
Constraint Satisfaction with

Bounded Treewidth Revisited ⋆

Marko Samer and Stefan Szeider

Department of Computer Science
Durham University, UK

Abstract

The constraint satisfaction problem can be solved in polynomial time for instances
where certain parameters (e.g., the treewidth of primal graphs) are bounded. How-
ever, there is a trade-off between generality and performance: larger bounds on the
parameters yield worse time complexities. It is desirable to pay for more generality
only by a constant factor in the running time, not by a larger degree of the poly-
nomial. Algorithms with such a uniform polynomial time complexity are known as
fixed-parameter algorithms.

In this paper we determine whether or not fixed-parameter algorithms for con-
straint satisfaction exist, considering all possible combinations of the following pa-
rameters: the treewidth of primal graphs, the treewidth of dual graphs, the treewidth
of incidence graphs, the domain size, the maximum arity of constraints, and the max-
imum size of overlaps of constraint scopes. The negative cases are subject to the
complexity theoretic assumption FPT 6= W[1] which is the parameterized analog to
P 6= NP. For the positive cases we provide an effective fixed-parameter algorithm
which is based on dynamic programming on “nice” tree decompositions.

Key words: Constraint satisfaction, parameterized complexity, treewidth

⋆ Research supported by the EPSRC project EP/E001394/1 and the Austrian Sci-
ence Funds (FWF) project P17222-N04. Preliminary version published in the Pro-
ceedings of the 12th International Conference on Principles and Practice of Con-
straint Programming (CP’06).
Authors’ address: Department of Computer Science, Durham University,
Science Labs, South Road, Durham DH1 3LE, England, UK. E-Mail:
{marko.samer,stefan.szeider}@durham.ac.uk

Preprint submitted to Elsevier Preprint 7 February 2007

1 Introduction

An instance of the constraint satisfaction problem (CSP) consists of a set of
variables that range over a domain of values together with a set of constraints
that allow certain combinations of values for certain sets of variables. The
question is whether one can instantiate the variables in such a way that all
constraints are simultaneously satisfied; in that case the instance is called
consistent or satisfiable. Constraint satisfaction provides a general framework
which allows direct structure-preserving encodings of numerous problems that
arise in practice.

Although constraint satisfaction is NP-complete in general, many efforts have
been made to identify restricted problems that can be solved in polynomial
time. Such restrictions can either limit the constraints used in the instance
[6] or limit the overall structure of the instance, i.e., how variables and con-
straints interact in the instance [8]. In this paper we focus on the latter form of
restrictions which are also referred to as “structural restrictions.” Structural
restrictions are usually formulated in terms of certain graphs and hypergraphs
that are associated with a constraint satisfaction instance as described in the
following.

The primal graph has the variables as its vertices; two variables are joined by
an edge if they occur together in the scope of a constraint. The dual graph has
the constraints as its vertices; two constraints are joined by an edge if their
scopes have variables in common. The incidence graph is a bipartite graph
and has both the variables and the constraints as its vertices; a variable and
a constraint are joined by an edge if the variable occurs in the scope of the
constraint. Finally, the constraint hypergraph is a hypergraph whose vertices
are the variables and whose hyperedges are the constraint scopes.

Fundamental classes of tractable instances are obtained if the associated (hy-
per)graphs are acyclic with respect to certain notions of acyclicity. Acyclicity
can be generalized by means of (hyper)graph decomposition techniques which
give rise to “width” parameters that measure how far an instance deviates
from being acyclic. Freuder [12] and Dechter and Pearl [9] observed that con-
straint satisfaction is polynomial-time solvable if

• the treewidth of primal graphs, tw,

is bounded by a constant. The graph parameter treewidth, introduced by
Robertson and Seymour in their Graph Minors Project, has become a very
popular object of study as many NP-hard graph problems are polynomial-time
solvable for graphs of bounded treewidth; we define treewidth in Section 2.2. In
subsequent years several further structural parameters have been considered,
such as

2

• the treewidth of dual graphs, twd,
• the treewidth of incidence graphs, tw∗,

and various width parameters on constraint hypergraphs, including

• the (generalized) hypertree width, (g)hw, (Gottlob, Leone, and Scarcello [15]),
• the spread-cut width, scw, (Cohen, Jeavons, and Gyssens [7]), and
• the fractional hypertree width, fhw, (Grohe and Marx [18]).

Considering constraint satisfaction instances where the width parameter under
consideration is bounded by some fixed integer k gives rise to a class Wk of
tractable instances. The larger k gets, the larger is the resulting tractable
class Wk. However, for getting larger and larger tractable classes one has to
pay by longer running times. A fundamental question is the trade-off between
generality and performance. A typical time complexity of algorithms known
from the literature are of the form

O(‖I‖O(f(k))) (1)

for instances I belonging to the class Wk; here ‖I‖ denotes the input size of I
and f(k) denotes a slowly growing function. Such a running time is polynomial
when k is considered as a constant. However, since k appears in the exponent,
such algorithms become impractical—even if k is small—when large instances
are considered. It is significantly better if instances I of the class Wk can be
solved in time

O(f(k) ‖I‖O(1)) (2)

where f is an arbitrary (possibly exponential) computable function. In that
case the order of the polynomial does not depend on k, and so considering
larger and larger classes does not increase the order of the polynomial. Thus,
it is a significant objective to classify the trade-off between generality and
performance of a width parameter under consideration: whether the parameter
allows algorithms of type (1) or of type (2).

1.1 Parameterized Complexity

The framework of parameterized complexity provides the adequate concepts
and tools for studying the above question. Parameterized complexity was ini-
tiated by Downey and Fellows in the late 1980s and has become an important
branch of algorithm design and analysis; hundreds of research papers have
been published in that area [10,11,21]. It turned out that the distinction be-
tween tractability of type (2) and tractability of type (1) is a robust indication
of problem hardness.

A fixed parameter algorithm is an algorithm that achieves a running time of

3

type (2) for instances I and parameter k. A parameterized problem is fixed-
parameter tractable if it can be solved by a fixed-parameter algorithm. FPT
denotes the class of all fixed-parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evi-
dence that a parameterized problem is not fixed-parameter tractable. This
completeness theory is based on the weft hierarchy of complexity classes
W[1], W[2], . . . , W[P]. Each class is the equivalence class of certain parameter-
ized satisfiability problems under fpt-reductions (for instance, the canonical
W[1]-complete problem asks whether a given 3SAT instance can be satisfied
by setting at most k variables to true). Let Π and Π′ be two parameterized
problems. An fpt-reduction R from Π to Π′ is a many-to-one transformation
from Π to Π′, such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π′ with k′ ≤ g(k)
for a fixed computable function g and (ii) R is of complexity O(f(k) ‖I‖O(1))
for a computable function f . The class XP consists of parameterized problems
which can be solved in polynomial time if the parameter is considered as a
constant. The above classes form the chain

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

where all inclusions are assumed to be proper. A parameterized analog of
Cook’s Theorem [10] as well as the Exponential Time Hypothesis [11,19] give
strong evidence to assume that FPT 6= W[1]. It is known that FPT 6= XP [10];
hence the term “parameterized tractable” (which is sometimes used to indicate
membership in XP [7]) must be carefully distinguished from “fixed-parameter
tractable.” Although XP contains problems which are very unlikely to be
fixed-parameter tractable, it is often a significant improvement to show that a
problem belongs to this class, in contrast to, e.g., k-SAT which is NP-complete
for every constant k ≥ 3.

The following parameterized clique-problem is W[1]-complete [10]; this prob-
lem is the basis for the hardness results considered in the sequel.

CLIQUE
Instance: A graph G and a non-negative integer k.
Parameter: k.
Question: Does G contain a clique on k vertices?

1.2 Parameterized Constraint Satisfaction

We consider any computable function p that assigns to a constraint satisfaction
instance I a non-negative integer p(I) as a constraint satisfaction parameter ;
constraint satisfaction instances are formally defined in Section 2.1. For a finite

4

set {p1, . . . , pr} of constraint satisfaction parameters we consider the following
generic parameterized problem:

CSP(p1, . . . , pr)
Instance: A constraint satisfaction instance I and non-negative integers

k1, . . . , kr with p1(I) ≤ k1, . . . , pr(I) ≤ kr.
Parameters: k1, . . . , kr.
Question: Is I consistent?

Slightly abusing notation, we will also write CSP(S) for a set S of param-
eters, assuming an arbitrary but fixed ordering of the parameters in S. We
write CSPboole(S) to denote CSP(S) with the Boolean domain {0, 1}, and
CSPbin(S) to denote CSP(S) where all constraints have arity at most 2.

Note that we formulate this problem as a “promise problem” in the sense
that for solving the problem we do not need to verify the assumption p1(I) ≤
k1, . . . , pr(I) ≤ kr. However, unless otherwise stated, for all cases considered
in the sequel where CSP(p1, . . . , pr) is fixed-parameter tractable, also the
verification of the assumption p1(I) ≤ k1, . . . , pr(I) ≤ kr is fixed-parameter
tractable. For a constraint satisfaction instance I we have the basic parameters

• the number of variables, vars,
• the size of the domain, dom,
• the largest size of a constraint scope, arity, and
• the largest number of variables that occur in the overlap of the scopes of

two distinct constraints, ovl.

If we parameterize by the domain size, then we have obviously an NP-complete
problem, since, e.g., 3-colorability can be expressed as a constraint satisfac-
tion problem with constant domain. Thus CSP(dom) is not fixed-parameter
tractable unless P = NP. On the other hand, if we parameterize by the num-
ber of variables and the domain size, i.e., CSP(vars,dom), then we have
a trivially fixed-parameter tractable problem: we can decide the consistency
of an instance I by checking all dom(I)vars(I) possible assignments. However,
without the parameter dom we get CSP(vars), a W[1]-complete problem [22].

Gottlob, Scarcello, and Sideri [17] have determined the parameterized com-
plexity of constraint satisfaction with respect to the treewidth of pri-
mal graphs: CSP(tw,dom) is fixed-parameter tractable, and CSP(tw) is
W[1]-hard. The parameterized complexity of constraint satisfaction with re-
spect to other structural parameters like treewidth of dual graphs, treewidth
of incidence graphs, and the more general width parameters defined in terms
of constraint hypergraphs remained open. In this paper we determine exactly
those combinations of parameters from tw, twd, tw∗, dom, arity, and ovl
that render constraint satisfaction fixed-parameter tractable.

5

To this end we introduce the notion of domination. Let S and S ′ =
{p′1, p

′
2, . . . , p

′
r′} be two finite sets of constraint satisfaction parameters. S dom-

inates S ′ if for every p ∈ S there exists an r′-ary computable function f that is
monotonically increasing in each argument such that for every constraint sat-
isfaction instance I we have p(I) ≤ f(p′1(I), p′2(I), . . . , p′r′(I)). See Lemma 2
for examples that illustrate this notion (if S or S ′ is a singleton, we omit
the braces to improve readability). It is easy to see that whenever S domi-
nates S ′, then fixed-parameter tractability of CSP(S) implies fixed-parameter
tractability of CSP(S ′), and W[1]-hardness of CSP(S ′) implies W[1]-hardness
of CSP(S) (see Lemma 1).

1.3 Results

We obtain the following classification result (see also the diagram in Figure 1
and the discussion in Section 3).

Theorem 1 (Classification Theorem) Let S ⊆ {tw, twd, tw∗, dom,
arity, ovl}.

(1) If {tw∗,dom, ovl} dominates S, then CSP(S) is fixed-parameter
tractable.

(2) If {tw∗,dom, ovl} does not dominate S, then CSP(S) is not fixed-
parameter tractable unless FPT = W[1].

The complexity theoretic assumption FPT 6= W[1] is discussed in Section 1.1.
We establish the fixed-parameter tractability results by a dynamic program-
ming algorithm. The established upper bounds to its worst-case running time
show that the algorithm is feasible in practice. Let us remark that many con-
straint satisfaction instances appearing in industry have bounded overlap. For
example, the Adder, Bridge, and NewSystem instances from DaimlerChrysler
have by construction an overlap bounded by 2 [13].

We extend the fixed-parameter tractability result of the Classification
Theorem to the additional parameters diff and equiv; definitions are
given in Section 6. We show that he problems CSP(tw∗,dom,diff) and
CSP(tw∗,dom, equiv) are fixed-parameter tractable.

The notion of domination allows us to extend the W[1]-hardness results of
the Classification Theorem to all parameters that are more general than the
treewidth of incidence graphs. In particular, we obtain the following corollary
to Theorem 1.

Corollary 1 The problems CSP(p,dom) and CSPboole(p) are W[1]-hard if
p is any of the parameters treewidth of incidence graphs, hypertree width, gen-
eralized hypertree width, spread-cut width, and fractional hypertree width.

6

Recently, Gottlob et al. [14] have shown that the problem of deciding whether
a given hypergraph has (generalized) hypertree width at most k, is W[2]-hard
with respect to the parameter k. We note that this result does not imply
W[1]-hardness of CSP(hw,dom) (respectively CSP(ghw,dom)), since it is
possible to design algorithms for constraint satisfaction instances of bounded
(generalized) hypertree width that avoid the decomposition step. Chen and
Dalmau [5] have recently proposed such an algorithm, which, however, is not
a fixed-parameter algorithm.

Our results indicate a somewhat surprising difference between Boolean con-
straint satisfaction and propositional satisfiability (SAT). A SAT instance is a
set of clauses, representing a propositional formula in conjunctive normal form.
The question is whether the instance is satisfiable. Primal, dual, and incidence
graphs and the corresponding treewidth parameters tw, twd, and tw∗ can be
defined for SAT similarly as for constraint satisfaction [25], as well as the pa-
rameterized decision problem SAT(p) for a parameter p. In contrast to the
W[1]-hardness of CSPboole(tw

∗), as established in Corollary 1, the problem
SAT(tw∗) is fixed-parameter tractable. This holds also true for SAT(twd)
and SAT(tw) since tw∗ dominates twd and tw. Szeider [25] proved the fixed-
parameter tractability of SAT(tw∗) by using a general result for Monadic
Second Order (MSO) logic on graphs; Samer and Szeider [24] developed a
dynamic programming algorithm for this problem.

2 Preliminaries

2.1 Constraint Satisfaction

Formally, a constraint satisfaction instance I is a triple (V, D, F), where V is
a finite set of variables, D is a finite set of domain values, and F is a finite set
of constraints. Each constraint in F is a pair (S, R), where S, the constraint
scope, is a sequence of distinct variables of V , and R, the constraint relation,
is a relation over D whose arity matches the length of S. We write var(C) for
the set of variables that occur in the scope of a constraint C and rel(C) for
the relation of C. An assignment is a mapping τ : X → D defined on some
set X of variables. Let C = ((x1, . . . , xn), R) be a constraint and τ : X → D
an assignment. We define

C[τ] = { (d1, . . . , dn) ∈ R : xi /∈ X or τ(xi) = di, 1 ≤ i ≤ n }.

7

Thus, C[τ] contains those tuples of R that do not disagree with τ at some
position. Similarly, for a set T of assignments and a constraint C we define

C[T] =
⋃

τ∈T

C[τ].

An assignment τ : X → D is consistent with a constraint C if C[τ] 6= ∅.
An assignment τ : X → D satisfies a constraint C if var(C) ⊆ X and τ is
consistent with C. An assignment satisfies a constraint satisfaction instance I
if it satisfies all constraints of I. The instance I is consistent (or satisfiable) if
it is satisfied by some assignment. The constraint satisfaction problem CSP
is the problem of deciding whether a given constraint satisfaction instance is
satisfiable.

2.2 Tree Decompositions

Let G be a graph, let T be a tree, and let χ be a labelling of the vertices
of T by sets of vertices of G. We refer to the vertices of T as “nodes” to avoid
confusion with the vertices of G, and we call the sets χ(t) “bags.” The pair
(T, χ) is a tree decomposition of G if the following three conditions hold:

(1) For every vertex v of G there exists a node t of T such that v ∈ χ(t).
(2) For every edge vw of G there exists a node t of T such that v, w ∈ χ(t).
(3) For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1

to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2) (“Connectedness Condition”).

The width of a tree decomposition (T, χ) is defined as the maximum |χ(t)|−1
over all nodes t of T . The treewidth tw(G) of a graph G is the minimum width
over all its tree decompositions.

As shown by Bodlaender [2], there exists for every k a linear time algorithm
that checks whether a given graph has treewidth at most k and, if so, outputs
a tree decomposition of minimum width. Bodlaender’s algorithm does not
seem feasible to implement [4]. However, there are several other known fixed-
parameter algorithms that are feasible. For example, Reed’s algorithm [23]
runs in time O(|V | log |V |) and decides either that the treewidth of a given
graph G = (V, E) exceeds k, or outputs a tree decomposition of width at most
4k, for any fixed k. The algorithm produces tree decompositions with O(|V |)
many nodes.

Let (T, χ) be a tree decomposition of a graph G and let r be a node of T .
The triple (T, χ, r) is a nice tree decomposition of G if the following three
conditions hold; here we consider T = (V (T), E(T)) as a tree rooted at r.

(1) Every node of T has at most two children.

8

(2) If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in
that case we call t a join node.

(3) If a node t of T has exactly one child t′, then exactly one of the following
prevails:
(a) |χ(t)| = |χ(t′)|+1 and χ(t′) ⊂ χ(t); in that case we call t an introduce

node.
(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget

node.

Let (T, χ, r) be a nice tree decomposition of a graph G. For each node t of T
let Tt denote the subtree of T rooted at t. Furthermore, let Vt denote the set
of vertices of G that occur in the bags of nodes of Tt; i.e., Vt =

⋃

t′∈V (Tt) χ(t′).

It is well known (and easy to see) that for any constant k, given a tree decom-
position of a graph G = (V, E) of width k and with O(|V |) nodes, one can
construct in linear time a nice tree decomposition of G with O(|V |) nodes and
width at most k [4].

3 The Domination Lattice

Lemma 1 Let S and S ′ be two sets of constraint satisfaction parameters such
that S dominates S ′. Then there is an fpt-reduction from CSP(S ′) to CSP(S).
In particular, fixed-parameter tractability of CSP(S) implies fixed-parameter
tractability of CSP(S ′), and W[1]-hardness of CSP(S ′) implies W[1]-hardness
of CSP(S).

PROOF. Let S = {p1, . . . , pr} and S ′ = {p′1, . . . , p
′
r′} and assume that

S dominates S ′. By definition, for every i = 1, . . . , r there exists an r′-
ary computable function fi that is monotonically increasing in each argu-
ment such that for every constraint satisfaction instance I we have pi(I) ≤
fi(p

′
1(I), p′2(I), . . . , p′r′(I)). Consider an instance (I, k′

1, . . . , k
′
r′) of CSP(S ′);

i.e., we have p′i(I) ≤ k′
i for all 1 ≤ i ≤ r′. We put ki = fi(k

′
1, k

′
2, . . . , k

′
r′)

for all 1 ≤ i ≤ r. Since fi is monotonically increasing in each argument,
we have pi(I) ≤ fi(p

′
1(I), p′2(I), . . . , p′r′(I)) ≤ fi(k

′
1, k

′
2, . . . , k

′
r′) = ki. Hence

(I, k1, . . . , kr) is an instance of CSP(S). Whence we have indeed an fpt-
reduction from CSP(S ′) to CSP(S). The second part of the lemma is a direct
consequence of the first part. �

Lemma 2

(1) If S ⊆ S ′, then S dominates S ′.
(2) ovl dominates arity.
(3) arity dominates tw.

(4) tw∗ dominates tw.
(5) tw∗ dominates twd.
(6) tw dominates {tw∗, arity}.

9

PROOF. Parts 1 and 2 are obvious. Part 3 is also easy to see since a
constraint of arity r yields a clique on r vertices in the primal graph; it
is well known that if a graph G contains a clique with r vertices, then
tw(G) ≥ r − 1 [3]. Part 4 follows from the inequality tw∗(I) ≤ tw(I) + 1
shown by Kolaitis and Vardi [20]. A symmetric argument gives tw∗(I) ≤
twd(I) + 1, hence Part 5 holds as well. Part 6 follows by the inequality
tw(I) ≤ tw∗(I)(arity(I)−1) which is also due to Kolaitis and Vardi [20]. �

We note that parts 2–5 of the above lemma are strict in the sense that p
dominates q but q does not dominate p.

Let S = {tw, twd, tw∗, dom, arity, ovl}. The following arguments will make
it easier to classify CSP(S) for subsets S of S.

First we note that whenever S∩{tw, twd, tw∗} = ∅, then S dominates {dom,
arity, ovl}. However, CSP(dom, arity, ovl) is not fixed-parameter tractable
unless P = NP, since graph 3-colorability can be expressed as a constraint
satisfaction problem with constant dom, arity, and ovl.

Second, if a set S dominates a proper subset S ′ of S, then CSP(S) and
CSP(S ′) are of the same parameterized complexity; this follows by Lemmas 1
and 2(1); in this case we can disregard S. For example, we can disregard the
set {tw, arity} since it dominates {tw} by Lemma 2(3). Similarly we can
disregard the set {tw, ovl} since it dominates {tw, arity} by Lemma 2(2)
and so it dominates {tw} as well.

Third, by Lemma 2(4 and 6), every set S ∪{tw∗, arity} has the same param-
eterized complexity as the set S ∪ {tw}.

Hence, in order to establish Theorem 1, it suffices to classify the parameterized
complexity of CSP(S) for the following twelve sets S ⊆ S.

{tw}, {tw,dom},

{tw∗}, {tw∗,dom},

{tw∗, ovl}, {tw∗,dom, ovl},

{twd}, {twd,dom},

{twd, ovl}, {twd,dom, ovl},

{twd, arity}, {twd,dom, arity}.

Figure 1 shows the relationships among all twelve sets as implied by Lemma 2:
a set S dominates a set S ′ if and only if there is a path running downwards
from S to S ′; in fact, it can be easily shown that whenever one of the twelve
sets dominates another, it strictly dominates the other set.

The sets S for which CSP(S) is fixed-parameter tractable according to The-
orem 1 are indicated in the diagram by shaded boxes. In view of the relation-

10

{tw∗}

{twd} {tw∗,dom} {tw∗,ovl}

{twd,dom} {twd,ovl} {tw∗,dom,ovl} {tw}

{twd,dom,ovl} {twd,arity} {tw,dom}

{twd,dom,arity}

Fig. 1. Domination lattice

ships between the sets, Theorem 1 is established if we show (i) W[1]-hardness
of CSP(twd,dom), (ii) W[1]-hardness of CSP(twd, arity), and (iii) fixed-
parameter tractability of CSP(tw∗,dom, ovl).

4 Proof of the W[1]-hardness Results

We give an fpt-reduction from CLIQUE to CSPboole(tw
d). To this aim,

consider an instance of CLIQUE, i.e., a graph G = ({v1, . . . , vn}, E) and
an integer k. We construct a Boolean constraint satisfaction instance I =
({ xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n }, {0, 1}, F) such that I is consistent if and only
if there exists a clique of size k in G.

First we construct the relation R ⊆ {0, 1}2n that encodes the edges of G using
Boolean values 0 and 1 as follows: for each edge vpvq of G, 1 ≤ p < q ≤ n, we
add to R the 2n-tuple

(tp,1, . . . , tp,n, tq,1, . . . , tq,n)

where tp,i = 1 if and only if p = i, and tq,i = 1 if and only if q = i, 1 ≤ i ≤ n.
We let F be the set of constraints

Ci,j = ((xi,1, . . . , xi,n, xj,1, . . . , xj,n), R)

for 1 ≤ i < j ≤ k. It is easy to verify that G contains a clique on k vertices
if and only if I is consistent. The reduction can be carried out in polynomial
time.

Next we construct a trivial tree decomposition of the dual graph of I by
creating a single tree node and putting all constraints into its bag. Since

11

|F | =
(

k
2

)

, the width of our decomposition is
(

k
2

)

−1. Hence, twd(I) ≤
(

k
2

)

−1.

Thus we have indeed an fpt-reduction from CLIQUE to CSPboole(tw
d) and

CSP(twd,dom). Consequently, the latter problems are W[1]-hard. Since tw∗

dominates twd (Lemma 2(5)), also CSPboole(tw
∗) and CSP(tw∗,dom) are

W[1]-hard (Lemma 1).

In turn, it is well known that the treewidth of incidence graphs is dominated
by each of the parameters (generalized) hypertree width, fractional hypertree
width, and spread-cut width of constraint hypergraphs [7,16,18,20]. Hence,
Corollary 1 follows by Lemma 1.

The W[1]-hardness of CSP(twd, arity) can be shown by an fpt-reduction
from CLIQUE as well. This reduction, which is easier than the reduction
above, was used by Papadimitriou and Yannakakis for showing W[1]-hardness
of CSP(vars): given a graph G = (V, E) and an integer k, we construct a CSP
instance I = ({x1, . . . , xk}, V, F) where F contains constraints ((xi, xj), E) for
all 1 ≤ i < j ≤ k. Evidently, G contains a clique of size k if and only if I is
consistent. Since there are

(

k
2

)

constraints, the dual graph of I has a trivial

tree decomposition of width
(

k
2

)

−1. Thus twd(I) ≤
(

k
2

)

−1 and arity(I) = 2.

Whence CSPbin(twd, arity) and CSP(twd, arity) are W[1]-hard.

For establishing Theorem 1 it remains to show that CSP(tw∗,dom, ovl) is
fixed-parameter tractable.

5 Fixed-Parameter Algorithm for CSP(tw∗,dom, ovl)

For this section, let (T, χ, r) be a nice tree decomposition of width k of the
incidence graph of a constraint satisfaction instance I = (V, D, F).

For each node t of T , let Ft denote the set of all the constraints in Vt, and let
Xt denote the set of all variables in Vt; that is, Ft = Vt ∩ F and Xt = Vt ∩ V .
We also use the shorthands χc(t) = χ(t) ∩ F and χv(t) = χ(t) ∩ V for the set
of variables and the set of constraints in χ(t), respectively. Moreover, χ∗

v(t)
denotes the set of all variables of Xt that are in χv(t) or in var(C1)∩ var(C2)
for two distinct constraints C1, C2 ∈ χc(t). That is, χ∗

v(t) is the set of variables
in χv(t) together with all “forgotten” variables in Xt that occur in at least
two constraints in χc(t).

Let t be a node of T and let α : χ∗
v(t) → D be an assignment. We define

N(t, α) as the set of assignments τ : Xt → D such that τ |χ∗
v(t) = α and τ

is consistent with all constraints in Ft. Consequently, I is consistent if and
only if N(r, α) 6= ∅ for some α : χ∗

v(r) → D. The following lemmas show that

12

we can decide consistency of I by dynamic programming along a bottom-up
traversal of T .

Lemma 3 Let t be a join node of T with children t1, t2. Let α : χ∗
v(t) → D

be an assignment and αi = α|χ∗
v(ti), i = 1, 2. Then the following holds:

(1) N(t, α) 6= ∅ if and only if N(t1, α1) 6= ∅, N(t2, α2) 6= ∅, and C[N(t1, α1)]∩
C[N(t2, α2)] 6= ∅ for all C ∈ χc(t).

(2) If N(t, α) 6= ∅, then C[N(t, α)] = C[N(t1, α1)] ∩ C[N(t2, α2)] for all
C ∈ χc(t).

PROOF. Part 1: For the only if direction, let τ ∈ N(t, α), and τ1 = τ |Xt1

and τ2 = τ |Xt2
. It is then easy to verify that τ1 ∈ N(t1, α1) and τ2 ∈ N(t2, α2).

Moreover, it holds that C[τ] 6= ∅ for all C ∈ χc(t), which implies C[τ1]∩C[τ2] 6=
∅ for all C ∈ χc(t). Hence, we have C[N(t1, α1)] ∩ C[N(t2, α2)] 6= ∅ for all
C ∈ χc(t). For the if direction, let τ1 ∈ N(t1, α1) and τ2 ∈ N(t2, α2) such
that C[τ1] ∩ C[τ2] 6= ∅ for all C ∈ χc(t). Now, let us define the assignment τ :
Xt → D by τ |Xt1

= τ1 and τ |Xt2
= τ2. To verify that τ ∈ N(t, α), note

that, by the Connectedness Condition, we have Vt1 ∩ Vt2 = χ(t), that is,
Xt1 ∩ Xt2 = χv(t) ⊆ χ∗

v(t) and Ft1 ∩ Ft2 = χc(t). Moreover, it holds that
χ∗

v(t1)∪χ∗
v(t2) = (χ∗

v(t)∩Xt1)∪(χ∗
v(t)∩Xt2) = χ∗

v(t)∩(Xt1∪Xt2) = χ∗
v(t)∩Xt =

χ∗
v(t). Part 2 follows immediately from the above constructions. �

Lemma 4 Let t be an introduce node with child t′ where χ(t) = χ(t′) ∪ {x}
for a variable x. Let α : χ∗

v(t
′) → D be an assignment and β = α ∪ {(x, d)}

for some domain element d ∈ D. Then the following holds:

(1) N(t, β) 6= ∅ if and only if N(t′, α) 6= ∅ and C[N(t′, α)] ∩ C[{(x, d)}] 6= ∅
for all C ∈ χc(t).

(2) If N(t, β) 6= ∅, then C[N(t, β)] = C[N(t′, α)] ∩ C[{(x, d)}] for all C ∈
χc(t).

PROOF. Part 1: For the only if direction, let τ ∈ N(t, β) and τ ′ = τ |Xt′
.

Thus, it follows that τ ′ ∈ N(t′, α). Moreover, it holds that C[τ] 6= ∅ for all
C ∈ χc(t), which implies C[τ ′] ∩ C[{(x, d)}] 6= ∅ for all C ∈ χc(t). Hence, we
have C[N(t′, α)] ∩ C[{(x, d)}] 6= ∅ for all C ∈ χc(t). For the if direction, let
τ ′ ∈ N(t′, α) such that C[τ ′] ∩ C[{(x, d)}] 6= ∅ for all C ∈ χc(t). Now, let us
define the assignment τ : Xt → D by τ |Xt′

= τ ′ and τ(x) = d for the single
variable x ∈ Xt \ Xt′ . It is then easy to show that τ ∈ N(t, β). Part 2 follows
immediately from the above constructions. �

Lemma 5 Let t be an introduce node with child t′ where χ(t) = χ(t′) ∪ {B}
for a constraint B. Let α : χ∗

v(t) → D be an assignment. Then the following
holds:

13

(1) N(t, α) 6= ∅ if and only if N(t′, α) 6= ∅ and B[α] 6= ∅.
(2) If N(t, α) 6= ∅, then C[N(t, α)] = C[N(t′, α)] for all C ∈ χc(t

′).

PROOF. Part 1: For the only if direction, let τ ∈ N(t, α) and τ ′ = τ |Xt′
. So

we have τ ′ ∈ N(t′, α). Moreover, since C[τ] 6= ∅ for all C ∈ χc(t), we know that
B[τ] 6= ∅. Thus, since τ |χ∗

v(t) = α, we obtain B[α] 6= ∅. For the if direction,
let τ ′ ∈ N(t′, α) and B[α] 6= ∅. By the construction of a tree decomposition of
an incidence graph, we know that var(B) ∩ Xt ⊆ χv(t) ⊆ χ∗

v(t). Thus, since
τ ′|χ∗

v(t) = α, we have B[τ ′] 6= ∅. So it can be easily verified that τ ′ ∈ N(t, α).
Part 2 follows immediately from the above constructions. �

Lemma 6 Let t be a forget node with child t′ where χ(t) = χ(t′) \ {x} for
a variable x. Let α : χ∗

v(t) → D be an assignment. If x ∈ χ∗
v(t), then the

following holds:

(1) N(t, α) 6= ∅ if and only if N(t′, α) 6= ∅.
(2) If N(t, α) 6= ∅, then C[N(t, α)] = C[N(t′, α)] for all C ∈ χc(t).

Otherwise, if x /∈ χ∗
v(t), then the following holds:

(1) N(t, α) 6= ∅ if and only if N(t′, α ∪ {(x, d)}) 6= ∅ for some d ∈ D.
(2) If N(t, α) 6= ∅, then C[N(t, α)] =

⋃

d∈D C[N(t′, α ∪ {(x, d)})] for all C ∈
χc(t).

PROOF. The case of x ∈ χ∗
v(t) is trivial, since χ∗

v(t) = χ∗
v(t

′) and χc(t) =
χc(t

′). Let us therefore consider the more interesting case of x /∈ χ∗
v(t). Part 1:

For the only if direction, let τ ∈ N(t, α). Thus, since Xt = Xt′ , we know that
τ(x) = d for the single variable x ∈ χ∗

v(t
′) \ χ∗

v(t) and some domain element
d ∈ D. Consequently, τ ∈ N(t′, α ∪ {(x, d)}) for some d ∈ D. For the if
direction, let τ ′ ∈ N(t′, α ∪ {(x, d)}) for some d ∈ D. Then we trivially have
τ ′ ∈ N(t, α). Part 2 follows immediately from the above constructions. �

Lemma 7 Let t be a forget node with child t′ where χ(t) = χ(t′) \ {B} for a
constraint B. Let α : χ∗

v(t) → D be an assignment. Then the following holds:

(1) N(t, α) 6= ∅ if and only if N(t′, α′) 6= ∅ for some α′ : χ∗
v(t

′) → D s.t.
α = α′|χ∗

v(t).
(2) If N(t, α) 6= ∅, then C[N(t, α)] =

⋃

α=α′|χ∗
v(t)

C[N(t′, α′)] for all C ∈ χc(t).

PROOF. Part 1: For the only if direction, let τ ∈ N(t, α). Thus, since Xt =
Xt′ , we know that for all variables x ∈ χ∗

v(t
′) \χ∗

v(t) there exists some domain
element d ∈ D such that τ(x) = d. Consequently, τ ∈ N(t′, α′) for some
α′ : χ∗

v(t
′) → D such that α = α′|χ∗

v(t). For the if direction, let τ ′ ∈ N(t′, α′)

14

for some α′ : χ∗
v(t

′) → D such that α = α′|χ∗
v(t). Then we trivially have

τ ′ ∈ N(t, α). Part 2 follows immediately from the above constructions. �

Lemma 8 Let t be a leaf node and α : χ∗
v(t) → D be an assignment. Then

the following holds:

(1) N(t, α) 6= ∅ if and only if C[α] 6= ∅ for all C ∈ χc(t).
(2) If N(t, α) 6= ∅, then C[N(t, α)] = C[α] for all C ∈ χc(t).

PROOF. Since Xt = χv(t) = χ∗
v(t) and Ft = χc(t) for every leaf node t, we

immediately obtain the above properties. �

In the following, we represent the sets C[N(t, α)] for each α : χ∗
v(t) → D and

C ∈ χc(t) by a table Mt with at most |χ∗
v(t)|+ |χc(t)|m columns and |D||χ

∗
v(t)|

rows, where m = maxC∈F |rel(C)|. The first |χ∗
v(t)| columns of Mt contain

values from D encoding α(x) for variables x ∈ χ∗
v(t). The further columns

of Mt represent the tuples in rel(C) for C ∈ χc(t) and contain Boolean values.
We denote by Mt(α) the row of Mt that encodes α, and by Mt(α, C) the set
of tuples in rel(C) that have the Boolean value 1 in row Mt(α). Note that
rows Mt(α) with N(t, α) = ∅ could be omitted from the table for efficiency
reasons; in this case, one puts C[N(t, α)] = ∅ for all C ∈ χc(t). The tables Mt

are constructed according to Algorithm 1 and the following lemma. Note that
we understand by the size of a constraint relation the product of its arity and
the number of its tuples.

Lemma 9 Let t be a node of T . Given the tables of the children of t, we can
compute the table Mt in time O(dppks), where p = |χ∗

v(t)|, d = |D|, and s is
the size of a largest constraint relation of constraints of I.

PROOF. To check the running time for computing Mt, let q = |χc(t)|, l be
the size of the largest constraint scope, and m be the maximal number of
tuples in a constraint relation; recall that the width of the tree decomposition
under consideration is k. Now, let us distinguish between the different kinds
of nodes.

Case 1. Let t be a join node with children t1, t2. We compute the table Mt

from the tables Mt1 and Mt2 according to Lemma 3 as follows: for each of the
dp choices of α, we consider the rows Mt1(α|χ∗

v(t1)) and Mt2(α|χ∗
v(t2)) and set

Mt(α, C) to Mt1(α, C) ∩ Mt2(α, C) for each of the q constraints C ∈ χc(t).
Finding Mt1(α|χ∗

v(t1)) and Mt2(α|χ∗
v(t2)) and computing Mt(α, C) for all C ∈

χc(t) can be accomplished in time O(p + qm). If Mt(α, C) = ∅ for some
C ∈ χc(t), we put Mt(α, C) = ∅ for all C ∈ χc(t). Hence, we can compute Mt

in time O(dp(p + qm)) ⊆ O(dppks).

15

Algorithm 1 Solving CSP(tw∗,dom, ovl)
1 procedure buildM (t) begin

2 if isJoinNode(t) then begin // see Lemma 3
3 t1 := getChild1 (t); t2 := getChild2 (t);
4 buildM (t1); buildM (t2);
5 for all α : χ∗

v(t) → D do begin

6 α1 := α|χ∗

v(t1); α2 := α|χ∗

v(t2);

7 if ∃C ∈ χc(t) such that Mt1(α1, C) ∩ Mt2(α2, C) = ∅ then

8 for all C ∈ χc(t) do Mt(α, C) := ∅;
9 else

10 for all C ∈ χc(t) do Mt(α, C) := Mt1(α1, C) ∩ Mt2(α2, C);
11 end

12 end

13 else if isIntroNode(t) then begin

14 t′ := getChild(t);
15 buildM (t′);
16 if χ(t) \ χ(t′) is a variable then begin // see Lemma 4
17 x := χ(t) \ χ(t′);
18 for all α : χ∗

v(t′) → D and d ∈ D do begin

19 β := α ∪ {(x, d)};
20 if ∃C ∈ χc(t) such that Mt′(α, C) ∩ C[{(x, d)}] = ∅ then

21 for all C ∈ χc(t) do Mt(β, C) := ∅;
22 else

23 for all C ∈ χc(t) do Mt(β, C) := Mt′ (α, C) ∩ C[{(x, d)}];
24 end

25 end

26 else χ(t) \ χ(t′) is a constraint begin // see Lemma 5
27 B := χ(t) \ χ(t′);
28 for all α : χ∗

v(t) → D do

29 if B[α] = ∅ or ∃C ∈ χc(t′) such that Mt′(α, C) = ∅ then

30 for all C ∈ χc(t) do Mt(α, C) := ∅;
31 else begin

32 Mt(α, B) := B[α];
33 for all C ∈ χc(t′) do Mt(α, C) := Mt′(α, C);
34 end

35 end

36 end

37 else if isForgetNode(t) then begin

38 t′ := getChild(t);
39 buildM (t′);
40 if χ(t′) \ χ(t) is a variable then begin // see Lemma 6
41 x := χ(t′) \ χ(t);
42 if x ∈ χ∗

v(t) then

43 for all α : χ∗
v(t) → D and C ∈ χc(t) do

44 Mt(α, C) := Mt′(α, C);
45 else x /∈ χ∗

v(t)
46 for all α : χ∗

v(t) → D and C ∈ χc(t) do

47 Mt(α, C) :=
⋃

d∈D
Mt′(α ∪ {(x, d)}, C);

48 end

49 else χ(t′) \ χ(t) is a constraint // see Lemma 7
50 for all α : χ∗

v(t) → D and C ∈ χc(t) do

51 Mt(α, C) :=
⋃

α′:χ∗

v(t′)→D,α=α′|χ∗
v(t)

Mt′(α
′, C);

52 end

53 else if isLeaf (t) then // see Lemma 8
54 for all α : χ∗

v(t) → D do

55 if ∃C ∈ χc(t) such that C[α] = ∅ then

56 for all C ∈ χc(t) do Mt(α, C) := ∅;
57 else

58 for all C ∈ χc(t) do Mt(α, C) := C[α];
59 end

16

Case 2. Let t be an introduce node with child t′. We compute the table Mt

from table Mt′ according to Lemma 4 and Lemma 5 as follows:
(a) If χ(t) = χ(t′)∪{x} for a variable x, we consider the rows Mt(α∪{(x, d)})
for each of the dp−1 choices of α, and set Mt(α ∪ {(x, d)}, C) to Mt′(α, C) ∩
C[{(x, d)}] for each of the q constraints C ∈ χc(t). Finding Mt(α∪{(x, d)}) for
all d ∈ D and computing Mt(α ∪ {(x, d)}, C) for all C ∈ χc(t) can be accom-
plished in time O(dq(l + m)). If Mt(α ∪ {(x, d)}, C) = ∅ for some C ∈ χc(t),
we put Mt(α ∪ {(x, d)}, C) = ∅ for all C ∈ χc(t). Hence, we can compute Mt

in time O(dpq(l + m)) ⊆ O(dppks).
(b) If χ(t) = χ(t′) ∪ {B} for a constraint B, we consider the row Mt(α) for
each of the dp choices of α, and set Mt(α, B) to B[α]. Computing Mt(α, B)
can be accomplished in time O(l+mp). If Mt(α, B) = ∅, we put Mt(α, C) = ∅
for all C ∈ χc(t); otherwise, we set Mt(α, C) to Mt′(α, C) for all C ∈ χc(t

′).
Hence, we can compute Mt in time O(dp(l + mp + mq)) ⊆ O(dppks).

Case 3. Let t be a forget node with child t′. We compute the table Mt from
table Mt′ according to Lemma 6 and Lemma 7 as follows:
(a) If χ(t) = χ(t′) \ {x} for a variable x, we distinguish between two cases:
(i) If x ∈ χ∗

v(t), we consider the row Mt(α) for each of the dp choices of α, and
set Mt(α, C) to Mt′(α, C) for each of the q constraints C ∈ χc(t). Computing
Mt(α, C) can be accomplished in time O(qm). (ii) If x /∈ χ∗

v(t), we consider
the rows Mt(α ∪ {(x, d)}) for each of the dp−1 choices of α, and set Mt(α, C)
to

⋃

d∈D Mt′(α ∪ {(x, d)}, C) for each of the q constraints C ∈ χc(t). Finding
Mt(α ∪ {(x, d)}) for all d ∈ D and computing Mt(α, C) can be accomplished
in time O(dqm). Hence, we can compute Mt in time O(p+dpqm) ⊆ O(dppks).
(b) If χ(t) = χ(t′) \ {B} for a constraint B, we compute χ∗

v(t) from χ∗
v(t

′) in
time O(p + qm). Then, we consider the row Mt(α) for each of the dp choices
of α′ such that α = α′|χ∗

v(t), and set Mt(α, C) to
⋃

α=α′|χ∗
v(t)

Mt(α
′, C) for each

of the q constraints C ∈ χc(t). Finding Mt(α) and computing Mt(α, C) can be
accomplished in time O(p+qm). Hence, we can compute Mt in time O(dp(p+
qm)) ⊆ O(dppks).

Case 4. Let t be a leaf node. We compute the table Mt according to Lemma 8
as follows: for each of the dp choices of α, we consider the row Mt(α) and set
Mt(α, C) to C[α] for each of the q constraints C ∈ χc(t). Computing Mt(α, C)
for all C ∈ χc(t) can be accomplished in time O(q(l + pm)). If Mt(α, C) = ∅
for some C ∈ χc(t), we put Mt(α, C) = ∅ for all C ∈ χc(t). Hence, we can
compute Mt in time O(dpq(l + pm)) ⊆ O(dppks). �

Theorem 2 Given a constraint satisfaction instance I together with a nice
tree decomposition (T, χ) of the incidence graph of I. Let d be the size of the
domain of I and let s be the size of a largest constraint relation of constraints
of I. Furthermore, let k be the width and n the number of nodes of (T, χ), and
let p denote the maximum |χ∗

v(t)| over all nodes t of T . Then we can decide
in time O(dppksn) whether I is consistent.

17

PROOF. We construct the tables Mt for all nodes t of T in a bottom up
ordering, starting from the leaf nodes. By Lemma 9, each table can be com-
puted in time O(dppks). Since I is consistent if and only if Mr is nonempty,
the theorem follows. �

Corollary 2 CSP(tw∗,dom, ovl) is fixed-parameter tractable.

PROOF. Let I be a constraint satisfaction instance whose incidence graph
has treewidth at most k and c = ovl(I). Recall from Section 2.2 that we can
find in linear time a nice tree decomposition of the incidence graph of G of
width at most k. Now the corollary follows immediately from Theorem 2 and
the fact that |χ∗

v(t)| ≤ k + c k2 holds for all nodes t of T . �

Corollary 2 provides the last step for the proof of Theorem 1.

6 Fixed-Parameter Tractability for Further Parameters

In this section, we describe two further constraint satisfaction parameters for
which Theorem 2 applies.

Let I = (V, D, F) be a constraint satisfaction instance. For a subset F ′ of F we
define δI(F

′) as the set of variables that occur in the scopes of all constraints
of F ′ but in no scope of constraints of F \ F ′; i.e., δI(F

′) = (
⋂

C∈F ′ var(C)) \
(
⋃

C∈F\F ′ var(C)). We define equiv(I) as the maximum size of δI(F
′) over

all subsets F ′ ⊆ F that contain at least two constraints. Furthermore, we
define diff(I) as the maximum size of var(C1) \ var(C2) over all pairs of
constraints C1, C2 ∈ F .

Corollary 3 CSP(tw∗,dom, equiv) is fixed-parameter tractable.

PROOF. Let I be a constraint satisfaction instance whose incidence graph
has treewidth at most k. We compute in linear time a nice tree decomposition
(T, χ, r) of the incidence graph of I of width at most k. Let q = equiv(I).
Evidently, we have |χ∗

v(t)| ≤ k + q 2k for all nodes t of T . Hence the corollary
follows immediately from Theorem 2. �

Note that the running time of our fixed-parameter algorithm for
CSP(tw∗,dom, ovl) is significantly smaller than the running time for
CSP(tw∗,dom, equiv). However, there exist instances with bounded equiv
and arbitrarily large ovl (i.e., equiv dominates ovl, but not vice versa). For

18

example, let us construct an instance in the following way: we start with
any constraint C0 and add in each step a new constraint Cn and a new vari-
able xn such that

⋂

0≤i≤n var(Ci) = {xn}. By construction equiv(I) = 1, but
ovl(I) ≥ n since |C0 ∩ C1| = n.

Corollary 4 CSP(tw∗,dom,diff) is fixed-parameter tractable.

PROOF. Again, let I = (V, D, F) be a constraint satisfaction instance whose
incidence graph has treewidth at most k. Let q′ = diff(I) and let d = |D|.
We compute in linear time a nice tree decomposition (T, χ, r) of the inci-
dence graph of I of width at most k and n nodes. Next we obtain from I a
solution-equivalent constraint satisfaction instance I ′ by computing the join of
all constraints in χc(t) for each node t of T . A constraint C = ((x1, . . . , xr), R)
is the join of constraints C1, . . . , Ct if var(C) =

⋃t
i=1 var(Ci) and if R consists

of all tuples (τ(x1), . . . , τ(xr)) for assignments τ that are consistent with all Ci,
where 1 ≤ i ≤ t (cf. [1]). Note that the resulting relation of a join operation
of two constraints over D with relations of size at most s can be of size at
most 2s dq′ by our restriction. Thus, the join of at most k constraints can be
computed in time O(k s2dq′(k−1)) and the size of the largest relation of I ′ is
bounded by k s dq′(k−1). Moreover, note that the tree decomposition of the in-
cidence graph of I gives rise to a tree decomposition of the incidence graph of
I ′; for the latter we have χ∗

v(t) = χv(t), that is, |χ∗
v(t)| ≤ k, for all nodes t of T .

Hence, in view of Theorem 2, we obtain a running time of O(d(q′+1)kk3s2n)
for the dynamic programming algorithm. �

Since tw∗ dominates twd, we obtain from these corollaries that the prob-
lems CSP(twd,dom, equiv) and CSP(twd,dom,diff) are fixed-parameter
tractable.

7 Conclusion

We have presented a general framework for studying the trade-off between gen-
erality and performance for parameterized constraint satisfaction. Within our
framework we have classified the parameterized complexity of combinations
of natural parameters including the treewidth of primal, dual, and incidence
graphs, the domain size, and the size of overlaps of constraint scopes. The
parameterized complexity of further parameters and their combinations re-
main open for future research. Furthermore, it would be interesting to extend
the hardness results of this paper to completeness results for classes of the
weft hierarchy.

19

Acknowledgment

We thank Moshe Vardi for suggesting us to include the treewidth of dual
graphs into our considerations.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1-2):1–45, 1998.

[4] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[5] H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods
without decompositions. In Proc. 11th International Conference on Principles
and Practice of Constraint Programming (CP’05), vol. 3709 of LNCS, pages
167–181. Springer-Verlag, 2005.

[6] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming,
part I, chapter 8. Elsevier, 2006.

[7] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural
tractability for constraint satisfaction and spread cut decomposition. In Proc.
19th International Joint Conference on Artificial Intelligence (IJCAI’05), pages
72–77. Professional Book Center, 2005.

[8] R. Dechter. Tractable structures for constraint satisfaction problems. In
F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, part I, chapter 7. Elsevier, 2006.

[9] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38(3):353–366, 1989.

[10] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[11] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,
2006.

[12] E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of
the ACM, 32(4):755–761, 1985.

20

[13] T. Ganzow, G. Gottlob, N. Musliu, and M. Samer. A CSP hypergraph library.
Technical report DBAI-TR-2005-50, Database and Artificial Intelligence Group,
Vienna University of Technology, 2005.

[14] G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scarcello. Hypertree
decompositions: Structure, algorithms, and applications. In Proc. 31st
International Workshop on Graph-Theoretic Concepts in Computer Science
(WG’05), vol. 3787 of LNCS, pages 1–15. Springer-Verlag, 2005.

[15] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: A survey. In
Proc. 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS’01), vol. 2136 of LNCS, pages 37–57. Springer-Verlag, 2001.

[16] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[17] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

[18] M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proc.
17th ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pages 289–
298, ACM Press, 2006.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences 63(4):512–
530, 2001.

[20] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. Journal of Computer and System Sciences, 61(2):302–332, 2000.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[22] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999.

[23] B. Reed. Finding approximate separators and computing tree width quickly.
In Proc. 24th ACM Symposium on Theory of Computing (STOC’92), pages
221–228. ACM Press, 1992.

[24] M. Samer and S. Szeider. A fixed-parameter algorithm for #SAT with respect
to parameter incidence treewidth. Technical report arXiv:cs.DS/0610174, 2006.

[25] S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Proc. 6th
International Conference on Theory and Applications of Satisfiability (SAT’03),
Selected and Revised Papers, vol. 2919 of LNCS, pages 188–202. Springer-Verlag,
2004.

21

