
Local and global sparse Gaussian process approximations

Edward Snelson
Gatsby Computational Neuroscience Unit

University College London, UK
snelson@gatsby.ucl.ac.uk

Zoubin Ghahramani
Department of Engineering

University of Cambridge, UK
zoubin@eng.cam.ac.uk

Abstract

Gaussian process (GP) models are flexible
probabilistic nonparametric models for re-
gression, classification and other tasks. Un-
fortunately they suffer from computational
intractability for large data sets. Over the
past decade there have been many differ-
ent approximations developed to reduce this
cost. Most of these can be termed global ap-
proximations, in that they try to summarize
all the training data via a small set of sup-
port points. A different approach is that of
local regression, where many local experts ac-
count for their own part of space. In this pa-
per we start by investigating the regimes in
which these different approaches work well or
fail. We then proceed to develop a new sparse
GP approximation which is a combination of
both the global and local approaches. Theo-
retically we show that it is derived as a natu-
ral extension of the framework developed by
Quiñonero Candela and Rasmussen [2005] for
sparse GP approximations. We demonstrate
the benefits of the combined approximation
on some 1D examples for illustration, and on
some large real-world data sets.

1 INTRODUCTION

Gaussian process (GP) models are popular nonpara-
metric nonlinear Bayesian models for machine learn-
ing [see Rasmussen and Williams, 2006]. They can
be used for a wide variety of tasks, but at their sim-
plest they are nonlinear regression models. An attrac-
tive property of a GP is that predictions are made
with an associated uncertainty. With a suitable choice
of covariance function, these uncertainties grow large
in regions away from observed data, and shrink close
to observations. The nonparametric nature of a GP

means that there are only a few hyperparameters of
the covariance function that need to be learned.

For the case of regression with Gaussian noise, all
computations necessary for GP prediction are analyt-
ical expressions. However, even in this case, the GP
model becomes intractable for large data sets due to
an O(N3) cost for inverting the training data covari-
ance matrix, and an O(N2) cost per test case for pre-
diction. In recent years there have been many sparse
GP approximations developed that reduce the cost to
O(NM2) training time and O(M2) prediction time
[e.g. Csató, 2002, Seeger et al., 2003, Snelson and
Ghahramani, 2006]. These are generally based on a
small (� N) set of M support points. We refer to
this type of approximation as global, because the M
support points are essentially summarizing all N data
points. Other approaches use iterative methods in
combination with a fast matrix-vector product algo-
rithm (e.g. IFGT [Yang et al., 2005]). These tend not
to be feasible for very many input dimensions.

So far there has not been much work in assessing the
regimes in which the global type of approximation is
worthwhile. For example, some data sets may be best
approached using a local type of approximation, where
only training data points nearby to the test point are
used to make a prediction. A very complex ‘wiggly’
data set may not be well summarized by a small num-
ber of support points, and a local regression scheme
may be faster and more accurate. A natural question
to ask is whether there is an approximation that com-
bines the best of both worlds: a combination of a local
and global approximation that will be suitable for all
regimes. In this paper we develop such an approxima-
tion, and show how it can be derived from a natural
extension of the approximation framework outlined by
Quiñonero Candela and Rasmussen [2005].

Throughout this paper, we assume we have already
obtained suitable hyperparameters for the covariance
function, and we just concern ourselves with examin-
ing the nature of the approximations themselves.

521

2 GAUSSIAN PROCESS REVIEW

We denote a D dimensional input point as x, and
a scalar valued output as y. We have a training
data set D = {xn, yn}N

n=1, and a corresponding test
data set DT = {xt, yt}T

t=1. In a Gaussian process
regression model, we assume there is an underlying
noise-free latent function f(x) that we are model-
ing. At each observation in the training or test set
there is therefore a latent function variable which we
denote fn or ft. We refer collectively to groups of
these points as: (X, f ,y) = ({xn}, {fn}, {yn})N

n=1, and
(XT , fT ,yT) = ({xt}, {ft}, {yt})T

t=1.

A Gaussian process places a distribution on functions
f(x) by defining a consistent multivariate Gaussian
distribution on any collection of function variables.
The function variables we need to consider are the ones
corresponding to our training and test sets: f and fT .
The Gaussian distribution on these N+T variables is:

p(f , fT) = N (0,KN+T) , KN+T =
[
KN KNT

KTN KT

]
,

(1)
where N (µ,Σ) denotes a Gaussian distribution with
mean µ and covariance Σ1. The covariance matrix
of (1) is formed from a covariance function K(x,x′),
which encodes the prior notion of smoothness. See ap-
pendix A for the covariance matrix notation we use. A
typical covariance function is the squared exponential,
which we use throughout:

K(x,x′) = c exp
[
−

∑D
d=1 bd(xd − x′d)

2
]
. (2)

b and c are hyperparameters controlling the length-
scales and size of the process respectively.

We assume Gaussian observation noise ε, of variance
σ2, such that y = f + ε. The joint distribution on
training and test outputs is:

p(y,yT) = N (0,KN+T + σ2I) . (3)

The predictive distribution is obtained by conditioning
on the observed training outputs:

p(yT |y) = N (µT ,ΣT) , (4a)

µT = KTN [KN + σ2I]−1y

ΣT = KT −KTN [KN + σ2I]−1KNT + σ2I .
(4b)

It is important to appreciate that (4) is a corre-
lated prediction. As well as giving you the mean and
marginal variance at each test point, it tells you the

1Strictly the distribution of (1) is conditioned on the
inputs X and XT , but since the GP is a conditional model,
every distribution is conditioned on the relevant inputs,
and we omit them from the notation for brevity.

predictive correlations between any pair of test out-
puts. Whilst these correlations are potentially use-
ful for some applications, it is often just the marginal
variances (diag ΣT) that are computed and used as
measures of predictive uncertainty. In this case it is
sufficient to consider a single general test input x∗, at
which the predictive mean and variance is:

µ∗ = K∗N [KN + σ2I]−1y

σ2
∗ = K∗ −K∗N [KN + σ2I]−1KN∗ + σ2 .

(5)

Computing the inverse of KN + σ2I costs O(N3). We
see that the mean prediction is simply a weighted
sum of N basis functions: µ∗ = K∗Nα, where α =
[KN + σ2I]−1y. Therefore, if we precompute α the
mean prediction per test case costs only O(N). For
the variance no such precomputation can be done, and
the cost is O(N2) per test case.

3 SPARSE GP APPROXIMATIONS

Quiñonero Candela and Rasmussen [2005] showed how
most previously considered sparse GP approxima-
tions could be constructed in the same approximation
framework. We outline this framework here, and dis-
cuss the FIC and FITC approximations.

The starting point to any of the approximations is a set
of inducing inputs X̄ = {x̄m}M

m=1. If these points are
selected as a subset of the data inputs then some au-
thors call this the ‘active set’, or ‘support set’. For the
sparse pseudo-input Gaussian process (SPGP) [Snel-
son and Ghahramani, 2006] we relaxed this restric-
tion by allowing ‘pseudo-inputs’ in arbitrary locations.
Throughout this paper we use the blanket term (of
Quiñonero Candela and Rasmussen [2005]) ‘inducing
inputs’ to refer to either possibility.

Given a set of inducing inputs, the GP prior can be
split into two parts:

p(f , fT) =
∫

df̄ p(f , fT |f̄) p(f̄) , (6)

where the inducing variables f̄ are marginalized out.
In the first stage to all the approximations, Quiñonero
Candela and Rasmussen [2005] make the assumption
that f and fT are conditionally independent given f̄ :

p(f , fT) ≈ q(f , fT) =
∫

df̄ q(fT |f̄) q(f |f̄) p(f̄) . (7)

We will examine this assumption in more detail later
on. Here the prior on the inducing variables is ex-
act: p(f̄) = N (0,KM). The various different sparse
approximations are then derived by making additional
assumptions about the training and test conditionals
q(f |f̄) and q(fT |f̄).

522

3.1 The fully independent (training)
conditional (FI(T)C) approximation

FIC is the approximation we developed for the SPGP.
To derive the FIC approximation within this frame-
work, we make the assumption that the function vari-
ables in both the training and test conditionals of (7)
are fully independent:

q(f |f̄) =
∏
n

p(fn|f̄) q(fT |f̄) =
∏

t

p(ft|f̄) . (8)

With these approximations we compute the integral of
(7) to obtain the FIC approximate prior distribution:

qFIC(f , fT) = N (0, K̃FIC
N+T) (9)

K̃FIC
N+T =

[
QN + diag[KN −QN] QNT

QTN QT + diag[KT −QT]

]
where Qs are low-rank (rank M) matrices made from
the covariance function Q(x,x′) = KxMK−1

M KMx′ (see
appendix A (23) for details). Notice that since the
training and test variables are treated in exactly the
same way, there was no need in this case to first sep-
arate them out as in (7). All function variables are
conditionally independent given f̄ . Therefore the FIC
approximation corresponds to a standard GP model
with a particular covariance function:

K̃FIC(x,x′) = Q(x,x′)+ δ(x−x′)[K(x,x)−Q(x,x)] ,
(10)

where δ is the Dirac delta function. The covariance
matrix of (9) can be constructed directly from (10).

The FIC predictive distribution is formed from the
blocks of (9) in the same way as (4) for the full GP:

µFIC
T = QTN [K̃FIC

N + σ2I]−1y (11)

ΣFIC
T = K̃FIC

T −QTN [K̃FIC
N + σ2I]−1QNT + σ2I .

K̃FIC
N +σ2I can be inverted in O(NM2) since it is the

sum of the rank M matrix QN and a diagonal.

The FITC approximation differs slightly from FIC in
that only the training conditional is factorized. The
test conditional remains exact (c.f. (8)):

q(f |f̄) =
∏
n

p(fn|f̄) q(fT |f̄) = p(fT |f̄) . (12)

The FITC predictive distribution is therefore identical
to FIC (11) apart from the approximate K̃FIC

T being re-
placed with the exact KT in the predictive covariance.
However the difference is only apparent if you want
to make correlated predictions. Since the diagonal of
K̃FIC

T is exact (diag K̃FIC
T = diag KT), the marginal

variances of FITC and FIC are exactly the same. In

either case the FI(T)C single test case predictive dis-
tribution is:

µFIC
∗ = Q∗N [K̃FIC

N + σ2I]−1y (13)

(σ2
∗)

FIC = K∗ −Q∗N [K̃FIC
N + σ2I]−1QN∗ + σ2 .

Just as for the full GP we observe that the mean pre-
dictor of (13) is just a weighted sum of basis functions;
however there are only M basis functions in the sum,
rather than N : µFIC

∗ = K∗Mα. Therefore, once pre-
computations of O(NM2) have been done, the mean
prediction per test case is only O(M). Similar reason-
ing shows that the variance predictions cost O(M2)
per test case.

4 LOCAL OR GLOBAL
APPROXIMATIONS

To understand the regimes in which an approxima-
tion such as FI(T)C works well and not so well, it
is simplest to look at an example. Figure 1a shows
some sample data drawn from a GP with a fairly
long lengthscale (relative to the input point sampling).
The FI(T)C prediction is plotted, using just 10 evenly
spaced inducing inputs. The approximation is clearly
extremely good — a full GP prediction looks essen-
tially identical. Figure 1b shows the same number of
data points drawn from a GP with a much shorter
lengthscale. The FI(T)C prediction is plotted again
using only 10 inducing inputs, and is clearly much
worse, particularly in the gaps between inducing in-
puts. The training and prediction costs for the ex-
amples in 1a and 1b are exactly the same. In this
simple example, we could just increase the number of
inducing inputs in 1b to take into account the extra
complexity of the function. However, in a more realis-
tic problem we may not be able to afford the extra cost
to do this. For a very complex function we may find
ourselves needing almost as many inducing inputs as
data points to model the function well, and that takes
us back towards O(N3) complexity. Although each in-
ducing input only affects predictions in a local region
around itself, we refer to this type of approximation
as global because all N data points contribute to each
prediction made, via the inducing points.

An alternative type of approach to the data in figure
1b is to use a series of local GPs. This approach is
shown in figure 1c. The training points are grouped
into blocks of 10 points each, and independent GP pre-
dictors formed from each of the blocks. The nearest
block’s GP is used to predict at a given test point. This
is a particular unsmoothed example of local nonlin-
ear regression, similar in flavor to e.g. LOESS [Grosse,
1989]. It is also a trivial unsmoothed example of a
mixture of GP experts [Rasmussen and Ghahramani,

523

(a) Long lengthscale — FI(T)C (b) Short lengthscale — FI(T)C

(c) Short lengthscale — local GPs (d) Clumped training inputs

(e) local GPs (f) PIC

(g) FI(T)C

Figure 1: 1D comparison of global, local and com-
bined sparse GP approximations. Mean predictions
and two standard deviation error lines are plotted,
as black dashed lines for FI(T)C, red solid lines for
local GPs, and blue solid lines for PIC. For FI(T)C
and PIC the x positions of the inducing inputs are
marked by black crosses. In (c) and (d) the local
training blocks are demarcated by alternating the
colors of the data points. In (e) and (f) the blocks
are not marked for clarity, because they are very
small.524

2002]. The independence between the blocks leads to
the discontinuous nature of the prediction in 1c, but if
we ignore the ugly aesthetics, the prediction is actually
a much better fit than that of 1b. If as in this illus-
tration we choose equal block sizes of size B, then the
training cost is O(N/B×B3) = O(NB2), and predic-
tion cost2 per test case is O(B2). For figures 1b and
1c we chose B = M = 10, so the costs are essentially
equivalent. In this regime therefore the local type of
approximation is the more efficient option.

Apart from the ugly discontinuities, the local GP ap-
proach would actually work pretty well for the longer
lengthscale example of figure 1a. However there are
certainly situations where the local approach can be
poor. Figure 1d shows some data where the training
inputs have been sampled in a non-uniform manner.
Such a situation often happens in real world examples
due to artifacts in the data collection process, and is
more pronounced in high dimensions. In this situation,
if we take the clusters as separate blocks and use the
local GP approach the extrapolation between clusters
is very poor, because the blocks are all independent
from each other. The FI(T)C predictions are much
better because they take into account the correlations
between the clusters and extrapolate well.

5 A COMBINED LOCAL AND
GLOBAL APPROXIMATION

With the discussion of the previous section in mind, it
would be nice to have an approximation that combined
the ideas of both the global and local approaches, so
that it would be suitable to use in all regimes. In this
section we develop such an approximation and show
how it is naturally derived as an extension of the the-
oretical framework of section 3. To lead into this we
briefly review one further sparse GP approximation
that has some local aspects.

5.1 The partially independent training
conditional (PITC) approximation

Quiñonero Candela and Rasmussen [2005] suggest a
further improved approximation to FI(T)C3. Rather
than assume complete training conditional indepen-
dence as in FITC (12), PITC only assumes partial
independence. The training points are grouped into
‘blocks’ or ‘clusters’ {XBs

, fBs
}S

s=1, and conditional in-

2ignoring the clustering cost (see section 5.3)
3The same type of approximation is also used by Tresp

[2000] in the Bayesian committee machine (BCM), but in a
less general context. In the BCM the equivalent of the in-
ducing inputs turn out to be the test inputs [see Quiñonero
Candela and Rasmussen, 2005].

dependence is only assumed between blocks:

q(f |f̄) =
∏
s

p(fBs
|f̄) q(fT |f̄) = p(fT |f̄) . (14)

As in FITC, the test conditional of (14) remains exact.
Assuming these approximate conditionals leads to the
PITC training and test covariance:

K̃PITC
N+T =

[
QN + bkdiag[KN −QN] QNT

QTN KT

]
. (15)

The PITC single test point predictive distribution is:

µPITC
∗ = Q∗N [K̃PITC

N + σ2I]−1y (16)

(σ2
∗)

PITC = K∗ −Q∗N [K̃PITC
N + σ2I]−1QN∗ + σ2 ,

where K̃PITC
N = QN +bkdiag[KN−QN]. As for FI(T)C

the PITC mean predictor is simply a weighted sum of
M basis functions. The cost per test case is therefore
exactly the same: O(M) for the mean and O(M2) for
the variance. How about the precomputations? The
cost to invert K̃PITC

N +σ2I depends on the sizes of the
blocks {Bs}. There is no requirement for the blocks
to be of equal size, but for simplicity suppose they all
have size B. Then for the same reasons as in section
4, the extra precomputations cost O(NB2).

The PITC approximation certainly has the flavour of
trying to combine a local approximation with a global
one. However, if we actually plot PITC predictions for
the data in figure 1b, we find they are almost identical
to FI(T)C. Why does the blocking not help us? The
answer is easy to see by referring to the PITC predic-
tive distribution of (16). Looking at the mean predic-
tion: it is still just a weighted sum of basis functions
centered on the same inducing inputs as in FI(T)C.
The blocking has only altered the weights slightly.
Fundamentally, when the basis functions are local such
as the squared exponential, PITC is as incapable of
modeling well away from inducing inputs as FI(T)C.

The PITC marginal likelihood p(y) = N (0, K̃PITC
N)

is certainly a closer approximation to the full GP
marginal likelihood than FI(T)C. As such, when opti-
mizing the inducing inputs and hyperparameters as in
the SPGP, the PITC approximation may yield better
results. given a set of inducing inputs and hyperpa-
rameters, the PITC predictive distribution does not
seem to offer much of an advantage over FI(T)C.

5.2 The partially independent conditional
(PIC) approximation

In this section we develop a new approximation that
successfully combines the ideas of the global and local
approximations. Another way to understand why the
PITC predictions are not much different to FI(T)C is

525

to look again at the PITC prior covariance of (15).
The structure of this covariance is such that the train-
ing inputs have been blocked separately from the test
inputs — the test inputs have effectively been placed
in a block of their own. This means that the PITC ap-
proximation cannot be considered a GP model with a
particular covariance function, as the decision of which
block in which to place an input depends on whether
that input is a training input or test input. The con-
sequence of this separation of training and test inputs
into different blocks is that they only interact with
each other via the M inducing inputs. This in turn
leads to the predictive distribution being very similar
to FI(T)C, and largely governed by the positioning of
the inducing inputs.

The separation of the test points into their own block
came about because of the first assumption about
sparse GP approximations made by Quiñonero Can-
dela and Rasmussen [2005]: the conditional indepen-
dence of training and test points, denoted f ⊥ fT |f̄ ,
in (7). To derive a new approximation we relax this
assumption and consider what happens if we block the
joint training and test conditional. We treat the train-
ing and test inputs equivalently, and group them into
blocks according only to their x positions. For ease of
notation, and because we will only use the marginal
predictive variance, we consider a single test input x∗.
Suppose that on the basis of its position this test in-
put was grouped with training block BS . Then the
approximate conditional is:

p(f , f∗|f̄) ≈ q(f , f∗|f̄) = p(fBS
, f∗|f̄)

S−1∏
s=1

p(fBs
|f̄) .

(17)
It seems logical to follow the naming convention intro-
duced by Quiñonero Candela and Rasmussen [2005],
and call this approximation the partially independent
conditional (PIC) approximation. The PIC training
and test covariance is:

K̃PIC
N+T = QN+T + bkdiag[KN+T −QN+T] . (18)

Notice that unlike PITC, PIC can correspond to a
standard GP with a particular covariance function.
For example, suppose we divided the input space up
into disjoint regions before seeing any data. Then if
two points (training or test) fall into the same region
they are placed in the same block. This corresponds
to the following covariance function:

K̃PIC(x,x′) = Q(x,x′) + ψ(x,x′)[K(x,x′)−Q(x,x′)]

where ψ(x,x′) =

{
1 if x,x′ ∈ same region
0 otherwise.

(19)

In practice typical clustering schemes we will use will
rely on all the training data to define regions in input

space, and so will not technically correspond to the
covariance function of (19). At a high level though,
(19) is a good description of the PIC covariance.

For ease of notation when discussing the predictive
distribution, we refer to the training block that the
test point x∗ belongs to as B. As shorthand for all
the training points excluding B, we use /B. The PIC
single test point predictive distribution is:

µPIC
∗ = K̃PIC

∗N [K̃PITC
N + σ2I]−1y (20)

(σ2
∗)

PIC = K∗ − K̃PIC
∗N [K̃PITC

N + σ2I]−1K̃PIC
N∗ + σ2 ,

where K̃PIC
∗N = [Q∗/B , K∗B]. Let us look first at the

mean predictor µPIC
∗ . Part of the mean predictor,

which we define p = [K̃PITC
N + σ2I]−1y, is exactly the

same as for PITC (16). We can expand µPIC
∗ further:

µPIC
∗ = Q∗/Bp/B + K∗BpB

= K∗Mβ + K∗BpB ,
(21)

where the weights β = K−1
M KM/Bp/B (see (23)). We

therefore see that the mean is a weighted sum of basis
functions centered at the M inducing inputs and at
the training inputs in block B. This has the desired
feature of being a combination of a local and global
predictor. The local information comes from the block
B that the test point is assigned to, and the global
information comes via the inducing points. A similar
interpretation can be applied to the variance.

Referring to (18), we see that there are now two limit-
ing processes that will return us to the full GP. If there
are N inducing points placed exactly on the training
points then Q = K, and therefore K̃PIC

N+T = KN+T .
Similarly if we decrease the number of blocks until we
have only one block, then K̃PIC

N+T = KN+T . In a prac-
tical situation we can push towards both these limits
as far as our computational budget will allow.

Taking these limits in the opposite direction gives us
some further insight. If we take all the block sizes to
one then we recover FIC. If we take the number of
inducing points to zero, we are left with the purely
local GP predictor of section 4. We can also see this
from (21), since pB → [KB + σ2I]−1yB.

FI(T)C and PITC both had O(M) and O(M2) costs
per test point for predicting the mean and variance
respectively, after precomputations. How about PIC?
Looking at (21), at first it seems that prediction will
be too expensive because of the product Q∗/Bp/B. In
general /B will be close in size to N , and so O(/B) will
be too expensive. However, we can rewrite (21) again:

µPIC
∗ = K∗MK−1

M KM/Bp/B + K∗BpB (22)

= K∗M

(
K−1

M KMNp︸ ︷︷ ︸
wM

−K−1
M KMBpB︸ ︷︷ ︸

wB
M

)
+ K∗BpB ,

526

where wM =
∑S

s=1 wBs
M . Hence we can precompute

p, then precompute wBs
M for each block, and finally

precompute wM . Having done this the cost per test
case at test time will be O(M +B) for the mean. We
can play a similar trick for the variance, which then
costs O

(
(M +B)2

)
.

5.3 Clustering schemes

We need a scheme for clustering possibly high dimen-
sional training inputs into blocks for the PIC approx-
imation. We then need to be able to quickly assign a
new test point to a block at test time. We suggest two
simple schemes. The more complicated one is farthest
point clustering [Gonzales, 1985]. The number of clus-
ters S is chosen in advance. A random input point is
picked as the first cluster center. The farthest point
from this is chosen as the next center. The farthest
point from both of these is chosen as the next, and
so on, until we have S centers. Then each point in
the training set is assigned to its nearest cluster cen-
ter. At test time, a test point is simply assigned to
the nearest cluster center. We also consider an even
simpler algorithm which we call random clustering.
It is exactly as above except that the cluster centers
are picked randomly (without replacement) from the
training input points. The naive costs for these algo-
rithms are O(NS) training time and O(S) test time
per test case. However with suitable data structures
(e.g. KD-trees [Preparata and Shamos, 1985]) and im-
plementation these costs can be reduced to O(N logS)
and O(logS) [Feder and Greene, 1988].

6 RESULTS

The first thing to note is that PIC subsumes both the
local GP approach and FI(T)C. By varying the num-
ber of inducing inputs and the size of the blocks we
can obtain an approximation that is close to one or
the other. The type of regimes in which the combined
PIC approach is significantly advantageous than either
one or the other can be seen by examining the failure
modes as we did in section 4. Referring back to fig-
ures 1a–1d: FI(T)C fails for complex functions where
we cannot afford to tile the space with inducing in-
puts; local GPs fail when we need to do extrapolation
well. Figures 1e–1g show an illustrative 1D example
where these problems are solved by the combined ap-
proach. In 1e the local GP approach works well apart
from in the extrapolation between the two groups of
data points. This can be completely fixed by the PIC
approximation in 1f with the addition of a few well
placed inducing points. The FI(T)C prediction based
on these inducing points alone is shown in 1g. We see
that the PIC predictor is a combination of the best

0 10 20 30 40 50
0.01

0.015

0.02

0.025

0.03

0.035

0.04

time/s

M
S

E

(a) MSE vs. time

0 10 20 30 40 50
−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

time/s
N

LP
D

 e
rr

or

(b) NLPD vs. time

Figure 2: Test set error vs. computation time for the
kin40k data set. Blue circles – FI(T)C, red stars – local
GPs, black crosses – PIC. Points obtained by varying
number of inducing points, or number of blocks, or
both (for PIC).

parts of the local GP and FI(T)C predictors of 1e and
1g. In order to do well using FI(T)C alone we would
need to tile the space densely with inducing points.

In a real world example, to obtain the maximum ad-
vantage from PIC, we will clearly need schemes to
place the inducing points well. We can use approaches
that attempt to maximize marginal likelihood as in the
SPGP, or we can use simpler heuristics to place the in-
ducing inputs well. We will leave a full experimental
evaluation of such procedures to future work.

As a real world example we chose the kin-40k data
set4, a highly nonlinear robot arm control task. We
then measured test set error as a function of compu-
tation time for the three methods: FI(T)C, local GPs,
and PIC. Since it is not the goal of this paper to in-
vestigate hyperparameter learning and inducing point
selection, we simply use hyperparameters obtained by
training a GP on a smaller subset of the training data,
and we use inducing points optimized as in the SPGP.
The computation time reported is the precomputation
and prediction time for all 30,000 test set examples.

4kin-40k : 10000 training, 30000 test, 9 attributes, see
http://ida.first.fraunhofer.de/~anton/data.html

527

For local GPs and PIC, the time includes the extra
clustering time, which was simply done by the random
clustering method discussed in section 5.3. Points on
the error/time plots of figure 2 were then obtained by
varying the number of inducing points for FI(T)C, the
number of blocks for local GPs, and both for PIC.

Figure 2a shows FI(T)C and local GPs performing
very similarly in terms of MSE, with combined PIC
approach giving a small but significant gain. Figure 2b
shows PIC and local GPs performing well in terms of
NLPD error5, with FI(T)C performing much worse.
This is probably because this data set is fairly com-
plex with shortish lengthscales, meaning we are closer
in regime to figure 1b than 1a; the local GPs and PIC
therefore have tighter error bars and better NLPD.

We tried two other data sets for which the results are
not plotted because they are very easy to describe. For
SARCOS6, which is another highly nonlinear task, lo-
cal GPs performed much better than FI(T)C. The in-
ducing inputs did not help improve PIC beyond the lo-
cal GPs performance. For Temp7, the opposite was the
case. FI(T)C performed better than local GPs and the
blocking did not improve PIC performance much be-
yond FI(T)C. Which approximation to use very much
depends on the type of data. An advantage of PIC
is that you are guarded against both failure modes.
We might expect further advantages for PIC when we
select inducing points in conjunction with the blocks,
but this is beyond the scope of this paper.

7 CONCLUSIONS

In this paper we have developed a computationally ef-
ficient approximation that combines the advantages of
the local regression/experts approach with the global
inducing input based approach. From a theoretical
point of view, PIC in some sense completes the se-
quence of approximations as set out in the framework
of Quiñonero Candela and Rasmussen [2005].

From a practical point of view, we have explored the
different types of regimes in which either the local
or the global based approximations are more efficient,
and we have demonstrated situations where the com-
bined PIC method improves upon both of these. In
practice the PIC approximation allows a user to vary
the number of clusters and the number of inducing in-
puts to find the best performance. There are several
interesting future directions to pursue, for example to
try to learn inducing inputs in relation to the cluster-
ing, perhaps by the maximization of the PIC marginal

5negative log predictive density
6http://www.gaussianprocess.org/gpml/data/
7http://theoval.cmp.uea.ac.uk/~gcc/competition/

likelihood. We are also extending PIC to a hierarchical
version in which the inducing inputs are not coupled
to all training points, potentially paving the way for
GP applications on very large data sets.

A Covariance Notation

We construct covariance matrices and vectors from various
combinations of training, test and inducing inputs, and the
covariance function K(x,x′). Our notation uses K to rep-
resent any covariance matrix that is directly constructed
from the covariance function, but with different indices to
show which two sets of input points are involved. For exam-
ple, the N×T rectangular covariance matrix between train-
ing points and test points is denoted KNT . It is constructed
from the covariance function: [KNT]nt = K(xn,xt), or,
with some abuse of notation, KNT = K(X,XT). Rather
than use transpose symbols we simply swap the indices:
K>

NM ≡ KMN , since the covariance function is a symmetric
function. To save further space, we contract the two indices
of square or self covariances to one index, e.g. KNN ≡ KN .
We denote a single general test point (x∗, f∗, y∗), in keep-
ing with past GP references. Covariances that refer to this
single test point have starred indices, e.g. KN∗. A key
part of all the sparse GP approximations is the ‘low-rank’
covariance function Q:

Q(x,x′) = KxMK−1
M KMx′ , (23)

where KxM is shorthand for the vector function
[K(x, x̄1), . . . , K(x, x̄M)]. Any covariance matrix Q con-
structed from (23) will have maximum rank M .

References

L. Csató. Sparse online Gaussian processes. Neural Comp.,
14:641–668, 2002.

T. Feder and D. Greene. Optimal algorithms for approx-
imate clustering. In Proc. of the 20th ACM symp. on
Theory of comp., pages 434–444. ACM Press, 1988.

T. Gonzales. Clustering to minimize the maximum inter-
cluster distance. Theor. Comp. Sci., 38:293–306, 1985.

E. Grosse. LOESS: Multivariate smoothing by moving least
squares. In Approximation Theory VI, volume 1, pages
299–302. Academic Press, 1989.

F. P. Preparata and M. Shamos. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

J. Quiñonero Candela and C. E. Rasmussen. A unifying
view of sparse approximate Gaussian process regression.
JMLR, 6:1939–1959, Dec 2005.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of
Gaussian process experts. In NIPS 14. MIT Press, 2002.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. MIT press, 2006.

M. Seeger, C. K. I. Williams, and N. D. Lawrence. Fast
forward selection to speed up sparse Gaussian process
regression. In AISTATS 9, 2003.

E. Snelson and Z. Ghahramani. Sparse Gaussian processes
using pseudo-inputs. In NIPS 18, pages 1257–1264. MIT
press, 2006.

V. Tresp. A Bayesian committee machine. Neural Compu-
tation, 12:2719–2741, 2000.

C. Yang, R. Duraiswami, and L. Davis. Efficient kernel
machines using the improved fast gauss transform. In
NIPS 17, pages 1561–1568. MIT Press, 2005.

528

