., 1993; Thompson, 2005]
use MCMC methods to handle more markers
and larger pedigrees for one trait locus; both have

been used for real-data analyses [Cader et al., 2005;
Gagnon et al., 2005; George et al., 2005; Hwu et al.,
2005; Orlacchio et al., 2005; Igo et al., 2006]. An
MCMC method also has been implemented for
discrete traits with two unlinked trait loci to handle
more markers and larger pedigrees [Lin, 2000].

Here we describe a new MORGAN program,
lm_twoqtl. This is the first available linkage
program that can perform analysis with a para-
metric model that includes two QTLs and a
polygenic component, which is a more complex
trait model than can be analyzed with previously
available programs. Because the program uses
MCMC, it has no restriction on number of markers
or complexity of pedigrees. We provide two
examples to illustrate its practical utility. The first
has data sets with various sized pedigrees, and the
second has data sets with various QTL spacings.
All data sets were analyzed with four different
models: two by lm_twoqtl, one by lm_markers
[Thompson, 2005; Sieh et al., 2005], and one
by SOLAR [Almasy and Blangero, 1998] using its
VC model. Our examples illustrate the advantage
of parametric linkage analysis with two QTLs,
providing higher power for linkage detection
and better localization than analyses with simpler
models.

METHODS

TWO-QTL AND POLYGENIC
COMPONENT MODEL

The data consist of marker genotypes YM and
a quantitative trait YT, and possibly covariates,
measured on observed individuals in a pedigree.
The model we use for trait data is

YT ¼ Q1 þQ2 þ Zþ Xbþ E ð1Þ

where Q1 and Q2 are two QTL effects; Z is the
polygenic value; X is the matrix of covariates, such
as sex or age; b is the covariate effects parameter;
and E is an environmental effect. QTL effects Q1

and Q2 are discrete with three levels mAA, mAa, maa

and mBB, mBb, mbb, respectively, corresponding to
the three genotypes at each locus; the polygenic
value Z is normally distributed with mean 0 and
variance 2Fs2

a , where F is the kinship matrix
[Lange, 2002, p. 81–84]; and E is normally distri-
buted with mean 0 and variance Is2

e , where I is the
identity matrix.

We follow a standard genetic model for un-
observed phased genotypes, which specifies the
joint distribution of marker data and unobserved
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QTL genotypes. The model for the phased
genotypes of founders is specified by Hardy-
Weinberg equilibrium at each locus and linkage
equilibrium over loci, which is generally adequate
when markers are not extremely dense. The
phased genotypes of nonfounders are specified
by the phased genotypes of founders and the
segregation indicators [Thompson, 2000, p. 3–4],
which indicate which genes nonfounders inherit
from their parents. We assume there is no cross-
over interference, which implies the Haldane
map function. While an approximation, this map
function has served well for linkage analysis of
human data. Marker data, when observed, are
assumed to be observed without error. The allele
frequencies and locations of markers are assumed
known. Most linkage analysis programs impose
these assumptions.

MCMC ESTIMATION OF LOD SCORE

The lod score at a hypothesized bivariate QTL
location (l1, l2) is the log of the likelihood ratio

lodðl1; l2Þ ¼ log10

Lðl1;l2Þ

Lð�1;1Þ
ð2Þ

where L(l1, l2) denotes the likelihood at (l1, l2).
Other parameters, allele frequencies of QTLs and
marker loci, genotypic means of QTLs, additive
genetic and environmental variances, are fixed
and assumed known for the purpose of analysis.
PAP [Hasstedt, 1982] and Loki [Heath, 1997] are
two possible programs that can provide estimates
of these parameters. Our null hypothesis is that
both QTLs are unlinked to the marker loci and
to each other: we denote their bivariate location
under this null hypothesis by ð�1;1Þ in (2). The
likelihood of (l1, l2) is the joint probability of trait
data YT and marker data YM and can be written as

Lðl1; l2Þ ¼ Probl1;l2
ðYTjYMÞ � ProbjðYMÞ:

Since Prob(YM) does not depend on the QTL
location (l1, l2), the lod score in (2) can be written
as

lodðl1; l2Þ ¼ log10

Probl1;l2
ðYTjYMÞ

Prob�1;1ðYTjYMÞ
� ð3Þ

We use MCMC to estimate the lod score in (3)
because exact computation is intractable for large
or complex pedigrees genotyped with multiple
markers. In particular, we use MCMC to estimate

both conditional probabilities in (3). Note that

Probl1;l2
ðYTjYMÞ ¼

X

Sl1
;Sl2

Probl1;l2
ðYT; Sl1

; Sl2
jYMÞ

¼
X

Sl1
;Sl2

ProbðYTjSl1
; Sl2
Þ

� Probl1;l2
ðSl1

; Sl2
jYMÞ ð4Þ

where Sl1
and Sl2

are segregation indicators at l1

and l2, respectively. The second equality follows
from ProbðYTjSl1

; Sl2
;YMÞ¼ProbðYTjSl1

;Sl2
Þ, which

results from the conditional independence of YT

and YM, given Sl1
and Sl2

: marker data YM do not
contain any more information about YT, once Sl1

and Sl2
are determined [Thompson, 2000, Section

6.1]. We first sample segregation indicators SðiÞM at
the marker loci from ProbðSMjYMÞ by MCMC,
using a mixture of the L-sampler [Heath, 1997]
and the M-sampler [Thompson and Heath, 1999]
implemented in the MORGAN package. Then we
sample ðSðiÞl1

;SðiÞl2
Þ from Probl1;l2

ðSl1
; Sl2
jSðiÞMÞ by

ordinary (independent) Monte Carlo. By the
conditional independence of Sl’s and YM given
SM [Thompson, 2000, Section 6.1], this produces

ðSðiÞl1
; SðiÞl2
Þ as MCMC realizations from Probl1;l2

ðSl1
; Sl2
jYMÞ. We estimate Probl1;l2

ðYTjYMÞ in (4)
by

1

N

XN

i¼1

ProbðYTjS
ðiÞ
l1
; SðiÞl2
Þ: ð5Þ

This is a standard Monte Carlo technique
[Hammersley and Handscomb, 1964; Gentle,
2002, Section 7.1]: replace a theoretical expectation
by the sample average over realizations from the
relevant probability distribution.

Our MCMC estimate in (5) requires evaluation
of ProbðYTjSl1

;Sl2
Þ. Note that

ProbðYTjSl1
;Sl2
Þ ¼

X

Gl1
;Gl2

ProbðYTjSl1
; Sl2

;Gl1
;Gl2
Þ

�ProbðGl1
;Gl2
Þ; ð6Þ

where Gl1
and Gl2

are the phased genotypes of
founders at l1 and l2, respectively. The sum on
the right in (6) is not ‘‘peelable’’ for our trait model
having one or two QTLs and a polygenic
component [Thompson, 2000, Section 6.6]. Hence
summing over all possible Gl1

, Gl2
is not practical

when the number of founders in any pedigree
is large. In that case, we use Monte Carlo with
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importance sampling

1

n

Xn

j¼1

ProbðYTjSl1
; Sl2

;G
ðjÞ
l1
;G
ðjÞ
l2
Þ

ProbðG
ðjÞ
l1
;G
ðjÞ
l2
Þ

Prob�ðG
ðjÞ
l1
;G
ðjÞ
l2
Þ
ð7Þ

where ðG
ðjÞ
l1
;G
ðjÞ
l2
Þ are a Monte Carlo sample from

Prob�ðGl1
;Gl2
Þ.

Monte Carlo with importance sampling for
founder genotypes has not previously been used.
This approach makes possible the computation of
lod scores for these complex models on general
pedigrees. Importance sampling is a standard
Monte Carlo technique [Hammersley and Hands-
comb, 1964; Gentle, 2002, Section 7.5.2]: instead of
sampling from the true probability distribution
ProbðGl1

;Gl2
Þ, we sample from another probabil-

ity distribution Prob�ðGl1
;Gl2
Þ and use the weigh-

ted sample average in (7). Our Prob�ðGl1
;Gl2
Þ

corresponds to using allele frequencies of QTLs
that are different from the true allele frequencies.
This is particularly useful when pedigrees are
ascertained on one tail of the phenotypic distribu-
tion: such pedigrees often segregate relatively rare
alleles, in which case sampling with more com-
mon allele frequencies increases the chance of
including such rare alleles in the sample.

Finally, we evaluate ProbðYTjSl1
; Sl2

;Gl1
;Gl2
Þ

in both (6) and (7) by peeling the polygenic
component. We use an algorithm that does not
require the inverse of the variance matrix
[Henderson, 1976; Quaas, 1976] and is applicable
to general pedigrees with loops. In order to
improve efficiency, each pedigree is separately
evaluated.

PROFILE AND SLICED LOD SCORES

For the trait model having two QTLs and a
polygenic component, two-dimensional lod scores
are evaluated, simultaneously changing both QTL
locations. To compare these two-dimensional lod
scores with one-dimensional lod scores from trait
models having one QTL, with and without a
polygenic component, we summarize two-dimen-
sional lod scores with two one-dimensional lod
scores: profile and sliced lod scores. We explain
these lod scores for the case where one QTL is
weaker than the other, measured by the variance
of their contribution to phenotypes: we call the
QTL with smaller variance contribution ‘‘weak’’
and the QTL with larger variance contribution
‘‘strong’’.

The profile lod score at a hypothesized strong
QTL location l2 is

plodðl2Þ ¼ max
l1

lodðl1; l2Þ: ð8Þ

This is standard practice [Barndorff-Nielsen and
Cox, 1994, Section 3.4] for making inference about
one parameter (in this case, the strong QTL
location) in the presence of other parameters (in
this case, the weak QTL location). The profile lod
score function is maximized at the same point
where the full two-dimensional lod score function
is maximized.

The sliced lod score at a hypothesized weak
QTL location l1 is

slodðl1Þ ¼ log10

Lðl1; l̂2Þ

Lð�1; l̂2Þ
; ð9Þ

where l̂2 is the strong QTL location at which the
two-dimensional lod score is maximized, or
equivalently the one-dimensional profile lod score
for l2 is maximized. We call this the ‘‘sliced’’ lod
score because it corresponds to the slice of the
original two-dimensional lod score at l̂2. The null
hypothesis in (9) is that the weak QTL is unlinked
to the marker loci but the strong QTL is fixed at
the most likely position, which differs from the
null hypothesis in (2). Unlike the use of the profile
lod score, the use of the sliced lod score is not
standard practice in the statistical literature.
However, this is similar to the sequential ap-
proach in SOLAR [Almasy and Blangero, 1998]
that estimates the weak QTL location after
estimating the strong QTL location. Note that we
estimate the strong QTL location using the two-
QTL model with a polygenic component, whereas
SOLAR estimates the strong QTL location using a
one-QTL model with a polygenic component.

MONTE CARLO STANDARD ERRORS
FOR MCMC LOD SCORES

Results of Monte Carlo calculations have Monte
Carlo standard errors, which give the approximate
size of the difference between the Monte Carlo
(here MCMC) approximation of an object (here
a lod score) and its exact value. Monte Carlo
standard errors can, in theory, be made as small as
one pleases by running the Monte Carlo calcula-
tion longer. These standard errors are different
from ordinary standard errors, which can, in
theory, be made as small as one pleases by
collecting very large amounts of data.

We estimate Monte Carlo standard errors by the
method of batch means [Fishman, 1978]. The same
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method is used to estimate Monte Carlo standard
errors in lm_markers [Thompson, 2005; Sieh
et al., 2005]. When MCMC runs are too short,
estimates of lod scores can be highly inaccurate, in
which case estimates of their Monte Carlo
standard errors are also inaccurate. When MCMC
runs are sufficiently long, Monte Carlo standard
errors estimated by the method of batch means
do accurately reflect Monte Carlo variability
Fishman, 1978; Schmeiser, 1982].

CODE TESTING

The program lm_twoqtl was written as a part
of the MORGAN package to implement linkage
analysis with a trait model having one or two
QTLs plus a polygenic component. This involved
adding new C code to pre-existing code. We tested
the code for various trait models using a small
data set—a 6-member nuclear pedigree with two
markers. The program was run with MCMC
sample size 106 so that MCMC variability is
negligible. Resulting lod scores were then verified
with exact lod scores, computed using FASTLINK
[Cottingham et al., 1993; Schäffer et al., 1994] for
the one-QTL model, and PAP [Hasstedt, 1982] for
the one-QTL model with a polygenic component.
For the two-QTL model with a polygenic compo-
nent, because no program is available for the exact
lod scores, a completely independent implementa-

tion in R [Ihaka and Gentleman, 1996], limited to
this small pedigree size, was written for comparison.

SIMULATION AND ANALYSES OF DATA

We provide two examples using simulated data
sets, both simulated with a model that includes
two linked QTLs and a polygenic component,
using the program genedrop in the MORGAN
package. Example 1 shows the use of three
different pedigree sizes on MCMC lod score
estimation, and example 2 shows the use of four
different QTL spacings. Three pedigree structures
(Fig. 1) were used: a 6-member nuclear pedigree
(ped6), a 16-member three-generation pedigree
(ped16) and a 52-member five-generation pedi-
gree (ped52). Only ped52 contains missing data.
In data sets, we combine 300 replicates of ped6
(300ped6), or 100 replicates of ped16 (100ped16),
or 40 replicates of ped52 (40ped52). Example 1
uses all three data sets, and example 2 uses
600ped6 and 100ped16. Table I shows the para-
meter values used for simulation in both exam-
ples. The parameter values for example 2 were
simplified from the parameter values used for
simulation of Q1 in GAW9 [MacCluer et al., 1995].
For both examples, the first QTL is weaker than
the second QTL, measured by the variance of their
respective contribution to phenotypes. The strong
QTL is always at 55 cM. The weak QTL is always
at 15 cM in example 1 but at 15, 25, 35, or 45 cM in

ped52

ped6 ped16

Fig. 1. Pedigrees for simulated data sets. No data are missing for ped6 and ped16, but data for 20 members are missing for ped52

(indicated by slashes).
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example 2. For both examples, eight markers are
spaced 10 cM apart, from 0 to 70 cM, each with six
alleles (frequencies 0.3, 0.2, 0.15, 0.16, 0.1, and 0.1).

The data sets in both examples were analyzed
with four different models to mimic different
models that might be used: two QTLs plus
polygenic component (2Q1P) model, one-QTL
plus polygenic component (1Q1P) model, one
QTL without polygenic component (1Q) model,
and VC model. For the 1Q1P model, the variance
due to the weak QTL was added to the polygenic
variance s2

a , and for the 1Q model, both the
variance due to the weak QTL and the polygenic
variance s2

a were added to the environmental
variance s2

e . We used lm_twoqtl for the 2Q1P
and 1Q1P models, lm_markers [Thompson,
2005; Sieh et al., 2005] for the 1Q model, and
SOLAR [Almasy and Blangero, 1998] for the VC
model. For the VC model, multipoint IBD matrices
were computed by MERLIN [Abecasis et al., 2002]
for ped6 and ped16, and by Loki [Heath, 1997] for
ped52. We used MCMC programs, even for the 1Q
model, because exact computation is intractable
for ped52 with eight multiallelic markers. Only
the 2Q1P and VC models allow for the second
QTL. For all parametric lod scores, MCMC
estimates used every 10th iteration, Monte Carlo
sample sizes are in Table II, and Monte Carlo
standard errors were computed using 20 batches.
Lod scores were evaluated every 5 cM (and every
2.5 cM) for the parametric models for example 1

(and for example 2) and every 1 cM for the VC
model.

RESULTS

EXAMPLE 1: VARIOUS PEDIGREE SIZES

For the 2Q1P model, two-dimensional lod
scores were evaluated: row 1 in Figure 2 shows
their contour plots. All three show the maximum
lod scores near the true QTL locations. Not
surprisingly, the strong QTL locations were
estimated better than the weak QTL locations:
the former estimates were the true strong QTL
location for all three, whereas the latter estimates
were at most two evaluation points (10 cM) away
from the true weak QTL location.

Row 2 in Figure 2 shows the lod scores for the
strong QTL location using four different models.
For the 2Q1P model, the profile lod scores
defined by (8) were computed from the two-
dimensional lod scores (Fig. 2, row 1). First,
linkage analyses with all four models correctly
provided a single peak near the true strong QTL
location for all three data sets. This is expected
because, in this example, the strong QTL’s
contribution to the phenotypic variance (58%)
was large compared to that of the weak QTL
(11%). Second, analyses with more complex
models provided much higher lod scores than
analyses with simpler models. Among the para-

TABLE I. Parameter values of trait models used for simulation

Example 1 Example 2

pA mAA mAa maa s2 (s2/s2
y) pA mAA mAa maa s2 (s2/s2

y)

QTL 1 0.10 �2 0 2 0.72 (0.11) 0.15 �3 0 3 2.29 (0.12)
QTL 2 0.30 �3 0 3 3.78 (0.58) 0.80 �3 0 6 4.38 (0.22)
Polygenic 1.00 (0.15) 1.00 (0.20)
Environment 1.00 (0.15) 9.00 (0.46)

TABLE II. Iterations and run times for analyses with lm twoqtl for example 1

Data

1Q1P model 2Q1P model

MCMC MC Time MCMC MC Time

ped6 2� 104 Exact 0.01 1� 105 Exact 0.07
ped16 1� 105 5� 102 1.84 1� 105 1� 103 1.71
ped52 2� 105 5� 105 73.72 2� 105 1� 104 196.56

MCMC: iterations for segregation indicators. MC: iteration for founder genotypes; exact summation is negligible for ped6. Time: run time
(in minutes) per evaluation point on a 2.66 GHz Intel CPU. Sample sizes shown for computation of likelihoods under the alternative
hypothesis. Sample sizes for computation of likelihoods under the null hypothesis were 10 times larger.
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metric lod scores, the lod scores are the highest
with the 2Q1P model, from which the data were
simulated, next highest with the 1Q1P model and
the lowest with the 1Q model. The lod scores from
the VC model are a little higher than those from
the 1Q model for 300ped6 and about the same for
100ped16 and 40ped52. The differences among
these lod scores using different models were more
noticeable from the 100ped16 data set than from
the 300ped6 data set. Third, for all three data sets,
the lod scores from the 1Q1P model were closer
to those from the 2Q1P model, indicating that
including a polygenic component appears to
increase the lod score significantly over use of
the 1Q model without a polygenic component.
Fourth, lod scores from the 100ped16 data set
were much higher than those from the 300ped6
data set, even though the latter data set contains
more people. This is consistent with previous
results suggesting that extended pedigrees contain

more information than equivalent samples of
smaller pedigrees [Wijsman and Amos, 1997].

Row 3 in Figure 2 shows the sliced lod scores for
the weak QTL location using the 2Q1P model and
the VC model. For all three data sets, the 2Q1P
model gave higher sliced lod scores at the true
weak QTL location, hence providing stronger
evidence of linkage, than the VC model. The
maximum sliced lod scores from the 2Q1P model
were closer to the true weak QTL location
(Table III) and gave narrower peaks, hence also
providing better localization, than the VC model.

To investigate MCMC performance for the 2Q1

P model, we ran 100 short runs and three long
runs for the single ped16 and ped52 replicates
with the largest Monte Carlo standard errors.
MCMC sample sizes were 2� 104 and 107 scans
(short and long runs) for ped16, and 2� 105 and
107 scans for ped52. Times for each run were 45 sec
and 6 hr (short and long runs) for ped16, and 3.5

300ped6

Lo
ca

tio
n 

(c
M

)

A

0
20

40
60

Lo
d 

S
co

re

D

0
20

40
60

80

2Q+P
1Q+P
1Q
VC

Location (cM)

S
lic

ed
 L

od
 S

co
re G

0 20 40 60

4
0

2
4

6

2Q+P
VC

100ped16
B

E

Location (cM)

H

0 20 40 60

40ped52
C

F

Location (cM)

I

0 20 40 60

Fig. 2. Lod scores for example 1: various pedigree sizes. Row 1: two-dimensional lod scores from the 2Q1P model. Light shading

indicates high and dark shading indicates low lod scores. Dots are at the maximum lod scores. Row 2: lod scores for the strong QTL

location. Row 3: sliced lod scores for the weak QTL location. Vertical lines are true QTL locations (weak QTL at 15 cM, strong QTL at
55 cM). Gray lines show Monte Carlo variability (estimate 72 MC standard error).
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and 40 hr for ped52 on a 1.8 GHz AMD Opteron.
The estimates of the log likelihood at the true QTL
location from these shorter runs tend to be lower
than those from the longer runs: the mean of
the estimates from the shorter runs is 0.007 lower
for ped16 and 0.123 lower for ped52. For ped16,
Monte Carlo standard error estimates
(mean 5 0.046) were accurate and reflected well
the actual standard deviation (0.047) of 100
estimates. In contrast, for ped52, Monte Carlo
standard error estimates (mean 5 0.139) under-

estimated the actual standard deviation (0.253) of
100 estimates. Hence, to obtain accurate estimates
of both lod scores and Monte Carlo standard
errors, MCMC sample size 2� 104 appears good
enough for ped16, whereas MCMC sample size
2� 105 is not long enough for ped52.

EXAMPLE 2: VARIOUS QTL SPACINGS

Three figures show lod scores for this example.
For Figure 3 and Supplementary Figure 1, every-

TABLE III. Highest lod score and associated location, cM, from 2Q1P and VC models in example 1

Data

2Q1P model VC model

Strong QTL
Lod (cM)

Weak QTL
Lod (cM)

Strong QTL
Lod (cM)

Weak QTL
Lod (cM)

300ped6 53.10 (55) 4.37 (15) 42.44 (53) 1.68 (25)
100ped16 78.39 (55) 5.66 (20) 57.32 (55) 1.29 (14)
40ped52 52.05 (55) 3.02 (25) 40.58 (54) 1.33 (30)

The true strong QTL is at 55 cM and the true weak QTL is at 15 cM.
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Fig. 3. Lod scores for example 2: various QTL spacings. Row 1: two-dimensional lod scores from the 2Q1P model. Row 2: lod scores for

the strong QTL location. Row 3: sliced lod scores for the weak QTL location. Shadings and line types are as in Fig. 2.
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thing is the same except for pedigree structure,
100ped16 and 600ped6, respectively. For Figure 3
and Supplementary Figure 2, everything is the
same except for marker spacing, 10 and 5 cM,
respectively. All three figures show that all
parametric linkage analyses correctly provided a
single peak near the true strong QTL location,
even when the weak QTL was only 10 cM away.
It is not surprising that the 2Q1P model did so,
but it is surprising that the parametric models that
take no account of the weak QTL (1Q1P and 1Q)
also did so, because the strong QTL’s contribution
to the phenotypic variance (22%) was only
moderately larger than that of the weak QTL
(12%). All three figures also show that the 2Q1P
model provided higher lod scores, which were
sometimes considerably higher than those ob-
tained from other models. The lod score difference
between the 1Q1P model and the 1Q model was
more noticeable for 100ped16 than for 600ped6.
All three figures also show that the 2Q1P model
provided higher sliced lod scores than the VC
model, and the 2Q1P model correctly provided the
highest sliced lod score near the true weak QTL.

For all three figures, the VC model provided
several peaks for the strong QTL location, when
the QTLs were at least 20 cM apart. For several
data sets in 100ped16, the highest lod score was
near the true weak QTL location and the highest
sliced lod score was near the strong QTL location
[Table IV]. This swapping would be expected
especially if, as here, both QTLs’ contributions
were relatively similar. For 100ped16, when two
QTLs are only 10 cM apart, both the 2Q1P and VC
model had trouble estimating the weak QTL
location correctly. For 600ped6, highest lod scores
were correctly near the true strong QTL location.
However, sliced lod scores from the VC model
were lower than those from the 2Q1P model,
indicating that the VC model had more trouble
detecting the weak QTL for all data sets in
600ped6. Results from 100ped16 with markers

5 cM apart (Supplementary Figure 2) provided
findings similar to those from 100ped16 with
markers 10 cM apart, suggesting that marker
density, per se, had little effect on the relative
performance of analysis with the different models.

DISCUSSION

We have described a new MORGAN program,
lm_twoqtl, for parametric linkage analysis with
a quantitative trait model having one or two
QTLs and a polygenic component. This program
incorporates not only many existing ideas for
MCMC sampling but also a novel approach for
sampling founder genotypes. No previous pro-
gram has been able to perform analysis with the
complex models that lm_twoqtl can handle. The
program has no restriction on number of markers
or complexity of pedigrees. Our examples show
possible advantages of analysis with these
models, which can provide higher power for
linkage detection and better localization than
simpler models. Example 1 shown here illustrates
the program’s capability of handling large pedi-
grees with eight markers. Example 2 shows that
for the data sets used, parametric analyses with
two QTLs and polygenic component can accu-
rately estimate both QTL locations even when
they are 20 cM apart. In all data sets, the lod scores
at the true strong QTL location are the highest
with two QTLs and polygenic component, next
highest with one QTL and polygenic component,
and the lowest with one QTL only. This is similar
to the findings for discrete traits that show
analyses with two-trait-locus models can provide
higher power for linkage detection than analyses
with single-trait-locus models [Schork et al., 1993;
Knapp et al., 1994; Strauch et al., 2003].

The program may detect multiple QTLs for
complex traits when other methods fail. Of course,
if the smaller model (e.g., 1Q) is correct, analysis
with the smaller model provides higher power

TABLE IV. Highest lod score and associated location, cM, from 2Q1P and VC models in example 2

Weak QTL location

2Q1P model VC model

Strong QTL
Lod (cM)

Weak QTL
Lod (cM)

Strong QTL
Lod (cM)

Weak QTL
Lod (cM)

15 8.33 (57.5) 3.82 (27.5) 4.91 (31) 1.71 (71)
25 10.66 (55.0) 2.34 (27.5) 6.23 (33) 1.38 (62)
35 9.27 (62.5) 2.41 (32.5) 5.31 (63) 1.64 (33)
45 9.09 (55.0) 0.84 (70.0) 7.84 (57) 0.51 (70)

The true strong QTL is at 55 cM.
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than analysis with the larger model (e.g., 2Q).
However, we envision that investigators would try
linkage analysis with a two-QTL model after obtain-
ing evidence for multiple loci, either from a segrega-
tion analysis or from results of a genome scan using a
single-QTL model. Although a less accurate model
may provide evidence of linkage, the resulting lod
scores are generally smaller than with a more accurate
model. Also, a single-QTL model is not guaranteed to
detect multiple QTLs. Both our examples show that if
one had only used a single-QTL model, then the
weak QTL would have been missed.

In both examples, the lod scores from the VC
analysis were lower than those from the para-
metric analysis with either one or two QTLs plus
a polygenic component (Tables III and IV).
Differences among analyses were more noticeable
with extended pedigrees than with nuclear pedi-
grees. We observed this also in a recent extension
of the model to include epistasis [Sung and
Wijsman, 2007]; this may reflect the superior
ability of more complex models to make use of
the larger number of relationships in extended
pedigrees. Also, as has been noted before [Mal-
hotra et al., 2005], the VC analysis gave broader
peaks (less accurate localization) than the para-
metric analyses. This confirms the general under-
standing that allele sharing methods, including
VC, typically have lower power for linkage
detection and provide less accurate localization
than full model-based approaches with well-
specified models [Greenberg et al., 1998; Abreu
et al., 1999; Sham et al., 2000; Badzioch et al., 2005].
However, only two examples were explored here.
More extensive simulations will be needed to
compare the full model-based approach and the
VC approach. With availability of a computation-
ally practical program, future investigation of this
problem is now possible.

The program lm_twoqtl simultaneously esti-
mates the location of two linked QTLs. This
differs from SOLAR’s sequential approach: the
first QTL location is estimated with the one-QTL
model, then the second QTL location is estimated
while fixing the first QTL location. This sequential
approach can provide incorrect inference, espe-
cially when two trait loci are linked. Inaccurate
estimates of the first QTL location can lead to poor
estimates of the second QTL location. In our first
example where the strong QTL’s contribution to
the phenotypic variance (58%) was large com-
pared to that of the weak QTL (11%), localization
of the strong QTL was accurate with all models
even without taking account of the weak QTL. In

contrast, in our second example where the strong
QTL’s contribution to the phenotypic variance
(22%) was more moderate compared to that of the
weak QTL (12%), localization of the strong QTL
was poor without taking account of the weak QTL.

The MCMC sampler for lm_twoqtl is based on
the MCMC sampler for lm_markers in the
MORGAN package. Both simulate segregation
indicators at marker loci conditional on marker
data: the target distribution is the same as that of
SimWalk [Lange and Sobel, 1991; Sobel and Lange,
1996]. Due to the complexity of trait models that
include two QTLs and a polygenic component,
lm_twoqtl uses additional sampling of segrega-
tion indicators and phased genotypes of founders,
both at the hypothesized QTL locations. This
framework provides potential for future exten-
sions of linkage analysis with even more general
trait models. It already has been extended to
account for gene-gene interactions [Sung and
Wijsman, 2007]. It could be extended to allow
gene-environment interactions, discrete traits, or
more than two QTLs.
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The URLs for the programs used in this article
are as follows: MORGAN, http://www.stat.
washington.edu/thompson/Genepi/genepi.shtml
(for genedrop, lm markers and lm twoqtl); MERLIN,
http://www.sph.umich.edu/csg/abecasis/Merlin/
index.html; SOLAR, http://www.sfbr.org/solar.
Supplemental materials: http://www.interscience.
wiley.com/jpages/0741-0395/suppmat.
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