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ABSTRACT
Hypertree width [22, 25] is a measure of the degree of cyclicity of
hypergraphs. A number of relevant problems from different areas,
e.g., the evaluation of conjunctive queries in database theory or the
constraint satisfaction in AI, are tractable when their underlying
hypergraphs have bounded hypertree width. However, in practical
contexts like the evaluation of database queries, we have more in-
formation besides the structure of queries. For instance, we know
the number of tuples in relations, the selectivity of attributes and so
on. In fact, all commercial query-optimizers are based on quanti-
tative methodsand do not care about structural properties.

In this paper, we define the notion of weighted hypertree decompo-
sition, in order to combine structural decomposition methods with
quantitative approaches. Weighted hypertree decompositions are
equipped with cost functions, that can be used for modelling many
situations where we have further information on the given problem,
besides its hypergraph representation. We analyze the complex-
ity of computing the hypertree decompositions having the small-
est weights, called minimal hypertree decompositions. We show
that, in many cases, adding weights we loose tractability. How-
ever, we prove that, under some – not very severe – restrictions
on the allowed cost functions and on the target hypertrees, optimal
weighted hypertree decompositions can be computed in polynomial
time. For some easier hypertree weighting functions, this problem
is also highly parallelizable. Then, we provide a cost function that
models query evaluation costs and show how to exploit weighted
hypertree decompositions for determining (logical) query plans for
answering conjunctive queries. Finally, we present the results of
an experimental comparison of this query optimization technique
with the query optimization of a commercial DBMS. These pre-
liminary results are very promising, as for some large queries (with
many joins) our hybrid technique clearly outperforms the commer-
cial optimizer.
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1. INTRODUCTION

1.1 Structural Decomposition Methods
Conjunctive queries (CQs) have been studied for a long time in
database theory. This class of queries, equivalent in expressive
power to the class of Select-Project-Join queries, is probably the
most fundamental and most thoroughly analyzed class of database
queries. While the evaluation of conjunctive queries is known to
be an NP-complete problem in general [8], and in PTIME for the
restricted class of acyclic queries [45, 24], several recent papers [9,
32, 23, 13, 29, 28, 30] exploit structural query properties to identify
and analyze very large parameterized classes of conjunctive queries
whose evaluation is tractable. Note that all these results refer to the
combined complexityof database queries, where both the database
and the query are given in input. In the restricted cases where either
the query or the database is fixed, the problem may be easier [43].

The recent renewed interest in tractable classes of conjunctive
queries has two main motivations. Firstly, it is well-known that the
problem of conjunctive query containmentis essentially the same
as the problem of CQ evaluation [8]. Conjunctive query contain-
ment is of central importance in view-based query processing[2]
which arises, e.g., in the context of data warehousing. Secondly,
conjunctive query evaluation is essentially the same problem as
constraint satisfaction, one of the major problems studied in the
field of AI, and there has been a lot of recent interaction between the
areas of query optimization and constraint satisfaction (see Vardi’s
survey paper [44]).

In this paper, we adopt the logical representation of a relational
database [42, 1], where data tuples are identified with logical
ground atoms, and conjunctive queries are represented as datalog
rules. In particular, a Booleanconjunctive query (BCQ) is rep-
resented by a rule whose head is variable-free, i.e., propositional.
Some relevant polynomially solvable classes of conjunctive queries
are determined by structural properties of the query hypergraph (or
of query graph – the primal graph of the query hypergraph, also
called Gaifman graph). The hypergraphH(Q) associated to a con-
junctive query Q is defined asH(Q) = (V, H), where the set V of
vertices consists of all variables occurring in the body of Q, while
the set H of hyperedges contains, for each atom A in the rule body,
the set var(A) of all variables occurring in A. As an example, con-
sider the following query
Q0: ans ← s1(A,B, D) ∧ s2(B, C, D) ∧ s3(B, E) ∧
s4(D, G) ∧ s5(E, F, G) ∧ s6(E, H) ∧ s7(F, I) ∧ s8(G, J).
Figure 1 shows its associated hypergraph H(Q0).
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Figure 1: Hypergraph H(Q0) (left), two hypertree decompositions of width 2 ofH(Q0) (right and bottom).

A structural query decomposition method1 is a method of appropri-
ately transforming a conjunctive query into an equivalent tree query
(i.e., acyclic query given in form of a join tree) by organizing its
atoms into a polynomial number of clusters, and suitably arranging
the clusters as a tree (see Figure 1). Each cluster contains a number
of atoms. After performing the join of the relations corresponding
to the atoms jointly contained in each cluster, we obtain a join tree
of an acyclic query which is equivalent to the original query. The
resulting query can be answered in output-polynomial time by Yan-
nakakis’s well-known algorithm [45]. In case of a Boolean query,
it can be answered in polynomial time. The tree of atom-clusters
produced by a structural query decomposition method on a given
query Q is referred to as the decompositionof Q. Figure 1 also
shows two possible decompositions of our example query Q0. A
decomposition of Q can be seen as a query plan for Q, requiring
to first evaluate the join of each cluster, and then to process the
resulting join tree bottom-up (following Yannakakis’s algorithm).

The efficiency of a structural decomposition method essentially de-
pends on the maximum size of the produced clusters, measured
(according to the chosen decomposition method) either in terms of
the number of variables or in terms of the number of atoms. For
a given decomposition, this size is referred-to as the width of the
decomposition. For example, if we adopt the number of atoms,
then the width of both decompositions shown in Figure 1 is 2.
Intuitively, the complexity of transforming a given decomposition
into an equivalent tree query is exponential in its width w. In fact,
the evaluation cost of each of the (polynomially many) clusters is
bounded by the cost of performing the (at most) w joins of its rela-
tions. The overall cost (transformation+evaluation of the resulting
acyclic query) is O(nw+1 log n), where n is the size of the input
problem, that is, the size of the query and of the database encoding
[20].

Therefore, once we fix a bound k for such a width, any structural
method D identifies a class of queries that can be answered in poly-
nomial time, namely, all those queries having k-bounded D-width.2

1In the field of constraint satisfaction, the same notion is known as
structural CSP decomposition method, cf. [23].
2Intuitively, the D-width of a query Q is the minimum width of the
decompositions of Q obtainable by method D.

The main structural decomposition methods are based on the no-
tions of Biconnected Components [14], Tree Decompositions [36,
9, 32, 11, 13], Hinge Decompositions [30], and Hypertree Decom-
positions [22]. Among them, the Hypertree Decomposition Method
(HYPERTREE) seems to be the most powerful method, as a large
class of cyclic queries has a low hypertree-width, and in fact it
strongly generalizes all other structural methods [23]. More pre-
cisely, this means that every class of queries that is recognized as
tractable according to any structural method D (has k-bounded D-
width), is also tractable according to HYPERTREE (has k-bounded
HYPERTREE-width), and that there are classes of queries that are
tractable according to HYPERTREE, but not tractable w.r.t. D
(have unbounded D-width). Moreover, for any fixed k > 0, de-
ciding whether a hypergraph has hypertree width at most k is feasi-
ble in polynomial time, and is actually highly parallelizable, as this
problem belongs to LOGCFL [22] (See Appendix B, for properties
and characterizations of this complexity class).

1.2 Limits to the Applicability of Structural
Decomposition Methods

Despite their very nice computational properties, all the above
structural decomposition methods, including Hypertree Decompo-
sition, are often unsuited for some real-world applications. For
instance, in a practical context, one may prefer query plans (i.e.,
minimum-width decompositions) which minimize the number of
clusters having the largest cardinality.

Even more importantly, structural decompositions methods focus
“only” on structural query features, while they completely disre-
gard “quantitative” aspects of the query, which may dramatically
affect the query-evaluation time. For instance, while answering
a query, the computation of an arbitrary hypertree decomposition
(having minimum width) could not be satisfactory, since it does
not take into account important quantitative factors, such as rela-
tions sizes, attributes selectivities, and so on. These factors are
flattened in the query hypergraph (which considers only the query
structure), while their suitable exploitation can significantly reduce
the cost of query evaluation. On the other hand, query optimizers of
commercial DBMSs are based solely on quantitative methods and
do not care of structural properties at all. Indeed, all the commer-
cial DBMSs restrict the search space of query plans to very simple
structures (e.g., left-deep trees), and then try to find the best plans



among them, by estimating their evaluation costs according to some
cost-model, and exploiting the quantitative information on the input
database. It follows that, on some low-width queries with a guaran-
teed polynomial-time evaluation upper-bound, they may also take
time O(n�), which is exponential in the length � of the query, rather
than on its width. On some relevant applications with many atoms
involved, as for the queries used for populating datawarehouses,
this may lead to unacceptable costs. In fact, very often such queries
are not very intricate and have low hypertree width, though not nec-
essarily acyclic.

1.3 Contribution of the Paper
To overcome the above mentioned drawbacks, we aim at combining
the structural decomposition methods with quantitative approaches.

We thus generalize the notion of HYPERTREE, by equipping
hypertree decompositions with polynomial-time weight functions
that may encode quantitative aspects of the query database, or
other additional requirements. Computing a minimal weighted-
decomposition is in general harder than computing a standard de-
composition and tractability may be lost. We extensively study the
computational complexity of this problem, we prove hardness re-
sults and we identify useful tractable cases. In summary, the main
contributions of this paper are:

� We define the notion of hypertree weighting function(short:
HWF) and of minimal hypertree decompositionsof a hyper-
graphHw.r.t. a given HWFωH and a class of decompositions
CH.

� We show that computing such a minimal decomposition is
NP-hard for general HWFs, even for acyclic hypergraphs.

� We show that this problem remains NP-hard also if we con-
sider very simple weighting functions, called vertex aggre-
gation functions, and restrict the search space to the class of
k-bounded hypertree decompositions, for a fixed k ≥ 4.

� We prove that, surprisingly, computing minimal hypertree
decompositions is tractable if we consider normal-form
hypertree decompositions, that are equivalent to the gen-
eral ones in the unweighted framework. Furthermore, this
tractability result holds for a class of functions, called tree
aggregation functions(TAFs) and defined over semirings,
that are much larger than the vertex aggregation functions.
We design an algorithm for the efficient computation of such
minimal decompositions.

� We investigate what happens in the (frequent) case where the
given TAF is logspace computable, and hence not inherently
sequential. We show that deciding whether the minimum
weight of normal-form hypertree decompositions is below
some given threshold is in LOGCFL and hence highly paral-
lelizable. Moreover, we show that this problem is also hard
for this class and we thus get another natural complete prob-
lem for this nice complexity class. Note that this result is
not obvious, as the LOGCFL-hardness of recognizing (un-
weighted) k-bounded hypertree decompositions is still un-
known. We then prove that computing these minimal de-
compositions is in the functional version of LOGCFL, that
is, LLOGCFL.

� We show how the notion of weighted hypertree decompo-
sition can be used for generating effective query plans for

the evaluation of conjunctive queries, by combining struc-
tural and quantitative information. To this end, we describe
a suitable TAF costH(Q), which encodes traditional query-
plan cost estimations, based on the size of database relations
and attributes selectivity.

� We implemented the algorithm for the computation of the
minimal decompositions with respect to costH(Q), that cor-
respond to query plans that are optimal w.r.t. our cost-model.

� We made some preliminary experimental comparisons of the
query plans computed by our algorithm with those generated
by the internal optimization module of the well known com-
mercial DBMS Oracle 8.i. This is not intended to be a thor-
ough comparison with such systems, as we only tried a small
set of queries. Our aim here is just to show that exploiting the
structure of the query may lead to significant computational
savings, and in fact the preliminary results confirm this intu-
ition.

2. HYPERTREE DECOMPOSITIONS AND
NORMAL FORMS

We next recall some basic definitions of hypergraphs and hypertree
decompositions. For detailed descriptions of the latter notion, see
[22, 25].

A hypergraphH is a pair (V, H), where V is a set of vertices and
H is a set of hyper-edges such that for each h ∈ H , h ⊆ V . For
the sake of simplicity, we always denote V and H by var(H) and
edges(H), respectively. We use the term var because, in our con-
text, hypergraph vertices correspond to query variables. Moreover,
for a set of hyperedges S, var(S) denotes the set of variables oc-
curring in S, that is

�
h∈S h.

A hypertree for a hypergraphH is a triple 〈T, χ, λ〉, where T =
(N, E) is a rooted tree, and χ and λ are labelling functions which
associate each vertex p ∈ N with two sets χ(p) ⊆ var(H) and
λ(p) ⊆ edges(H). If T ′ = (N ′, E′) is a subtree of T , we define
χ(T ′) =

�
v∈N′ χ(v). We denote the set of vertices N of T by

vertices(T ), and the root of T by root(T ). Moreover, for any
p ∈ N , Tp denotes the subtree of T rooted at p.

Definition 2.1 A hypertree decompositionof a hypergraph H is a
hypertree HD = 〈T, χ, λ〉 for H which satisfies all the following
conditions:

1. for each edge h ∈ edges(H), there exists p ∈ vertices(T )
such that h ⊆ χ(p) (we say that p coversh);

2. for each variable Y ∈ var(H), the set {p ∈ vertices(T ) |
Y ∈ χ(p)} induces a (connected) subtree of T ;

3. for each p ∈ vertices(T ), χ(p) ⊆ var(λ(p));

4. for each p ∈ vertices(T ), var(λ(p)) ∩ χ(Tp) ⊆ χ(p).

An edge h ∈ edges(H) is strongly coveredin HD if there exists
p ∈ vertices(T ) such that var(h) ⊆ χ(p) and h ∈ λ(p). In this
case, we say that p strongly covers h. A hypertree decomposition
HD of hypergraph H is a complete decompositionof H if every
edge ofH is strongly covered in HD.

The width of a hypertree decomposition 〈T, χ, λ〉 is
maxp∈vertices(T )|λ(p)|. The HYPERTREE width hw(H) of



H is the minimum width over all its hypertree decompositions. A
c-width hypertree decomposition ofH is optimalif c = hw(H). �

Example 2.2 Consider the following conjunctive query Q1:

ans ← a(S,X, X ′, C, F ) ∧ b(S,Y, Y ′, C′, F ′)
∧ c(C, C′, Z) ∧ d(X, Z) ∧
e(Y,Z) ∧ f(F, F ′, Z′) ∧ g(X ′, Z′) ∧
h(Y ′, Z′) ∧ j(J, X, Y, X ′, Y ′).

Let H1 be the hypergraph associated to Q1. Since H1 is cyclic,
hw(H1) > 1 holds. Figure 2.a shows a (complete) hypertree de-
composition HD1 ofH1 having width 2, hence hw(H1) = 2.

In order to help the intuition, Figure 2.b shows an alternative repre-
sentation of this decomposition, called atom(or hyperedge) repre-
sentation[22]: each node p in the tree is labeled by a set of atoms
representing λ(p); χ(p) is the set of all variables, distinct from ‘ ’,
appearing in these hyperedges. Thus, in this representation, pos-
sible occurrences of the anonymous variable ‘ ’ take the place of
variables in var(λ(p))− χ(p).

Another example is depicted in Figure 1, which shows two hyper-
tree decompositions of the query Q0 in Section 1. Both decompo-
sitions have width two and are complete decompositions of Q0. �

Given any hypertree decomposition HD of H, we can easily com-
pute a complete hypertree decomposition of H having the same
width [22]. Note that the acyclic hypergraphs are precisely those
hypergraphs having hypertree width one.

It has been observed that, according to the above definition, a hy-
pergraph may have some (usually) undesirable hypertree decom-
positions [22]. For instance, a decomposition may contain two ver-
tices with exactly the same labels. Thus, following [22], we next
define a normal form for hypertree decompositions that avoids such
kind of redundancies.

Let H be a hypergraph, and let V ⊆ var(H) be a set of variables
and X, Y ∈ var(H). X is [V ]-adjacent to Y if there exists an
edge h ∈ edges(H) such that {X, Y } ⊆ (h − V ). A [V ]-path
π from X to Y is a sequence X = X0, . . . , X� = Y of variables
such that: Xi is [V ]-adjacent to Xi+1, for each i ∈ [0...�-1]. A
set W ⊆ var(H) of variables is [V ]-connected if ∀X, Y ∈ W
there is a [V ]-path from X to Y . A [V ]-component is a maximal
[V ]-connected non-empty set of variables W ⊆ (var(H) − V ).
For any [V ]-component C, let edges(C) = {h ∈ edges(H) | h∩
C 
= ∅}.

Let HD = 〈T, χ, λ〉 be a hypertree for a hypergraph H. For any
vertex v of T , we will often use v as a synonym of χ(v). In particu-
lar, [v]-component denotes [χ(v)]-component; the term [v]-path
is a synonym of [χ(v)]-path; and so on.

Definition 2.3 A hypertree decomposition HD = 〈T, χ, λ〉 of
a hypergraph H is in normal form (NF) if for each vertex r ∈
vertices(T ), and for each child s of r, all the following conditions
hold:

1. there is (exactly) one [r]-component Cr such that χ(Ts) =
Cr ∪ (χ(s) ∩ χ(r));

2. χ(s) ∩ Cr 
= ∅, where Cr is the [r]-component satisfying
Condition 1;

3. for each h ∈ λ(s), h ∩ var(edges(Cr)) 
= ∅, where Cr is
the [r]-component satisfying Condition 1;

4. χ(s) = var(edges(Cr)) ∩ var(λ(s)), where Cr is the
[r]-component satisfying Condition 1. �

Note that, from Condition 4 above, the label χ(s) of any vertex s
of a hypertree decomposition in normal form can be computed just
from its label λ(s) and from the [r]-component satisfying Condi-
tion 1 associated with its parent r.

Observe that the above normal form is slightly more stronger than
the normal form defined in [22], and allows us to compute hyper-
tree decompositions more efficiently, as some kind of useless ver-
tices are discarded by the new Condition 3. However, we can show
that, as for the original definition, the following fundamental result
holds.

Theorem 2.4 For eachk-width hypertree decomposition of a hy-
pergraphH there exists ak-width hypertree decomposition ofH in
normal form.

3. WEIGHTED HYPERTREE DECOMPO-
SITIONS

In this section, we consider hypertree decompositions with an asso-
ciated weight, and we analyze the complexity of the main problems
related to the computation of the best decompositions.

Formally, given a hypergraph H, a hypertree weighting function
(short: HWF) ωH is any polynomial-time function that maps each
hypertree decomposition HD = 〈T, χ, λ〉 of H to a real number,
called the weightof HD.

For instance, a very simple HWF is the function ωw
H(HD) =

maxp∈vertices(T ) |λ(p)|, that weights a hypertree decomposition
HD just on the basis of its worse vertex, that is the vertex with the
largest λ label, which also determines the width of the decomposi-
tion.

Example 3.1. In many applications, finding a decomposition hav-
ing the minimum width is not the best we can do. We can think
of minimizing the number of vertices having the largest width w
and, for decompositions having the same numbers of such vertices,
minimizing the number of vertices having width w−1, and contin-
uing so on, in a lexicographical way. To this end, we can define the
HWF ωlex

H (HD) =
�w

i=1 |{p ∈ N such that |λ(p)| = i}| ×Bi−1,
where N = vertices(T ), B = |edges(H)|+1, and w is the width
of HD. Note that any output of this function can be represented in
a compact way as a radix B number of length w, which is clearly
bounded by the number of edges inH.

Consider again the query Q0 of the Introduction, and the the hyper-
graph, say HD′, of H(Q0) shown on the right of Figure 1. Then,
ωlex
H (HD′) = 4 × 90 + 3 × 91. HD′ is not the best decomposi-

tion w.r.t. ωlex
H and the class of hypertree decompositions in normal

form; for instance, the decomposition HD′′ shown on the bottom
of Figure 1 is better than HD′, as ωlex

H (HD′′) = 6× 90 + 1× 91.

Note that these examples are still based on structural criteria only,
as no information on the input database is exploited. In fact, in the
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Figure 2: (a) A width 2 hypertree decomposition ofH1, and (b) its atom representation

next section, we will define a more sophisticated hypertree weight-
ing function, specifically designed for query evaluation. �

Since computing a minimum-width hypertree decomposition is
NP-hard, it is easy to see that, in the general case, finding the hyper-
tree decompositions having the minimum weight is NP-hard, too.
However, we are usually interested only in decompositions belong-
ing to some tractable class, for instance the hypertree decomposi-
tions having small width.

Let k > 0 be a fixed integer and H a hypergraph. We define
kHDH (resp., kNFDH) as the class of all hypertree decomposi-
tions (resp., normal-form hypertree decompositions) of H having
width at most k. We recall that, given a hypergraph H, deciding
whether kNFDH 
= ∅ (and hence kHDH 
= ∅, after Theorem 2.4)
is in LOGCFL [22].

Definition 3.2 Let H be a hypergraph, ωH a weighting function,
and CH a class of hypertree decompositions of H. Then, a hy-
pertree decomposition HD ∈ CH is minimal w.r.t. ωH and CH,
denoted by [ωH, CH]-minimal, if there is no HD′ ∈ CH such
that ωH(HD′) < ωH(HD). �

For instance, the [ωw
H, kHDH]-minimal hypertree decomposi-

tions are exactly the k-bounded optimal hypertree decompositions
in Definition 2.1, while the [ωlex

H , kHDH]-minimal hypertree de-
compositions correspond to the lexicographically minimal decom-
positions described above.

It is not difficult to show that, for general weighting functions,
the computation of minimal hypertree decompositions is a difficult
problem even if we consider just bounded hypertree decomposi-
tions.

Theorem 3.3 Given a hypergraphH and anHWF ωH, computing
a [ωH, kHDH]-minimal hypertree decomposition (if any) is NP-
hard. Hardness holds even for acyclic hypergraphs (k = 1).

PROOF SKETCH. The reduction is from the graph coloring
problem. Given a graph G, we can build an acyclic hypergraph
H(G) and a HWF ωH(G) such that the [ωH(G), kHDH]-minimal
hypertree decompositions correspond to legal colorings of G. Intu-
itively, the acyclic hypergraph has many possible join trees, and the
idea is to exploit their shapes in such a way that join trees corre-
sponding to legal colorings have weight 0, while all other join trees
have weight 1.

In this case, the main source of complexity is the HWF, which can
evaluate hypertree decompositions looking at the whole tree, and
weighting for instance the shape of the tree or other arbitrary rela-
tionships among vertices.

One may thus wonder whether, restricting our attention to simpler
HWFs our problem becomes any easier. Let H be a hypergraph.
A vertex aggregation functionis a weighting function of the form
Λv

H(HD) =
�

p∈vertices(T ) vH(p), where vH is any polynomial
time function that associates a real number to any vertex of the
hypertree decomposition HD.

Therefore, in vertex aggregation functions, all the power is in the
local (restricted to single vertices) function vH, and the weighting
function just returns the sum of such values.

For instance, if we let vlex
H (p) = B|λ(p)|−1, where B =

|edges(T )|+ 1, then the vertex aggregation function Λvlex

H is ex-
actly the HWF ωlex

H described in Example 3.1, that allows us to sin-
gle out the lexicographically minimal hypertree decompositions.

Unfortunately, the next result shows that even in this restricted set-
ting computing minimal decompositions is NP-hard.

Theorem 3.4 Given a hypergraphH and a vertex aggregation
functionΛv

H, computing a[Λv
H, kHDH]-minimal hypertree de-

composition ofH (if any) is NP-hard.

PROOF SKETCH. Let H be a hypergraph. We reduce the prob-
lem of deciding whether H has a query decomposition of width at
most k [9] to the problem of computing a [Λv

H, kHDH]-minimal
hypertree decomposition of H. Recall that, for any fixed k ≥ 4,
deciding the existence of a query decomposition for H of width at
most k is NP-hard [22] (see Appendix A).

We can show that there is a query decomposition forH of width w
if and only if there is a hypertree decomposition HD = 〈T, χ, λ〉
of H having width w and such that, for each p ∈ vertices(T ),
χ(p) = var(λ(p)).

Then, for any hypertree decomposition HD′ = 〈T ′, χ′, λ′〉 of H,
we define the vertex evaluation function vH as follows: for each
p ∈ vertices(T ′), vH(p) = |var(λ′(p))− χ′(p)|.

It follows that the weight of the [Λv
H, kHDH]-minimal hypertree

decompositions of H is 0 if and only if there is a query decompo-
sition for H of width at most k. Therefore computing any such a
minimal decomposition amounts to solving the query decomposi-



tion problem instance.

Thus, restricting the kind of hypertree weighting functions is not
sufficient to ensure tractability. Indeed, the above result shows that
even the search space of all k-bounded hypertree decompositions
is too wide to be efficiently explored. We need a further restriction
of this class of decompositions.

4. EFFICIENTLY-COMPUTABLE MINI-
MAL HYPERTREE DECOMPOSITIONS

In this section, we show that, by slightly restricting the class of al-
lowed decompositions, it is possible to compute in polynomial time
any minimal weighted hypertree decomposition, even with respect
to hypertree weighting functions more general than the vertex ag-
gregation functions described above.

In fact, we would like to use HWFs whose evaluation of a hyper-
tree decomposition does not depend only on the vertices as isolated
entities, but also on the relationships between any vertex and its
children in the tree. Moreover, we can think of other operators be-
sides the simple summation.

Let 〈�+ ,⊕, min,⊥, +∞〉 be a semiring, that is, ⊕ is a commu-
tative, associative, and closed binary operator, ⊥ is the neuter ele-
ment for ⊕ (e.g., 0 for +, 1 for ×, etc.) and the absorbing element
for min, and min distributes over ⊕.3 Given a function g and a
set of elements S = {p1, ..., pn}, we denote by

�
pi∈S g(pi) the

value g(p1)⊕ . . .⊕ g(pn).

Definition 4.1 Let H be a hypergraph. Then, a tree aggregation
function (short: TAF) is any hypertree weighting function of the
form

F⊕,v,e
H (HD) =

�
p∈N

�
vH(p) ⊕

�
(p,p′)∈E

eH(p, p′)
�
,

associating an �+ value to the hypertree decomposition HD =
〈(N, E), χ, λ〉, where vH : N �→ �

+ and eH : N × N �→ �
+

are two polynomial functions evaluating vertices and edges of hy-
pertrees, respectively. �

Note that every vertex aggregation function corresponds to a tree
aggregation function with the same vH, with ⊕ = +, and the con-
stant function ⊥ as the edge evaluation function eH.

Example 4.2 . Another simple example of tree aggregation func-
tion is Fmax,vw,⊥

H (HD), where vw
H(p) = |λ(p)|. Observe that this

TAF is equal to ωw, and thus its minimal decompositions are those
having the minimum possible width.

In some applications it could also be useful to minimize the
size of the largest vertex separator in HD, where a separator
sep(p, q) is defined as χ(p) ∩ χ(q) [11]. This can be easily ob-
tained by using the tree aggregation function Fmax,⊥,esep

H (HD),
where esep

H (p, q) = |sep(p, q)|. Of course, a more sophisti-
cated minimization of the size of separators may be obtained us-
ing a lexicographical criterion as for the width, through the TAF

3For the sake of presentation, we refer to min and hence to min-
imal hypertree decompositions. However, it is easy to see that all
the results presented in this paper can be generalized easily to any
semiring, possibly changing min, �+ , and +∞.

F+,⊥,elsep

H (HD), where elsep
H (p, q) = (|N | + 1)|sep(p,q)|−1, and

N is the set of vertices of the decomposition tree of HD. �

Observe that in the above examples we used either the vertex eval-
uation function or the edge evaluation function. By exploiting both
functions vH and eH, we can obtain more sophisticated and pow-
erful tree aggregation functions.

Example 4.3 Given a query Q over a database DB, let HD =
〈T, χ, λ〉 be a hypertree decomposition in normal form for H(Q).
For any vertex p of T , let E(p) denote the relational expression
E(p) = �h∈λ(p)

�
χ(p) rel(h), i.e., the join of all relations in

DB corresponding to hyperedges in λ(p), suitably projected onto
the variables in χ(p). Given also an incoming node p′ of p in the
decomposition HD, we define v∗

H(Q)(p) and e∗H(Q)(p, p′) as fol-
lows:

• v∗
H(Q)(p) is the estimate of the cost of evaluating the expres-

sion E(p), and

• e∗H(Q)(p, p′) is the estimate of the cost of evaluating the
semi-join E(p)� E(p′).

Let costH(Q) be the TAF F+,v∗,e∗
H(Q)

(HD), determined by the above
functions. Intuitively, costH(Q) weights the hypertree decomposi-
tions of the query hypergraph H(Q) in such a way that minimal
hypertree decompositions correspond to “optimal” query evalua-
tion plans for Q over DB. We will come back to this TAF in Section
5, which is devoted to the relationship between query optimization
and minimal hypertree decompositions.

Note that any method for computing the estimates for the evaluation
of relational algebra operations, from the quantitative information
on DB (relations sizes, attributes selectivity, and so on), may be
employed for v∗ and e∗. In particular, in our experiments with
such minimal hypertree decompositions reported in Section 5, we
adopt the standard techniques described, e.g., in [16, 18]. �

Clearly, all this powerful weighting functions would be of limited
practical applicability, without a polynomial time algorithm for the
computation of minimal hypertree decompositions. Surprisingly,
we show that, unlike the traditional (non-weighted) framework,
working with normal-form hypertree decompositions, rather than
with any kind of bounded-width hypertree decomposition, does
matter. Indeed, it turns out that computing such minimal hypertree
decompositions with respect to any tree aggregation function is a
tractable problem. A polynomial time algorithm for this problem,
called minimal-k-decomp, is shown in Figure 3.

Theorem 4.4 Given a hypergraphH and aTAF F⊕,v,e
H , comput-

ing an[F⊕,v,e
H , kNFDH]-minimal hypertree decomposition ofH

(if any) is feasible in polynomial time.

PROOF SKETCH. We first illustrate the method for comput-
ing minimal hypertree decompositions implemented in Algorithm
minimal-k-decomp. Then, we show that this algorithm has a
polynomial-time complexity, but we omit here the (quite involved)
formal proof of its soundness and completeness.



Input: A hypergraph H, a tree aggregation function F⊕,v,e
H .

Output: An [F⊕,v,e
H , kNFDH]-minimal hypertree decomposition of H, if any; otherwise, failure.

Var CG = (Nsol ∪ Nsub, A, weight) : weighted directed bipartite graph;
HD = 〈(Nsol, E), χ, λ〉 : hypertree of H;

Begin
(*Build the Candidates Graph*)
Nsub := {(∅, var(H))} ∪ {(R, C) | R is a k-vertex and C is an [R]-component };
Nsol := {(S, C) | S is a k-vertex, C is any [R]-component (for some R), var(S) ∩ C �= ∅ and,

∀h ∈ S, h ∩ var(edges(C)) �= ∅};
A := ∅;
For each (R, C) ∈ Nsub Do

For each (S, C) ∈ Nsol such that var(edges(C)) ∩ var(R) ⊆ var(S) Do
Add an arc from (S, C) to (R, C) in A;
For each (S, C′) ∈ Nsub s.t. C ′ ⊂ C Do (* Connect its subproblems *)

Add an arc from (S, C′) to (S, C) in A;
(* Evaluate the Candidates Graph *)
For each p = (S, C) ∈ Nsol Do

λ(p) := S; χ(p) := var(edges(C)) ∩ var(S), and weight(p) := vH(p);
weigthed := {p ∈ Nsol | incoming(p) = ∅};
toBeProcessed := Nsub;
While toBeProcessed �= ∅ Do

Extract a node q from toBeProcessed such that incoming(q) ⊆ weighted;
If incoming(q) = ∅ Then (* no way to solve subproblem q *)

Remove all p′ ∈ outcoming(q);
Else (* success, for this subproblem *)

For each p′ ∈ outcoming(q) Do
weight(p′) := weight(p′) ⊕ minp∈incoming(q)(weight(p) ⊕ eH(p′, p));
If incoming(p′) ∩ toBeProcessed = ∅ Then

Add p′ to weigthed ;
EndWhile (* toBeProcessed *)
(* Identify a minimal weighted hypertree decomposition (if any)*)
If incoming((∅, var(H))) = ∅ Then

Output failure;
Else

E := ∅; (* the tree of the decomposition has no edges, initially *)
Choose a minimum-weighted p ∈ incoming((∅, var(H)));
Select-hypertree(p);
Remove all isolated vertices in the tree (Nsol, E);
Output HD;

End.

Procedure Select-hypertree(p ∈ Nsol)
For each q ∈ incoming(p) Do

Choose a minimum-weighted p′ ∈ incoming(q);
Add the edge {p, p′} to E;
Select-hypertree(p′);

EndProcedure;

Figure 3: ALGORITHM minimal-k-decomp

The algorithm minimal-k-decomp maintains a weighted di-
rected bipartite graph CG, called the Candidates Graph, that col-
lects all information we need for computing the desired decom-
positions. Its nodes are partitioned in two sets Nsub and Nsol,
representing the subproblems that we have to solve and the can-
didates to their solutions, respectively. Nodes in Nsub have the
form (R, C), where R is a set of at most k edges of H, called a
k-vertex, and C is an [R]-component. Moreover, there is a spe-
cial node (∅, var(H)) that represents the whole problem. Nodes
in Nsol have the form (S,C′), where S is a k-vertex, C′ is a
component to be decomposed, var(S) ∩ C′ 
= ∅ and, ∀h ∈ S,
h ∩ var(edges(C′)) 
= ∅. Intuitively, this node could be the
root of a hypertree decomposition for the sub-hypergraph induced
by var(edges(C′)). The node (S, C′) has an arc pointing to all
nodes of the form (R′, C′) ∈ Nsub for which it is a candidate so-
lution, that is, for which var(edges(C′)) ∩ var(R′) ⊆ var(S)
holds. Moreover, it has a number of incoming nodes of the form
(S, C′′) ∈ Nsub, for each [S]-component C′′ that is included in
C′, as each of these nodes represents a subproblem of (S, C′) (or,
more precisely, of any (R′, C′) ∈ Nsub the node (S,C′) is con-
nected to).

For every node p ∈ Nsol, we initially set weight(p) := vH(p).
Then, since ⊕ is associative, commutative, and closed, we can up-
date this weight by setting weight(p) := weight(p) ⊕ eH(p, p′),
as soon as we know any descendant p′ of p in the decomposition
tree. These descendants are obtained by a suitable filtering of the
nodes connected to its incoming nodes in Nsub, corresponding to
its subproblems.

If a node q ∈ Nsub has no candidate solutions, i.e., if
incoming(q) = ∅, then it is not solvable. We immediately ex-
ploit this information by removing all of its outcoming nodes, for
which it was a subproblem. On the other hand, if it has some can-
didates, whenever all of them have been completely evaluated, it
can propagate this information to its outcoming nodes. Then,
since min distributes over⊕, we can safely select as its solution its
minimum-weighted incoming node in Nsol.

Once all nodes have been processed, the information encoded in the
weighted graph CG is enough to compute every minimal hypertree
decomposition ofH in normal form having width at most k, if any.
One of these hypertrees is eventually selected through the simple
recursive procedure Select-hypertree.



We next briefly discuss the complexity of minimal-k-decomp.
Let H be a hypergraph and F⊕,v,e

H a TAF, and let n and m be
the number of edges and the number of vertices of H, respec-
tively. Moreover, let c⊕, cmin, cv , and ce be the maximum costs
of evaluating the operators ⊕ and min, and the functions vH and
eH, respectively, for the given problem instance. We denote by

Ψ the number of k-vertices of H, that is, Ψ =
k�

i=1

�
n
i

	
=

k�
i=1

n!
i!(n−i)!

. Note that, for each k-vertex R, there are at most

O(m) [R]-components. Therefore, the graph CG has O(Ψ m)
nodes in Nsub and O(Ψ2m) nodes in Nsol. Moreover, each node
in Nsub has O(Ψ) incoming arcs at most, and each node in Nsol

has O(m) incoming arcs at most. Then, it can be checked that
building CG costs O(Ψ2m2), and computing the weights accord-
ing to minimal-k-decomp costs O(Ψ2m2c⊕ + Ψ2mcecmin +
Ψ2mcv). Thus, an upper bound of the overall complexity is given
by the latter expression. A very inaccurate but more readable up-
per bound can be obtained by observing that, clearly, Ψ is O(nk).
However, for practical purposes, it is worthwhile noting that these
two values differ significantly. (E.g., for k = 3 and n = 5,
nk = 125, while Ψ = 25; for k = 4 and n = 10, nk = 10000,
while Ψ = 385.)

Furthermore, we observe that, by restricting a little bit the power of
tree aggregation functions, the problem becomes also highly paral-
lelizable.

Of course, this is not possible without any restriction, as the weight-
ing function may be a P-complete function, in general. We say that
a TAF F⊕,v,e

H is smoothif can be evaluated in logspace. More pre-
cisely, if ⊕, vH and eH are computable in O(log(‖ H ‖)) and the
size of their outputs is O(log(‖ H ‖)).

Note that this is a wide class of functions, comprising many in-
teresting TAFs. In fact, all the hypertree weighting functions de-
scribed so far in this paper, but costH(Q), are smooth. For instance,
counting the size of a separator is feasible in logspace, and encod-
ing such a number requires logspace in the size of the given hyper-
graph.

We first consider the problem of deciding whether there is
a normal-form hypertree decomposition HD of H such that
F⊕,v,e(HD) ≤ t, for some given threshold t ≥ 0. Interestingly, we
show that this problem is LOGCFL-complete and hence in NC2

(see Appendix B, for details on this complexity class, and for its
characterization in terms of alternating Turing machines). We thus
have a new nice natural complete problem for this class, after the
recent results in [20]. We remark that we miss such a result for tra-
ditional (unweighted) hypertree decompositions (and, similarly, for
the notion of bounded treewidth). Indeed, we know that deciding
whether H ∈ kHDH is in LOGCFL [22], but the hardness for this
class has not been proven, and is still an open problem.

Theorem 4.5 Given a hypergraphH, a smoothTAF F⊕,v,e
H , and a

numbert ≥ 0, deciding whether there is a hypertree decomposition
HD ∈ kNFDH such thatF⊕,v,e(HD) ≤ t is LOGCFL-complete.
Hardness holds even for acyclic hypergraphs.

PROOF SKETCH. Membership.We build a logspace alternating
Turing machine M with a polynomially-bounded computation tree
that decides this problem. Intuitively, any existential configuration

of M is used for guessing both a set of k-edges that is candidate
to belong to some decomposition, and a maximum weight for the
sub-hypertree rooted at this node. The only exception is the starting
configuration, where the weight is not guessed, but just initialized
with the given threshold t (suitably encoded through a logspace
pointer to the input tape).

Hardness.We describe a logspace reduction from the LOGCFL-
complete problem of answering an acyclic Boolean conjunctive
query Q over a database DB. We build a hypergraph H that repre-
sents not only the structure of Q (as H(Q)), but also the database
DB. In particular,H has an edge for each tuple in DB, and the edge
function eH will be used to check whether two given nodes encode
matching tuples or not. Minimal hypertree decompositions of this
hypergraph will correspond to the choice of exactly one tuple from
each query atom, and the minimum weight will be 0 is and only if
the answer of Q over DB is true.

By using the alternating Turing machine in the proof above as an
oracle of a logspace machine, and by exploiting the results in [26]
on the computation of LOGCFL certificates, we get the analogous
result for the problem of computing minimal hypertree decomposi-
tions w.r.t. smooth TAFs.

Theorem 4.6 Given a hypergraphH and a smoothTAF F⊕,v,e
H ,

computing an[F⊕,v,e, kNFDH]-minimal hypertree decomposi-
tion ofH (if any) is feasible inLLOGCFL.

It is easy to see that all the above tractability results also hold for
some further restrictions of the class of NF bounded-width hyper-
tree decompositions, such as the bounded-width decompositions in
reduced normal form, recently defined in [17].

5. MINIMAL DECOMPOSITIONS AND
OPTIMAL QUERY PLANS: SOME EX-
PERIMENTS

In this section, we exploit the previous results for the efficient eval-
uation of database queries and we carry out some experiments.

Recall that costH(Q) is the TAF F+,v∗,e∗
H(Q)

described in Ex-
ample 4.3, and let cost-k-decomp the specialization
of minimal-k-decomp implementing costH(Q). Then,
any [costH(Q), kNFDH(Q)]-minimal weighted hypertree
decomposition, which can be computed by the algorithm
cost-k-decomp, represents an effective plan for evaluating Q
and is in fact an optimal plan according to the given cost model
(and to the class of k-bounded NF hypertree decompositions).

In [22], it is evidenced that for answering queries we need
complete decompositions, where each atom occurs at least once
(see Definition 2.1), but NF decompositions are not necessar-
ily complete. Nevertheless, this property can be easily guaran-
teed by adding a fresh variable to each query atom. The algo-
rithm cost-k-decomp, available at the hypertree decomposition
homepage [41], also deals with these issues, by suitably modifying
the query and then filtering such fresh variables, in its output phase.

Example 5.1 Consider again the following conjunctive query Q1,



{S,X,X’,C,F,Y,Y’,C’,F’}   {a, b}   $3521741

{X,X’,Y,Y’,J}   {j}   $4234 {X’,F,Y’,F’,Z’}   {f, j}   $1924029

{Y’,Z’}   {h}   $3390 {X’,Z’}   {g}   $4573

{X,C,Y,C’,Z}   {c, j}   $768572

{Y,Z}   {e}   $3554 {X,Z}   {d}   $3756

Figure 4: A minimal weighted optimal hypertree decomposi-
tion of width 2 for Q1

defined in Example 2.2:

ans ← a(S,X, X ′, C, F ) ∧ b(S,Y, Y ′, C′, F ′)
∧ c(C, C′, Z) ∧ d(X, Z) ∧
e(Y,Z) ∧ f(F, F ′, Z′) ∧ g(X ′, Z′) ∧
h(Y ′, Z′) ∧ j(J, X, Y, X ′, Y ′).

Assume we have to evaluate this query on a database DB, whose
quantitative statistics information are reported in Table 1, which
shows for each atom p occurring in Q1, the number of tuples in the
relation rel(p) associated with p, denoted by |p|, and for each vari-
able X occurring in p, the selectivity of the attribute corresponding
to X in rel(p), i.e., the number of distinctvalues X takes on rel(p).
These data are obtained by means of the command ANALYZE TA-
BLE in Oracle 8.i.

atom a, |a| = 4606 S X X′ C F
SELECTIVITY 14 24 16 21 15

atom b, |b| = 2808 S Y Y ′ C′ F ′

SELECTIVITY 17 5 12 20 7

atom c, |c| = 1748 C C′ Z′

SELECTIVITY 18 7 19

atom d, |d| = 3756 X Z
SELECTIVITY 18 7

atom d, |d| = 3554 Y Z
SELECTIVITY 21 13

atom f , |f | = 2892 F F ′ Z′

SELECTIVITY 20 7 6

atom g, |g| = 4573 X′ Z′

SELECTIVITY 22 16
atom h, |h| = 3390 Y ′ Z′

SELECTIVITY 15 12

atom j, |j| = 4234 J X Y X′ Y ′

SELECTIVITY 18 8 18 22 10

Table 1: Cardinality and selectivity for relations in query Q1.

Figure 4 shows a minimal hypertree decomposition of Q1 (w.r.t.
DB) computed by cost-k-decomp, if we fix the bound k to 2.
In the figure, each vertex v has a new label marked by the symbol $
that represents the estimated cost for evaluating the subtree rooted
at v. In particular, for each leaf �, this number will be equal to the
estimate for the cost of the relational expression E(�) (see Example
4.3); for the root r of the hypertree, this number gives the estimated
cost of the whole evaluation of Q1(DB). In our example, this cost
is 3521741.

Recall that Q1 is a cyclic query, having hypertree width 2, thus
there is no hypertree decomposition of width 1 for Q1, and k = 2
is the lowest bound such that cost-k-decomp is able to compute
decomposition for Q1. However, any value larger than 2 is feasible,
and so we have run cost-k-decompwith k ranging from 2 to 5.
For k = 3, we obtain the estimated cost 1373879, while for both
k = 4 and k = 5 we obtain 854867. Figure 5 shows a minimal
hypertree decomposition computed by cost-k-decomp, with
k = 4.

It turns out that, even if the hypertree width of Q1 is 2, for the given
quantitative information on DB and the cost model we have chosen,

{X,X’,Y,Y’,J}   {j}   $854867

{S,X,X’,C,F,Y,Y’,C’,F’,Z’}   {a, b, f, j}   $843378

{Y’,Z’}   {h}   $3390 {X’,Z’}   {g}   $4573 {X,C,Y,C’,Z}   {b, c, j}   $226904

{Y,Z}   {e}   $3554 {X,Z}   {d}   $3756

Figure 5: A minimal weighted hypertree decomposition of
width 4 for Q1

the bound 4 leads to the best query plans. This is not surprising, as
a larger bound k allows us to explore more decompositions, con-
taining larger vertices with more associated join operations. �

In order to assess the efficacy of the query plans generated by
cost-k-decomp, we compare their performances against the
ones of the plans generated by the internal optimization module of
the well known commercial DBMS Oracle 8.i, for different types
of queries. In our experiments, we mainly use randomly generated
synthetic data. Moreover, in this preliminary experimentation ac-
tivity, we did not allow indices on the relations, in order to focus
just on the less-physical aspects of the optimization task.

The experiments have been carried out by using Oracle 8.ias evalu-
ation engine. Thus, each query used for the comparison is evaluated
over Oracle 8.itwice: (i) by using its internal optimization module,
allowing the exploitation of all the quantitative information avail-
able for the database (by means of the command ANALYZE TA-
BLE, invoked for each table); (ii) with the query plan generated by
cost-k-decomp, whose execution is enforced by supplying a
suitable translation in terms of views and hints (NO MERGE, OR-
DERED) to Oracle 8.i. Experiments with cost-k-decomp have
been conducted for k ranging over (2..5). The experiments have
been performed on a 1600MHz/256MB Pentium IV machine run-
ning Windows XP Professional.

The results of experiments are displayed in Figure 6.

We use the algorithm cost-k-decomp for computing a cost-
based hypertree decomposition HD whose associated query plan
for answering Q1 on DB guarantees the minimum estimated cost
over all (normal form) k-bounded hypertree decomposition of Q1.
We also report experiments for queries q2 and Q3. Query Q2 con-
sists of 8 atoms and 9 distinct variables, and query Q3 is made of
9 atoms, 12 distinct variables, and 4 output variables. On all con-
sidered queries, the evaluation of the query plans generated by our
approach is significantly faster than the evaluation which exploits
the internal query optimization module of Oracle 8.i.

We experimented cost-k-decomp for different values of the hy-
pertree width k (2..5). A higher value of k considers a larger num-
ber of hypertree decompositions; it can therefore generate a better
plan, but obviously pays a computational overhead. For query Q1,
we report the costs of constructing the plan, the weight of the plan,
and the evaluation time (sec), for different values of k (2..5). The
Figure 6.(A) displays the ratio between the query evaluation times
(Oracle vs cost-k-decomp). Such a ratio increases for higher
values of k. Queries Q2 and Q3 show a similar behaviour of this
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Figure 6: Cost-k-decomp vs Oracle: (A) Results for different values of k. (B) Scaling of the algorithm for query Q1. (C) Evaluation
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ratio, and we report only the (absolute) query evaluation times for
k = 3 (Cost-3-decomp), which appears to be a good trade-off be-
tween the better quality of the plan and the overhead needed for its
computation.

6. CONCLUSION
We have presented an extension of the notion of hypertree decom-
position, where hypertrees are weighted by some suitable func-
tions, and we want to compute the hypertree decompositions having
the minimum weight. This is a natural generalization of the opti-
mal hypertree decompositions in [22], that are the smallest width
decompositions of a given query hypergraph.

The new notion have many possible applications, in all the areas
where structural decomposition methods may be useful. Unfortu-
nately, we prove that even for very simple weighting functions, the
computation of a minimal decomposition is an NP-hard task. How-
ever, if we restrict our search space to bounded width decomposi-
tions in normal form, the problem is feasible in polynomial time
(and in some cases also parallelizable), for a large and interesting
class of weighting functions.

In particular, we then focus on a weighting function such that min-
imal hypertree decompositions of a query Q correspond to the best
plans for evaluating Q. Thus, we get a new hybrid technique for
query planning, which combines structural decomposition methods
with the quantitative methods of commercial DBMS. The idea is to
take advantage of both the information on the data and the struc-
ture of the query, in order to have a statistically good execution
plan with a polynomial-time upper bound on the execution cost,
guaranteed by the bounded hypertree-width of the query. We de-
scribed and implemented an algorithm for computing query plans
according to this new technique. Also, we made some prelimi-
nary experiments, to show that hybrid methods may lead to signifi-
cant computational savings. In fact, the results are very promising,
showing that the proposed approach clearly outperforms the tra-
ditional quantitative-only optimizers, for many queries involving
a certain number of atoms (more than five) and not very intricate
(that is, having low hypertree width).

Future work will concern a thorough experimentation activity,

to compare our technique against other approaches presented in
the literature, or implemented in the most advanced commercial
database systems. In particular, we plan to experiment with real
queries and databases, loaded with non-random data.

Another interesting question to be experimentally evaluated is the
true impact of restricting our attention to the tractable class of nor-
mal form hypertree decompositions. That is, we want to investi-
gate how the minimum weight in this restricted case is far from the
minimum weight over all hypertree decompositions, in real appli-
cations.
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[38] D. Saccà. Closures of database hypergraphs. Journal of the
ACM, 32(4), pp. 774–803, 1985.

[39] S. Skyum and L.G. Valiant. A complexity theory based on
Boolean algebra. Journal of the ACM, 32:484–502, 1985.

[40] I.H. Sudborough. Time and Tape Bounded Auxiliary
Pushdown Automata. In Mathematical Foundations of
Computer Science (MFCS’77), LNCS 53, Springer-Verlag,
pp.493–503, 1977.

[41] Francesco Scarcello and Alfredo Mazzitelli. The hypertree
decompositions homepage, since 2002.
http://wwwinfo.deis.unical.it/˜frank/
Hypertrees/

[42] J. D. Ullman. Principles of Database and Knowledge Base
Systems. Computer Science Press, 1989.

[43] M. Vardi. Complexity of relational query languages. In Proc.
of STOC’82, San Francisco, California, United States, pp.
137–146, 1982.



[44] M. Vardi. Constraint Satisfaction and Database Theory.
Tutorial at the 19th ACM Symposium on Principles of
Database Systems (PODS’00). Currently available at:
http://www.cs.rice.edu/˜vardi/papers/
pods00t.ps.gz.

[45] M. Yannakakis. Algorithms for acyclic database schemes. In
Proc. of VLDB’81, Cannes, France, pp. 82–94, 1981.
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Appendix A: Query Decompositions
The following definition of query decomposition is a slight mod-
ification of the original definition given by Chekuri and Rajara-
man [9]. Our definition is a bit more liberal because, for any con-
junctive query Q, we do not care about the atom head(Q), as well
as of the constants possibly occurring in Q.

Definition 7.1 A query decompositionof a conjunctive query Q
is a pair 〈T, λ〉, where T = (N, E) is a tree, and λ is a la-
beling function which associates to each vertex p ∈ N a set
λ(p) ⊆ (atoms(Q)∪ var(Q)), such that the following conditions
are satisfied:

1. for each atom A of Q, there exists p ∈ N such that A ∈ λ(p);

2. for each atom A of Q, the set {p ∈ N | A ∈ λ(p)} induces a
(connected) subtree of T ;

3. for each Y ∈ var(Q), the set {p ∈ N | Y ∈ λ(p)} ∪ {p ∈
N | Y occurs in some atom A ∈ λ(p)} induces a (con-
nected) subtree of T .

The width of the query decomposition 〈T, λ〉 is maxp∈N |λ(p)|.
The query-widthqw(Q) of Q is the minimum width over all its
query decompositions. A query decomposition for Q is pure if, for
each vertex p ∈ N , λ(p) ⊆ atoms(Q). �

Then, k-bounded-width queriesare queries whose query-width is
bounded by a fixed constant k > 0. The notion of bounded query-
width generalizes the notion of acyclicity [9]. Indeed, acyclic
queries are exactly the conjunctive queries of query-width 1, be-
cause any join tree is a query decomposition of width 1.

It has been shown in [22] that deciding whether a conjunctive query
has a bounded-width query decomposition is NP-complete.

Appendix B: LOGCFL– A Class of Parallelizable
Problems
We define and characterize the class LOGCFL which consists of
all decision problems that are logspace reducible to a context-
free language. An obvious example of a problem complete for

LOGCFL is Greibach’s hardest context-free language [27]. There
are a number of very interesting natural problems known to be
LOGCFL-complete (see, e.g. [24, 40, 39]). The relationship be-
tween LOGCFL and other well-known complexity classes is sum-
marized in the following chain of inclusions:

AC0 ⊆ NC1 ⊆ L ⊆ SL ⊆ NL ⊆ LOGCFL ⊆ AC1 ⊆ NC2 ⊆ P

Here L denotes logspace, ACi and NCi are logspace-uniform
classes based on the corresponding types of Boolean circuits,
SL denotes symmetric logspace, NL denotes nondeterministic
logspace, and P is polynomial time. For the definitions of all these
classes, and for references concerning their mutual relationships,
see [31].

Since LOGCFL ⊆ AC1 ⊆ NC2, the problems in LOGCFL are all
highly parallelizable. In fact, they are solvable in logarithmic time
by a concurrent-read-concurrent-write (CRCW) parallel random-
access-machine (PRAM) with a polynomial number of proces-
sors, or in log2-time by an exclusive-read-exclusive-write (EREW)
PRAM with a polynomial number of processors.

In this paper, we use an important characterization of LOGCFL by
Alternating Turing Machines. We assume that the reader is familiar
with the alternating Turing machine (ATM)computational model
introduced by Chandra et al. [7]. Here we assume without loss of
generality that the states of an ATM are partitioned into existential
and universal states.

As in [37], we define a computation treeof an ATM M on an input
string w as a tree whose nodes are labeled with configurations of
M on w, such that the descendants of any non-leaf labeled by a
universal (existential) configuration include all (resp. one) of the
successors of that configuration. A computation tree is acceptingif
the root is labeled with the initial configuration, and all the leaves
are accepting configurations.

Thus, an accepting tree yields a certificate that the input is accepted.
A complexity measure considered by Ruzzo [37] for the alternating
Turing machine is the tree-size, i.e. the minimal size of an accept-
ing computation tree.

Definition 7.2 ([37]) A decision problem P is solved by an alter-
nating Turing machine M within simultaneoustree-size and space
bounds Z(n) and S(n) if, for every “yes” instance w of P , there is
at least one accepting computation tree for M on w of size (number
of nodes) ≤ Z(n), each node of which represents a configuration
using space ≤ S(n), where n is the size of w. (Further, for any
“no” instance w of P there is no accepting computation tree for
M .) �

Ruzzo [37] proved the following important characterization of
LOGCFL :

Proposition 7.3 ([37]) LOGCFL coincides with the class of all de-
cision problems recognized by ATMs operating simultaneously in
tree-sizeO(nO(1)) and spaceO(log n).
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